
System Architecture Support Libraries
(SASL)

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
System Architecture Support Libraries (SASL) 3.0.2

December 12, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 12, 2016

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 1

1.1 Introduction

2 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

1 SASL User's Guide

The System Architecture Support Libraries SASL application provides support for alarm handling, release handling,
and related functions.

1.1 Introduction
1.1.1 Scope
The SASL application provides support for:

• Error logging

• Alarm handling

• Release handling

• Report browsing

Section SASL Error Logging describes the error handler that produces the supervisor, progress, and crash reports,
which can be written to screen or to a specified file. It also describes the Report Browser (RB).

The sections about release structure and release handling have been moved to section OTP Design Principles in System
Documentation.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 SASL Error Logging
The SASL application introduces three types of reports:

• Supervisor report

• Progress report

• Crash report

When the SASL application is started, it adds a handler that formats and writes these reports, as specified in the
configuration parameters for SASL, that is, the environment variables in the SASL application specification, which is
found in the .app file of SASL. For details, see the sasl(6) application in the Reference Manual and the app(4)
file in the Kernel Reference Manual.

1.2.1 Supervisor Report
A supervisor report is issued when a supervised child terminates unexpectedly. A supervisor report contains the
following items:

Supervisor

Name of the reporting supervisor.

Context

Indicates in which phase the child terminated from the supervisor's point of view. This can be start_error,
child_terminated, or shutdown_error.

1.2 SASL Error Logging

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 3

Reason

Termination reason.

Offender

Start specification for the child.

1.2.2 Progress Report
A progress report is issued when a supervisor starts or restarts a child. A progress report contains the following items:

Supervisor

Name of the reporting supervisor.

Started

Start specification for the successfully started child.

1.2.3 Crash Report
Processes started with functions proc_lib:spawn or proc_lib:spawn_link are wrapped within a catch.
A crash report is issued when such a process terminates with an unexpected reason, which is any reason other
than normal, shutdown, or {shutdown,Term}. Processes using behaviors gen_server, gen_fsm or
gen_statem are examples of such processes. A crash report contains the following items:

Crasher

Information about the crashing process, such as initial function call, exit reason, and message queue.

Neighbours

Information about processes that are linked to the crashing process and do not trap exits. These processes are the
neighbours that terminate because of this process crash. The information gathered is the same as the information
for Crasher, described in the previous item.

Example
The following example shows the reports generated when a process crashes. The example process is a permanent
process supervised by the test_sup supervisor. A division by zero is executed and the error is first reported by
the faulty process. A crash report is generated, as the process was started using function proc_lib:spawn/3. The
supervisor generates a supervisor report showing the crashed process. A progress report is generated when the process
is finally restarted.

 =ERROR REPORT==== 27-May-1996::13:38:56 ===
 <0.63.0>: Divide by zero !

 =CRASH REPORT==== 27-May-1996::13:38:56 ===
 crasher:
 pid: <0.63.0>
 registered_name: []
 error_info: {badarith,{test,s,[]}}
 initial_call: {test,s,[]}
 ancestors: [test_sup,<0.46.0>]
 messages: []
 links: [<0.47.0>]
 dictionary: []
 trap_exit: false
 status: running
 heap_size: 128
 stack_size: 128

1.2 SASL Error Logging

4 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

 reductions: 348
 neighbours:

 =SUPERVISOR REPORT==== 27-May-1996::13:38:56 ===
 Supervisor: {local,test_sup}
 Context: child_terminated
 Reason: {badarith,{test,s,[]}}
 Offender: [{pid,<0.63.0>},
 {name,test},
 {mfa,{test,t,[]}},
 {restart_type,permanent},
 {shutdown,200},
 {child_type,worker}]

 =PROGRESS REPORT==== 27-May-1996::13:38:56 ===
 Supervisor: {local,test_sup}
 Started: [{pid,<0.64.0>},
 {name,test},
 {mfa,{test,t,[]}},
 {restart_type,permanent},
 {shutdown,200},
 {child_type,worker}]

1.2.4 Multi-File Error Report Logging
Multi-file error report logging is used to store error messages received by error_logger. The error messages are
stored in several files and each file is smaller than a specified number of kilobytes. No more than a specified number
of files exist at the same time. The logging is very fast, as each error message is written as a binary term.

For more details, see the sasl(6) application in the Reference Manual.

1.2.5 Report Browser
The report browser is used to browse and format error reports written by the error logger handler log_mf_h defined
in STDLIB.

The log_mf_h handler writes all reports to a report logging directory, which is specified when configuring the SASL
application.

If the report browser is used offline, the reports can be copied to another directory specified when starting the browser.
If no such directory is specified, the browser reads reports from the SASL error_logger_mf_dir.

Starting Report Browser
Start the rb_server with function rb:start([Options]) as shown in the following example:

 5> rb:start([{max, 20}]).
 rb: reading report...done.
 rb: reading report...done.
 rb: reading report...done.
 rb: reading report...done.
 {ok,<0.199.0>}

Online Help
Enter command rb:help() to access the report browser online help system.

List Reports in Server
Use function rb:list() to list all loaded reports:

1.2 SASL Error Logging

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 5

 4> rb:list().
 No Type Process Date Time
 == ==== ======= ==== ====
 20 progress <0.17.0> 1996-10-16 16:14:54
 19 progress <0.14.0> 1996-10-16 16:14:55
 18 error <0.15.0> 1996-10-16 16:15:02
 17 progress <0.14.0> 1996-10-16 16:15:06
 16 progress <0.38.0> 1996-10-16 16:15:12
 15 progress <0.17.0> 1996-10-16 16:16:14
 14 progress <0.17.0> 1996-10-16 16:16:14
 13 progress <0.17.0> 1996-10-16 16:16:14
 12 progress <0.14.0> 1996-10-16 16:16:14
 11 error <0.17.0> 1996-10-16 16:16:21
 10 error <0.17.0> 1996-10-16 16:16:21
 9 crash_report release_handler 1996-10-16 16:16:21
 8 supervisor_report <0.17.0> 1996-10-16 16:16:21
 7 progress <0.17.0> 1996-10-16 16:16:21
 6 progress <0.17.0> 1996-10-16 16:16:36
 5 progress <0.17.0> 1996-10-16 16:16:36
 4 progress <0.17.0> 1996-10-16 16:16:36
 3 progress <0.14.0> 1996-10-16 16:16:36
 2 error <0.15.0> 1996-10-16 16:17:04
 1 progress <0.14.0> 1996-10-16 16:17:09
 ok

Show Reports
Use function rb:show(Number) to show details of a specific report:

7> rb:show(4).

PROGRESS REPORT <0.20.0> 1996-10-16 16:16:36
===
supervisor {local,sasl_sup}
started
[{pid,<0.24.0>},
{name,release_handler},
{mfa,{release_handler,start_link,[]}},
{restart_type,permanent},
{shutdown,2000},
{child_type,worker}]

ok
8> rb:show(9).

