
cosTransactions Application

version 1.2

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 cosTransactions User's Guide 1

1.1 The cosTransactions Application . 1

1.1.1 Content Overview . 1

1.1.2 Brief Description of the User's Guide . 1

1.2 Introduction to cosTransactions . 1

1.2.1 Overview . 1

1.3 Installing cosTransactions . 2

1.3.1 Installation Process . 2

1.4 cosTransactions Examples . 3

1.4.1 A Tutorial on How to Create a Simple Service 3

1.5 Resource Skeletons . 8

1.5.1 Resource Skeletons . 8

1.6 cosTransactions Release Notes . 11

1.6.1 cosTransactions 1.2, Release Notes . 11

1.6.2 cosTransactions 1.1.2, Release Notes . 12

1.6.3 cosTransactions 1.1.1.1, Release Notes . 12

1.6.4 cosTransactions 1.1.1, Release Notes . 13

1.6.5 cosTransactions 1.1, Release Notes . 13

2 cosTransactions Reference Manual 15

2.1 CosTransactions Control . 19

2.2 CosTransactions Coordinator . 20

2.3 CosTransactions RecoveryCoordinator . 24

2.4 CosTransactions Resource . 26

2.5 CosTransactions SubtransactionAwareResource . 28

2.6 CosTransactions Terminator . 29

2.7 CosTransactions TransactionFactory . 30

2.8 cosTransactions . 31

Glossary 33

iiicosTransactions Application

iv cosTransactions Application

Chapter 1

cosTransactions User's Guide

The cosTransactions application is an Erlang implementation of the OMG CORBA Transaction Service.

1.1 The cosTransactions Application

1.1.1 Content Overview

The cosTransactions documentation is divided into three sections:

� PART ONE - The User's Guide
Description of the cosTransactions Application including services and a small tutorial
demonstrating the development of a simple service.

� PART TWO - Release Notes
A concise history of cosTransactions.

� PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in
cosTransactions.

1.1.2 Brief Description of the User's Guide

The User's Guide contains the following parts:

� cosTransactions overview

� cosTransactions installation

� A tutorial example

1.2 Introduction to cosTransactions

1.2.1 Overview

The cosTransactions application is a Transaction Service compliant with the OMG1 Transaction Service
CosTransactions 1.1.

1URL: http://www.omg.org

1cosTransactions Application

Chapter 1: cosTransactions User's Guide

Purpose and Dependencies

cosTransactions is dependent on Orber version 3.0.1 or later(see the Orber documentation), which
provides CORBA functionality in an Erlang environment.

cosTransactions is dependent on supervisor/stdlib-1.7 or later.

Basically, cosTransaction implements a two-phase commit protocol and allows objects running on different
platforms to participate in a transaction.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is
familiar with distributed programming, CORBA and the Orber application.

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom
Platform Documentation Set. It is also helpful to have read Concurrent Programming in Erlang and, for
example, Transaction Processing: concepts and techniques - Jim Gray, Andreas Reuter.

Note:
The cosTransaction application is compliant with the OMG CosTransactions specification 1.1. Using
other vendors transaction service, compliant with the OMG CosTransactions specification 1.0, may
not work since the ’TRANSACTION REQUIRED’, ’TRANSACTION ROLLEDBACK’ and
’INVALID TRANSACTION’ exceptions have been redefined to be system exceptions, i.e., used to be
transaction-specific ('CosTransactions Exc').

1.3 Installing cosTransactions

1.3.1 Installation Process

This chapter describes how to install cosTransactions [page 31] in an Erlang Environment.

Preparation

Before starting the installation process for cosTransactions, the application Orber must be running.

The cosTransactions application must be able to log progress to disk. The log files are created in the
current directory as “oe name@machine type timestamp”. Hence, read and write rights must be
granted. If the transaction completes in an orderly fashion the logfiles are removed, but not if an error,
which demenads human intervention, occur.

2 cosTransactions Application

1.4: cosTransactions Examples

Configuration

When using the Transaction Service the cosTransactions application must be started using either
cosTransactions:start() or application:start(cosTransactions).

The following application configuration parameters exist:

� maxRetries - default is 40 times, i.e., if a transaction participant is unreachable the application
will retry to contact it N times. Reaching the maximum is considered to be a disaster.

� comFailWait - default is 5000 milliseconds, i.e., before the application retries to contact
unreachable transaction participants the application wait Time milliseconds.

Then the Transaction Factory [page 30] must be started:

� cosTransactions:start factory() - starts and returns a reference to a factory using default
configuration parameters.

� cosTransactions:start factory(Options) - starts and returns a reference to a factory using
given configuration parameters.

The following options exist:

� fhash max, HashValueg - This value denotes the upper bound of the hash value the Coordinator
[page 20] uses. Default is 1013. HashValue must be an integer.

� fallow subtr, Booleang - If set to true it is possible to create subtransactions [page 20]. Default
is true.

� ftypecheck, Booleang - If set to to true all transaction operation's arguments will be
type-checked. Default is true.

� ftty, Booleang - Enables or disables error printouts to the tty. If Flag is false, all text that the
error logger would have sent to the terminal is discarded. If Flag is true, error messages are sent to
the terminal screen.

� flogfile, FileNameg - This function makes it possible to store all system information in
FileName (string()). It can be used in combination with the tty(false) item to have a silent system,
where all system information are logged to a file. As default no logfile is used.

� fmaxRetries, Integerg - default is 40 times, i.e., if a transaction participant is unreachable the
application will retry to contact it N times. Reaching the maximum is considered to be a disaster.
This option overrides the application configuration parameter.

