| v

ERLANG

System Application Support Libraries
(SASL)

Copyright © 1997-2014 Ericsson AB. All Rights Reserved.
System Application Support Libraries (SASL) 2.4
April 7, 2014

Copyright © 1997-2014 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

April 7, 2014

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 1

1.1 Introduction

1 SASL User's Guide

The System Architecture Support Libraries, SASL, provides support for alarm and release handling etc.

1.1 Introduction

1.1.1 About This Document
The SASL (System Architecture Support Libraries) application provides support for:

» error logging

e darmhandling

* overload regulation
* release handling

e report browsing.

In this document, "SASL Error Logging" describes the error handler which produces the supervisor, progress, and
crash reports which can be written to screen, or to a specified file. It also describes the report browser r b.

The chapters about release structure and rel ease handling have been moved to OTP Design Principles.

1.2 SASL Error Logging

The SASL application introduces three types of reports:
e supervisor report

e progress report

e crashreport.

When the SASL application is started, it adds a handler that formats and writes these reports, as specified in the
configuration parameters for sadl, i.e the environment variables in the SASL application specification, which isfound
inthe . app file of SASL. See sad(Application), and app(File) in the Kernel Reference Manual for the details.

1.2.1 Supervisor Report

A supervisor report isissued when a supervised child terminates in an unexpected way. A supervisor report contains
the following items:

Supervisor.
The name of the reporting supervisor.
Context.
Indicates in which phase the child terminated from the supervisor's point of view. Thiscanbestart _error,
chil d_term nated, or shut down_error.
Reason.
The termination reason.
Offender.
The start specification for the child.

2 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

1.2 SASL Error Logging

1.2.2 Progress Report
A progress report is issued whenever a supervisor starts or restarts. A progress report contains the following items:

Supervisor.
The name of the reporting supervisor.
Started.
The start specification for the successfully started child.

1.2.3 Crash Report

Processes started with the proc_|i b: spawn or proc_| i b: spawn_| i nk functions are wrapped within a
cat ch. A crash report isissued whenever such a process terminates with an unexpected reason, which is any reason
other than nor mal or shut down. Processes using the gen_ser ver and gen_f smbehaviours are examples of
such processes. A crash report contains the following items:

Crasher.
Information about the crashing processis reported, such asinitial function call, exit reason, and message queue.
Neighbours.
Information about processes which are linked to the crashing process and do not trap exits. These processes are
the neighbours which will terminate because of this process crash. The information gathered is the same asthe
information for Crasher, shown in the previousitem.

An Example

The following example shows the reports which are generated when a process crashes. The example process is an
per manent process supervised by thet est _sup supervisor. A division by zero is executed and the error isfirst
reported by the faulty process. A crash report is generated as the processwas started using thepr oc_| i b: spawn/ 3
function. The supervisor generates a supervisor report showing the process that has crashed, and then a progress report
is generated when the processisfinally re-started.

=ERROR REPORT==== 27-May-1996::13:38:56 ===
<0.63.0>: Divide by zero !

=CRASH REPORT==== 27-May-1996::13:38:56 ===
crasher:

pid: <0.63.0>

registered name: []

error_info: {badarith,{test,s,[1}}
initial call: {test,s,[1}
ancestors: [test sup,<0.46.0>]
messages: []

links: [<0.47.0>]

dictionary: []

trap _exit: false

status: running

heap size: 128

stack size: 128

reductions: 348

neighbours:

=SUPERVISOR REPORT==== 27-May-1996::13:38:56 ===
Supervisor: {local,test sup}

Context: child terminated

Reason: {badarith, {test,s,[]1}}

Offender: [{pid,<0.63.0>},

{name, test},

{mfa, {test,t,[]1}},

{restart_type,permanent},

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 3

1.2 SASL Error Logging

{shutdown, 200},
{child type,worker}]

=PROGRESS REPORT==== 27-May-1996::13:38:56 ===
Supervisor: {local,test sup}

Started: [{pid,<0.64.0>},

{name, test},

{mfa, {test,t,[1}},

{restart_type,permanent},

{shutdown, 200},

{child type,worker}]

1.2.4 Multi-File Error Report Logging

Multi-file error report logging is used to store error messages, which are received by theer r or _| ogger . Theerror
messages are stored in severa files and each file is smaller than a specified amount of kilobytes, and no more than
a specified number of files exist at the same time. The logging is very fast because each error message is written as
abinary term.

Refer to sas| application in the Reference Manual for more details.

1.2.5 Report Browser

The report browser is used to browse and format error reports written by the error logger handler | og_nf _h defined
instdlib.

Thel og_nf _h handler writes all reports to a report logging directory. This directory is specified when configuring
the SASL application.

If the report browser is used off-line, the reports can be copied to another directory which is specified when starting
the browser. If no such directory is specified, the browser reads reports from the SASL er r or _| ogger _nf _dir.

Starting the Report Browser

Start ther b_ser ver withthefunctionrb: start ([Opti ons]) asshown inthe following example:

5>rb:start([{max, 20}]1).

rb: reading report...done.
rb: reading report...done.
rb: reading report...done.
rb: reading report...done.

On-line Help

Enter the command rb: help(). to access the report browser on-line help system.

List Reports in the Server
Thefunctionr b: | i st () listsal loaded reports:

4>rb:list().
No Type Process Date Time

4 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

1.2 SASL Error Logging

20 progress
19 progress
18 error
17 progress
16 progress
15 progress
14 progress
13 progress
12 progress
11 error
10 error
9 crash _report

8 supervisor report

7 progress

6 progress

5 progress

4 progress

3 progress

2 error

1 progress

ok

Show Reports

<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.

.0>
.0>
.0>
.0>
.0>
.0>
.0>
.0>
.0>
.0>
.0>

release handler

<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.

.0>
.0>
.0>
.0>
.0>
.0>
.0>
.0>

To show details of a specific report, use the functionr b:

10> rb:show(1l).
7> rb:show(4).

PROGRESS REPORT <0.

20.0>

1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16
1996-10-16

show(Nunber) :

1996-10-16 16:16:36

supervisor
started
[{pid,<0.24.0>},

{name, release handler},
{mfa,{release handler,start link,[]1}},
{restart_type,permanent},

{shutdown, 2000},
{child type,worker}]

ok
8> rb:show(9).

CRASH REPORT <0.24.

0>

{local,sasl sup}

1996-10-16 16:16:21

Crashing process
pid

registered name
error_info
initial call
{gen,init it,
[gen _server,
<0.20.0>,
<0.20.0>,
{erlang, register},
release handler,
release handler,
[1,

[11}

ancestors

Ericsson AB.

<0.24.0>
release handler

{undef, {release handler,mbj func,[]1}}

All Rights Reserved

[sasl sup,<0.18.0>]

.: System Application Support Libraries (SASL) | 5

1.2 SASL Error Logging

messages [1
links [<0.23.0>,<0.20.0>]
dictionary [1
trap exit false
status running
heap size 610
stack size 142
reductions 54
ok

Search the Reports

It is possible to show all reports which contain a common pattern. Suppose a process crashes because it triesto call a
non-existing functionr el ease_handl er;: nbj _func. We could then show reports as follows:

12>rb:grep("mbj func").
Found match in report number 11

ERROR REPORT <0.24.0> 1996-10-16 16:16:21

** undefined function: release handler:mbj func[] **
Found match in report number 10

ERROR REPORT <0.24.0> 1996-10-16 16:16:21

** Generic server release handler terminating
** Last message in was {unpack release,hej}
** When Server state == {state,[],
"/home/dup/otp2/0tp _beam sunos5 plg 7",
[{release,

"OTP APN 181 01",

"P1G",

undefined,

[1,

permanent}],

undefined}

** Reason for termination ==

** {undef,{release handler,mbj func,[]1}}
Found match in report number 9

CRASH REPORT <0.24.0> 1996-10-16 16:16:21
Crashing process

pid <0.24.0>
registered name release handler
error_info {undef, {release handler,mbj func,[]1}}

initial call
{gen,init it,

[gen _server,
<0.20.0>,
<0.20.0>,

{erlang, register},
release handler,
release handler,
[1,

[11}
ancestors [sasl sup,<0.18.0>]

6 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

1.2 SASL Error Logging

messages [1
links [<0.23.0>,<0.20.0>]
dictionary [1
trap exit false
status running
heap size 610
stack size 142
reductions 54

Found match in report number 8

SUPERVISOR REPORT <0.20.0> 1996-10-16 16:16:21

Reporting supervisor {local,sasl sup}

Child process

errorContext child terminated
reason {undef, {release handler,mbj func,[]1}}
pid <0.24.0>
name release handler
start function {release handler,start link,[]1}
restart type permanent
shutdown 2000
child type worker
ok

Stop the Server
Stop ther b_ser ver withthefunctionr b: st op():

13>rb:stop().
ok

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 7

1.2 SASL Error Logging

2 Reference Manual

The System Architecture Support Libraries application, SASL, provides support for alarm and release handling etc.

8 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

sasl

sasl
Application

This section describes the SASL (System Architecture Support Libraries) application which provides the following
services:

e« alarm handl er

e overload

e rb

« release_handl er
e systools

The SASL application also includeser r or _| ogger event handlers for formatting SASL error and crash reports.

Note:
The SASL application in OTP has nothing to do with "Simple Authentication and Security Layer" (RFC 4422).