CRASH REPORT <0.24.0> 1996-10-16 16:16:21
===
Crashing process
pid <0.24.0>
registered_name release_handler
error_info {undef,{release_handler,mbj_func,[]}}
initial_call
{gen,init_it,
[gen_server,
<0.20.0>,
<0.20.0>,
{erlang,register},
release_handler,
release_handler,
[],
[]]}

1.2 SASL Error Logging

6 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

ancestors [sasl_sup,<0.18.0>]
messages []
links [<0.23.0>,<0.20.0>]
dictionary []
trap_exit false
status running
heap_size 610
stack_size 142
reductions 54

ok

Search Reports
All reports containing a common pattern can be shown. Suppose a process crashes because it tries to call a non-existing
function release_handler:mbj_func/1. The reports can then be shown as follows:

12> rb:grep("mbj_func").
Found match in report number 11

ERROR REPORT <0.24.0> 1996-10-16 16:16:21
===

** undefined function: release_handler:mbj_func[] **
Found match in report number 10

ERROR REPORT <0.24.0> 1996-10-16 16:16:21
===

** Generic server release_handler terminating
** Last message in was {unpack_release,hej}
** When Server state == {state,[],
"/home/dup/otp2/otp_beam_sunos5_p1g_7",
[{release,
"OTP APN 181 01",
"P1G",
undefined,
[],
permanent}],
undefined}
** Reason for termination ==
** {undef,{release_handler,mbj_func,[]}}
Found match in report number 9

CRASH REPORT <0.24.0> 1996-10-16 16:16:21
===
Crashing process
pid <0.24.0>
registered_name release_handler
error_info {undef,{release_handler,mbj_func,[]}}
initial_call
{gen,init_it,
[gen_server,
<0.20.0>,
<0.20.0>,
{erlang,register},
release_handler,
release_handler,
[],
[]]}
ancestors [sasl_sup,<0.18.0>]
messages []

1.2 SASL Error Logging

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 7

links [<0.23.0>,<0.20.0>]
dictionary []
trap_exit false
status running
heap_size 610
stack_size 142
reductions 54

Found match in report number 8

SUPERVISOR REPORT <0.20.0> 1996-10-16 16:16:21
===
Reporting supervisor {local,sasl_sup}

Child process
errorContext child_terminated
reason {undef,{release_handler,mbj_func,[]}}
pid <0.24.0>
name release_handler
start_function {release_handler,start_link,[]}
restart_type permanent
shutdown 2000
child_type worker

ok

Stop Server
Use function rb:stop() to stop the rb_server:

13> rb:stop().
ok

1.2 SASL Error Logging

8 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

2 Reference Manual

The SASL application provides support for alarm handling, release handling, and related functions.

sasl

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 9

sasl
Application

The SASL application provides the following services:

• alarm_handler

• rb

• release_handler

• systools

The SASL application also includes error_logger event handlers for formatting SASL error and crash reports.

Note:
The SASL application in OTP has nothing to do with "Simple Authentication and Security Layer" (RFC 4422).

Error Logger Event Handlers
The following error logger event handlers are used by the SASL application.

sasl_report_tty_h

Formats and writes supervisor reports, crash reports, and progress reports to stdio. This error logger event
handler uses error_logger_format_depth in the Kernel application to limit how much detail is printed in crash
and supervisor reports.

sasl_report_file_h

Formats and writes supervisor reports, crash report, and progress report to a single file. This error logger
event handler uses error_logger_format_depth in the Kernel application to limit the details printed in crash and
supervisor reports.

log_mf_h

This error logger writes all events sent to the error logger to disk. Multiple files and log rotation are used. For
efficiency reasons, each event is written as a binary. For more information about this handler, see the STDLIB
Reference Manual.

To activate this event handler, three SASL configuration parameters must be set, error_logger_mf_dir,
error_logger_mf_maxbytes, and error_logger_mf_maxfiles. The next section provides more
information about the configuration parameters.

Configuration
The following configuration parameters are defined for the SASL application. For more information about
configuration parameters, see app(4) in Kernel.

All configuration parameters are optional.

sasl_error_logger = Value

Value is one of the following:

tty

Installs sasl_report_tty_h in the error logger. This is the default option.

sasl

10 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

{file,FileName}

Installs sasl_report_file_h in the error logger. All reports go to file FileName, which is a string.

{file,FileName,Modes}

Same as {file,FileName}, except that Modes allows you to specify the modes used for opening the
FileName given to the file:open/2 call. When not specified, Modes defaults to [write]. Use [append]
to have the FileName open in append mode. FileName is a string.

false

No SASL error logger handler is installed.

errlog_type = error | progress | all

Restricts the error logging performed by the specified sasl_error_logger to error reports or progress
reports, or both. Default is all.

error_logger_mf_dir = string() | false

Specifies in which directory log_mf_h is to store its files. If this parameter is undefined or false, the
log_mf_h handler is not installed.

error_logger_mf_maxbytes = integer()

Specifies the maximum size of each individual file written by log_mf_h. If this parameter is undefined, the
log_mf_h handler is not installed.

error_logger_mf_maxfiles = 0<integer()<256

Specifies the number of files used by log_mf_h. If this parameter is undefined, the log_mf_h handler is not
installed.

start_prg = string()

Specifies the program to be used when restarting the system during release installation. Default is $OTP_ROOT/
bin/start.

masters = [atom()]

Specifies the nodes used by this node to read/write release information. This parameter is ignored if parameter
client_directory is not set.

client_directory = string()

This parameter specifies the client directory at the master nodes. For details, see Release Handling in OTP Design
Principles. This parameter is ignored if parameter masters is not set.

static_emulator = true | false

Indicates if the Erlang emulator is statically installed. A node with a static emulator cannot switch dynamically to
a new emulator, as the executable files are written into memory statically. This parameter is ignored if parameters
masters and client_directory are not set.

releases_dir = string()

Indicates where the releases directory is located. The release handler writes all its files to this directory.
If this parameter is not set, the OS environment parameter RELDIR is used. By default, this is $OTP_ROOT/
releases.

utc_log = true | false

If set to true, all dates in textual log outputs are displayed in Universal Coordinated Time with the string UTC
appended.

sasl

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 11

See Also
alarm_handler(3), error_logger(3), log_mf_h(3), rb(3), release_handler(3),
systools(3)

alarm_handler

12 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

alarm_handler
Erlang module

The alarm handler process is a gen_event event manager process that receives alarms in the system. This process is
not intended to be a complete alarm handler. It defines a place to which alarms can be sent. One simple event handler
is installed in the alarm handler at startup, but users are encouraged to write and install their own handlers.

The simple event handler sends all alarms as info reports to the error logger, and saves all in a list. This list can
be passed to a user-defined event handler, which can be installed later. The list can grow large if many alarms are
generated. This is a good reason to install a better user-defined handler.

Functions are provided to set and clear alarms. The alarm format is defined by the user. For example, an event handler
for SNMP can be defined, together with an alarm Management Information Base (MIB).

The alarm handler is part of the SASL application.

When writing new event handlers for the alarm handler, the following events must be handled:

{set_alarm, {AlarmId, AlarmDescr}}

This event is generated by alarm_handler:set_alarm({AlarmId, AlarmDecsr}).

{clear_alarm, AlarmId}

This event is generated by alarm_handler:clear_alarm(AlarmId).

The default simple handler is called alarm_handler and it can be exchanged
by calling gen_event:swap_handler/3 as gen_event:swap_handler(alarm_handler,
{alarm_handler, swap}, {NewHandler, Args}). NewHandler:init({Args,
{alarm_handler, Alarms}}) is called. For more details, see gen_event(3) in STDLIB.

Exports

clear_alarm(AlarmId) -> void()
Types:

AlarmId = term()

Sends event clear_alarm to all event handlers.

When receiving this event, the default simple handler clears the latest received alarm with id AlarmId.

get_alarms() -> [alarm()]
Returns a list of all active alarms. This function can only be used when the simple handler is installed.

set_alarm(alarm())
Types:

alarm() = {AlarmId, AlarmDescription}

AlarmId = term()

AlarmDescription = term()

Sends event set_alarm to all event handlers.

When receiving this event, the default simple handler stores the alarm. AlarmId identifies the alarm and is used
when the alarm is cleared.

alarm_handler

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 13

See Also
error_logger(3), gen_event(3)

rb

14 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

rb
Erlang module

The Report Browser (RB) tool is used to browse and format error reports written by the error logger handler log_mf_h
in STDLIB.

Exports

filter(Filters)
filter(Filters, Dates)
Types:

Filters = [filter()]

filter() = {Key, Value} | {Key, Value, no} | {Key, RegExp, re} | {Key,
RegExp, re, no}

Key = term()

Value = term()

RegExp = string() | {string(), Options} | re:mp() | {re:mp(), Options}

Dates = {DateFrom, DateTo} | {DateFrom, from} | {DateTo, to}

DateFrom = DateTo = calendar:datetime()

Displays the reports that match the provided filters.

When a filter includes the no atom, it excludes the reports that match that filter.

The reports are matched using the proplists module in STDLIB. The report must be a proplist to be matched
against any of the filters.