� fcomFailWait, Integerg - default is 5000 milliseconds, i.e., before the application retries to
contact unreachable transaction participants the application wait Time milliseconds. This option
overrides the application configuration parameter.

The Factory is now ready to use. For a more detailed description see Examples [page 3].

1.4 cosTransactions Examples

1.4.1 A Tutorial on How to Create a Simple Service

Interface design

To use the cosTransactions application participants must be implemented. There are two types of
participants:

� CosTransactions Resource [page 26] - operations used to commit or rollback resources.

3cosTransactions Application

Chapter 1: cosTransactions User's Guide

� CosTransactions SubtransactionAwareResource [page 28] - operations used when the resources
want to be notified when a subtransaction commits. This interface inherits the
CosTransactions Resource

The interfaces for these participants are defined in CosTransactions.idl

Generating a Participant Interface

We start by creating an interface which inherits from CosTransactions::Resource. Hence, we must also
implement all operations defined in the Resource interface. The IDL-file could look like:

#ifndef _OWNRESOURCEIMPL_IDL
#define _OWNRESOURCEIMPL_IDL
#include <CosTransactions.idl>

module ownResourceImpl {

interface ownInterface:CosTransactions::Resource {

void ownFunctions(in any NeededArguments)
raises(Systemexceptions,OwnExceptions);

};
};

#endif

Run the IDL compiler on this file by calling the ic:gen/1 function. This will produce the API named
ownResourceImpl ownInterface.erl. After generating the API stubs and the server skeletons it is
time to implement the servers and if no special options are sent to the IDl compiler the file name is
ownResourceImpl ownInterface impl.erl.

Implementation of Participant interface

If the participant is intended to be a plain Resource, we must implement the following operations:

� prepare/1 - this operation is invoked on the Resource to begin the two-phase commit protocol.

� rollback/1 - this operation instructs the Resource to rollback all changes made as a part of the
transaction.

� commit/1 - this operation instructs the Resource to commit all changes made as a part of the
transaction.

� commit one phase/1 - if possible, the Resource should commit all changes made as part of the
transaction. This operation can only be used if the Resource is the only child of its parent.

� forget/1 - this operation informs the Resource that it is safe to forget any Heuristic decisions and
the knowledge of the transaction.

� ownFunctions - all application specific operations.

If the participant wants to be notified when a subtransaction commits, we must also implement the
following operations (besides the operations above):

4 cosTransactions Application

1.4: cosTransactions Examples

� commit subtransaction/2 - if the SubtransactionAwareResource have been registered with a
transactions using the operation CosTransactions Coordinator:register subtran aware/2 it
will be notified when the transaction has committed.

� rollback subtransaction/1 - if the SubtransactionAwareResource have been registered with
a transactions using the operation CosTransactions Coordinator:register subtran aware/2
it will be notified when the transaction has rolled back.

Note:
The results of a commited subtransaction are reltive to the completion of its ancestor transactions,
that is, these results can be undone if any ancestor transaction is rolled back.

Particapant Operations Behavior

Each application participant must behave in a certain way to ensure that the two-phase commit
protocol can complete the transactions correctly.

prepare This operation ask the participant to vote on the outcome of the transaction. Possible replies
are:

� 'VoteReadOnly' - if no data associated with the transaction has been modified VoteReadOnly may
be returned. The Resource can forget all knowledge of the transaction and terminate.

� 'VoteCommit' - if the Resource is able to write all the data needed to commit the transaction to a
stable storage, VoteCommit may be returned. The Resource will then wait until it is informed of
the outcome of the transaction. The Resource may, however, make a unilateral decision
(Heuristic) to commit or rollback changes associated with the transaction. When the Resource is
informed of the true outcome (rollback/commit) and it is equal to the Heuristic decision the
Resource just return 'ok'. But, if there is a mismatch and the commit-operation is irreversible, the
Resource must raise a Heuristic Exception [page 26] and wait until the forget operation is
invoked. The Heuristic Decision must be recorded in stable storage.

� 'VoteRollback' - the Resource may vote VoteRollback under any circumstances. The Resource can
forget all knowledge of the transaction and terminate.

Note:
Before replying to the prepare operation, the Resource must record the prepare state, the reference
of its superior RecoveryCoordinator [page 24] in stable storage. The RecoveryCoordinator is
obtained when registering as a participant in a transaction.

rollback The Resource should, if necessary, rollback all changes made as part of the transaction. If the
Resource is not aware of the transaction it should do nothing, e.g., recovered after a failure and have no
data in stable storage. Heuristic Decisions must be handled as described above.

commit The Resource should, if necessary, commit all changes made as part of the transaction. If the
Resource is not aware of the transaction it should do nothing, e.g., recovered after a failure and have no
data in stable storage. Heuristic Decisions must be handled as described above.

5cosTransactions Application

Chapter 1: cosTransactions User's Guide

commit one phase If possible, the Resource should commit all changes made as part of the
transaction. If it cannot, it should raise the TRANSACTION ROLLEDBACK exception. This
operation can only be used if the Resource is the only child of its parent. If a failure occurs the
completion of the operation must be retried when the failure is repaired. Heuristic Decisions must be
handled as described above.

forget If the Resource raised a Heuristic Exception to commit, rollback or commit one phase this
operation will be performed. The Resource can forget all knowledge of the transaction and terminate.

commit subtransaction If the SubtransactionAwareResource have been registered with a
subtransaction using the operation CosTransactions Coordinator:register subtran aware/2 it will
be notified when the transaction has committed. The Resource may raise the exception
’TRANSACTION ROLLEDBACK’.