Error Logger Event Handlers
The following error logger event handlers are used by the SASL application.
sasl _report_tty_h

Formats and writes supervisor reports, crash reports and progress reportsto st di o.
sasl _report_file_h

Formats and writes supervisor reports, crash report and progress report to asinglefile.
log nf_h

This error logger writes all events sent to the error logger to disk.

To activate this event handler, the following three sasl configuration parameters must be set:
error_|logger_nf _dir,error_| ogger_nf maxbytes anderror _| ogger _nf _maxfil es. See
below for more information about the configuration parameters.

Configuration

The following configuration parameters are defined for the SASL application. See app(4) for more information
about configuration parameters:

sasl _error_| ogger = Val ue <optional >
Val ue isoneof:

tty
Installssasl _report _tty hintheerror logger. Thisisthe default option.

{file, FileNane}
Installssas| _report _fil e_h intheerror logger. This makes al reports go to the file Fi | eNarme.
Fi | eName isastring.

fal se

No SASL error logger handler isinstalled.

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 9

sasl

errlog_type = error | progress | all <optional>

Restrictsthe error logging performed by the specifiedsasl _error _| ogger to error reports, progress reports,
or both. Defaultisal | .

error_logger_nf_dir = string() | fal se<optional>

Specifiesin which directory thefiles are stored. If this parameter isundefined or f al se, thel og_nf _h handler
isnot installed.

error _| ogger _nf_maxbytes = integer() <optional >

Specifies how large each individua file can be. If this parameter is undefined, the | og_nf _h handler is not
installed.

error_|logger_nf _maxfiles = O<integer()<256 <optional >

Specifies how many files are used. If this parameter is undefined, thel og_nf _h handler isnot installed.
overload_max_intensity = float() > O <optional >

Specifies the maximum intensity for over | oad. Default isO. 8.
overl oad_weight = float() > 0 <optional >

Specifiestheover | oad weight. Defaultis0. 1.
start_prg = string() <optional >

Specifies which program should be used when restarting the system. Default is $OTP_ROOT/ bi n/ start .
masters = [atom()] <optional >

Specifies which nodes this node uses to read/write release information. This parameter is ignored if the
client_directory parameter isnot set.

client_directory = string() <optional>

This parameter specifies the client directory at the master nodes. Refer to Release Handling in OTP Design
Principles for more information. This parameter isignored if the mast er s parameter is not set.

static_emulator = true | fal se <optional >

Indicates if the Erlang emulator is statically installed. A node with a static emulator cannot switch dynamically
to a new emulator as the executable files are written into memory statically. This parameter is ignored if the
mast ers andcl i ent _di rect ory parametersare not set.

rel eases _dir = string() <optional>

Indicates where the r el eases directory is located. The release handler writes al its files to this directory.
If this parameter is not set, the OS environment parameter RELDI R is used. By default, thisis $OTP_ROOT/
rel eases.

utc_log = true | fal se <optional >
If settotrue, al datesin textual log outputs are displayed in Universal Coordinated Time with the string UTC
appended.

See Also

alarm_handler(3), error_logger(3), log_mf_h(3), overload(3), rb(3), release_handler(3), systools(3)

10 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

alarm_handler

alarm_handler

Erlang module

Theaarm handler processisagen_event event manager process which receives alarmsin the system. This process
isnot intended to be acomplete alarm handler. It defines a place to which alarms can be sent. One simple event handler
isinstalled in the alarm handler at start-up, but users are encouraged to write and install their own handlers.

The simple event handler sends all alarms as info reports to the error logger, and saves all of themin alist which can
be passed to a user defined event handler, which may be installed at a later stage. The list can grow large if many
alarms are generated. So it isagood reason to install a better user defined handler.

Therearefunctionsto set and clear alarms. Theformat of alarmsare defined by the user. For example, an event handler
for SNMP could be defined, together with an alarm MIB.

The alarm handler is part of the SASL application.
When writing new event handlers for the alarm handler, the following events must be handled:
{set _alarm {Alarmd, AlarnmDescr}}
Thiseventisgenerated by al ar m _handl er: set _al arn({Al arnm d, Al arnDecsr}).
{clear_alarm Al arm d}
Thisevent isgenerated by al ar m handl er: cl ear _al arn(Al arm d) .

The default simple handler is cdled alarmhandler and it may be exchanged
by «cdling gen_event:swap_handler/3 as gen_event:swap_handl er (al arm handl er,
{al arm_handl er, swap}, { NewHand| er, Args}). NewHandler:init({Args,
{al arm handl er, Al arns}}) iscalled. Refer to gen_event(3) for further details.

Exports

clear _alarm(AlarmId) -> void()
Types:

Alarmd = term)
Clearsall darmswithid Al ar m d.

get alarms() -> [alarm()]
Returnsalist of all active alarms. This function can only be used when the smple handler isinstalled.

set _alarm(alarm())

Types.
alarnm() = {Alarm d, Al arnmDescription}
Alarmd = term)
Al arnmDescription = tern()

Setsan darm withid Al ar m d. Thisid isused at alater stage when the alarm is cleared.

See Also

error_logger(3), gen_event(3)

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 11

overload

overload

Erlang module

over | oad is a process which indirectly regulates CPU usage in the system. The idea is that a main application
calsther equest / 0 function before starting a major job, and proceeds with the job if the return value is positive;
otherwise the job must not be started.

over | oad ispart of thesas| application, and all configuration parameters are defined there.

A set of two intensities are maintained, thet ot al i ntensity andtheaccept i ntensity. For that purpose
there are two configuration parameters, the Max | nt ensi t y andthe\Wei ght value (both are measured in 1/second).

Then total and accept intensities are calculated as follows. Assume that the time of the current call tor equest/ 0
isT(n), and that the time of the previouscall wasT(n- 1) .

e Thecurrentt ot al intensity,denoted Tl (n),iscalculated according to the formula,
TI(n) = exp(-Weight*(T(n) - T(n-1)) * TlI(n-1) + Wi ght,
where Tl (n- 1) isthe previoustotal intensity.

e« Thecurrentaccept intensity,denoted Al (n),isdetermined by the formula,

Al (n) = exp(-Weight*(T(n) - T(n-1)) * Al(n-1) + Wi ght,

where Al (n- 1) is the previous accept intensity, provided that the value of exp(-Wei ght*(T(n) -
T(n-1)) * Al(n-1) islessthan Maxl nt ensi t y; otherwisethevaueis

Al (n) = exp(-Weight*(T(n) - T(n-1)) * Al(n-1).

The value of configuration parameter Wi ght controls the speed with which the calculations of intensities will react
to changes in the underlying input intensity. The inverted value of Wi ght ,

T = 1/ Wi ght

can be thought of as the "time constant” of the intensity calculation formulas. For example, if Wi ght = 0.1,
then a change in the underlying input intensity will be reflected inthet ot al andaccept i ntensiti es within
approximately 10 seconds.

The overload process defines one alarm, which it setsusing al ar m_handl er: set _al arn{ Al arn) . Al ar mis
defined as:

{overload, []}
This alarm is set when the current accept intensity exceeds Max| nt ensi ty.

A new overload alarm is not set until the current accept intensity has fallen below Max| nt ensi ty. To prevent the
overload process from generating a lot of set/reset alarms, the alarm is not reset until the current accept intensity has
fallen below 75% of Max| nt ensi ty, and it isnot until then that the alarm can be set again.

Exports

request() -> accept | reject
Returnsaccept orrej ect depending on the current value of the accept intensity.

The application calling this function should be processed with the job in question if the return value is accept ;
otherwise it should not continue with that job.

12 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

overload

get overload info() -> OverloadInfo

Types:
Overloadlnfo = [{total _intensity, Totallntensity}, {accept_intensity,
Acceptintensity}, {max_intensity, MaxIntensity}, {weight, Weight},
{total _requests, Total Requests}, {accepted_requests, AcceptedRequests}].

Totallntensity = float() > 0O
Acceptintensity = float() > 0
Maxl ntensity = float() > O
Weight = float() >0

Tot al Requests = integer()
Accept edRequests = integer()

Returns the current total and accept intensities, the configuration parameters, and absolute counts of the total number
of requests, and accepted number of requests (since the overload process was started).

See Also
alarm_handler(3), sad(3)

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 13

rb

rb

Erlang module

The Report Browser (RB) tool makesit possible to browse and format error reports written by the error logger handler
log nf_h.

Exports

filter(Filters)
filter(Filters, Dates)
Types:

Filters = [filter()]

filter() = {Key, Value} | {Key, Value, no} | {Key, RegExp, re} | {Key,
RegExp, re, no}

Key = term)
Value = term))

RegExp = string() | {string, Options} | mp(), {np(), Options}
Dates = {DateFrom DateTo} | {DateFrom fron} | {DateTo, to}
Dat eFrom = DateTo = {date(), tinme()}

date() and tine() are the sane type as in the cal endar nodul e

This function displays the reports that match the provided filters.
When afilter includes the no atom it will exclude the reports that match that filter.

The reports are matched using the pr opl i st s module. The report must be a proplist to be matched against any of
thefilters().

If thefilter isof theform{ Key, RegExp, re} thereport must contain an element withkey = Key and Val ue
must match the RegExp regular expression.

If the Dates parameter is provided, then the reports are filtered according to the date when they occurred. If Datesis
of theform { Dat eFr omy fron} then reportsthat occurred after DateFrom are displayed.