If the filter has the form {Key, RegExp, re}, the report must contain an element with key equal to Key and the
value must match the regular expression RegExp.

If parameter Dates is specified, the reports are filtered according to the date when they occurred. If Dates has the
form {DateFrom, from}, reports that occurred after DateFrom are displayed.

If Dates has the form {DateTo, to}, reports that occurred before DateTo are displayed.

If two Dates are specified, reports that occurred between those dates are returned.

To filter only by dates, specify the empty list as the Filters parameter.

For details about parameter RegExp, see rb:grep/1.

For details about data type mp(), see re:mp().

For details about data type datetime(), see calendar:datetime().

grep(RegExp)
Types:

RegExp = string() | {string(), Options} | re:mp() | {re:mp(), Options}

All reports matching the regular expression RegExp are displayed. RegExp can be any of the following:

• A string containing the regular expression

• A tuple with the string and the options for compilation

• A compiled regular expression

rb

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 15

• A compiled regular expression and the options for running it

For a definition of valid regular expressions and options, see the re module in STDLIB and in particular function
re:run/3.

For details about data type mp(), see re:mp().

h()
help()
Displays online help information.

list()
list(Type)
Types:

Type = type()

type() = error | error_report | info_msg | info_report | warning_msg |
warning_report | crash_report | supervisor_report | progress

Lists all reports loaded in rb_server. Each report is given a unique number that can be used as a reference to the
report in function show/1.

If no Type is specified, all reports are listed.

log_list()
log_list(Type)
Types:

Type = type()

type() = error | error_report | info_msg | info_report | warning_msg |
warning_report | crash_report | supervisor_report | progress

Same as functions list/0 or list/1, but the result is printed to a log file, if set; otherwise to standard_io.

If no Type is specified, all reports are listed.

rescan()
rescan(Options)
Types:

Options = [opt()]

Rescans the report directory. Options is the same as for function start/1.

show()
show(Report)
Types:

Report = integer() | type()

If argument type is specified, all loaded reports of this type are displayed. If an integer argument is specified, the
report with this reference number is displayed. If no argument is specified, all reports are displayed.

rb

16 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

start()
start(Options)
Types:

Options = [opt()]

opt() = {start_log, FileName} | {max, MaxNoOfReports} | {report_dir,
DirString} | {type, ReportType} | {abort_on_error, Bool}

FileName = string() | atom() | pid()

MaxNoOfReports = integer() | all

DirString = string()

ReportType = type() | [type()] | all

Bool = boolean()

Function start/1 starts rb_server with the specified options, whereas function start/0 starts with default
options. rb_server must be started before reports can be browsed. When rb_server is started, the files in the
specified directory are scanned. The other functions assume that the server has started.

Options:

{start_log, FileName}

Starts logging to file, registered name, or io_device. All reports are printed to the specified destination. Default
is standard_io. Option {start_log, standard_error} is not allowed and will be replaced by default
standard_io.

{max, MaxNoOfReports}

Controls how many reports rb_server is to read at startup. This option is useful, as the directory can contain a
large amount of reports. If this option is specified, the MaxNoOfReports latest reports are read. Default is all.

{report_dir, DirString}

Defines the directory where the error log files are located. Default is the directory specified by application
environment variable error_logger_mf_dir, see sasl(6).

{type, ReportType}

Controls what kind of reports rb_server is to read at startup. ReportType is a supported type, all, or a
list of supported types. Default is all.

{abort_on_error, Bool}

Specifies if logging is to be ended if rb encounters an unprintable report. (You can get a report with an incorrect
form if function error_logger, error_msg, or info_msg has been called with an invalid format string)

• If Bool is true, rb stops logging (and prints an error message to stdout) if it encounters a badly
formatted report. If logging to file is enabled, an error message is appended to the log file as well.

• If Bool is false (the default value), rb prints an error message to stdout for every bad report it
encounters, but the logging process is never ended. All printable reports are written. If logging to file is
enabled, rb prints * UNPRINTABLE REPORT * in the log file at the location of an unprintable report.

start_log(FileName)
Types:

FileName = string() | atom() | pid()

Redirects all report output from the RB tool to the specified file, registered name, or io_device.

rb

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 17

stop()
Stops rb_server.

stop_log()
Closes the log file. The output from the RB tool is directed to standard_io.

release_handler

18 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

release_handler
Erlang module

The release handler process belongs to the SASL application, which is responsible for release handling, that is,
unpacking, installation, and removal of release packages.

An introduction to release handling and an example is provided in OTP Design Principles in System Documentation.

A release package is a compressed tar file containing code for a certain version of a release, created by calling
systools:make_tar/1,2. The release package is to be located in the $ROOT/releases directory of the
previous version of the release, where $ROOT is the installation root directory, code:root_dir(). Another
releases directory can be specified using the SASL configuration parameter releases_dir or the OS
environment variable RELDIR. The release handler must have write access to this directory to install the new release.
The persistent state of the release handler is stored there in a file called RELEASES.

A release package is always to contain:

• A release resource file, Name.rel

• A boot script, Name.boot

The .rel file contains information about the release: its name, version, and which ERTS and application versions
it uses.

A release package can also contain:

• A release upgrade file, relup

• A system configuration file, sys.config

The relup file contains instructions for how to upgrade to, or downgrade from, this version of the release.

The release package can be unpacked, which extracts the files. An unpacked release can be installed. The currently
used version of the release is then upgraded or downgraded to the specified version by evaluating the instructions in
the relup file. An installed release can be made permanent. Only one permanent release can exist in the system, and
this release is used if the system is restarted. An installed release, except the permanent one, can be removed. When
a release is removed, all files belonging to that release only are deleted.

Each release version has a status, which can be unpacked, current, permanent, or old. There is always one
latest release, which either has status permanent (normal case) or current (installed, but not yet made permanent).
The meaning of the status values are illustrated in the following table:

 Status Action NextStatus

 - unpack unpacked
 unpacked install current
 remove -
 current make_permanent permanent
 install other old
 remove -
 permanent make other permanent old
 install permanent
 old reboot_old permanent
 install current
 remove -

The release handler process is a locally registered process on each node. When a release is installed in a distributed
system, the release handler on each node must be called. The release installation can be synchronized between nodes.

release_handler

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 19

From an operator view, it can be unsatisfactory to specify each node. The aim is to install one release package in
the system, no matter how many nodes there are. It is recommended that software management functions are written
that take care of this problem. Such a function can have knowledge of the system architecture, so it can contact each
individual release handler to install the package.

For release handling to work properly, the runtime system must know which release it is running. It must also be able
to change (in runtime) which boot script and system configuration file are to be used if the system is restarted. This is
taken care of automatically if Erlang is started as an embedded system. Read about this in Embedded System in System
Documentation. In this case, the system configuration file sys.config is mandatory.

The installation of a new release can restart the system. Which program to use is specified by the SASL configuration
parameter start_prg, which defaults to $ROOT/bin/start.

The emulator restart on Windows NT expects that the system is started using the erlsrv program (as a service).
Furthermore, the release handler expects that the service is named NodeName_Release, where NodeName is the
first part of the Erlang node name (up to, but not including the "@") and Release is the current release version.
The release handler furthermore expects that a program like start_erl.exe is specified as "machine" to erlsrv.
During upgrading with restart, a new service is registered and started. The new service is set to automatic and the old
service is removed when the new release is made permanent.

The release handler at a node running on a diskless machine, or with a read-only file system, must be configured
accordingly using the following SASL configuration parameters (for details, see sasl(6)):

masters

This node uses some master nodes to store and fetch release information. All master nodes must be operational
whenever release information is written by this node.

client_directory

The client_directory in the directory structure of the master nodes must be specified.

static_emulator

This parameter specifies if the Erlang emulator is statically installed at the client node. A node with a static
emulator cannot dynamically switch to a new emulator, as the executable files are statically written into memory.

The release handler can also be used to unpack and install release packages when not running Erlang as an embedded
system. However, in this case the user must somehow ensure that correct boot scripts and configuration files are used
if the system must be restarted.