Note:
The result of a commited subtransaction is reltive to the completion of its ancestor transactions, that
is, these results can be undone if any ancestor transaction is rolled back.

rollback subtransaction If the SubtransactionAwareResource have been registered with a
subtransaction using the operation CosTransactions Coordinator:register subtran aware/2 it will
be notified when the subtransaction has rolled back.

How to Run Everything

Below is a short transcript on how to run cosTransactions.

%% Start Mnesia and Orber
mnesia:delete_schema([node()]),
mnesia:create_schema([node()]),
orber:install([node()]),
application:start(mnesia),
application:start(orber),

%% Register CosTransactions in the IFR.
’oe_CosTransactions’:’oe_register’(),

%% Register the application specific Resource implementations
%% in the IFR.
’oe_ownResourceImpl’:’oe_register’(),

%%-- Set parameters --
%% Timeout can be either 0 (no timeout) or an integer N > 0.
%% The later state that the transaction should be rolled
%% back if the transaction have not completed within N seconds.
TimeOut = 0,

%% Do we want the transaction to report Heuristic Exceptions?
%% This variable must be boolean and indicates the way the

6 cosTransactions Application

1.4: cosTransactions Examples

%% Terminator should behave.
Heuristics = true,

%% Start the cosTransactions application.
cosTransactions:start(), %% or application:start(cosTransactions),

%% Start a factory using the default configuration
TrFac = cosTransactions:start_factory(),
%% ... or use configuration parameters.
TrFac = cosTransactions:start_factory([{typecheck, false}, {hash_max, 3013}]),

%% Create a new top-level transaction.
Control = ’CosTransactions_TransactionFactory’:create(TrFac, TimeOut),

%% Retrieve the Coordinator and Terminator object references from
%% the Control Object.
Term = ’CosTransactions_Control’:get_terminator(Control),
Coord = ’CosTransactions_Control’:get_coordinator(Control),

%% Create two SubTransactions with the root-Coordinator as parent.
SubCont1 = ’CosTransactions_Coordinator’:create_subtransaction(Coord),
SubCont2 = ’CosTransactions_Coordinator’:create_subtransaction(Coord),

%% Retrieve the Coordinator references from the Control Objects.
SubCoord1 = ’CosTransactions_Control’:get_coordinator(SubCont1),
SubCoord2 = ’CosTransactions_Control’:get_coordinator(SubCont2),

%% Create application Resources. We can, for example, start the Resources
%% our selves or look them up in the naming service. This is application
%% specific.
Res1 = ...
Res2 = ...
Res3 = ...
Res4 = ...

%% Register Resources with respective Coordinator. Each call returns
%% a RecoveryCoordinator object reference.
RC1 = ’CosTransactions_Coordinator’:register_resource(SubCoord1, Res1),
RC2 = ’CosTransactions_Coordinator’:register_resource(SubCoord1, Res2),
RC3 = ’CosTransactions_Coordinator’:register_resource(SubCoord2, Res3),
RC4 = ’CosTransactions_Coordinator’:register_resource(SubCoord2, Res4),

%% Register Resource 4 with SubCoordinator 1 so that the Resource will be
%% informed when the SubCoordinator commits or roll-back.
’CosTransactions_Coordinator’:register_subtran_aware(SubCoord1, Res4),

%% We are now ready to try to commit the transaction. The second argument
%% must be a boolean
Outcome = (catch ’CosTransactions_Terminator’:commit(Term, Heuristics)),

7cosTransactions Application

Chapter 1: cosTransactions User's Guide

Note:
For the cosTransaction application to be able to recognize if a Resource is dead or in the process of
restarting the Resource must be started as persistent, e.g., 'OwnResource':oe create link(Env,
[fregname, fglobal, RegNamegg, fpersistent, trueg]). For more information see the Orber
documentation.

The outcome of the transaction can be:

� ok - the transaction was successfully committed.

� f'EXCEPTION', HeuristicExcg - at least one participant made a Heuristic decision or, due to a
failure, one or more participants where unreachable.

� f'EXCEPTION', #'TRANSACTION ROLLEDBACK'fgg - the transaction was successfully
rolled back.

� Any system exception - the transaction failed with unknown reason.

1.5 Resource Skeletons

1.5.1 Resource Skeletons

This chapter provides a skeleton for application Resources. For more information see the Orber
documentation.

%%%---
%%% File : Module_Interface_impl.erl
%%% Author :
%%% Purpose :
%%% Created :
%%%---

-module(’Module_Interface_impl’).

%%--------------- INCLUDES -----------------------------------
-include_lib("orber/include/corba.hrl").
-include_lib("cosTransactions/include/CosTransactions.hrl").

%%--------------- EXPORTS-------------------------------------
%%- Inherit from CosTransactions::Resource -------------------
-export([prepare/2,

rollback/2,
commit/2,
commit_one_phase/2,
forget/2]).

%%- Inherit from CosTransactions::SubtransactionAwareResource
-export([commit_subtransaction/3,

rollback_subtransaction/2]).

%%--------------- gen_server specific ------------------------
-export([init/1, terminate/2, code_change/3, handle_info/2]).

8 cosTransactions Application

1.5: Resource Skeletons

%%--
%% function : gen_server specific
%%--
init(Env) ->

%% ’trap_exit’ optional
process_flag(trap_exit,true),

%%--- Possible replies ---
%% Reply and await next request
{ok, State}.

%% Reply and if no more requests within Time the special
%% timeout message should be handled in the
%% Module_Interface_impl:handle_info/2 call-back function (use the
%% IC option {{handle_info, "Module::Interface"}, true}).
{ok, State, TimeOut}.

%% Return ignore in order to inform the parent, especially if it is a
%% supervisor, that the server, as an example, did not start in
%% accordance with the configuration data.
ignore.

