Secure Socket Layer

version 3.0

The Erlang/OTP SSL application includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). Copyright (c) 1998-2002 The OpenSSL Project. All
rights reserved.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com). Copyright (C) 1995-1998 Eric Young
(eay@cryptsoft.com). All rights reserved.

For further OpenSSL and SSLeay license information se the chapter Licenses.

http://www.erlang.org

Typeset in IATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 SSL User's Guide

1.1 SSL CONNEeCtioNS o o i i e e e e
1.2 Certificates e e e e
1.3 Encryption Algorithms
1.3.1 Symmetric Key Algorithms o
1.3.2 Public Key Algorithms
1.3.3 Digital Signature Algorithms o
1.3.4 Message Digests Algorithms,
1.4 SSL Handshake e
1.5 Authentication e
1.5.1 Trusted Certificates e

2 Using the SSL application
21 ThessIModule e
2.2 ACIlient-Server Example

3 PKIX Certificates

3.1 Introduction to Certificates.
3.2 PKIXCertificates e
3.2.1 Certificate and TBSCertificate
3.2.2 TBSCertificate issuer and subject Lo oL
3.2.3 TBSCertificate extensions

4 Creating Certificates

41 TheopensslCommand
4.1.1 The openssl configurationfile
4.1.2 Creatingthe Erlangroot CA
4.1.3 Creatingthe OTP CA e e e e
4.2 AnEXample . . .o

SSL Application

A A W W WDNDNDNDNPREPP

o ~N N

Using SSL for Erlang Distribution

5.1 Introduction
5.2 Building boot scripts including the SSL application
5.3 Specifying distribution module for net kernel oL
5.4 Specifying security options and other SSL options
5.5 Setting up environment to alwaysuse SSL L.
Licenses

6.1 OpenSSL License o e e
6.2 SSLeay LiCENSE e

SSL Reference Manual

7.1 Y 1
7.2 SSl . e e
7.3 SSLPKIX . . o e

SSL Release Notes

8.1 SSL3.0.11. . . . o
8.1.1 Fixed Bugs and Malfunctions
8.2 SSL3.0.10.
8.2.1 Fixed Bugs and Malfunctions
8.3 SSL 3.0.9 . ..
8.3.1 Fixed Bugs and Malfunctions
8.4 SSL3.0.8
8.4.1 Fixed Bugs and Malfunctions L oo
8.5 SsI3.0.7 . . .
8.5.1 Fixed Bugs and Malfunctions oo
8.6 SsI3.0.6
8.6.1 Improvementsand New Features
8.7 SsI3.0.5 . . .
8.7.1 Fixed Bugs and Malfunctions
8.8 SsI3.0.4 . ..
8.8.1 Fixed Bugs and Malfunctions
8.9 SsI3.0.3 . .
8.9.1 Fixed Bugs and Malfunctions,
8.9.2 Improvementsand New Features
8.10 SSL 3.0.2
8.10.1 Fixed Bugs and Malfunctions,
8.10.2 KnownBugsand Problems L
8.11 SSL3.0.1 e
8.11.1 Fixed Bugs and Malfunctions L Lo

SSL Application

25
25
26
27
27
28

29
29
30

33
35
37
45

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20
8.21

8.22

8.23

8.11.2 Known Bugsand Problems Lo
SSL 3.0 . .
8.12.1 Improvements and New Features
8.12.2 Fixed Bugs and Malfunctions Lo oL
8.12.3 Known Bugsand Problems
SSL 2.3.6 . . o
8.13.1 Fixed Bugs and Malfunctions
8.13.2 Known Bugsand Problems
SSL 2.3.5 .
8.14.1 Fixed Bugs and Malfunctions
8.14.2 Known Bugsand Problems L o
SSL 2.3.4 . . . e
8.15.1 Improvements and New Features
SSL 2.3.3 .
8.16.1 Fixed Bugs and Malfunctions
SSL 2.3.2 .
8.17.1 Fixed Bugs and Malfunctions
SSL 2.3.1 .
8.18.1 Fixed Bugs and Malfunctions,
SSL 2.3 . . e
SSL 2.2.1 . o
SSL 2.2 . e
8.21.1 Improvements and New Features
8.21.2 Known Bugsand Problems
SSL 2.1 . o
8.22.1 Improvements and New Features
8.22.2 Fixed Bugs and Malfunctions
8.22.3 Known Bugsand Problems L o
SSL 2.0 . . o e

List of Tables

Bibliography

Index of Modules and Functions

SSL Application

57

59

61

Vi

SSL Application

Chapter 1

SSL User's Guide

Here we provide a short introduction to the SSL protocol. We only consider those part of the protocol
that are important from a programming point of view.