Functions are provided for using another file structure than the structure defined in OTP. These functions can be used
to test a release upgrade locally.

Exports

check_install_release(Vsn) -> {ok, OtherVsn, Descr} | {error, Reason}
check_install_release(Vsn,Opts) -> {ok, OtherVsn, Descr} | {error, Reason}
Types:

Vsn = OtherVsn = string()

Opts = [Opt]

Opt = purge

Descr = term()

Reason = term()

Checks if the specified version Vsn of the release can be installed. The release must not have status current.
Issues warnings if relup file or sys.config is not present. If relup file is present, its contents are checked and

release_handler

20 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

{error,Reason} is returned if an error is found. Also checks that all required applications are present and that all
new code can be loaded; {error,Reason} is returned if an error is found.

Evaluates all instructions that occur before the point_of_no_return instruction in the release upgrade script.

Returns the same as install_release/1. Descr defaults to "" if no relup file is found.

If option purge is specified, all old code that can be soft-purged is purged after all other checks are successfully
completed. This can be useful to reduce the time needed by install_release/1.

create_RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | {error, Reason}
Types:

Root = RelDir = RelFile = string()

AppDirs = [{App, Vsn, Dir}]

 App = atom()

 Vsn = Dir = string()

Reason = term()

Creates an initial RELEASES file to be used by the release handler. This file must exist to install new releases.

Root is the root of the installation ($ROOT) as described earlier. RelDir is the directory where the RELEASES
file is to be created (normally $ROOT/releases). RelFile is the name of the .rel file that describes the initial
release, including the extension .rel.

AppDirs can be used to specify from where the modules for the specified applications are to be loaded. App is the
name of an application, Vsn is the version, and Dir is the name of the directory where App-Vsn is located. The
corresponding modules are to be located under Dir/App-Vsn/ebin. The directories for applications not specified
in AppDirs are assumed to be located in $ROOT/lib.

install_file(Vsn, File) -> ok | {error, Reason}
Types:

Vsn = File = string()

Reason = term()

Installs a release-dependent file in the release structure. The release-dependent file must be in the release structure
when a new release is installed: start.boot, relup, and sys.config.

The function can be called, for example, when these files are generated at the target. The function is to be called after
set_unpacked/2 has been called.

install_release(Vsn) -> {ok, OtherVsn, Descr} | {error, Reason}
install_release(Vsn, [Opt]) -> {ok, OtherVsn, Descr} |
{continue_after_restart, OtherVsn, Descr} | {error, Reason}
Types:

Vsn = OtherVsn = string()

Opt = {error_action, Action} | {code_change_timeout, Timeout}

 | {suspend_timeout, Timeout} | {update_paths, Bool}

 Action = restart | reboot

 Timeout = default | infinity | pos_integer()

 Bool = boolean()

Descr = term()

release_handler

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 21

Reason = {illegal_option, Opt} | {already_installed, Vsn} |
{change_appl_data, term()} | {missing_base_app, OtherVsn, App} |
{could_not_create_hybrid_boot, term()} | term()

App = atom()

Installs the specified version Vsn of the release. Looks first for a relup file for Vsn and a script
{UpFromVsn,Descr1,Instructions1} in this file for upgrading from the current version. If not found, the
function looks for a relup file for the current version and a script {Vsn,Descr2,Instructions2} in this file
for downgrading to Vsn.

If a script is found, the first thing that happens is that the application specifications are updated according to the .app
files and sys.config belonging to the release version Vsn.

After the application specifications have been updated, the instructions in the script are evaluated and the function
returns {ok,OtherVsn,Descr} if successful. OtherVsn and Descr are the version (UpFromVsn or Vsn) and
description (Descr1 or Descr2) as specified in the script.

If {continue_after_restart,OtherVsn,Descr} is returned, the emulator is restarted before the upgrade
instructions are executed. This occurs if the emulator or any of the applications Kernel, STDLIB, or SASL are updated.
The new emulator version and these core applications execute after the restart. For all other applications the old versions
are started and the upgrade is performed as normal by executing the upgrade instructions.

If a recoverable error occurs, the function returns {error,Reason} and the original application specifications are
restored. If a non-recoverable error occurs, the system is restarted.

Options:

error_action

Defines if the node is to be restarted (init:restart()) or rebooted (init:reboot()) if there is an error
during the installation. Default is restart.

code_change_timeout

Defines the time-out for all calls to sys:change_code. If no value is specified or default is specified, the
default value defined in sys is used.

suspend_timeout

Defines the time-out for all calls to sys:suspend. If no value is specified, the values defined by the Timeout
parameter of the upgrade or suspend instructions are used. If default is specified, the default value defined
in sys is used.

{update_paths,Bool}

Indicates if all application code paths are to be updated (Bool==true) or if only code paths for modified
applications are to be updated (Bool==false, default). This option has only effect for other application
directories than the default $ROOT/lib/App-Vsn, that is, application directories specified in argument
AppDirs in a call to create_RELEASES/4 or set_unpacked/2.

Example:

In the current version CurVsn of a release, the application directory of myapp is $ROOT/lib/myapp-1.0.
A new version NewVsn is unpacked outside the release handler and the release handler is informed about this
with a call as follows:

release_handler:set_unpacked(RelFile, [{myapp,"1.0","/home/user"},...]).
=> {ok,NewVsn}

release_handler

22 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

If NewVsn is installed with option {update_paths,true}, then code:lib_dir(myapp) returns /
home/user/myapp-1.0.

Note:
Installing a new release can be time consuming if there are many processes in the system. The reason is that
each process must be checked for references to old code before a module can be purged. This check can lead to
garbage collections and copying of data.

To speed up the execution of install_release, first call check_install_release, using option
purge. This does the same check for old code. Then purges all modules that can be soft-purged. The purged
modules do then no longer have any old code, and install_release does not need to do the checks.

This does not reduce the overall time for the upgrade, but it allows checks and purge to be executed in the
background before the real upgrade is started.

Note:
When upgrading the emulator from a version older than OTP R15, an attempt is made to load new application
beam code into the old emulator. Sometimes the new beam format cannot be read by the old emulator, so the code
loading fails and the complete upgrade is terminated. To overcome this problem, the new application code is to
be compiled with the old emulator. For more information about emulator upgrade from pre OTP R15 versions,
see Design Principles in System Documentation.

make_permanent(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {bad_status, Status} | term()

Makes the specified release version Vsn permanent.

remove_release(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {permanent, Vsn} | client_node | term()

Removes a release and its files from the system. The release must not be the permanent release. Removes only the
files and directories not in use by another release.

reboot_old_release(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {bad_status, Status} | term()

Reboots the system by making the old release permanent, and calls init:reboot() directly. The release must
have status old.

release_handler

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 23

set_removed(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {permanent, Vsn} | term()

Makes it possible to handle removal of releases outside the release handler. Tells the release handler that the release
is removed from the system. This function does not delete any files.

set_unpacked(RelFile, AppDirs) -> {ok, Vsn} | {error, Reason}
Types:

RelFile = string()

AppDirs = [{App, Vsn, Dir}]

 App = atom()

 Vsn = Dir = string()

Reason = term()

Makes it possible to handle unpacking of releases outside the release handler. Tells the release handler that the release
is unpacked. Vsn is extracted from the release resource file RelFile.

AppDirs can be used to specify from where the modules for the specified applications are to be loaded. App is the
name of an application, Vsn is the version, and Dir is the name of the directory where App-Vsn is located. The
corresponding modules are to be located under Dir/App-Vsn/ebin. The directories for applications not specified
in AppDirs are assumed to be located in $ROOT/lib.

unpack_release(Name) -> {ok, Vsn} | {error, Reason}
Types:

Name = Vsn = string()

Reason = client_node | term()

Unpacks a release package Name.tar.gz located in the releases directory.