%% If the initializing procedure fails, the reason
%% is supplied as StopReason.
{stop, StopReason}.

terminate(Reason, State) ->
ok.

code_change(OldVsn, State, Extra) ->
{ok, NewState}.

%% If use IC option {{handle_info, "Module::Interface"}, true}
handle_info(Info, State) ->

%%--- Possible replies ---
%% Await the next invocation.
{noreply, State}.
%% Stop with Reason.
{stop, Reason, State}.

%%- Inherit from CosTransactions::Resource -------------------
prepare(State) ->

%%% Do application specific actions here %%%

%%-- Reply: --
%% If no data related to the transaction changed.
{reply, ’VoteReadOnly’, State}
%% .. or (for example):
{stop, normal, ’VoteReadOnly’, State}.

9cosTransactions Application

Chapter 1: cosTransactions User's Guide

%% If able to commit
{reply, ’VoteCommit’, State}

%% If not able to commit
{reply, ’VoteRollback’, State}
%% .. or (for example):
{stop, normal, ’VoteRollback’, State}.

rollback(State) ->

%%% Do application specific actions here %%%

%%-- Reply: --
%% If able to rollback successfully
{reply, ok, State}
%% .. or (for example):
{stop, normal, ok, State}.

%% If Heuristic Decision. Raise exception:
corba:raise(#’CosTransactions_HeuristicMixed’ {})
corba:raise(#’CosTransactions_HeuristicHazard’ {})
corba:raise(#’CosTransactions_HeuristicCommit’{})

commit(State) ->

%%% Do application specific actions here %%%

%%-- Reply: --
%% If able to commit successfully
{reply, ok, State}
%% .. or (for example):
{stop, normal, ok, State}.

%% If the prepare operation never been invoked:
corba:raise(#’CosTransactions_NotPrepared’{})

%% If Heuristic Decision. Raise exception:
corba:raise(#’CosTransactions_HeuristicMixed’ {})
corba:raise(#’CosTransactions_HeuristicHazard’ {})
corba:raise(#’CosTransactions_HeuristicRollback’{})

commit_one_phase(State) ->

%%% Do application specific actions here %%%

%%-- Reply: --
%% If able to commit successfully
{reply, ok, State}
%% .. or (for example):
{stop, normal, ok, State}.

10 cosTransactions Application

1.6: cosTransactions Release Notes

%% If failes. Raise exception:
corba:raise(#’CosTransactions_HeuristicHazard’ {})

%% If able to rollback successfully
corba:raise(#’CosTransactions_TransactionRolledBack’ {})

forget(State) ->

%%% Do application specific actions here %%%

%%-- Reply: --
{reply, ok, State}.
%% .. or (for example):
{stop, normal, ok, State}.

%%%%%% If the Resource is also supposed to be a %%%%%%
%%%%%% SubtransactionAwareResource implement these. %%%%%%

%%- Inherit from CosTransactions::SubtransactionAwareResource
commit_subtransaction(State, Parent) ->

%%% Do application specific actions here %%%

%%-- Reply: --
{reply, ok, State}.
%% .. or (for example):
{stop, normal, ok, State}.

rollback_subtransaction(State) ->
%%% Do application specific actions here %%%

%%-- Reply: --
{reply, ok, State}.
%% .. or (for example):
{stop, normal, ok, State}.

%%--------------- END OF MODULE ------------------------------

1.6 cosTransactions Release Notes

1.6.1 cosTransactions 1.2, Release Notes

Improvements and new features

� The stub/skeleton-files generated by IC have been improved, i.e., depending on the IDL-files,
reduced the size of the erl- and beam-files and decreased dependencies off Orber's Interface
Repository. It is necessary to re-compile all IDL-files and use COS-applications, including Orber,
compiled with IC-4.2.
Own id: OTP-4576

11cosTransactions Application

Chapter 1: cosTransactions User's Guide

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

-

1.6.2 cosTransactions 1.1.2, Release Notes

Improvements and new features

� To avoid un-necessary Heuristic decisions cosTransactions now recognize more systems
exceptions.
Own Id: OTP-4485

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

-

1.6.3 cosTransactions 1.1.1.1, Release Notes

Improvements and new features

Updated internal documentation.

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

-

12 cosTransactions Application

1.6: cosTransactions Release Notes

1.6.4 cosTransactions 1.1.1, Release Notes

Improvements and new features

� cosTransactions is now able to handle upgrade properly.
Own Id: -

� The cosTransactions factory now accepts maxRetries and comFailWait options, which overrides
the configuration parameters.
Own Id: -

Fixed bugs and malfunctions

-

Incompatibilities

� The configuration parameters comm failure wait and max retries changed to maxRetries and
comFailWait. The default value for maxRetries have been raised from 20 to 40.
Own Id: -

Known bugs and problems

CosTransactions

� The same as in the last release.

1.6.5 cosTransactions 1.1, Release Notes

Improvements and new features

� First release of the cosTransactions application.
Own Id: OTP-1741

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

CosTransactions

� The operation CosTransactions RecoveryCoordinator:replay completion/3 is blocking. According
to the specification it should not be blocking.

13cosTransactions Application

Chapter 1: cosTransactions User's Guide

14 cosTransactions Application

cosTransactions Reference
Manual

Short Summaries

� Erlang Module CosTransactions Control [page 19] – This module implements the
OMG CosTransactions::Control interface.

� Erlang Module CosTransactions Coordinator [page 20] – This module
implements the OMG CosTransactions::Coordinator interface.

� Erlang Module CosTransactions RecoveryCoordinator [page 24] – This module
implements the OMG CosTransactions::RecoveryCoordinator interface.