For a very good general introduction to SSL and TLS see the book SSL and TLS [1].
Ouitline:

e Two types of connections - connection: handshake, data transfer, and shutdown - SSL/TLS
protocol - server must have certificate - what the the server sends to the client - client may verify
the server - server may ask client for certificate - what the client sends to the server - server may
then verify the client - verification - certificate chains - root certificates - public keys - key
agreement - purpose of certificate - references

1.1 SSL Connections

The SSL protocol is implemented on top of the TCP/IP protocol. From an endpoint view it also has the
same type of connections as that protocol, almost always created by calls to socket interface functions
listen, accept and connect. The endpoints are servers and clients.

A server listens for connections on a specific address and port. This is done once. The server then accepts
each connections on that same address and port. This is typically done indefinitely many times.

A client connects to a server on a specific address and port. For each purpose this is done once.

For a plain TCP/IP connection the establishment of a connection (through an accept or a connect) is
followed by data transfer between the client and server, finally ended by a connection close.

An SSL connection also consists of data transfer and connection close, However, the data transfer
contains encrypted data, and in order to establish the encryption parameters, the data transfer is
preceeded by an SSL handshake. In this handshake the server plays a dominant role, and the main
instrument used in achieving a valid SSL connection is the server’s certificate. We consider certificates in
the next section, and the SSL handshake in a subsequent section.

SSL Application 1

Chapter 1: SSL User's Guide

1.2 Certificates

A certificate is similar to a driver’s license, or a passport. The holder of the certificate is called the
subject. First of all the certificate identifies the subject in terms of the name of the subject, its postal
address, country name, company name (if applicable), etc.

Although a driver's license is always issued by a well-known and distinct authority, a certificate may
have an issuer that is not so well-known. Therefore a certificate also always contains information on the
issuer of the certificate. That information is of the same type as the information on the subject. The
issuer of a certificate also signs the certificate with a digital signature (the signature is an inherent part of
the certificate), which allow others to verify that the issuer really is the issuer of the certificate.

Now that a certificate can be checked by verifying the signature of the issuer, the question is how to
trust the issuer. The answer to this question is to require that there is a certificate for the issuer as well.
That issuer has in turn an issuer, which must also have a certificate, and so on. This certificate chain has
to have en end, which then must be a certificate that is trusted by other means. We shall cover this
problem of authentication in a subsequent section.

1.3 Encryption Algorithms

An encryption algorithm is a mathematical algorithm for encryption and decryption of messages (arrays
of bytes, say). The algorithm as such is always required to be publicly known, otherwise its strength
cannot be evaluated, and hence it cannot be used reliably. The secrecy of an encrypted message is not
achieved by the secrecy of the algorithm used, but by the secrecy of the keys used as input to the
encryption and decryption algorithms. For an account of cryptography in general see Applied

Cryptography [2].
There are two classes of encryption algorithms: symmetric key algorithms and public key algorithms.
Both types of algorithms are used in the SSL protocol.

In the sequel we assume holders of keys keep them secret (except public keys) and that they in that
sense are trusted. How a holder of a secret key is proved to be the one it claims to be is a question of
authentication, which, in the context of the SSL protocol, is described in a section further below.

1.3.1 Symmetric Key Algorithms

A symmetric key algorithm has one key only. The key is used for both encryption and decryption.
Obviously the key of a symmetric key algorithm must always be kept secret by the users of the key.
DES is an example of a symmetric key algorithm.

Symmetric key algorithms are fast compared to public key algorithms. They are therefore typically used
for encrypting bulk data.

1.3.2 Public Key Algorithms

A public key algorithm has two keys. Any of the two keys can be used for encryption. A message
encrypted with one of the keys, can only be decrypted with the other key. One of the keys is public
(known to the world), while the other key is private (i.e. kept secret) by the owner of the two keys.

RSA is an example of a public key algorithm.

Public key algorithms are slow compared to symmetric key algorithms, and they are therefore seldom
used for bulk data encryption. They are therefore only used in cases where the fact that one key is
public and the other is private, provides features that cannot be provided by symmetric algorithms.