Performs some checks on the package, for example, checks that all mandatory files are present, and extracts its contents.

which_releases() -> [{Name, Vsn, Apps, Status}]
Types:

Name = Vsn = string()

Apps = ["App-Vsn"]

Status = unpacked | current | permanent | old

Returns all releases known to the release handler.

which_releases(Status) -> [{Name, Vsn, Apps, Status}]
Types:

Name = Vsn = string()

Apps = ["App-Vsn"]

Status = unpacked | current | permanent | old

Returns all releases, known to the release handler, of a specific status.

release_handler

24 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

Application Upgrade/Downgrade
The following functions can be used to test upgrade and downgrade of single applications (instead of upgrading/
downgrading an entire release). A script corresponding to the instructions in the relup file is created on-the-fly,
based on the .appup file for the application, and evaluated exactly in the same way as release_handler does.

Warning:
These functions are primarily intended for simplified testing of .appup files. They are not run within
the context of the release_handler process. They must therefore not be used together with calls to
install_release/1,2, as this causes the release_handler to end up in an inconsistent state.

No persistent information is updated, so these functions can be used on any Erlang node, embedded or not. Also,
using these functions does not affect which code is loaded if there is a reboot.

If the upgrade or downgrade fails, the application can end up in an inconsistent state.

Exports

upgrade_app(App, Dir) -> {ok, Unpurged} | restart_emulator | {error, Reason}
Types:

App = atom()

Dir = string()

Unpurged = [Module]

 Module = atom()

Reason = term()

Upgrades an application App from the current version to a new version located in Dir according to the .appup file.

App is the name of the application, which must be started. Dir is the new library directory of App. The corresponding
modules as well as the .app and .appup files are to be located under Dir/ebin.

The function looks in the .appup file and tries to find an upgrade script from the current version of the application
using upgrade_script/2. This script is evaluated using eval_appup_script/4, exactly in the same way as
install_release/1,2 does.

Returns one of the following:

• {ok, Unpurged} if evaluating the script is successful, where Unpurged is a list of unpurged modules

• restart_emulator if this instruction is encountered in the script

• {error, Reason} if an error occurred when finding or evaluating the script

If the restart_new_emulator instruction is found in the script, upgrade_app/2 returns
{error,restart_new_emulator}. This because restart_new_emulator requires a new version of the
emulator to be started before the rest of the upgrade instructions can be executed, and this can only be done by
install_release/1,2.

downgrade_app(App, Dir) ->
downgrade_app(App, OldVsn, Dir) -> {ok, Unpurged} | restart_emulator |
{error, Reason}
Types:

App = atom()

release_handler

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 25

Dir = OldVsn = string()

Unpurged = [Module]

 Module = atom()

Reason = term()

Downgrades an application App from the current version to a previous version OldVsn located in Dir according
to the .appup file.

App is the name of the application, which must be started. OldVsn is the previous application version and can be
omitted if Dir is of the format "App-OldVsn". Dir is the library directory of the previous version of App. The
corresponding modules and the old .app file are to be located under Dir/ebin. The .appup file is to be located
in the ebin directory of the current library directory of the application (code:lib_dir(App)).

The function looks in the .appup file and tries to find a downgrade script to the previous version of the application
using downgrade_script/3. This script is evaluated using eval_appup_script/4, exactly in the same way
as install_release/1,2 does.

Returns one of the following:

• {ok, Unpurged} if evaluating the script is successful, where Unpurged is a list of unpurged modules

• restart_emulator if this instruction is encountered in the script

• {error, Reason} if an error occurred when finding or evaluating the script

upgrade_script(App, Dir) -> {ok, NewVsn, Script}
Types:

App = atom()

Dir = string()

NewVsn = string()

Script = Instructions

Tries to find an application upgrade script for App from the current version to a new version located in Dir.

The upgrade script can then be evaluated using eval_appup_script/4. It is recommended to use
upgrade_app/2 instead, but this function (upgrade_script) is useful to inspect the contents of the script.

App is the name of the application, which must be started. Dir is the new library directory of App. The corresponding
modules as well as the .app and .appup files are to be located under Dir/ebin.

The function looks in the .appup file and tries to find an upgrade script from the current application version. High-
level instructions are translated to low-level instructions. The instructions are sorted in the same manner as when
generating a relup file.

Returns {ok, NewVsn, Script} if successful, where NewVsn is the new application version. For details about
Script, see appup(4).

Failure: If a script cannot be found, the function fails with an appropriate error reason.

downgrade_script(App, OldVsn, Dir) -> {ok, Script}
Types:

App = atom()

OldVsn = Dir = string()

Script = Instructions

Tries to find an application downgrade script for App from the current version to a previous version OldVsn located
in Dir.

release_handler

26 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

The downgrade script can then be evaluated using eval_appup_script/4. It is recommended to use
downgrade_app/2,3 instead, but this function (downgrade_script) is useful to inspect the contents of the
script.

App is the name of the application, which must be started. Dir is the previous library directory of App. The
corresponding modules and the old .app file are to be located under Dir/ebin. The .appup file is to be located
in the ebin directory of the current library directory of the application (code:lib_dir(App)).

The function looks in the .appup file and tries to find a downgrade script from the current application version. High-
level instructions are translated to low-level instructions. The instructions are sorted in the same manner as when
generating a relup file.

Returns {ok, Script} if successful. For details about Script, see appup(4).

Failure: If a script cannot be found, the function fails with an appropriate error reason.

eval_appup_script(App, ToVsn, ToDir, Script) -> {ok, Unpurged} |
restart_emulator | {error, Reason}
Types:

App = atom()

ToVsn = ToDir = string()

Script

See upgrade_script/2, downgrade_script/3

Unpurged = [Module]

 Module = atom()

Reason = term()

Evaluates an application upgrade or downgrade script Script, the result from calling upgrade_script/2 or
downgrade_script/3, exactly in the same way as install_release/1,2 does.

App is the name of the application, which must be started. ToVsn is the version to be upgraded/downgraded to, and
ToDir is the library directory of this version. The corresponding modules as well as the .app and .appup files
are to be located under Dir/ebin.

Returns one of the following:

• {ok, Unpurged} if evaluating the script is successful, where Unpurged is a list of unpurged modules

• restart_emulator if this instruction is encountered in the script

• {error, Reason} if an error occurred when finding or evaluating the script

If the restart_new_emulator instruction is found in the script, eval_appup_script/4 returns
{error,restart_new_emulator}. This because restart_new_emulator requires a new version of the
emulator to be started before the rest of the upgrade instructions can be executed, and this can only be done by
install_release/1,2.

Typical Error Reasons
{bad_masters, Masters}

The master nodes Masters are not alive.

{bad_rel_file, File}

Specified .rel file File cannot be read or does not contain a single term.

{bad_rel_data, Data}

Specified .rel file does not contain a recognized release specification, but another term Data.

release_handler

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 27

{bad_relup_file, File}

Specified relup file Relup contains bad data.

{cannot_extract_file, Name, Reason}

Problems when extracting from a tar file, erl_tar:extract/2 returned {error, {Name, Reason}}.

{existing_release, Vsn}

Specified release version Vsn is already in use.

{Master, Reason, When}

Some operation, indicated by the term When, failed on the master node Master with the specified error reason
Reason.

{no_matching_relup, Vsn, CurrentVsn}

Cannot find a script for upgrading/downgrading between CurrentVsn and Vsn.

{no_such_directory, Path}

The directory Pathdoes not exist.

{no_such_file, Path}

The path Path (file or directory) does not exist.

{no_such_file, {Master, Path}}

The path Path (file or directory) does not exist at the master node Master.

{no_such_release, Vsn}

The specified release version Vsn does not exist.

{not_a_directory, Path}

Path exists but is not a directory.

{Posix, File}

Some file operation failed for File. Posix is an atom named from the Posix error codes, such as enoent,
eacces, or eisdir. See file(3) in Kernel.

Posix

Some file operation failed, as for the previous item in the list.

See Also
OTP Design Principles, config(4), rel(4), relup(4), script(4), sys(3), systools(3)

systools

28 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

systools
Erlang module

This module contains functions to generate boot scripts (.boot, .script), a release upgrade file (relup), and
release packages.