� Erlang Module CosTransactions Resource [page 26] – This module implements
the OMG CosTransactions::Resource interface.

� Erlang Module CosTransactions SubtransactionAwareResource [page 28] – This
module implements the OMG CosTransactions::SubtransactionAwareResource
interface.

� Erlang Module CosTransactions Terminator [page 29] – This module implements
the OMG CosTransactions::Terminator interface.

� Erlang Module CosTransactions TransactionFactory [page 30] – This module
implements the OMG CosTransactions::TransactionFactory interface.

� Erlang Module cosTransactions [page 31] – The main module of the
cosTransactions application.

CosTransactions Control

The following functions are exported:

� get coordinator(Control) -> Return
[page 19] Return the Coordinator object associated with the target object

� get terminator(Control) -> Return
[page 19] Return the Terminator object associated with the target object

15cosTransactions Application

cosTransactions Reference Manual

CosTransactions Coordinator

The following functions are exported:

� create subtransaction(Coordinator) -> Control
[page 20] Create a new subtransaction.

� get transaction name(Coordinator) -> Name
[page 20] Return the name associated with the object.

� get parent status(Coordinator) -> Status
[page 20] Return the status of the parent transaction.

� get status(Coordinator) -> Status
[page 21] Return the status of the transaction associated with the target object

� get top level status(Coordinator) -> Status
[page 21] Return the status of the top-level transaction associated with the target
object

� hash top level tran(Coordinator) -> Return
[page 21] Return a hash code for the top-level transaction associated with the
target object

� hash transaction(Coordinator) -> Return
[page 21] Return a hash code for the transaction associated with the target object.

� is descendant transaction(Coordinator, OtherCoordinator) -> Return
[page 21] Return a boolean which indicates whether the transction associated with
the target object is a descendant of the transaction associated with the parameter
object

� is same transaction(Coordinator, OtherCoordinator) -> Return
[page 21] Return true if the transction associated with the target object is related
to the transaction associated with the parameter object

� is top level transaction(Coordinator) -> Return
[page 22] Return true if the transction associated with the target object is a
top-level transaction

� register resource(Coordinator, Resource) -> RecoveryCoordinator
[page 22] Register the parameter Resource object as a participant in the
transaction associated with the target object

� register subtran aware(Coordinator, SubtransactionAwareResource) ->
Return
[page 22] Register the parameter SubtransactionAwareResource object such
that it will be notified when the transaction, associated wit the target object, has
committed or rolled back

� rollback only(Coordinator) -> Return
[page 23] Modify the transaction associated with the target object so the only
possible outcome is to rollback the transaction

CosTransactions RecoveryCoordinator

The following functions are exported:

� replay completion(RecoveryCoordinator, Timeout, Resource) -> Return
[page 24] Return the current status of the transaction

16 cosTransactions Application

cosTransactions Reference Manual

CosTransactions Resource

The following functions are exported:

� commit(Resource) -> Return
[page 26] Instruct the target object to commit the transaction

� commit one phase(Resource) -> Return
[page 26] Instruct the target object to commit the transaction

� forget(Resource) -> Return
[page 26] Instruct the target object to forget any heuristic decisions

� prepare(Resource) -> Return
[page 27] Instruct the target object to begin the two-phase commit protocol

� rollback(Resource) -> Return
[page 27] Instruct the target object to rollback the transaction

CosTransactions SubtransactionAwareResource

The following functions are exported:

� commit subtransaction(SubtransactionAwareResource, Coordinator) ->
Return
[page 28] Notify the target object that the transaction has committed

� rollback subtransaction(SubtransactionAwareResource) -> Return
[page 28] Notify the target object that the transaction has been rolled back

CosTransactions Terminator

The following functions are exported:

� commit(Terminator, ReportHeuristics) -> Return
[page 29] Try to commit a transaction

� rollback(Terminator) -> Return
[page 29] Rollback a transaction

CosTransactions TransactionFactory

The following functions are exported:

� create(TransactionFactory, Timeout) -> Control
[page 30] Create a new top-level transaction

17cosTransactions Application

cosTransactions Reference Manual

cosTransactions

The following functions are exported:

� start() -> Return
[page 31] Start the cosTransactions application

� stop() -> Return
[page 31] Stop the cosTransactions application

� start factory() -> TransactionFactory
[page 31] Start a Transaction Factory

� start factory(FacDef) -> TransactionFactory
[page 31] Start a Transaction Factory with given options

� stop factory(TransactionFactory) -> Reply
[page 32] Terminate the target object

18 cosTransactions Application

cosTransactions Reference Manual CosTransactions Control

CosTransactions Control
Erlang Module

To get access to the record definitions for the structures use:
-include lib("cosTransactions/include/CosTransactions.hrl").

Exports

get coordinator(Control) -> Return

Types:

� Control = #objref
� Return = Coordinator | f'EXCEPTION', Eg
� Coordinator = #objref
� E = #'CosTransactions Unavailable' fg

This operation returns the Coordinator object associated with the target object. The
Coordinator supports operations for termination of a transaction.

get terminator(Control) -> Return

Types:

� Control = #objref
� Return = Terminator | f'EXCEPTION', Eg
� Terminator = #objref
� E = #'CosTransactions Unavailable' fg

This operation returns the Terminator object associated with the target object. The
Terminator supports operations for termination of a transaction.

19cosTransactions Application

CosTransactions Coordinator cosTransactions Reference Manual

CosTransactions Coordinator
Erlang Module

To get access to the record definitions for the structures use:
-include lib("cosTransactions/include/CosTransactions.hrl").

Exports

create subtransaction(Coordinator) -> Control

Types:

� Coordinator = #objref
� Control = #objref

A new subtransaction is created whose parent is the Coordinator argument.