If Datesisof theform{ Dat eTo, t 0} then reportsthat occurred before DateTo are displayed.

If two Dates are provided, then reports that occurred between those dates are returned.

If you only want to filter only by dates, then you can provide the empty list as the Filters parameter.
Seer b: gr ep/ 1 for more information on the RegExp parameter.

grep(RegExp)
Types.

RegExp = string() | {string, Options} | mp(), {np(), Options}
All reports containing the regular expression RegExp are printed.

RegExp can be a string containing the regular expression; a tuple with the string and the options for compilation; a
compiled regular expression; acompiled regular expression and the options for running it. Refer to the moduler e and
specially the functionr e: r un/ 3 for adefinition of valid regular expressions and options.

14 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

rb

h()
help()

Prints the on-line help information.

list()
list(Type)
Types:
Type = type()
type() = error | error_report | info_nsg | info_report | warning_nsg |

war ni ng_report | crash_report | supervisor_report | progress

This function lists all reports loaded in the r b_ser ver . Each report is given a unique number that can be used as
areferenceto thereport in the show' 1 function.

If no Type isgiven, al reports are listed.

log list()
log list(Type)
Types:
Type = type()
type() = error | error_report | info_nsg | info_report | warning_nsg |
war ni ng_report | crash_report | supervisor_report | progress
Sameasl|ist/0Qorlist/1functionsbut result isprinted to logfile, if set, otherwise to standard_io.

If no Type isgiven, al reports are listed.

rescan()
rescan(Options)
Types:
Options = [opt()]
Rescans the report directory. Opt i ons isthesameasforstart ().

show()
show(Report)
Types.
Report = int() | type()

If atype argument is given, all loaded reports of thistype are printed. If an integer argument is given, the report with
this reference number is printed. If no argument is given, all reports are shown.

start()

start(Options)

Types:
Options = [opt()]
opt() = {start_log, FileNane} | {max, MaxNoOf Reports} | {report_dir,
DirString} | {type, ReportType} | {abort_on_error, Bool}

FileName = string() | aton() | pid()

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 15

rb

MaxNoOf Reports = int() | all
DirString = string()
ReportType = type() | [type()] | all
Bool = true | false
Thefunctionst art/ 1 startsther b_ser ver withthe specified options, whilest ar t / 0 startswith default options.

Therb_server must be started before reports can be browsed. When ther b_ser ver is started, the filesin the
specified directory are scanned. The other functions assume that the server has started.

{start | og, FileNanme} startslogging to file, registered name or io_device. All reports will be printed to the
named file. Thedefault isst andar d_i o. The option { start_|log, standard_error} isnot allowed and will be replaced
by default standard _io.

{max, MaxNoOf Report s} . Controls how many reportsther b_ser ver should read on start-up. Thisoption is
useful as the directory may contain 20.000 reports. If this option is given, the MaxNoCOf Repor t s latest reports will
beread. The defaultis'al'.

{report _dir, DirString}.Definesthedirectory wheretheerror log filesarelocated. The defaultis{ sasl ,
error_logger_nf _dir}.

{type, Report Type}.Controlswhat kind of reportsther b_ser ver should read on start-up. Repor t Type is
asupported type, ‘al’, or alist of supported types. The default is'all'.

{abort_on_error, Bool}. Thisoption specifies whether or not logging should be aborted if rb encounters
an unprintable report. (You may get a report on incorrect form if the err or _| ogger function error _nsg or
i nf o_nsg has been called with an invalid format string). If Bool ist r ue, rb will stop logging (and print an error
message to stdout) if it encounters a badly formatted report. If logging to file is enabled, an error message will be
appended to thelog fileaswell. If Bool isf al se (whichisthe default value), rb will print an error message to stdout
for every bad report it encounters, but the logging process is never aborted. All printable reports will be written. 1f
loggingtofileisenabled, rbprints* UNPRI NTABLE REPORT * inthelogfileat thelocation of an unprintablereport.

start log(FileName)
Types:
FileName = string() | atom() | pid()
Redirects all report output from the RB tool to the specified file, registered name or io_device.

stop()
Stopsther b_server.

stop_log()
Closesthelog file. The output from the RB tool will be directed to st andar d_i o.

16 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

release_handler

release_handler

Erlang module

Therelease handler is a process belonging to the SASL application which isresponsible for release handling, that is,
unpacking, installation, and removal of release packages.

An introduction to release handling and a usage example can be found in Design Principles.

A release package is a compressed tar file containing code for a certain version of a release, created by calling
systools:make_tar/1,2. The release package should be placed in the $ROOT/ r el eases directory of the previous
version of the release where $ROCT is the installation root directory, code: r oot _di r (). Another r el eases
directory can be specified using the SASL configuration parameter r el eases_di r, or the OS environment variable
RELDI R. Therelease handler must have write accessto thisdirectory in order to install the new release. The persistent
state of the release handler is stored therein afile called RELEASES.

A release package should always contain the release resource file Nane. r el and a boot script Name. boot . It
may contain a release upgrade file r el up and a system configuration file sys. confi g. The. r el file contains
information about the release: its name, version, and which ERTS and application versions it uses. Ther el up file
contains scripts for how to upgrade to, or downgrade from, this version of the release.

The release package can be unpacked, which extracts the files. An unpacked release can be installed. The currently
used version of the release is then upgraded or downgraded to the specified version by evaluating the instructions in
r el up. Aninstaled release can be made permanent. There can only be one permanent release in the system, and this
isthe release that is used if the system is restarted. An installed release, except the permanent one, can be removed.
When arelease isremoved, al files that belong to that release only are deleted.

Each version of the release has a status. The status can be unpacked, curr ent, per manent, or ol d. Thereis
alwaysone latest rel ease which either has statusper manent (normal case), or cur r ent (installed, but not yet made
permanent). The following table illustrates the meaning of the status values:

Status Action NextStatus
- unpack unpacked
unpacked install current
remove -
current make permanent permanent
install other old
remove -
permanent make other permanent old
install permanent
old reboot old permanent
install current
remove -

The release handler processis alocally registered process on each node. When arelease isinstalled in a distributed
system, the release handler on each node must be called. The release installation may be synchronized between nodes.
From an operator view, it may be unsatisfactory to specify each node. The aimisto install one release package in the
system, no matter how many nodesthereare. If thisisthe case, it isrecommended that software management functions
are written which take care of this problem. Such afunction may have knowledge of the system architecture, so it can
contact each individual release handler to install the package.

For release handling to work properly, the runtime system needs to have knowledge about which releaseit is currently
running. It must also be able to change (in run-time) which boot script and system configuration file should be used

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 17

release_handler

if the system isrestarted. Thisis taken care of automatically if Erlang is started as an embedded system. Read about
thisin Embedded System. In this case, the system configuration filesys. conf i g ismandatory.

Theinstallation of anew release may restart the system. Which program to useis specified by the SASL configuration
parameter st art _pr g which defaultsto $ROOT/ bi n/ st art .

The emulator restart on Windows NT expects that the system is started using the er | srv program (as a service).
Furthermore the release handler expects that the service is named NodeName_Release, where NodeName is the first
part of the Erlang nodename (up to, but not including the "@") and Release is the current version of the release. The
release handler furthermore expects that a program like st art _er | . exe is specified as "machine" to er | srv.
During upgrading with restart, a new service will be registered and started. The new service will be set to automatic
and the old service removed as soon as the new release is made permanent.

The release handler at a node which runs on a diskless machine, or with a read-only file system, must be configured
accordingly using the following sas| configuration parameters (see sadl(6) for details):

mast er s

This node uses a number of master nodes in order to store and fetch release information. All master nodes must
be up and running whenever release information is written by this node.

client _directory
Thecl i ent _directory inthedirectory structure of the master nodes must be specified.
static_emul at or

This parameter specifies if the Erlang emulator is statically installed at the client node. A node with a static
emulator cannot dynamically switch to a new emulator because the executable files are statically written into
memory.

It is also possible to use the release handler to unpack and install release packages when not running Erlang as an
embedded system, but in this case the user must somehow make sure that correct boot scripts and configuration files
are used if the system needs to be restarted.

There are additional functions for using another file structure than the structure defined in OTP. These functions can
be used to test arelease upgrade locally.

Exports

check install release(Vsn) -> {ok, OtherVsn, Descr} | {error, Reason}
check install release(Vsn,Opts) -> {ok, OtherVsn, Descr} | {error, Reason}

Types:
Vsn = OtherVsn = string()
Opts = [Opt]
Opt = purge

Descr = tern()
Reason = term()

Checks if the specified version Vsn of the release can be installed. The release must not have status cur r ent .
Issues warnings if rel up or sys. confi g are not present. If r el up is present, its contents are checked and
{error, Reason} isreturned if an error isfound. Also checksthat all required applications are present and that all
new code can be loaded, or { er r or , Reason} isreturned.

This function evaluates all instructions that occur before the poi nt _of _no_r et ur n instruction in the release
upgrade script.

Returnsthesameasi nstal | _rel ease/ 1. Descr defaultsto"" if nor el up fileisfound.

18 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

release_handler

If the option pur ge isgiven, all old code that can be soft purged will be purged after all other checks are successfully
completed. This can be useful in order to reduce the time needed by install_release.

create RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | {error, Reason}
Types.
Root = RelDir = RelFile = string()
AppDirs = [{App, Vsn, Dir}]
App = atomn()
Vsn = Dir = string()
Reason = term()
Createsaninitial RELEASESfileto be used by the release handler. Thisfile must exist in order to install new releases.