Exports

make_relup(Name, UpFrom, DownTo) -> Result
make_relup(Name, UpFrom, DownTo, [Opt]) -> Result
Types:

Name = string()

UpFrom = DownTo = [Name | {Name,Descr}]

 Descr = term()

Opt = {path,[Dir]} | restart_emulator | silent | noexec | {outdir,Dir} |
warnings_as_errors

 Dir = string()

Result = ok | error | {ok,Relup,Module,Warnings} | {error,Module,Error}

 Relup, see relup(4)

 Module = atom()

 Warnings = Error = term()

Generates a release upgrade file relup containing instructions for upgrading from or downgrading to one or more
previous releases. The instructions are used by release_handler when installing a new version of a release in
runtime.

By default, relup file is located in the current working directory. If option {outdir,Dir} is specified, the relup
file is located in Dir instead.

The release resource file Name.rel is compared with all release resource files Name2.rel, specified in UpFrom
and DownTo. For each such pair, the following is deducted:

• Which applications to be deleted, that is, applications listed in Name.rel but not in Name2.rel

• Which applications to be added, that is, applications listed in Name2.rel but not in Name.rel

• Which applications to be upgraded/downgraded, that is, applications listed in both Name.rel and Name2.rel
but with different versions

• If the emulator needs to be restarted after upgrading or downgrading, that is, if the ERTS version differs between
Name.rel and Name2.rel

Instructions for this are added to the relup file in the above order. Instructions for upgrading or downgrading between
application versions are fetched from the relevant application upgrade files App.appup, sorted in the same order
as when generating a boot script, see make_script/1,2. High-level instructions are translated into low-level
instructions and the result is printed to the relup file.

The optional Descr parameter is included "as is" in the relup file, see relup(4). Defaults to the empty list.

All the files are searched for in the code path. It is assumed that the .app and .appup files for an application are
located in the same directory.

If option {path,[Dir]} is specified, this path is appended to the current path. Wildcard * is expanded to all
matching directories, for example, lib/*/ebin.

systools

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 29

If option restart_emulator is specified, a low-level instruction to restart the emulator is appended to the relup
file. This ensures that a complete reboot of the system is done when the system is upgraded or downgraded.

If an upgrade includes a change from an emulator earlier than OTP R15 to OTP R15 or later, the warning
pre_R15_emulator_upgrade is issued. For more information about this, see Design Principles in System
Documentation.

By default, errors and warnings are printed to tty and the function returns ok or error. If option silent is
specified, the function instead either returns {ok,Relup,Module,Warnings}, where Relup is the release
upgrade file, or {error,Module,Error}. Warnings and errors can be converted to strings by calling
Module:format_warning(Warnings) or Module:format_error(Error).

If option noexec is specified, the function returns the same values as for silent but no relup file is created.

If option warnings_as_errors is specified, warnings are treated as errors.

make_script(Name) -> Result
make_script(Name, [Opt]) -> Result
Types:

Name = string()

Opt = src_tests | {path,[Dir]} | local | {variables,[Var]} | exref |
{exref,[App]}] | silent | {outdir,Dir} | no_dot_erlang | no_warn_sasl |
warnings_as_errors

 Dir = string()

 Var = {VarName,Prefix}

 VarName = Prefix = string()

 App = atom()

Result = ok | error | {ok,Module,Warnings} | {error,Module,Error}

 Module = atom()

 Warnings = Error = term()

Generates a boot script Name.script and its binary version, the boot file Name.boot. The boot file specifies which
code to be loaded and which applications to be started when the Erlang runtime system is started. See script(4).

The release resource file Name.rel is read to determine which applications are included in the release. Then the
relevant application resource files App.app are read to determine which modules to be loaded, and if and how the
applications are to be started. (Keys modules and mod, see app(4).

By default, the boot script and boot file are located in the same directory as Name.rel. That is, in the current working
directory unless Name contains a path. If option {outdir,Dir} is specified, they are located in Dir instead.

The correctness of each application is checked as follows:

• The version of an application specified in the .rel file is to be the same as the version specified in the .app file.

• There are to be no undefined applications, that is, dependencies to applications that are not included in the release.
(Key applications in the .app file).

• There are to be no circular dependencies among the applications.

• There are to be no duplicated modules, that is, modules with the same name but belonging to different applications.

• If option src_tests is specified, a warning is issued if the source code for a module is missing or is newer
than the object code.

The applications are sorted according to the dependencies between the applications. Where there are no dependencies,
the order in the .rel file is kept.

systools

30 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

The function fails if the mandatory applications Kernel and STDLIB are not included in the .rel file and have start
type permanent (which is default).

If SASL is not included as an application in the .rel file, a warning is issued because such a release cannot be used
in an upgrade. To turn off this warning, add option no_warn_sasl.

All files are searched for in the current path. It is assumed that the .app and .beam files for an application are located
in the same directory. The .erl files are also assumed to be located in this directory, unless it is an ebin directory
in which case they can be located in the corresponding src directory.

If option {path,[Dir]} is specified, this path is appended to the current path. A directory in the path can be
specified with a wildcard *, this is expanded to all matching directories. Example: "lib/*/ebin".

In the generated boot script all application directories are structured as App-Vsn/ebin. They are assumed to be
located in $ROOT/lib, where $ROOT is the root directory of the installed release. If option local is specified, the
actual directories where the applications were found are used instead. This is a useful way to test a generated boot
script locally.

Option variables can be used to specify an installation directory other than $ROOT/lib for some of the
applications. If a variable {VarName,Prefix} is specified and an application is found in a directory Prefix/
Rest/App[-Vsn]/ebin, this application gets the path VarName/Rest/App-Vsn/ebin in the boot script. If
an application is found in a directory Prefix/Rest, the path is VarName/Rest/App-Vsn/ebin. When starting
Erlang, all variables VarName are given values using command-line flag boot_var.

Example: If option {variables,[{"TEST","lib"}]} is specified and myapp.app is found in lib/
myapp/ebin, the path to this application in the boot script is "$TEST/myapp-1/ebin". If myapp.app is found
in lib/test, the path is $TEST/test/myapp-1/ebin.

The checks performed before the boot script is generated can be extended with some cross reference checks by
specifying option exref. These checks are performed with the Xref tool. All applications, or the applications specified
with {exref,[App]}, are checked by Xref and warnings are issued for calls to undefined functions.

By default, errors and warnings are printed to tty and the function returns ok or error. If option
silent is specified, the function instead returns {ok,Module,Warnings} or {error,Module,Error}.
Warnings and errors can be converted to strings by calling Module:format_warning(Warnings) or
Module:format_error(Error).

If option warnings_as_errors is specified, warnings are treated as errors.

If option no_dot_erlang is specified, the instruction to load the .erlang file during boot is not included.

make_tar(Name) -> Result
make_tar(Name, [Opt]) -> Result
Types:

Name = string()

Opt = {dirs,[IncDir]} | {path,[Dir]} | {variables,[Var]} |
{var_tar,VarTar} | {erts,Dir} | src_tests | exref | {exref,[App]} | silent
| {outdir,Dir}

 Dir = string()

 IncDir = src | include | atom()

 Var = {VarName,PreFix}

 VarName = Prefix = string()

 VarTar = include | ownfile | omit

 Machine = atom()

 App = atom()

systools

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 31

Result = ok | error | {ok,Module,Warnings} | {error,Module,Error}

 Module = atom()

 Warning = Error = term()

Creates a release package file Name.tar.gz. This file must be uncompressed and unpacked on the target system
using release_handler before the new release can be installed.

The release resource file Name.rel is read to determine which applications are included in the release. Then the
relevant application resource files App.app are read to determine the version and modules of each application (keys
vsn and modules, see app(4)).

By default, the release package file is located in the same directory as Name.rel. That is, in the current working
directory unless Name contains a path. If option {outdir,Dir} is specified, it is located in Dir instead.

By default, the release package contains the directories lib/App-Vsn/ebin and lib/App-Vsn/priv for
each included application. If more directories are to be included, option dirs is specified, for example, {dirs,
[src,examples]}.