Raises exception:

� 'SubtransactionsUnavailable' - if nested transactions are not supported.

� 'Inactive' - if target transaction has already been prepared.

get transaction name(Coordinator) -> Name

Types:

� Coordinator = #objref
� Name = string() of type ”oe name@machine type timestamp”

Returns a printable string, which describe the transaction. The main purpose is to
support debugging.

get parent status(Coordinator) -> Status

Types:

� Coordinator = #objref
� Status = atom()

Returns the status of the parent transaction associated with the target object. If the
target object is a top-level transaction this operation is equivalent to get status/1
operation.

Possible Status replies:

� 'StatusCommitted'

� 'StatusCommitting'

� 'StatusMarkedRollback'

20 cosTransactions Application

cosTransactions Reference Manual CosTransactions Coordinator

� 'StatusRollingBack'

� 'StatusRolledBack'

� 'StatusActive'

� 'StatusPrepared'

� 'StatusUnknown'

� 'StatusNoTransaction'

� 'StatusPreparing'

get status(Coordinator) -> Status

Types:

� Coordinator = #objref
� Status = atom()

Returns the status of the transaction associated with the target object.

get top level status(Coordinator) -> Status

Types:

� Coordinator = #objref
� Status = atom()

Returns the status of the top-level transaction associated with the target object.

hash top level tran(Coordinator) -> Return

Types:

� Coordinator = #objref
� Return = integer()

Returns a hash code for the top-level transaction associated with the target object.
Equals the operation hash transaction/1 if the target object is a top-level transaction.

hash transaction(Coordinator) -> Return

Types:

� Coordinator = #objref
� Return = integer()

Returns a hash code for the transaction associated with the target object.

is descendant transaction(Coordinator, OtherCoordinator) -> Return

Types:

� Coordinator = #objref
� OtherCoordinator = #objref
� Return = Boolean

Returns true if the transction associated with the target object is a descendant of the
transaction associated with the parameter object.

is same transaction(Coordinator, OtherCoordinator) -> Return

21cosTransactions Application

CosTransactions Coordinator cosTransactions Reference Manual

Types:

� Coordinator = #objref
� OtherCoordinator = #objref
� Return = Boolean

Returns true if the transction associated with the target object is related to the
transaction associated with the parameter object.

is top level transaction(Coordinator) -> Return

Types:

� Coordinator = #objref
� Return = Boolean

Returns true if the transction associated with the target object is a top-level transaction.

register resource(Coordinator, Resource) -> RecoveryCoordinator

Types:

� Coordinator = #objref
� Resource = #objref
� RecoveryCoordinator = #objref

This operation registers the parameter Resource object as a participant in the
transaction associated with the target object. The RecoveryCoordinator returned by
this operation can be used by this Resource during recovery.

Note:
The Resources will be called in FIFO-order when preparing or committing. Hence,
be sure to register the Resources in the correct order.

Raises exception:

� 'Inactive' - if target transaction has already been prepared.

register subtran aware(Coordinator, SubtransactionAwareResource) -> Return

Types:

� Coordinator = #objref
� Return = ok

This operation registers the parameter SubtransactionAwareResource object such that
it will be notified when the transaction, associated wit the target object, has committed
or rolled back.

Note:
The Resources will be called in FIFO-order. Hence, be sure to register the Resources
in the correct order.

22 cosTransactions Application

cosTransactions Reference Manual CosTransactions Coordinator

rollback only(Coordinator) -> Return

Types:

� Coordinator = #objref
� Return = ok

The transaction associated with the target object is modified so the only possible
outcome is to rollback the transaction.

23cosTransactions Application

... RecoveryCoordinator cosTransactions Reference Manual

CosTransactions RecoveryCoordinator
Erlang Module

To get access to the record definitions for the structures use:
-include lib("cosTransactions/include/CosTransactions.hrl").

Exports

replay completion(RecoveryCoordinator, Timeout, Resource) -> Return

Types:

� RecoveryCoordinator = #objref
� Timeout = integer(), milliseconds | 'inifinity'
� Resource = #objref
� Return = Status | f'EXCEPTION', Eg
� E = #'CosTransactions NotPrepared'fg
� Status = atom()

The RecoveryCoordinator object is returned by the operation
CosTransactions Coordinator:register resource/3. The replay completion/2
may only be used by the registered Resource and returns the current status of the
transaction. The operation is used when recovering after a failure.

Possible Status replies:

� 'StatusCommitted'

� 'StatusCommitting'

� 'StatusMarkedRollback'

� 'StatusRollingBack'

� 'StatusRolledBack'

� 'StatusActive'

� 'StatusPrepared'

� 'StatusUnknown'

� 'StatusNoTransaction'

� 'StatusPreparing'

24 cosTransactions Application

cosTransactions Reference Manual ... RecoveryCoordinator

Warning:
replay completion/3 is blocking and may cause dead-lock if a child calls this function
at the same time as its parent invokes an operation on the child. Dead-lock will not
occur if the timeout has any value except 'infinity'.

If the call is external incoming (intra-ORB) the timeout will not be activated. Hence,
similar action must be taken if the Resource resides on another vendors ORB.

25cosTransactions Application

CosTransactions Resource cosTransactions Reference Manual

CosTransactions Resource
Erlang Module

To get access to the record definitions for the structures use:
-include lib("cosTransactions/include/CosTransactions.hrl").

Exports

commit(Resource) -> Return

Types:

� Resource = #objref
� Return = ok | f'EXCEPTION', Eg
� E = #'CosTransactions NotPrepared'fg | #'CosTransactions HeuristicRollback'fg |

#'CosTransactions HeuristicMixed'fg | #'CosTransactions HeuristicHazard'fg

This operation instructs the Resource to commit all changes made as a part of the
transaction.