Root istheroot of theinstallation ($ROOT) as described above. Rel Di r isthe the directory where the RELEASES
file should be created (normally $ROOT/ r el eases). Rel Fi | e is the name of the . rel file that describes the
initial release, including the extension . r el .

AppDi r s can be used to specify from where the modules for the specified applications should be loaded. App isthe
name of an application, Vsn is the version, and Di r is the name of the directory where App- Vsn is located. The
corresponding modules should belocated under Di r / App- Vsn/ ebi n. Thedirectoriesfor applications not specified
in AppDi r s are assumed to be located in $ROOT/ | i b.

install file(Vsn, File) -> ok | {error, Reason}
Types:

Vsn = File = string()

Reason = term)

Installs a release dependent file in the release structure. A release dependent file is a file that must be in the release
structure when anew releaseisinstalled: st art . boot , rel up andsys. confi g.

The function can be called, for example, when these files are generated at the target. It should be called after
set _unpacked/ 2 hasbeen called.

install release(Vsn) -> {ok, OtherVsn, Descr} | {error, Reason}

install release(Vsn, [Opt]l) -> {ok, OtherVsn, Descr} |
{continue after restart, OtherVsn, Descr} | {error, Reason}

Types:
Vsn = GtherVsn = string()
Opt = {error_action, Action} | {code_change_ tineout, Ti meout}

| {suspend_tineout, Tinmeout} | {update_paths, Bool}
Action = restart | reboot
Timeout = default | infinity | int()>0
Bool = bool ean()
Descr = tern()

Reason = {illegal _option, Opt} | {already_ installed, Vsn} |
{change_appl data, tern()} | {m ssing_base app, OherVsn, App} |
{could_not _create_hybrid _boot, term()} | term)

App = aton()

Installs the specified version Vsn of the release. Looks first for a rel up file for Vsn and a script
{UpFronVsn, Descr 1, | nstructionsl} in thisfilefor upgrading from the current version. If not found, the

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 19

release_handler

function looksfor ar el up filefor the current version and ascript { Vsn, Descr 2, | nstructi ons2} inthisfile
for downgrading to Vsn.

If ascriptisfound, thefirst thing that happensisthat the applications specifications are updated according to the . app
filesand sys. confi g belonging to the release version Vsn.

After the application specifications have been updated, the instructions in the script are evaluated and the function
returns{ ok, & her Vsn, Descr } if successful. & her Vsn and Descr aretheversion (UpFr omsn or Vsn) and
description (Descr 1 or Descr 2) as specified in the script.

If {continue_after_restart, O herVsn, Descr} isreturned, it means that the emulator will be restarted
before the upgrade instructions are executed. Thiswill happen if the emulator or any of the applications kernel, stdlib
or sadl are updated. The new version of the emulator and these core applications will execute after the restart, but for
all other applications the old versions will be started and the upgrade will be performed as normal by executing the
upgrade instructions.

If arecoverable error occurs, the function returns{ er r or , Reason} and the original application specifications are
restored. If a non-recoverable error occurs, the system is restarted.

The option error_acti on defines if the node should be restarted (init:restart()) or rebooted
(init:reboot ())incaseof anerror during the installation. Default isr est art .

The option code_change_ti meout defines the timeout for al calls to sys: change_code. If no value is
specified or def aul t isgiven, the default value defined in sy's is used.

The option suspend_t i meout defines the timeout for all callsto sys: suspend. If no vaue is specified, the
values defined by the Ti meout parameter of the upgr ade or suspend instructions are used. If def aul t is
specified, the default value defined in sys is used.

The option{ updat e_pat hs, Bool } indicatesif all application code paths should be updated (Bool ==t r ue), or
if only code paths for modified applications should be updated (Bool ==f al se, default). This option only has effect
for other application directories than the default $ROOT/ | i b/ App- Vsn, that is, application directories provided in
the AppDi r s argument inacall tocr eat e RELEASES/ 4 or set _unpacked/ 2.

Example: In the current version Cur VVsn of a release, the application directory of nyapp is $ROOT/ | i b/
myapp- 1. 0. A new version NewVsn is unpacked outside the release handler, and the release handler is informed
about thiswith a call to:

release handler:set unpacked(RelFile, [{myapp,"1.0","/home/user"},...1).
=> {ok,NewVsn}

If NewVsn is installed with the option { updat e_pat hs, t rue}, afterwards code: | i b_di r (myapp) will
return/ hone/ user/ myapp- 1. 0.

20 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

release_handler

Note:

Installing a new release might be quite time consuming if there are many processes in the system. The reason is
that each process must be checked for references to old code before a module can be purged. This check might
lead to garbage collections and copying of data.

If you wish to speed up the execution of i nstal | _r el ease, then you may call check install_release first,
using the option pur ge. Thiswill do the same check for old code, and then purge al modules that can be soft
purged. The purged modules will then no longer have any old code, andi nst al | _r el ease will not need to
do the checks.

Obviously, thiswill not reduce the overall time for the upgrade, but it will allow checks and purge to be executed
in the background before the real upgrade is started.

Note:

When upgrading the emulator from aversion older than OTP R15, therewill be an attempt to load new application
beam code into the old emulator. In some cases, the new beam format can not be read by the old emulator, and
so the code loading will fail and terminate the complete upgrade. To overcome this problem, the new application
code should be compiled with the old emulator. See Design Principles for more information about emulator
upgrade from pre OTP R15 versions.

make permanent(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {bad_status, Status} | term)

Makes the specified version Vsn of the release permanent.

remove release(Vsn) -> ok | {error, Reason}
Types.
Vsn = string()
Reason = {permanent, Vsn} | client_node | tern()

Removes a release and its files from the system. The release must not be the permanent release. Removes only the
files and directories not in use by another release.

reboot old release(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {bad_status, Status} | term)

Reboots the system by making the old release permanent, and callsi ni t : r eboot () directly. The release must
have status ol d.

set removed(Vsn) -> ok | {error, Reason}

Types:
Vsn = string()

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 21

release_handler

Reason = {permanent, Vsn} | term))

Makes it possible to handle removal of releases outside the release handler. Tells the release handler that the release
is removed from the system. This function does not delete any files.

set unpacked(RelFile, AppDirs) -> {ok, Vsn} | {error, Reason}

Types:
Rel File = string()
AppDirs = [{App, Vsn, Dir}]
App = aton()

Vsn = Dir = string()
Reason = term()

Makesit possible to handle unpacking of releases outside the release handler. Tellsthe release handler that the release
isunpacked. Vsn is extracted from the release resource file Rel Fi | e.

AppDi r s can be used to specify from where the modules for the specified applications should be loaded. App isthe
name of an application, Vsn is the version, and Di r is the name of the directory where App- Vsn is located. The
corresponding modules should belocated under Di r / App- Vsn/ ebi n. Thedirectoriesfor applications not specified
in AppDi r s are assumed to be located in $ROOT/ | i b.

unpack release(Name) -> {ok, Vsn} | {error, Reason}
Types:

Name = Vsn = string()

Reason = client_node | term))
Unpacks arelease package Nan®e. t ar . gz located inther el eases directory.

Performs some checks on the package - for example checks that all mandatory files are present - and extracts its
contents.

which releases() -> [{Name, Vsn, Apps, Status}]
Types.

Name = Vsn = string()

Apps = ["App-Vsn"]

Status = unpacked | current | pernanent | old
Returns all releases known to the release handler.

which releases(Status) -> [{Name, Vsn, Apps, Status}]
Types.

Name = Vsn = string()

Apps = ["App-Vsn"]

Status = unpacked | current | pernanent | old
Returns al releases known to the rel ease handler of a specific status.

Application Upgrade/Downgrade

The following functions can be used to test upgrade and downgrade of single applications (instead of upgrading/
downgrading an entire release). A script corresponding to r el up is created on-the-fly, based on the . appup filefor
the application, and evaluated exactly in the sameway asr el ease_handl er does.

22 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

release_handler

Warning:

These functions are primarily intended for simplified testing of . appup files. They are not run within
the context of the r el ease_handl er process. They must therefore not be used together with calls to
install _rel ease/ 1, 2, asthiswill causer el ease_handl er to end up in an inconsistent state.

No persistent information is updated, why these functions can be used on any Erlang node, embedded or not.
Also, using these functions does not affect which code will be loaded in case of a reboot.

If the upgrade or downgrade fails, the application may end up in an inconsistent state.

Exports

upgrade _app(App, Dir) -> {ok, Unpurged} | restart emulator | {error, Reason}
Types:

App = aton()

Dir string()

Unpurged = [Modul €]

Modul e = atom()

Reason = term()

Upgradesan application App from the current versionto anew version locatedin Di r accordingtothe. appup script.

App isthe name of the application, which must be started. Di r isthe new library directory of App, the corresponding
modules aswell asthe. app and . appup files should be located under Di r / ebi n.

The function looks in the . appup file and tries to find an upgrade script from the current version of the
application using upgrade_script/2. This script is evaluated using eval_appup_script/4, exactly in the same way as
install_release/1,2 does.

Returns{ ok, Unpur ged} if evaluating the script is successful, where Unpur ged isalist of unpurged modules,
orrestart _emrul at or if thisinstruction isencountered inthe script, or { err or, Reason} if an error occurred
when finding or eval uating the script.