2 SSL Application

1.4: SSL Handshake

1.3.3 Digital Signature Algorithms

An interesting feature of a public key algorithm is that its public and private keys can both be used for
encryption. Anyone can use the public key to encrypt a message, and send that message to the owner of
the private key, and be sure of that only the holder of the private key can decrypt the message.

On the other hand, the owner of the private key can encrypt a message with the private key, thus
obtaining an encrypted message that can decrypted by anyone having the public key.

The last approach can be used as a digital signature algorithm. The holder of the private key signs an
array of bytes by performing a specified well-known message digest algorithm to compute a hash of the
array, encrypts the hash value with its private key, an then presents the original array, the name of the
digest algorithm, and the encryption of the hash value as a signed array of bytes.

Now anyone having the public key, can decrypt the encrypted hash value with that key, compute the
hash with the specified digest algorithm, and check that the hash values compare equal in order to
verify that the original array was indeed signed by the holder of the private key.

What we have accounted for so far is by no means all that can be said about digital signatures (see
Applied Cryptography [2]for further details).

1.3.4 Message Digests Algorithms

A message digest algorithm is a hash function that accepts an array bytes of arbitrary but finite length of
input, and outputs an array of bytes of fixed length. Such an algorithm is also required to be very hard
to invert.

MD5 (16 bytes output) and SHAL (20 bytes output) are examples of message digest algorithms.

1.4 SSL Handshake

The main purpose of the handshake performed before an an SSL connection is established is to
negotiate the encryption algorithm and key to be used for the bulk data transfer between the client and
the server. We are writing the key, since the algorithm to choose for bulk encryption one of the
symmetric algorithms.

There is thus only one key to agree upon, and obviously that key has to be kept secret between the
client and the server. To obtain that the handshake has to be encrypted as well.

The SSL protocol requires that the server always sends its certificate to the client in the beginning of
the handshake. The client then retrieves the server's public key from the certificate, which means that
the client can use the server's public key to encrypt messages to the server, and the server can decrypt
those messages with its private key. Similarly, the server can encrypt messages to the client with its
private key, and the client can decrypt messages with the server's public key. It is thus is with the
server's public and private keys that messages in the handshake are encrypted and decrypted, and hence
the key agreed upon for symmetric encryption of bulk data can be kept secret (there are more things to
consider to really keep it secret, see SSL and TLS [1]).

The above indicates that the server does not care who is connecting, and that only the client has the
possibility to properly identify the server based on the server's certificate. That is indeed true in the
minimal use of the protocol, but it is possible to instruct the server to request the certificate of the
client, in order to have a means to identify the client, but it is by no means required to establish an SSL
connection.

If a server request the client certificate, it verifies, as a part of the protocol, that the client really holds
the private key of the certificate by sending the client a string of bytes to encrypt with its private key,
which the server then decrypts with the client's public key, the result of which is compared with the

SSL Application 3

Chapter 1: SSL User's Guide

original string of bytes (a similar procedure is always performed by the client when it has received the
server's certificate).

The way clients and servers authenticate each other, i.e. proves that their respective peers are what they
claim to be, is the topic of the next section.

1.5 Authentication

As we have already seen the reception of a certificate from a peer is not enough to prove that the peer is
authentic. More certificates are needed, and we have to consider how certificates are issued and on
what grounds.

Certificates are issued by certification authorities (CAs) only. They issue certificates both for other CAs
and ordinary users (which are not CAS).

Certain CAs are top CAs, i.e. they do not have a certificate issued by another CA. Instead they issue
their own certificate, where the subject and issuer part of the certificate are identical (such a certificate
is called a self-signed certificate). A top CA has to be well-known, and has to have a publicly available
policy telling on what grounds it issues certificates.

There are a handful of top CAs in the world. You can examine the certificates of several of them by
clicking through the menus of your web browser.

A top CA typically issues certificates for other CAs, called intermediate CAs, but possibly also to
ordinary users. Thus the certificates derivable from a top CA constitute a tree, where the leaves of the
tree are ordinary user certificates.

A certificate chain is an ordered sequence of certificates, C1, C2, ..., Cn, say, where C1 is a top CA
certificate, and where Cn is an ordinary user certificate, and where the holder of C1 is the issuer of C2,
the holder of C2 is the issuer of C3, ..., and the holder of Cn-1 is the issuer of Cn, the ordinary user
certificate. The holders of C2, C3, ..., Cn-1 are then intermediate CAs.