The Resource can raise:

� Heuristic Exception - if a Heuristic decision is made which differ from the true
outcome of the transaction. The Resource must remember the Heuristic outcome
until the forget operation is performed.

commit one phase(Resource) -> Return

Types:

� Resource = #objref
� Return = ok | f'EXCEPTION', Eg
� E = #'CosTransactions HeuristicHazard'fg |

#'CosTransactions TransactionRolledBack'fg

If possible, the Resource should commit all changes made as part of the transaction, else
it should raise the TRANSACTION ROLLEDBACK exception. This operation can
only be used if the Resource is the only child of its parent.

forget(Resource) -> Return

Types:

� Resource = #objref
� Return = ok

26 cosTransactions Application

cosTransactions Reference Manual CosTransactions Resource

This operation informs the Resource that it is safe to forget any Heuristic decisions and
the knowledge of the transaction.

prepare(Resource) -> Return

Types:

� Resource = #objref
� Return = Vote | f'EXCEPTION', Eg
� Vote = 'VoteReadOnly' | 'VoteCommit' | 'VoteRollback'
� E = #'CosTransactions HeuristicMixed'fg | #'CosTransactions HeuristicHazard'fg

This operation is invoked on the Resource to begin the two-phase commit protocol.

The Resource can reply:

� 'VoteReadOnly' - if no persistent data has been modified by the transaction. The
Resource can forget all knowledge of the transaction.

� 'VoteCommit' - if the Resource has been prepared and is able to write all the data
needed to commit the transaction to stable storage.

� 'VoteRollback' - under any circumstanses but must do so if none of the alternatives
above are applicable.

� Heuristic Exception - if a Heuristic decision is made which differ from the true
outcome of the transaction. The Resource must remember the Heuristic outcome
until the forget operation is performed.

rollback(Resource) -> Return

Types:

� Resource = #objref
� Return = ok | f'EXCEPTION', Eg
� E = #'CosTransactions HeuristicCommit'fg | #'CosTransactions HeuristicMixed'fg |

#'CosTransactions HeuristicHazard'fg

This operation instructs the Resource to rollback all changes made as a part of the
transaction.

The Resource can raise:

� Heuristic Exception - if a Heuristic decision is made which differ from the true
outcome of the transaction. The Resource must remember the Heuristic outcome
until the forget operation is performed.

27cosTransactions Application

... SubtransactionAwareResource cosTransactions Reference Manual

CosTransactions SubtransactionAwareResou
Erlang Module

This interface inherits the CosTransactions::Resource interface. Hence, it must also
support all operations defined in the Resource interface.

To get access to the record definitions for the structures use:
-include lib("cosTransactions/include/CosTransactions.hrl").

Exports

commit subtransaction(SubtransactionAwareResource, Coordinator) -> Return

Types:

� SubtransactionAwareResource = #objref
� Coordinator = #objref
� Return = ok

If the SubtransactionAwareResource have been registered with a subtransaction using
the operation CosTransactions Coordinator:register subtran aware/2, it will be
notified when the transaction has committed.

Note:
The results of a commited subtransaction are reltive to the completion of its ancestor
transactions, that is, these results can be undone if any ancestor transaction is rolled
back.

rollback subtransaction(SubtransactionAwareResource) -> Return

Types:

� SubtransactionAwareResource = #objref
� Return = ok

If the SubtransactionAwareResource have been registered with a transactions using
the operation CosTransactions Coordinator:register subtran aware/2 it will be
notified when the transaction has rolled back.

28 cosTransactions Application

cosTransactions Reference Manual CosTransactions Terminator

CosTransactions Terminator
Erlang Module

To get access to the record definitions for the structures use:
-include lib("cosTransactions/include/CosTransactions.hrl").

Exports

commit(Terminator, ReportHeuristics) -> Return

Types:

� Terminator = #objref
� ReportHeuristics = boolean()
� Return = ok | f'EXCEPTION', Eg
� E = #'CosTransactions HeuristicMixed'fg | #'CosTransactions HeuristicHazrd'fg |

#'CosTransactions TransactionRolledBack'fg

This operation initiates the two-phase commit protocol. If the transaction has not been
marked ’rollback only’ and all the participants agree to commit, the operation
terminates normally. Otherwise, the TransactionRolledBack is raised. If the parameter
ReportHeuristics is true and inconsistent outcomes by raising an Heuristic Exception.

rollback(Terminator) -> Return

Types:

� Terminator = #objref
� Return = ok

This operation roles back the transaction.

29cosTransactions Application

... TransactionFactory cosTransactions Reference Manual

CosTransactions TransactionFactory
Erlang Module

To get access to the record definitions for the structures use:
-include lib("cosTransactions/include/CosTransactions.hrl").

Exports

create(TransactionFactory, Timeout) -> Control

Types:

� TransactionFactory = #objref
� Timeout = integer()
� Control = #objref

This operation creates a new top-level transaction.

The Timeout argument can be:

� 0 - no timeout.

� N (integer() > 0) - the transaction will be subject to being rolled back if it does not
complete before N seconds have elapsed.

30 cosTransactions Application

cosTransactions Reference Manual cosTransactions

cosTransactions
Erlang Module

To get access to the record definitions for the structures use:
-include lib("cosTransactions/include/CosTransactions.hrl").

This module contains the functions for starting and stopping the application. If the
application is started using application:start(cosTransactions) the default
configuration is used (see listing below). The Factory reference is stored using the
CosNaming Service under the id "oe cosTransactionsFac IPNo".