If the restart_new enul at or instruction is found in the script, upgrade_app/ 2 will return
{error,restart_new enul at or}. The reason for this is that this instruction requires that a new version of
the emulator is started before the rest of the upgrade instructions can be executed, and this can only be done by
install _release/1, 2.

downgrade_app(App, Dir) ->

downgrade app(App, 0ldVsn, Dir) -> {ok, Unpurged} | restart emulator |
{error, Reason}

Types:
App = aton()
Dir = AdVsn = string()

Unpurged = [Modul €]
Modul e = atom()
Reason = term()

Downgrades an application App from the current version to a previous version A dVsn located in Di r according
tothe. appup script.

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 23

release_handler

App isthe name of the application, which must be started. O dVsn isthe previous version of the application and can
be omitted if Di r isof theformat " App- A dVsn".Di r isthelibrary directory of this previous version of App, the
corresponding modules aswell astheold . app file should be located under Di r/ ebi n. The. appup file should be
located in the ebi n directory of the current library directory of the application (code: | i b_di r (App)).

The function looks in the . appup file and tries to find an downgrade script to the previous version of the
application using downgrade _script/3. This script is evaluated using eval_appup_script/4, exactly in the same way
asinstall_release/1,2 does.

Returns { ok, Unpur ged} if evaluating the script is successful, where Unpur ged isalist of unpurged modules,
orrestart _enul at or if thisinstruction isencountered in the script, or { er r or, Reason} if an error occurred
when finding or evaluating the script.

upgrade script(App, Dir) -> {ok, NewVsn, Script}
Types:

App = aton()

Di r string()

Newvsn = string()

Script = Instructions -- see appup(4)

Triesto find an application upgrade script for App from the current version to anew version located inDi r .

The upgrade script can then be evaluated using eval_appup_script/4. It isrecommended to use upgrade_app/2 instead,
but this function is useful in order to inspect the contents of the script.

App isthe name of the application, which must be started. Di r isthe new library directory of App, the corresponding
modules aswell asthe. app and . appup files should be located under Di r / ebi n.

The function looksin the. appup file and tries to find an upgrade script from the current version of the application.
High-level instructions are translated to low-level instructions and the instructions are sorted in the same manner as
when generating ar el up script.

Returns{ ok, NewMsn, Scri pt} if successful, where NewVsn isthe new application version.
Failure: If ascript cannot be found, the function fails with an appropriate error reason.

downgrade script(App, 0ldVsn, Dir) -> {ok, Script}

Types.
App = aton()
Advsn = Dir = string()
Script = Instructions -- see appup(4)

Triesto find an application downgrade script for App from the current version to a previous version O dVsn located
inDir.

The downgrade script can then be evaluated using eval_appup_script/4. It isrecommended to use downgrade _app/2,3
instead, but this function is useful in order to inspect the contents of the script.

App is the name of the application, which must be started. Di r is the previous library directory of App, the
corresponding modules aswell astheold . app file should be located under Di r / ebi n. The. appup file should be
located in the ebi n directory of the current library directory of the application (code: | i b_di r (App)).

Thefunctionlooksinthe. appup fileand triesto find an downgrade script from the current version of the application.
High-level instructions are translated to low-level instructions and the instructions are sorted in the same manner as
when generating ar el up script.

Returns{ ok, Scri pt} if successful.

24 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

release_handler

Failure: If ascript cannot be found, the function fails with an appropriate error reason.

eval appup script(App, ToVsn, ToDir, Script) -> {ok, Unpurged} |
restart emulator | {error, Reason}

Types.
App = atomn()
ToVsn = ToDir = string()
Script -- see upgrade_script/2, downgrade_script/3

Unpurged = [Modul €]
Modul e = atom()
Reason = term()

Evaluates an application upgrade or downgrade script Scri pt, the result from calling upgrade script/2 or
downgrade_script/3, exactly in the same way asinstall_release/1,2 does.

App isthe name of the application, which must be started. ToVsn is the version to be upgraded/downgraded to, and
ToDi r isthe library directory of this version. The corresponding modules as well as the . app and . appup files
should be located under Di r / ebi n.

Returns{ ok, Unpur ged} if evaluating the script is successful, where Unpur ged isalist of unpurged modules,
orrestart _enul at or if thisinstruction isencountered in the script, or { er r or, Reason} if an error occurred
when evaluating the script.

If the restart_new emul at or instruction is found in the script, eval _appup_scri pt/ 4 will return
{error,restart_new_emul at or}. The reason for this is that this instruction requires that a new version of
the emulator is started before the rest of the upgrade instructions can be executed, and this can only be done by
install _rel ease/ 1, 2.

Typical Error Reasons

e {bad_nasters, Masters} - Themaster nodes Mast er s are not alive.
« {bad_ rel _file, File} -Specified.rel fileFil e cannot beread, or does not contain asingle term.

« {bad rel _data, Data} - Specified.rel file does not contain a recognized release specification, but
another term Dat a.

e {bad_relup_file, File} -Specifiedrel up fileRel up contains bad data.

e {cannot_extract file, Nane, Reason} - Problems when extracting from a tar file,
erl _tar:extract/2returned{error, {Nane, Reason}}.

e {existing_rel ease, Vsn} - Specified release version Vsn isalready in use.

« {Master, Reason, Wen} - Someoperation, indicated by theterm When, failed onthe master node Mast er
with the specified error reason Reason.

e {no_matching relup, Vsn, CurrentVsn} - Cannot find a script for up/downgrading between
Current Vsn and Vsn.

« {no_such_directory, Path} - Thedirectory Pat h doesnot exist.
e {no_such_file, Path} -ThepathPat h (fileor directory) does not exist.

e {no_such_file, {Master, Path}} -ThepathPat h (fileor directory) doesnot exist at the master node
Mast er .

* {no_such_rel ease, Vsn} - The specified version Vsn of the release does not exist.
« {not_a_directory, Path} -Pat h exists, but isnot adirectory.

 {Posix, File} -Somefileoperationfailedfor Fi | e. Posi x isan atom named from the Posix error codes,
such asenoent ,eacces orei sdir.Seefil e(3).

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 25

release_handler

e Posi x - Somefile operation failed, as above.

SEE ALSO
OTP Design Principles, config(4), relup(4), rel(4), script(4), sys(3), systools(3)

26 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

systools

systools

Erlang module

This module contains functions to generate boot scripts (. boot , . scri pt), release upgrade scripts (r el up), and
release packages.

Exports

make relup(Name, UpFrom, DownTo) -> Result
make relup(Name, UpFrom, DownTo, [Opt]) -> Result
Types:

Name = string()

UpFrom = DownTo = [Nane | {Nane, Descr}]

Descr = tern()

Opt = {path,[Dir]} | restart_enulator | silent | noexec | {outdir,Dir} |
war ni ngs_as_errors

Dir = string()
Result = ok | error | {ok, Rel up, Modul e, Warni ngs} | {error, Modul e, Error}
Rel up - see relup(4)
Modul e = atom()
Warnings = Error = tern()
Generates a release upgrade file r el up containing a script which describes how to upgrade the system from

a number of previous releases, and how to downgrade to a number of previous releases. The script is used by
r el ease_handl er wheninstalling a new version of arelease in run-time.

By default, r el up is placed in the current working directory. If the option { out di r, Di r} isprovided, rel up is
placed in Di r instead.

The release resource file Name. r el is compared with al release resource files Nane2. r el specified in UpFr om
and DownTo. For each such pair, it is deducted:

* Which applications should be deleted, that is applicationswhich arelistedin Narme. r el butnotinNanme2. rel .
» Which applications should be added, that is applicationswhich arelisted in Nane2. r el but notin Nane. rel .

« Which applications should be upgraded/downgraded, that is applications listed in both Nane. rel and
Nanme2. r el , but with different versions.

« |If the emulator needs to be restarted after upgrading or downgrading, that isif the ERTS version differs between
Nane. rel and Nane2.rel .

Instructions for this are added to the r el up script in the above order. Instructions for upgrading or downgrading
between application versions are fetched from the relevant application upgrade files App. appup, sorted in the same
order aswhen generating aboot script, seermmake_scri pt/ 1, 2. High-level instructions are translated into low-level
instructions and the result isprinted tor el up.

The optional Descr parameter isincluded as-isinther el up script, seer el up(4) . Defaults to the empty list.

All the files are searched for in the code path. It is assumed that the . app and . appup file for an application is
located in the same directory.

If the option { pat h, [Di r]} isprovided, this path is appended to the current path. The wildcard * is expanded to
all matching directories. Example: | i b/ */ ebi n.

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 27

systools

Ifther est art _emrul at or optionissupplied, alow-level instruction to restart the emulator is appended to therelup
scripts. This ensures that a complete reboot of the system is done when the system is upgraded or downgraded.

If an upgrade includes a change from an emulator earlier than OTP R15 to OTP R15 or later, the warning
pre_R15 emrul at or _upgr ade isissued. See Design Principles for more information about this.

By default, errors and warnings are printed to tty and the function returns ok or er r or . If the option si | ent is
provided, the function instead returns { ok, Rel up, Modul e, War ni ngs} where Rel up is the release upgrade
script, or it returns {error, Modul e, Error}. Warnings and errors can be converted to strings by caling
Modul e: f or mat _war ni ng(War ni ngs) or Modul e: format _error (Error).