Now to verify that a certificate chain is unbroken we have to take the public key from each certificate
Ck, and apply that key to decrypt the signature of certificate Ck-1, thus obtaining the message digest
computed by the holder of the Ck certificate, compute the real message digest of the Ck-1 certificate
and compare the results. If they compare equal the link of the chain between Ck and Ck-1 is considered
to unbroken. This is done for each link k =1, 2, ..., n-1. If all links are found to be unbroken, the user
certificate Cn is considered authenticated.

1.5.1 Trusted Certificates

Now that there is a way to authenticate a certificate by checking that all links of a certificate chain are
unbroken, the question is how you can be sure to trust the certificates in the chain, and in particular the
top CA certificate of the chain.

To provide an answer to that question consider the perspective of a client, which have just received the
certificate of the server. In order to authenticate the server the client has to construct a certificate chain
and to prove that the chain is unbroken. The client has to have a set of CA certificates (top CA or
intermediate CA certificates) not obtained from the server, but obtained by other means. Those
certificates are kept 1locally by the client, and are trusted by the client.

More specifically, the client does not really have to have top CA certificates in its local storage. In order
to authenticate a server it is sufficient for the client to posses the trusted certificate of the issuer of the
server certificate.

Now that is not the whole story. A server can send an (incomplete) certificate chain to its client, and
then the task of the client is to construct a certificate chain that begins with a trusted certificate and

4 SSL Application

1.5: Authentication

ends with the server's certificate. (A client can also send a chain to its server, provided the server
requested the client’s certificate.)

All this means that an unbroken certificate chain begins with a trusted certificate (top CA or not), and
ends with the peer certificate. That is the end of the chain is obtained from the peer, but the beginning
of the chain is obtained from local storage, which is considered trusted.

SSL Application 5

Chapter 1: SSL User's Guide

6 SSL Application

Chapter 2

Using the SSL application

Here we provide an introduction to using the Erlang/OTP SSL application, which is accessed through
the ssl interface module.

We also present example code in the Erlang module client _server, also provided in the directory
ss1-X.Y.Z/examples, with source code in src and the compiled module in ebin of that directory.

2.1 The ssl Module

The ss1 module provides the user interface to the Erlang/OTP SSL application. The interface functions
provided are very similar to those provided by the gen_tcp and inet modules.

Servers use the interface functions 1isten and accept. The listen function specifies a TCP port to to
listen to, and each call to the accept function establishes an incoming connection.

Clients use the connect function which specifies the address and port of a server to connect to, and a
successful call establishes such a connection.

The 1isten and connect functions have almost all the options that the corresponding functions in
gen_tcp/ have, but there are also additional options specific to the SSL protocol.

The most important SSL specific option is the cacertfile option which specifies a local file containing
trusted CA certificates which are and used for peer authentication. This option is used by clients and
servers in case they want to authenticate their peers.

The certfile option specifies a local path to a file containing the certificate of the holder of the
connection endpoint. In case of a server endpoint this option is mandatory since the contents of the
sever certificate is needed in the the handshake preceeding the establishment of a connection.

Similarly, the keyfile option points to a local file containing the private key of the holder of the
endpoint. If the certfile option is present, this option has to be specified as well, unless the private
key is provided in the same file as specified by the certfile option (a certificate and a private key can
thus coexist in the same file).

The verify option specifies how the peer should be verified:

0 Do not verify the peer,
1 Verify peer,
2 Verify peer, fail the verification if the peer has no certificate.

SSL Application 7

Chapter 2: Using the SSL application

The depth option specifies the maximum length of the verification certificate chain. Depth = 0 means
the peer certificate, depth = 1 the CA certificate, depth = 2 the next CA certificate etc. If the
verification process does not find a trusted CA certificate within the maximum length, the verification
fails.

The ciphers option specifies which ciphers to use (a string of colon separated cipher names). To obtain
a list of available ciphers, evaluate the ss1:ciphers/0 function (the SSL application has to be running).