The following application configuration parameters exist:

� maxRetries - default is 40 times, i.e., if a transaction participant is unreachable the
application will retry to contact it N times. Reaching the maximum is considered to
be a disaster.

� comFailWait - default is 5000 milliseconds, i.e., before the application retries to
contact unreachable transaction participants the application wait Time
milliseconds.

Exports

start() -> Return

Types:

� Return = ok | ferror, Reasong

This operation starts the cosTransactions application.

stop() -> Return

Types:

� Return = ok | ferror, Reasong

This operation stops the cosTransactions application.

start factory() -> TransactionFactory

Types:

� TransactionFactory = #objref

This operation creates a Transaction Factory [page 30]. The Factory is used to create a
new top-level transaction [page 19] using default options (see listing below).

start factory(FacDef) -> TransactionFactory

Types:

31cosTransactions Application

cosTransactions cosTransactions Reference Manual

� FacDef = [Options], see Option listing below.
� TransactionFactory = #objref

This operation creates a Transaction Factory [page 30]. The Factory is used to create a
new top-level transaction.

The FacDef list must be a list of fItem, Valueg tuples, where the following values are
allowed:

� fhash max, HashValueg - This value denotes the upper bound of the hash value
the Coordinator [page 20] uses. Default is 1013. HashValue must be an integer.

� fallow subtr, Booleang - If set to true it is possible to create subtransactions [page
20]. Default is true.

� ftypecheck, Booleang - If set to to true all transaction operation's arguments will
be type-checked. Default is true.

� ftty, Booleang - Enables or disables error printouts to the tty. If Flag is false, all text
that the error logger would have sent to the terminal is discarded. If Flag is true,
error messages are sent to the terminal screen.

� flogfile, FileNameg - This function makes it possible to store all system
information in FileName (string()). It can be used in combination with the
tty(false) item in to have a silent system, where all system information are logged
to a file. As default no logfile is used.

� fmaxRetries, Integerg - default is 40 times, i.e., if a transaction participant is
unreachable the application will retry to contact it N times. Reaching the
maximum is considered to be a disaster. This option overrides the application
configuration parameter.

� fcomFailWait, Integerg - default is 5000 milliseconds, i.e., before the
application retries to contact unreachable transaction participants the application
wait Time milliseconds. This option overrides the application configuration
parameter.

stop factory(TransactionFactory) -> Reply

Types:

� TransactionFactory = #objref
� Reply = ok | f'EXCEPTION', Eg

This operation stop the target transaction factory.

32 cosTransactions Application

Glossary

Heuristic decisions

Heuristic decisions is a unilateral decision by a participant to commit or rollback without receiving the
true outcome of the transaction from its parents coordinator.
Local for chapter 1.

33cosTransactions Application

Glossary

34 cosTransactions Application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

commit/1
CosTransactions Resource , 26

commit/2
CosTransactions Terminator , 29

commit_one_phase/1
CosTransactions Resource , 26

commit_subtransaction/2
CosTransac-

tions SubtransactionAwareResource ,
28

cosTransactions
start/0, 31
start_factory/0, 31
start_factory/1, 31
stop/0, 31
stop_factory/1, 32

CosTransactions RecoveryCoordinator
replay_completion/3, 24

CosTransactions SubtransactionAwareResource
commit_subtransaction/2, 28
rollback_subtransaction/1, 28

CosTransactions TransactionFactory
create/2, 30

CosTransactions Control
get_coordinator/1, 19
get_terminator/1, 19

CosTransactions Coordinator
create_subtransaction/1, 20
get_parent_status/1, 20
get_status/1, 21
get_top_level_status/1, 21
get_transaction_name/1, 20
hash_top_level_tran/1, 21
hash_transaction/1, 21
is_descendant_transaction/2, 21
is_same_transaction/2, 21

is_top_level_transaction/1, 22
register_resource/2, 22
register_subtran_aware/2, 22
rollback_only/1, 23

CosTransactions Resource
commit/1, 26
commit_one_phase/1, 26
forget/1, 26
prepare/1, 27
rollback/1, 27

CosTransactions Terminator
commit/2, 29
rollback/1, 29

create/2
CosTransactions TransactionFactory , 30

create_subtransaction/1
CosTransactions Coordinator , 20

forget/1
CosTransactions Resource , 26

get_coordinator/1
CosTransactions Control , 19

get_parent_status/1
CosTransactions Coordinator , 20

get_status/1
CosTransactions Coordinator , 21

get_terminator/1
CosTransactions Control , 19

get_top_level_status/1
CosTransactions Coordinator , 21

get_transaction_name/1
CosTransactions Coordinator , 20

hash_top_level_tran/1
CosTransactions Coordinator , 21

35cosTransactions Application

Index of Modules and Functions

hash_transaction/1
CosTransactions Coordinator , 21

is_descendant_transaction/2
CosTransactions Coordinator , 21

is_same_transaction/2
CosTransactions Coordinator , 21

is_top_level_transaction/1
CosTransactions Coordinator , 22

prepare/1
CosTransactions Resource , 27

register_resource/2
CosTransactions Coordinator , 22

register_subtran_aware/2
CosTransactions Coordinator , 22

replay_completion/3
CosTransactions RecoveryCoordinator , 24

rollback/1
CosTransactions Resource , 27
CosTransactions Terminator , 29

rollback_only/1
CosTransactions Coordinator , 23

rollback_subtransaction/1
CosTransac-

tions SubtransactionAwareResource ,
28

start/0
cosTransactions , 31

start_factory/0
cosTransactions , 31

start_factory/1
cosTransactions , 31

stop/0
cosTransactions , 31

stop_factory/1
cosTransactions , 32

36 cosTransactions Application