If the option noexec is provided, the function returns the same values asfor si | ent but nor el up fileis created.
If the option war ni ngs_as_er r or s is provided, warnings are treated as errors.

make script(Name) -> Result
make script(Name, [Opt]) -> Result

Types:
Name = string()
Opt = src_tests | {path,[Dir]} | local | {variables,[Var]} | exref |

{exref,[App]}] | silent | {outdir,Dir} | no_dot _erlang | no_warn_sasl |
war ni ngs_as_errors
Dir = string()
Var = {Var Nane, Prefix}
VarName = Prefix = string()
App = aton()
Result = ok | error | {ok, Modul e, Warnings} | {error, Modul e, Error}
Modul e = atom()
Warnings = Error = term)
Generates a boot script Nane. scri pt and its binary version, the boot file Name. boot . The boot file specifies

which code should be loaded and which applications should be started when the Erlang runtime system is started.
Seescript(4).

The release resource file Nane. r el is read to find out which applications are included in the release. Then the
relevant application resource files App. app areread to find out which modules should be loaded and if and how the
application should be started. (Keysnodul es and nod, seeapp(4)).

By default, the boot script and boot file are placed in the same directory asNane. r el . Thatis, in the current working
directory unless Nane contains a path. If the option { out di r, Di r} isprovided, they areplaced in Di r instead.

The correctness of each application is checked:

* Theversion of an application specifiedinthe. r el file should be the same as the version specified in the. app
file.

e There should be no undefined applications, that is, dependencies to applications which are not included in the
release. (Key appl i cati ons in. app file).

» There should be no circular dependencies among the applications.

e There should be no duplicated modules, that is, modules with the same name but belonging to different
applications.

 Ifthesrc_tests option is specified, awarning isissued if the source code for amodule is missing or newer
than the object code.

28 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

systools

The applications are sorted according to the dependencies between the applications. Where there are no dependencies,
theorder inthe. r el fileiskept.

Thefunction will fail if the mandatory applicationsker nel andst dl i b arenotincludedinthe. r el fileand have
start type per manent (default).

If sasl isnotincluded asan applicationinthe. r el file, awarning isemitted because such arelease can not be used
in an upgrade. To turn off thiswarning, add the option no_war n_sasl .

All files are searched for in the current path. It is assumed that the. app and . beamfilesfor an application islocated
in the same directory. The . er | files are also assumed to be located in this directory, unlessit isan ebi n directory
in which case they may be located in the corresponding sr ¢ directory.

If the option { pat h, [Di r]} isprovided, this path is appended to the current path. A directory in the path can be
given with awildcard * , thisis expanded to all matching directories. Example: " | i b/ */ ebi n" .

In the generated boot script all application directories are structured as App- Vsn/ ebi n and assumed to belocated in
$ROOT/ | i b, where SROOT is the root directory of the installed release. If the |l ocal option is supplied, the actual
directories where the applications were found are used instead. This is a useful way to test a generated boot script
locally.

The vari abl es option can be used to specify an installation directory other than $ROOT/ | i b for some of the
applications. If avariable { Var Nane, Pr ef i x} is specified and an application is found in a directory Pr ef i x/
Rest / App[- Vsn] / ebi n, thisapplication will get the path Var Nane/ Rest / App- Vsn/ ebi n intheboot script.
If an applicationisfoundin adirectory Pr ef i x/ Rest , thepathwill be Var Nane/ Rest / App- Vsn/ ebi n. When
starting Erlang, al variables Var Nane are given values using the boot _var command line flag.

Example: If the option { vari abl es, [{" TEST","1ib"}]} issupplied, and nyapp. app isfoundin | i b/
myapp/ ebi n, then the path to this application in the boot script will be " $TEST/ nyapp- 1/ ebi n". If
myapp. app isfoundinli b/t est, thenthe path will be STEST/ t est / myapp- 1/ ebi n.

The checks performed before the boot script is generated can be extended with some cross reference checks by
specifying the exr ef option. These checks are performed with the Xref tool. All applications, or the applications
specified with { exr ef , [App] } , are checked by Xref and warnings are generated for calls to undefined functions.

By default, errors and warnings are printed to tty and the function returns ok or error. If the option
si | ent is provided, the function instead returns { ok, Modul e, War ni ngs} or {error, Modul e, Error}.
Warnings and errors can be converted to strings by calling Modul e: f or mat _war ni ng(War ni ngs) or
Modul e: format _error(Error).

If the option war ni ngs_as_er r or s is provided, warnings are treated as errors.
If theoption no_dot _er | ang isprovided, theinstruction to load the . er | ang file during boot is NOT included.

make tar(Name) -> Result
make tar(Name, [Opt]) -> Result
Types:
Name = string()
Ot = {dirs,[IncDir]} | {path,[Dir]} | {variables,[Var]} |
{var _tar,VarTar} | {erts,Dir} | src_tests | exref | {exref,[App]} | silent
| {outdir,Dir}
Dir = string()
IncDir = src | include | atom()
Var = {Var Nane, PreFi x}
VarName = Prefix = string()
VarTar = include | owmnfile | onit

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 29

systools

Machi ne = atom()

App = aton()

Result = ok | error | {ok, Mbdul e, Warnings} | {error, Modul e, Error}
Modul e = atom()

Warning = Error = term))

Createsarelease packagefileNare. t ar . gz. file. Thisfile must be uncompressed and unpacked on thetarget system
usingther el ease_handl er, before the new release can beinstalled.

ThereleaseresourcefileName. r el isreadtofind out which applicationsareincluded intherelease. Thentherelevant
application resource files App. app are read to find out the version and modules of each application. (Keysvsn and
nmodul es, seeapp(4)).

By default, the release package file is placed in the same directory as Name. r el . That is, in the current working
directory unless Namre contains a path. If the option { out di r, Di r} isprovided, itisplaced in Di r instead.

By default, the release package containsthe directories| i b/ App- Vsn/ ebi nand ! i b/ App- Vsn/ pri v for each
included application. If more directories, theoptiondi r s issupplied. Example: {di r s, [src, exanpl es] }.

All these files are searched for in the current path. If the option { pat h, [Di r] } is provided, this path is appended
to the current path. The wildcard * is expanded to all matching directories. Example: " 1 i b/ */ ebi n".

Thevar i abl es option can be used to specify an installation directory other than | i b for some of the applications.
If avariable { Var Nane, Pr ef i x} isspecified and an application is found in a directory Pr ef i x/ Rest/ App| -
Vsn] / ebi n, this application will be packed into a separate Var Nane. t ar . gz fileasRest / App- Vsn/ ebi n.

Example: If the option { vari abl es, [{" TEST","1ib"}]} issupplied, and nyapp. app isfoundin |l i b/
nyapp- 1/ ebi n, the the application nyapp isincluded in TEST. t ar . gz:

% tar tf TEST.tar
myapp-1/ebin/myapp.app

The{var _tar, Var Tar} option can be used to specify if and where a separate package should be stored. In this
option, Var Tar is.

* i ncl ude. Each separate (variable) package isincluded in the main Rel easeNan®e. t ar . gz file. Thisisthe
default.

« ownfile. Each separate (variable) package is generated as separate files in the same directory as the
Rel easeNane. t ar. gz file

e om t. No separate (variable) packages are generated and applications which are found undernesth a variable
directory areignored.

A directory calledr el eases isalsoincluded intherelease package, containing Nane. r el and asubdirectory called
Rel Vsn. Rel Vsn istherelease version as specified in Nane. rel .

r el eases/ Rel Vsn containsthe boot script Nane. boot renamedtost art . boot and, if found, thefilesr el up
andsys. conf i g. Thesefilesare searched for in the same directory asNan®. r el , inthe current working directory,
and in any directories specified using the pat h option.

If the release package should contain anew Erlang runtime system, the bi n directory of the specified runtime system
{erts,Dir} iscopiedtoerts-ErtsVsn/ bin.

All checks performed with the make_scri pt function are performed before the release package is created. The
src_tests andexr ef optionsarealso valid here.

The return value and the handling of errors and warnings are the same as described for nake_scri pt above.

30 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

systools

script2boot(File) -> ok | error
Types:
File = string()

The Erlang runtime system requires that the contents of the script used to boot the system isabinary Erlang term. This
function transformsthe Fi | e. scri pt boot script to abinary term which isstored inthefile Fi | e. boot .

A boot script generated using themake_scri pt function is already transformed to the binary form.

SEE ALSO
app(4), appup(4), erl(1), rel(4), release_handler(3), relup(4), script(4)

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 31

appup

appup

Name

The application upgrade file defines how an application is upgraded or downgraded in a running system.
Thisfileisused by the functionsin syst ool s when generating arelease upgradefiler el up.

FILE SYNTAX

The application upgrade file should be called Appl i cati on. appup where Appl i cati on is the name of the
application. The file should be located in the ebi n directory for the application.

The . appup file contains one single Erlang term, which defines the instructions used to upgrade or downgrade the
application. The file has the following syntax:

{Vsn,
[{UpFromVsn, Instructions}, ...],
[{DownToVsn, Instructions}, ...1}.

e Vsn = string() isthecurrent version of the application.

e UpFronmvsn = string() | binary() isanearlier version of the application to upgrade from. If it is
a string, it will be interpreted as a specific version number. If it is a binary, it will be interpreted as a regular
expression which can match multiple version numbers.

e DownToVsn = string() | binary() isanearlier version of the application to downgrade to. If it is
a string, it will be interpreted as a specific version number. If it is a binary, it will be interpreted as a regular
expression which can match multiple version numbers.

e Instructions isalist of release upgrade instructions, see below. It is recommended to use high-level
instructions only. These are automatically translated to low-level instructions by syst ool s when creating the
rel up file.