2.2 A Client-Server Example
Here is a simple client server example.

%%l Purpose: Example of SSL client and server using example certificates.
-module(client_server).
-export([start/0, start/1, init_connect/1]).

start() ->
start([ssl, subject]).

start (CertOpts) —->
%% Start ssl application
application:start(ssl),

%% Always seed
ssl:seed("ellynatefttidppohjeh"),

%% Let the current process be the server that listens and accepts
%% Listen

{ok, LSock} = ssl:listen(0, mk_opts(listen)),

{ok, LPort} = ssl:port(LSock),

io:fwrite("Listen: port = “w."n", [LPort]),

%% Spawn the client process that connects to the server
spawn (?MODULE, init_connect, [{LPort, CertOpts}]),

%% Accept

{ok, ASock} = ssl:accept(LSock),
io:fwrite("Accept: accepted.™n"),

{ok, Cert} = ssl:peercert(ASock, CertOpts),
io:fwrite("Accept: peer cert: n"p~n", [Cert]),
io:fwrite("Accept: sending \"hello\".™n"),
ssl:send(ASock, "hello"),

{error, closed} = ssl:recv(ASock, 0),
io:fwrite("Accept: detected closed.™n"),
ssl:close(ASock),

io:fwrite("Listen: closing and terminating."n"),
ssl:close(LSock),

application:stop(ssl).

8 SSL Application

2.2: A Client-Server Example

%% Client connect

init_connect ({LPort, CertOpts}) ->
{ok, Host} = inet:gethostname(),
{ok, CSock} = ssl:connect(Host, LPort, mk_opts(connect)),
io:fwrite("Connect: connected.™n"),
{ok, Cert} = ssl:peercert(CSock, CertOpts),
io:fwrite("Connect: peer cert: n"p™n", [Cert]),
{ok, Data} = ssl:recv(CSock, 0),
io:fwrite("Connect: got data: “p~n", [Datal),
io:fwrite("Connect: closing and terminating.™n"),
ssl:close(CSock).

mk_opts(listen) ->
mk_opts("server");
mk_opts(connect) ->
mk_opts("client");
mk_opts(Role) ->
Dir = filename: join([code:1ib_dir(ssl), "examples", "certs", "etc"]),
[{active, falsel},
{verify, 2},
{depth, 2},
{cacertfile, filename: join([Dir, Role, "cacerts.pem"])},
{certfile, filename:join([Dir, Role, "cert.pem"])},
{keyfile, filename:join([Dir, Role, "key.pem"])}].

SSL Application 9

Chapter 2: Using the SSL application

10 SSL Application

Chapter 3

PKIX Certificates

3.1 Introduction to Certificates

Certificates were originally defined by ITU (CCITT) and the latest definitions are described in ITU-T
X.509 [3], but those definitions are (as always) not working.

Working certificate definitions for the Internet Community are found in the the PKIX RFCs RFC 3279
[4]and RFC 3280 [5]. The parsing of certificates in the Erlang/OTP SSL application is based on those
RFCS.

Certificates are defined in terms of ASN.1 (ITU-T X.680 [6]). For an introduction to ASN.1 see ASN.1
Information Site!.

3.2 PKIX Certificates

Here we base the PKIX certificate definitions in RFCs RFC 3279 [4]and RFC 3280 [5]. We however
present the definitions according to SSL-PKIX.asn1 module, which is an amelioration of the
PKIX1Explicit88.asn1, PKIX1Implicit88.asnl, and PKIX1Algorithms88.asn1 modules. You find all
these modules in the pkix subdirectory of SSL.

The Erlang terms that are returned by the functions ss1:peercert/1/2, ssl_pkix:decode_cert/1/2,
and ssl_pkix:decode_cert_file/1/2 when the option ss1 is used in those functions, correspond the
ASN.1 structures described in the sequel.

3.2.1 Certificate and TBSCertificate

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm SignatureAlgorithm,
signature BIT STRING }
TBSCertificate ::= SEQUENCE {
version [0] Version DEFAULT vi,
serialNumber CertificateSerialNumber,
signature SignatureAlgorithm,
issuer Name,

1URL: http://asn1.elibel.tm.fr/

SSL Application 11

Chapter 3: PKIX Certificates

validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
-- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
—-- If present, version MUST be v2 or v3

extensions [3] Extensions OPTIONAL
-- If present, version MUST be v3 -- }

Version ::= INTEGER { v1(0), v2(1), v3(2) }
CertificateSerialNumber ::= INTEGER
Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }
Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime }

The meaning of the fields version, serialNumber, and validity are quite obvious given the type
definitions above, so we do not go further into their details.