All these files are searched for in the current path. If option {path,[Dir]} is specified, this path is appended to the
current path. Wildcard * is expanded to all matching directories. Example: "lib/*/ebin".

Option variables can be used to specify an installation directory other than lib for some of the applications. If
variable {VarName,Prefix} is specified and an application is found in directory Prefix/Rest/App[-Vsn]/
ebin, this application is packed into a separate VarName.tar.gz file as Rest/App-Vsn/ebin.

Example: If option {variables,[{"TEST","lib"}]} is specified and myapp.app is located in lib/
myapp-1/ebin, application myapp is included in TEST.tar.gz:

% tar tf TEST.tar
myapp-1/ebin/myapp.app
...

Option {var_tar,VarTar} can be used to specify if and where a separate package is to be stored. In this option
VarTar is one of the following:

include

Each separate (variable) package is included in the main ReleaseName.tar.gz file. This is the default.

ownfile

Each separate (variable) package is generated as a separate file in the same directory as the
ReleaseName.tar.gz file.

omit

No separate (variable) packages are generated. Applications that are found underneath a variable directory are
ignored.

A directory releases is also included in the release package, containing Name.rel and a subdirectory RelVsn.
RelVsn is the release version as specified in Name.rel.

releases/RelVsn contains the boot script Name.boot renamed to start.boot and, if found, the files relup
and sys.config. These files are searched for in the same directory as Name.rel, in the current working directory,
and in any directories specified using option path.

If the release package is to contain a new Erlang runtime system, the bin directory of the specified runtime system
{erts,Dir} is copied to erts-ErtsVsn/bin.

All checks with function make_script are performed before the release package is created. Options src_tests
and exref are also valid here.

systools

32 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

The return value and the handling of errors and warnings are the same as described for make_script.

script2boot(File) -> ok | error
Types:

File = string()

The Erlang runtime system requires that the contents of the script used to boot the system is a binary Erlang term. This
function transforms the File.script boot script to a binary term, which is stored in the File.boot file.

A boot script generated using make_script is already transformed to the binary form.

See Also
app(4), appup(4), erl(1), rel(4), release_handler(3), relup(4), script(4)

appup

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 33

appup
Name

The application upgrade file defines how an application is upgraded or downgraded in a running system.

This file is used by the functions in systools when generating a release upgrade file relup.

File Syntax
The application upgrade file is to be called Application.appup, where Application is the application name.
The file is to be located in the ebin directory for the application.

The .appup file contains one single Erlang term, which defines the instructions used to upgrade or downgrade the
application. The file has the following syntax:

{Vsn,
 [{UpFromVsn, Instructions}, ...],
 [{DownToVsn, Instructions}, ...]}.

Vsn = string()

Current application version.

UpFromVsn = string() | binary()

An earlier application version to upgrade from. If it is a string, it is interpreted as a specific version number. If it
is a binary, it is interpreted as a regular expression that can match multiple version numbers.

DownToVsn = string() | binary()

An earlier application version to downgrade to. If it is a string, it is interpreted as a specific version number. If it
is a binary, it is interpreted as a regular expression that can match multiple version numbers.

Instructions

A list of release upgrade instructions, see Release Upgrade Instructions. It is recommended to use high-level
instructions only. These are automatically translated to low-level instructions by systools when creating the
relup file.

To avoid duplication of upgrade instructions, it is allowed to use regular expressions to specify UpFromVsn and
DownToVsn. To be considered a regular expression, the version identifier must be specified as a binary. For example,
the following match all versions 2.1.x, where x is any number:

<<"2\\.1\\.[0-9]+">>

Notice that the regular expression must match the complete version string, so this example works for, for example,
2.1.1, but not for 2.1.1.1.

Release Upgrade Instructions
Release upgrade instructions are interpreted by the release handler when an upgrade or downgrade is made. For more
information about release handling, see OTP Design Principles in System Documentation.

appup

34 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

A process is said to use a module Mod if Mod is listed in the Modules part of the child specification used to start
the process, see supervisor(3). In the case of gen_event, an event manager process is said to use Mod if Mod
is an installed event handler.

High-Level Instructions

{update, Mod}
{update, Mod, supervisor}
{update, Mod, Change}
{update, Mod, DepMods}
{update, Mod, Change, DepMods}
{update, Mod, Change, PrePurge, PostPurge, DepMods}
{update, Mod, Timeout, Change, PrePurge, PostPurge, DepMods}
{update, Mod, ModType, Timeout, Change, PrePurge, PostPurge, DepMods}
 Mod = atom()
 ModType = static | dynamic
 Timeout = int()>0 | default | infinity
 Change = soft | {advanced,Extra}
 Extra = term()
 PrePurge = PostPurge = soft_purge | brutal_purge
 DepMods = [Mod]

Synchronized code replacement of processes using module Mod.

All those processes are suspended using sys:suspend, the new module version is loaded, and then the processes
are resumed using sys:resume.

Change

Defaults to soft and defines the type of code change. If it is set to {advanced,Extra},
implemented processes using gen_server, gen_fsm, gen_statem, or gen_event transform their
internal state by calling the callback function code_change. Special processes call the callback function
system_code_change/4. In both cases, the term Extra is passed as an argument to the callback function.

PrePurge

Defaults to brutal_purge. It controls what action to take with processes executing old code before loading
the new module version. If the value is brutal_purge, the processes are killed. If the value is soft_purge,
release_handler:install_release/1 returns {error,{old_processes,Mod}}.

PostPurge

Defaults to brutal_purge. It controls what action to take with processes that are executing old code when
the new module version has been loaded. If the value is brutal_purge, the code is purged when the release
is made permanent and the processes are killed. If the value is soft_purge, the release handler purges the old
code when no remaining processes execute the code.

DepMods

Defaults to [] and defines other modules that Mod is dependent on. In the relup file, instructions for suspending
processes using Mod come before instructions for suspending processes using modules in DepMods when
upgrading, and conversely when downgrading. In case of circular dependencies, the order of the instructions in
the appup file is kept.

Timeout

Defines the time-out when suspending processes. If no value or default is specified, the default value for
sys:suspend is used.

appup

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 35

ModType

Defaults to dynamic. It specifies if the code is "dynamic", that is, if a process using the module spontaneously
switches to new code, or if it is "static". When doing an advanced update and upgrade, the new version of a
dynamic module is loaded before the process is asked to change code. When downgrading, the process is asked
to change code before loading the new version. For static modules, the new version is loaded before the process
is asked to change code, both in the case of upgrading and downgrading. Callback modules are dynamic.

update with argument supervisor is used when changing the start specification of a supervisor.

{load_module, Mod}
{load_module, Mod, DepMods}
{load_module, Mod, PrePurge, PostPurge, DepMods}
 Mod = atom()
 PrePurge = PostPurge = soft_purge | brutal_purge
 DepMods = [Mod]

Simple code replacement of the module Mod.

For a description of PrePurge and PostPurge, see update above.

DepMods defaults to [] and defines which other modules Mod is dependent on. In the relup file, instructions
for loading these modules come before the instruction for loading Mod when upgrading, and conversely when
downgrading.

{add_module, Mod}
{add_module, Mod, DepMods}
 Mod = atom()
 DepMods = [Mod]

Loads a new module Mod.

DepMods defaults to [] and defines which other modules Mod is dependent on. In the relup file, instructions related
to these modules come before the instruction for loading Mod when upgrading, and conversely when downgrading.

{delete_module, Mod}
{delete_module, Mod, DepMods}
 Mod = atom()

Deletes a module Mod using the low-level instructions remove and purge.

DepMods defaults to [] and defines which other modules Mod is dependent on. In the relup file, instructions related
to these modules come before the instruction for removing Mod when upgrading, and conversely when downgrading.

{add_application, Application}
{add_application, Application, Type}
 Application = atom()
 Type = permanent | transient | temporary | load | none

Adding an application means that the modules defined by the modules key in the .app file are loaded using
add_module.