In order to avoid duplication of upgradeinstructionsit isallowed to use regular expressionsto specify the UpFr onVsn
and DownToVsn. To be considered aregular expression, the version identifier must be specified as abinary, e.g.

<<"2\\.1I\\.[0-9]+">>

will match al versions 2. 1. x, where x is any number.

Note that the regular expression must match the complete version string, so the above example will work for for e.g.
2.1.1,butnotfor2.1.1.1

RELEASE UPGRADE INSTRUCTIONS

Release upgrade instructions are interpreted by the rel ease handler when an upgrade or downgrade is made. For more
information about release handling, refer to OTP Design Principles.

A process is said to use a module Mod, if Mod islisted in the Modul es part of the child specification used to start
the process, see super vi sor (3) . In the case of gen_event, an event manager process is said to use Mod if Mod
isan installed event handler.

High-level instructions

32 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

appup

{update, Mod}
{update, Mod, supervisor}
{update, Mod, Change}
{update, Mod, DepMods}
{update, Mod, Change, DepMods}
{update, Mod, Change, PrePurge, PostPurge, DepMods}
{update, Mod, Timeout, Change, PrePurge, PostPurge, DepMods}
{update, Mod, ModType, Timeout, Change, PrePurge, PostPurge, DepMods}
Mod = atom()
ModType = static | dynamic
Timeout = int()>0 | default | infinity
Change = soft | {advanced,Extra}
Extra = term()
PrePurge = PostPurge = soft purge | brutal purge
DepMods = [Mod]

Synchronized code replacement of processes using the module Mod. All those processes are suspended using
sys: suspend, the new version of the moduleisloaded and then the processes are resumed using sys: r esune.

Change defaults to sof t and defines the type of code change. If it is set to { advanced, Ext r a}, processes
implemented using gen_server, gen_fsmor gen_event will transformtheir internal state by calling the callback function
code_change. Special processes will call the callback function syst em code_change/ 4. In both cases, the
term Ext r a is passed as an argument to the callback function.

Pr ePur ge defaultsto br ut al _pur ge and controls what action to take with processes that are executing old code
before loading the new version of the module. If thevalueisbr ut al _pur ge, the processes arekilled. If thevalueis
soft _purge,rel ease_handler:install _rel ease/ 1returns{error,{ol d_processes, Mod}}.

Post Pur ge defaultstobr ut al _pur ge and controls what action to take with processes that are executing old code
when the new version of the module has been loaded. If the valueisbr ut al _pur ge, the code is purged when the
release is made permanent and the processes are killed. If the valueissof t _pur ge, the release handler will purge
the old code when no remaining processes execute the code.

DepMods defaultsto [] and defines which other modules Mod isdependent on. Inr el up, instructions for suspending
processes using Mod will come before instructions for suspending processes using modules in DepMbds when
upgrading, and vice versa when downgrading. In case of circular dependencies, the order of the instructions in the
appup script is kept.

Ti meout defines the timeout when suspending processes. If no value or def aul t is given, the default value for
sys: suspend isused.

ModType defaults to dynamni ¢ and specifies if the code is "dynamic", that is if a process using the module does
spontaneously switch to new code, or if itis"static'. When doing an advanced update and upgrading, the new version
of adynamic moduleisloaded before the processis asked to change code. When downgrading, the processis asked to
change code before loading the new version. For static modules, the new version isloaded before the processis asked
to change code, both in the case of upgrading and downgrading. Callback modules are dynamic.

updat e with argument super vi sor isused when changing the start specification of a supervisor.

{load module, Mod}

{load module, Mod, DepMods}

{load module, Mod, PrePurge, PostPurge, DepMods}
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge
DepMods = [Mod]

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 33

appup

Simple code replacement of the module Mod.
See updat e above for adescription of Pr ePur ge and Post Pur ge.

DepMods defaults to [] and defines which other modules Mbd is dependent on. In r el up, instructions for loading
these modules will come before the instruction for loading Mbd when upgrading, and vice versa when downgrading.

{add _module, Mod}
Mod = atom()

L oads a new module Mod.

{delete module, Mod}
Mod = atom()

Deletes amodule Mbd using the low-level instructionsr erove and pur ge.

{add _application, Application}
{add _application, Application, Type}
Application = atom()
Type = permanent | transient | temporary | load | none

Adding an application means that the modules defined by the nodul es key in the . app file are loaded using
add_nodul e.

Type defaults to per manent and specifies the start type of the application. If Type = permanent
| transient | tenporary, the application will be loaded and started in the corresponding way, see
application(3).If Type = | oad, theapplication will only beloaded. If Type = none, the application will
be neither loaded nor started, although the code for its modules will be loaded.

{remove application, Application}
Application = atom()

Removing an application means that the application is stopped, the modules are unloaded using del et e_nodul e
and then the application specification is unloaded from the application controller.

{restart _application, Application}
Application = atom()

Restarting an application means that the application is stopped and then started again similar to using the instructions
renove_applicationandadd_appl i cati on insequence.

Low-level instructions

34 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

appup

{load object code, {App, Vsn, [Mod]}}
App = Mod = atom()
Vsn = string()

Reads each Mbd from the directory App- Vsn/ ebi n asabinary. It does not load the modules. Theinstruction should
be placed first in the script in order to read all new code from file to make the suspend-load-resume cycle less time
consuming. After thisinstruction has been executed, the code server with the new version of App.

point of no return

If a crash occurs after this instruction, the system cannot recover and is restarted from the old version of the release.
Theinstruction must only occur once in ascript. It should be placed after all | oad_obj ect _code instructions.

{load, {Mod, PrePurge, PostPurge}}
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge

Before this instruction occurs, Mod must have been loaded using | oad_obj ect _code. Thisinstruction loads the
module. Pr ePur ge isignored. See the high-level instruction updat e for a description of Post Pur ge.

{remove, {Mod, PrePurge, PostPurge}}
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge

Makesthe current version of Mod old. Pr ePur ge isignored. Seethe high-level instruction updat e for adescription
of Post Pur ge.

{purge, [Mod]}
Mod = atom()

Purges each module Mod, that is removes the old code. Note that any process executing purged code is killed.

{suspend, [Mod | {Mod, Timeout}]}
Mod = atom()
Timeout = int()>0 | default | infinity

Tries to suspend all processes using a module Mod. If a process does not respond, it is ignored. This may cause the
processto die, either becauseit crasheswhen it spontaneously switchesto new code, or asaresult of apurge operation.
If no Ti meout isspecified or def aul t isgiven, the default value for sys: suspend isused.

{resume, [Mod]}
Mod = atom()

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 35

appup

Resumes all suspended processes using a module Mod.

{code change, [{Mod, Extra}l}

{code change, Mode, [{Mod, Extra}]}
Mod = atom()
Mode = up | down
Extra = term()

Mbde defaultsto up and specifiesif it is an upgrade or downgrade.

Thisinstruction sendsacode_change system message to all processes using a module Mod by calling the function
sys: change_code, passing the term Ext r a as argument.

{stop, [Mod]}
Mod = atom()

Stopsall processes usingamodule Mod by callingsuper vi sor: term nat e_chi | d/ 2. Theinstructionisuseful
when the simplest way to change code is to stop and restart the processes which run the code.

{start, [Mod]}
Mod = atom()

Starts all stopped processes using amodule Mod by calling super vi sor: restart _chil d/ 2.

{sync_nodes, Id, [Node]}
{sync_nodes, Id, {M, F, A}}

Id = term()
Node = node()
M = F = atom()
A = [term()]

appl y(M F, A) mustreturnalist of nodes.

The instruction synchronizes the release installation with other nodes. Each Node must eval uate this command, with
thesame | d. The local node waits for al other nodes to evaluate the instruction before execution continues. In case
a node goes down, it is considered to be an unrecoverable error, and the local node is restarted from the old release.
Thereis no timeout for thisinstruction, which means that it may hang forever.

{apply, {M, F, A}}
M = F = atom()
[term()]

A

36 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

appup

Evaluatesappl y(M F, A). If theinstruction appears before the poi nt _of _no_r et ur n instruction, afailure
is caught. rel ease_handl er:install _rel ease/ 1 thenreturns{error,{' EXIT , Reason}}, unless
{error, Error} isthrownor returned. Thenitreturns{error, Error}.

If the instruction appears after the poi nt _of _no_r et ur n instruction, and the function call fails, the system is
restarted.

restart new emulator

This instruction is used when erts, kernel, stdlib or sadl is upgraded. It shuts down the current emulator and starts a
new one. All processes are terminated gracefully, and the new version of erts, kernel, stdlib and sad are used when
the emulator restarts. Only oner est art _new_emnul at or instruction isalowed in therelup, and it shall be placed
first. systools:make relup/3,4 will ensurethiswhen therelup is generated. Therest of the relup script is executed after
the restart as a part of the boot script.

Aninfo report will be written when the upgrade is completed. To programatically find out if the upgrade is complete,
call release_handler:which _releases/0,1 and check if the expected release has statuscur r ent .