The signatureAlgorithm field of Certificate and the signature field of TBSCertificate contain
the name and parameters of the algorithm used for signing the certificate. The values of these two fields
must be equal.

The signature field of Certificate contains the value of the signature that the issuer computed by
using the prescribed algorithm.

The issuer<c> and <c>subject fields can contain many different types av data, and is therefore
considered in a separate section. The same holds for the extensions field. The issuerUniqueID and
the subjectUniquelD fields are not considered further.

3.2.2 TBSCertificate issuer and subject

Name ::= CHOICE { -- only one possibility for now --
rdnSequence RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::=
SET SIZE (1 .. MAX) OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
type ATTRIBUTE-TYPE-AND-VALUE-CLASS. &id
({SupportedAttributeTypeAndValues}),
value ATTRIBUTE-TYPE-AND-VALUE-CLASS.&Type
({SupportedAttributeTypeAndValues}{@type}) }

12 SSL Application

3.2: PKIX Certificates

SupportedAttributeTypeAndValues ATTRIBUTE-TYPE-AND-VALUE-CLASS ::=
{ name | surname | givenName | initials | generationQualifier |
commonName | localityName | stateOrProvinceName | organizationName |
organizationalUnitName | title | dnQualifier | countryName |
serialNumber | pseudonym | domainComponent | emailAddress }

3.2.3 TBSCertificate extensions

The extensions field of a TBScertificate is a sequence of type Extension, defined as follows,

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue ANY }

Each extension has a unique object identifier. An extension with a critical value set to TRUE must be
recognised by the reader of a certificate, or else the certificate must be rejected.

Extensions are divided into two groups: standard extensions and internet certificate extensions. All
extensions listed in the table that follows are standard extensions, except for authorityInfoAccessand
subjectInfolAccess, which are internet extensions.

Depending on the object identifier the extnValue is parsed into an appropriate welldefined structure.

The following table shows the purpose of each extension, but does not specify the structure. To see the
structure consult the PKIX1Implicit88.asnl module.

authorityKeyldentifier Used by to identify a certificate signed that has multiple signing keys.

subjectKeyldentifier Used to identify certificates that contain a public key. Must appear i CA
certificates.

keyUsage Defines the purpose of the certificate. Can be one or sev-

eral of digitalSignature, nonRepudiation, keyEncipherment,
dataEncipherment, keyAgreement, keyCertSign, cRLSign,
encipherOnly, decipherOnly.

privateKeyUsagePeriod Allows certificate issuer to provide a private key usage period to be short
than the certificate usage period.

certificatePolicies Contains one or more policy information terms indicating the policies under
which the certificate has been issued.

policyMappings Used i CA certificates.

subjectAltName Allows additional identities to be bound the the subject.

issuerAltName Allows additional identities to be bound the the issuer.

subjectDirectoryAttributes Conveys identity attributes of the subject.

basicConstraints Tells if the certificate holder is a CA or not.

nameConstraints Used in CA certificates.

continued ...

SSL Application 13

Chapter 3: PKIX Certificates

... continued

policyConstraints

Used in CA certificates.

extKeyUsage

Indicates for which purposed the public key may be used.

cRLDistributionPoints

Indicates how CRL (Certificate Revokation List) information is obtained.

inhibitAnyPolicy

Used i CA certificates.

freshestCRL

For CRLs.

authoritylnfoAccess

How to access CA information of the isssuer of the certificate.

subjectinfoAccess

How to access CA information of the subject of the certificate.

14

Table 3.1: PKIX Extensions

SSL Application

Chapter 4

Creating Certificates

Here we consider the creation of example certificates.

4.1 The openssl Command

The openss1 command is a utility that comes with the OpenSSL distribution. It provides a variety of
subcommands. Each subcommand is invoked as

openssl subcmd <options and arguments>

where subcmd denotes the subcommand in question.

We shall use the following subcommands to create certificates for the purpose of testing Erlang/OTP
SSL:

e req to create certificate requests and a self-signed certificates,
e ca to create certificates from certificate requests.

We create the following certificates:

the erlangCA root certificate (a self-signed certificate),

the otpCA certificate signed by the erlangCA,
a client certificate signed by the otpCA, and
a server certificate signed by the otpCA.