The new release must till be made permanent after the upgrade is completed. Otherwise, the old emulator is started
in case of an emulator restart.

Warning:

As stated above, the rest art _new_erul at or instruction causes the emulator to be restarted with new
versions of ert s, kernel , stdli b and sasl . All other applications, however, will at startup be running
their old versions in this new emulator. In most cases this is no problem, but every now and then there will be
incompatible changes to the core applications which may cause troublein this setting. Such incompatible changes
(when functions are removed) are normally preceded by a deprecation over two major releases. To make sure
your application is not crashed by an incompatible change, aways remove any call to deprecated functions as
soon as possible.

restart emulator

Thisinstructionissimilartor est art _new_enul at or, except it shall be placed at the end of the relup script. It is
not related to an upgrade of the emulator or the core applications, but can be used by any application when a complete
reboot of the system is regiured. When generating the relup, systools: make relup/3,4 ensures that there is only one
restart _emnul at or instruction and that it isthe last instruction of the relup.

SEE ALSO
relup(4), release_handler(3), supervisor(3), systools(3)

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 37

rel

rel

Name

Therelease resource file specifies which applications are are included in arelease (system) based on Erlang/OTP.

Thisfileisused by thefunctionsinsyst ool s when generating start scripts(. scri pt,. boot) and release upgrade
files(r el up).

FILE SYNTAX

The release resource file should be called Nane. r el .

The . r el file contains one single Erlang term, which is called a release specification. The file has the following
syntax:

{release, {RelName,Vsn}, {erts, EVsn},
[{Application, AppVsn} |
{Application, AppVsn, Type} |
{Application, AppVsn, IncApps} |
{Application, AppVsn, Type, IncApps}1}.

e Rel Nanme = string() isthename of therelease.

e Vsn = string() istheversion of the release.

e EVsn = string() istheversion of ERTSthe releaseisintended for.

e Application = aton{() isthename of an application included in the release.

e AppVsn = string() istheversion of an application included in the release.

e Type = permanent | transient | tenporary | | oad | none isthestart typeof an application
included in the release.

If Type = pernanent | transient | tenporary,theapplication will beloaded and started in the
corresponding way, seeappl i cati on(3).If Type = | oad, the application will only be loaded. If Type
= none, the application will be neither loaded nor started, although the code for its modules will be loaded.
Defaultsto per manent

e IncApps = [aton()] isalist of applications that are included by an application included in the release.

The list must be a subset of the included applications specified in the application resource file
(Appl i cati on. app) and overrides this value. Defaults to the same value as in the application resourcefile.

Note:
Thelist of applications must contain the ker nel and st dl i b applications.

SEE ALSO
application(3), relup(4), systools(3)

38 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

relup

relup

Name

Therelease upgrade file describes how arelease is upgraded in arunning system.

This file is automatically generated by syst ool s: nake_rel up/ 3, 4, using a release resource file (. rel),
application resource files (. app) and application upgrade files (. appup) asinput.

FILE SYNTAX
In atarget system, the release upgrade file should be located in the OTP_RQOOT/ er t s- EVsn/ Vsn directory.

Ther el up file contains one single Erlang term, which defines the instructions used to upgrade the release. The file
has the following syntax:

{Vsn,
[{UpFromVsn, Descr, Instructions}, ...],
[{DownToVsn, Descr, Instructions}, ...1}.

* Vsn = string() isthecurrent version of therelease.
e UpFronmvsn = string() isanearlier version of the release to upgrade from.

e Descr = term() isauser defined parameter passed from thesyst ool s: make_r el up/ 3, 4 function. It
will beusedinthereturn value of r el ease_handl er:install _rel ease/ 1, 2.

e Instructionsisalist of low-level release upgrade instructions, see appup(4) .

It consists of the rel ease upgrade instructions from the respective application upgradefiles (high-level instructions
aretrandated to low-level instructions), in the same order asin the start script.

e DownToVsn = string() isanearlier version of the release to downgrade to.

When upgrading from UpFr onVsn withr el ease_handl er:instal |l _rel ease/ 1, 2, theredoesnot haveto
be an exact match of versions, but UpFr onVsn can be a sub-string of the current release version.

SEE ALSO
app(4), appup(4), rel(4), release_handler(3), systools(3)

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 39

script

script

Name

The boot script describes how the Erlang runtime system is started. It containsinstructions on which code to load and
which processes and applicationsto start.

Thecommand er| -boot Nane starts the system with a boot file called Narre. boot , which is generated from
the Nane. scri pt file, usingsyst ool s: scri pt 2boot/ 1.

The. scri pt fileisgenerated by syst ool s froma. rel fileand. app files.

FILE SYNTAX

The boot script is stored in afile with the extension . scr i pt

Thefile has the following syntax:

{script, {Name, Vsn},

[

{progress, loading},

{preLoaded, [Modl, Mod2, ..
{path, [Dirl,"$ROOT/Dir",..
{primLoad, [Modl, Mod2, ...]

1}
1}.
I

{kernel load completed},
{progress, loaded},
{kernelProcess, Name, {Mod, Func, Args}},

{apply, {Mod, Func, Args}},

{progress, started}1}.

« Name = string() definesthe name of the system.

e Vsn

= string() definestheversion of the system.

e {progress, Tern} setsthe"progress' of theinitialization program. The functioni ni t : get _st at us()
returns the current value of the progress, whichis{ | nt er nal St at us, Tern}.

e {path, [Dir]} whereDir isastring. This argument sets the load path of the systemto [Di r] . The load
path used to load modules is obtained from the initial load path, which is given in the script file, together with
any path flags which were supplied in the command line arguments. The command line arguments modify the
path as follows:

-pa Dirl Dir2 ... D rNaddsthedirectoriesDir1l, Dir2, ..., D rNtothefrontof the
initial load path.

-pz Dirl Dir2 ... DirNaddsthedirectoriesDirl, Dir2, ..., DirNtotheendofthe
initial load path.

-path Dirl Dir2 ... DirNdefinesasetof directoriesDi r1, Dir2, ..., D rNwhichreplaces

the search path given in the script file. Directory namesin the path are interpreted as follows:

» Directory names starting with / are assumed to be absolute path names.
» Directory names not starting with / are assumed to be relative the current working directory.

» Thespecial $ROOT variable can only be used in the script, not as a command line argument. The given
directory is relative the Erlang installation directory.

40 | Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL)

script

e {prinload, [Mod]} loadsthe modules[Mod] from the directories specified in Pat h. The script
interpreter fetches the appropriate module by calling the functioner| _pri m | oader: get fil e(Md).A
fatal error which terminates the system will occur if the module cannot be located.

« {kernel _| oad_conpl et ed} indicates that all modules which must be loaded before any processes are
started are loaded. In interactive mode, all { pri mLoad, [Mod] } commands interpreted after this command
areignored, and these modules are loaded on demand. In embedded mode, ker nel _| oad_conpl et ed is
ignored, and all modules are loaded during system start.

e {kernel Process, Nane, {Md, Func, Args}} startsa"kernel process'. The kernel process Nane
is started by evaluating appl y(Mod, Func, Args) whichisexpectedtoreturn{ ok, Pi d} ori gnore.
Thei ni t process monitors the behaviour of Pi d and terminates the system if Pi d dies. Kernel processes are
key components of the runtime system. Users do not normally add new kernel processes.

« {apply, {Mdd, Func, Args}}.Theinitprocesssimply evauatesappl y(Mdd, Func, Args).The
system terminates if thisresultsin an error. The boot procedure hangs if this function never returns.

Note:

Inthei nt eracti ve system the code loader provides demand driven code loading, but in the embedded
system the code loader loads all the code immediately. The same version of code is used in both cases. The
code server callsi ni t : get _ar gunent (node) to find out if it should run in demand mode, or non-demand
driven mode.

SEE ALSO
systools(3)

Ericsson AB. All Rights Reserved.: System Application Support Libraries (SASL) | 41

	System Application Support Libraries (SASL)
	SASL User's Guide
	Introduction
	About This Document

	SASL Error Logging
	Supervisor Report
	Progress Report
	Crash Report
	An Example

	Multi-File Error Report Logging
	Report Browser
	Starting the Report Browser
	On-line Help
	List Reports in the Server
	Show Reports
	Search the Reports
	Stop the Server

	Reference Manual
	sasl
	alarm_handler
	clear_alarm/1
	get_alarms/0
	set_alarm/1

	overload
	request/0
	get_overload_info/0

	rb
	filter/1
	filter/2
	grep/1
	h/0
	help/0
	list/0
	list/1
	log_list/0
	log_list/1
	rescan/0
	rescan/1
	show/0
	show/1
	start/0
	start/1
	start_log/1
	stop/0
	stop_log/0

	release_handler
	check_install_release/1
	check_install_release/2
	create_RELEASES/4
	install_file/2
	install_release/1
	install_release/2
	make_permanent/1
	remove_release/1
	reboot_old_release/1
	set_removed/1
	set_unpacked/2
	unpack_release/1
	which_releases/0
	which_releases/1
	upgrade_app/2
	downgrade_app/2
	downgrade_app/3
	upgrade_script/2
	downgrade_script/3
	eval_appup_script/4

	systools
	make_relup/3
	make_relup/4
	make_script/1
	make_script/2
	make_tar/1
	make_tar/2
	script2boot/1

	appup
	rel
	relup
	script