SSL Application 15

Chapter 4: Creating Certificates

4.1.1 The openssl configuration file

An openss1 configuration file consist of a number of sections, where each section starts with one line
containing [sectionmname], where section name is the name of the section. The first section of the
file is either unnamed, or is named [default]. For further details see the OpenSSL config(5) manual

page.

The required sections for the subcommands we are going to use are as follows:

subcommand required/default section override command line option configuration file option
req [req] - -config FILE
ca [ca] -name section -config FILE

Table 4.1: openssl subcommands to use

4.1.2 Creating the Erlang root CA

The Erlang root CA is created with the command

openssl req -new -x509 -config /some/path/req.cnf \n

-keyout /some/path/key.pem -out /so

where the option -new indicates that we want to create a new certificate request and the option -x509
implies that a self-signed certificate is created.

4.1.3 Creating the OTP CA

The OTP CA is created by first creating a certificate request with the command

openssl req -new -config /some/path/req.cnf \n

and the ask the Erlang CA to sign it:

-keyout /some/path/key.pem -out /some/path/

openssl ca -batch -notext -config /some/path/req.cnf \n -extensions ca_cert -in /some/path/r

where the option -extensions refers to a section in the configuration file saying that it should create a
CA certificate, and not a plain user certificate.

The client and server certificates are created similarly, except that the option -extensions then has
the value user_cert.

16

SSL Application

4.2: An Example

4.2 An Example

The following module create_certs is used by the Erlang/OTP SSL application for generating
certificates to be used in tests. The source code is also found in ss1-X.Y.Z/examples/certs/src.

The purpose of the create_certs:all/1 function is to make it possible to provide from the erl
command line, the full path name of the openss1 command.

Note that the module creates temporary OpenSSL configuration files for the req and ca subcommands.

%% The purpose of this module is to create example certificates for
%% testing.

%% Run it as:

hth

%% erl -noinput -run make_certs all "/path/to/openssl" -s erlang halt

ot

-module (make_certs) .
-export([all/0, all/1]).

-record(dn, {commonName,
organizationalUnitName = "Erlang O0TP",
organizationName = "Ericsson AB",
localityName = "Stockholm",
countryName = "SE",
emailAddress = "peter@erix.ericsson.se"}).

all() ->
all(["openssl"]).

all([OpenSSLCmd]) ->
Root = filename:dirname(filename:dirname((code:which(?MODULE)))),
%% io:fwrite("Root : “s™n", [Root]),
NRoot = filename: join([Root, "etc"]),
file:make_dir (NRoot),
create_rnd(Root, "etc"), % For all requests
rootCA(NRoot, OpenSSLCmd, "erlangCA"),
intermediateCA(NRoot, OpenSSLCmd, "otpCA", "erlangCA"),
endusers (NRoot, OpenSSLCmd, "otpCA", ["client", "server"]),
collect_certs(NRoot, ["erlangCA", "otpCA"], ["client", "server"]),
remove_rnd(Root, "etc").

rootCA(Root, OpenSSLCmd, Name) ->
create_ca_dir(Root, Name, ca_cnf (Name)),
DN = #dn{commonName = Name},
create_self_signed_cert(Root, OpenSSLCmd, Name, req_cnf (DN)),
ok.

intermediateCA(Root, OpenSSLCmd, CA, ParentCA) ->
CA = "otpCA",
create_ca_dir(Root, CA, ca_cnf(CA)),
CARoot = filename:join([Root, CA]),
DN = #dn{commonName = CA},
CnfFile = filename:join([CARoot, "req.cnf"]),

SSL Application 17

Chapter 4: Creating Certificates

file:write_file(CnfFile, req_cnf(DN)),

KeyFile = filename:join([CARoot, "private", "key.pem"]),

ReqFile = filename:join([CARoot, "req.pem"]),

create_req(Root, OpenSSLCmd, CnfFile, KeyFile, ReqFile),

CertFile = filename: join([CARoot, "cert.pem"]),

sign_req(Root, OpenSSLCmd, ParentCA, "ca_cert", ReqFile, CertFile).

endusers (Root, OpenSSLCmd, CA, Users) ->
lists:foreach(fun(User) -> enduser(Root, OpenSSLCmd, CA, User) end, Users).

enduser (Root, OpenSSLCmd, CA, User) ->
UsrRoot = filename:join([Root, User]),
file:make_dir (UsrRoot),
CnfFile = filename:join([UsrRoot, "req.cnf"]),
DN = #dn{commonName = User},
file:write_file(CnfFile, req_cnf(DN)),
KeyFile = filename: join([UsrRoot, "key.pem"]),
ReqFile = filename:join([UsrRoot, "req.pem"]),
create_req(Root, OpenSSLCmd, CnfFile, KeyFile, ReqFile),
CertFile = filename:join([UsrRoot, "cert.pem"]),
sign_req(Root, OpenSSLCmd, CA, "user_cert", ReqFile, CertFile).

collect_certs(Root, CAs, Users) —>
Bins = lists:foldr(
fun(CA, Acc) —>
File = filename:join([Root, CA, "cert.pem"]),
{ok, Bin} = file:read_file(File),
[Bin, "
" | Acc]
end, [], CAs),
lists:foreach(
fun(User) ->
File = filename:join([Root, User, "cacerts.pem"]),
file:write_file(File, Bins)
end, Users).

create_self_signed_cert(Root, OpenSSLCmd, CAName, Cnf) ->
CARoot = filename:join([Root, CAName]),
CnfFile = filename:join([CARoot, "req.cnf"]),
file:write_file(CnfFile, Cnf),
KeyFile = filename:join([CARoot, "private", "key.pem"]),
CertFile = filename: join([CARoot, "cert.pem"]),
Cmd = [OpenSSLCmd, " req"
" -new"
n _X509 n
" -config ", CnfFile,
" -keyout ", KeyFile,
" -out ", CertFile],
Env = [{"ROOTDIR", Root}],
cmd (Cmd, Env).

create_ca_dir(Root, CAName, Cnf) ->
CARoot = filename:join([Root, CAName]),

18 SSL Application

4.2: An Example

file:make_dir (CARoot),
create_dirs(CARoot, ["certs", "crl", "newcerts", "private"]),
create_rnd(Root, filename:join([CAName, "private"])),
create_files(CARoot, [{"serial", "O1
ll}’
{"index.txt", ""},
{"ca.cnf", Cnf}]).

create_req(Root, OpenSSLCmd, CnfFile, KeyFile, ReqFile) ->
Cmd = [OpenSSLCmd, " req"
" -new"
" -config ", CnfFile,
" -keyout ", KeyFile,
" -out ", ReqgFile],
Env = [{"ROOTDIR", Root}],
cmd (Cmd, Env).

sign_req(Root, OpenSSLCmd, CA, CertType, ReqFile, CertFile) ->
CACnfFile = filename: join([Root, CA, "ca.cnf"]),
Cmd = [OpenSSLCmd, " ca"
" -batch"
" -notext"
" -config ", CACnfFile,
" -extensions ", CertType,
" -in ", RegFile,
" -out ", CertFile],
Env = [{"ROOTDIR", Root}],
cmd (Cmd, Env).

W
%% Misc
W

create_dirs(Root, Dirs) —>
lists:foreach(fun(Dir) —>
file:make_dir(filename: join([Root, Dir])) end,
Dirs).

create_files(Root, NameContents) —->
lists:foreach(
fun({Name, Contents}) ->
file:write_file(filename: join([Root, Name]), Contents) end,
NameContents) .

create_rnd(Root, Dir) ->
From = filename:join([Root, "rnd", "RAND"]),
To = filename:join([Root, Dir, "RAND"]),
file:copy(From, To).

remove_rnd(Root, Dir) ->

File = filename:join([Root, Dir, "RAND"]),
file:delete(File).

SSL Application 19

Chapter 4: Creating Certificates

cmd(Cmd, Env) ->
FCmd = lists:flatten(Cmd),
Port = open_port({spawn, FCmd}, [stream, eof, exit_status,
{env, Env}]),
eval_cmd (Port) .

eval_cmd(Port) —>
receive
{Port, {data, _}} —>
eval_cmd(Port);
{Port, eof} ->

ok
end,
receive
{Port, {exit_status, Status}} when Status /= 0 ->
%% io:furite("exit status: “w™n", [Status]),
erlang:halt(Status)
after 0 —>
ok
end.
%ot
%% Contents of configuration files
Dot

req_cnf (DN) ->
["# Purpose: Configuration for requests (end users and CAs)."

"ROOTDIR = $ENV::ROOTDIR
"[req]

"
"input_password =