Type defaults to permanent and specifies the start type of the application. If Type = permanent
| transient | temporary, the application is loaded and started in the corresponding way, see

appup

36 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

application(3). If Type = load, the application is only loaded. If Type = none, the application is not
loaded and not started, although the code for its modules is loaded.

{remove_application, Application}
 Application = atom()

Removing an application means that the application is stopped, the modules are unloaded using delete_module,
and then the application specification is unloaded from the application controller.

{restart_application, Application}
 Application = atom()

Restarting an application means that the application is stopped and then started again, similar to using the instructions
remove_application and add_application in sequence.

Low-Level Instructions

{load_object_code, {App, Vsn, [Mod]}}
 App = Mod = atom()
 Vsn = string()

Reads each Mod from directory App-Vsn/ebin as a binary. It does not load the modules. The instruction is to be
placed first in the script to read all new code from the file to make the suspend-load-resume cycle less time-consuming.

point_of_no_return

If a crash occurs after this instruction, the system cannot recover and is restarted from the old release version. The
instruction must only occur once in a script. It is to be placed after all load_object_code instructions.

{load, {Mod, PrePurge, PostPurge}}
 Mod = atom()
 PrePurge = PostPurge = soft_purge | brutal_purge

Before this instruction occurs, Mod must have been loaded using load_object_code. This instruction loads the
module. PrePurge is ignored. For a description of PostPurge, see the high-level instruction update earlier.

{remove, {Mod, PrePurge, PostPurge}}
 Mod = atom()
 PrePurge = PostPurge = soft_purge | brutal_purge

Makes the current version of Mod old. PrePurge is ignored. For a description of PostPurge, see the high-level
instruction update earlier.

{purge, [Mod]}
 Mod = atom()

appup

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 37

Purges each module Mod, that is, removes the old code. Notice that any process executing purged code is killed.

{suspend, [Mod | {Mod, Timeout}]}
 Mod = atom()
 Timeout = int()>0 | default | infinity

Tries to suspend all processes using a module Mod. If a process does not respond, it is ignored. This can cause the
process to die, either because it crashes when it spontaneously switches to new code, or as a result of a purge operation.
If no Timeout is specified or default is specified, the default value for sys:suspend is used.

{resume, [Mod]}
 Mod = atom()

Resumes all suspended processes using a module Mod.

{code_change, [{Mod, Extra}]}
{code_change, Mode, [{Mod, Extra}]}
 Mod = atom()
 Mode = up | down
 Extra = term()

Mode defaults to up and specifies if it is an upgrade or downgrade. This instruction sends a code_change system
message to all processes using a module Mod by calling function sys:change_code, passing term Extra as
argument.

{stop, [Mod]}
 Mod = atom()

Stops all processes using a module Mod by calling supervisor:terminate_child/2. This instruction is useful
when the simplest way to change code is to stop and restart the processes that run the code.

{start, [Mod]}
 Mod = atom()

Starts all stopped processes using a module Mod by calling supervisor:restart_child/2.

{sync_nodes, Id, [Node]}
{sync_nodes, Id, {M, F, A}}
 Id = term()
 Node = node()
 M = F = atom()
 A = [term()]

apply(M, F, A) must return a list of nodes.

This instruction synchronizes the release installation with other nodes. Each Node must evaluate this command with
the same Id. The local node waits for all other nodes to evaluate the instruction before execution continues. If a node

appup

38 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

goes down, it is considered to be an unrecoverable error, and the local node is restarted from the old release. There is
no time-out for this instruction, which means that it can hang forever.

{apply, {M, F, A}}
 M = F = atom()
 A = [term()]

Evaluates apply(M, F, A).

If the instruction appears before instruction point_of_no_return, a failure is caught.
release_handler:install_release/1 then returns {error,{'EXIT',Reason}}, unless
{error,Error} is thrown or returned. Then it returns {error,Error}.

If the instruction appears after instruction point_of_no_return and the function call fails, the system is restarted.

restart_new_emulator

This instruction is used when the application ERTS, Kernel, STDLIB, or SASL is upgraded. It shuts down the current
emulator and starts a new one. All processes are terminated gracefully, and the new version of ERTS, Kernel, STDLIB,
and SASL are used when the emulator restarts. Only one restart_new_emulator instruction is allowed in
the relup file, and it must be placed first. systools:make_relup/3,4 ensures this when the relup file is
generated. The rest of the instructions in the relup file is executed after the restart as a part of the boot script.

An info report is written when the upgrade is completed. To programmatically determine if the upgrade is complete,
call release_handler:which_releases/0,1 and check if the expected release has status current.

The new release must still be made permanent after the upgrade is completed, otherwise the old emulator is started
if there is an emulator restart.

Warning:
As stated earlier, instruction restart_new_emulator causes the emulator to be restarted with new versions
of ERTS>, Kernel, STDLIB, and SASL. However, all other applications do at startup run their old versions in
this new emulator. This is usually no problem, but every now and then incompatible changes occur to the core
applications, which can cause trouble in this setting. Such incompatible changes (when functions are removed)
are normally preceded by a deprecation over two major releases. To ensure that your application is not crashed
by an incompatible change, always remove any call to deprecated functions as soon as possible.

restart_emulator

This instruction is similar to restart_new_emulator, except it must be placed at the end of the relup file. It is
not related to an upgrade of the emulator or the core applications, but can be used by any application when a complete
reboot of the system is required.

When generating the relup file, systools:make_relup/3,4 ensures that there is only one
restart_emulator instruction and that it is the last instruction in the relup file.

See Also
release_handler(3), relup(4), supervisor(3), systools(3)

rel

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 39

rel
Name

The release resource file specifies which applications are included in a release (system) based on Erlang/OTP.

This file is used by the functions in systools when generating start scripts (.script, .boot) and release upgrade
files (relup).

File Syntax
The release resource file is to be called Name.rel.

The .rel file contains one single Erlang term, which is called a release specification. The file has the following
syntax:

{release, {RelName,Vsn}, {erts, EVsn},
 [{Application, AppVsn} |
 {Application, AppVsn, Type} |
 {Application, AppVsn, IncApps} |
 {Application, AppVsn, Type, IncApps}]}.

RelName = string()

Release name.

Vsn = string()

Release version.

EVsn = string()

ERTS version the release is intended for.

Application = atom()

Name of an application included in the release.

AppVsn = string()

Version of an application included in the release.

Type = permanent | transient | temporary | load | none

Start type of an application included in the release.

If Type = permanent | transient | temporary, the application is loaded and started in the
corresponding way, see application(3).

If Type = load, the application is only loaded.

If Type = none, the application is not loaded and not started, although the code for its modules is loaded.

Defaults to permanent

IncApps = [atom()]

A list of applications that are included by an application included in the release. The list must be a subset of the
included applications specified in the application resource file (Application.app) and overrides this value.
Defaults to the same value as in the application resource file.

rel

40 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

Note:
The list of applications must contain the Kernel and STDLIB applications.

See Also
application(3), relup(4), systools(3)

relup

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 41

relup
Name

The release upgrade file describes how a release is upgraded in a running system.

This file is automatically generated by systools:make_relup/3,4, using a release resource file (.rel),
application resource files (.app), and application upgrade files (.appup) as input.

File Syntax
In a target system, the release upgrade file is to be located in directory $ROOT/releases/Vsn.

The relup file contains one single Erlang term, which defines the instructions used to upgrade the release. The file
has the following syntax:

{Vsn,
 [{UpFromVsn, Descr, Instructions}, ...],
 [{DownToVsn, Descr, Instructions}, ...]}.

Vsn = string()

Current release version.

UpFromVsn = string()

Earlier version of the release to upgrade from.

Descr = term()

A user-defined parameter passed from the function systools:make_relup/3,4. It is used in the return
value of release_handler:install_release/1,2.

Instructions

A list of low-level release upgrade instructions, see appup(4). It consists of the release upgrade instructions
from the respective application upgrade files (high-level instructions are translated to low-level instructions), in
the same order as in the start script.

DownToVsn = string()

Earlier version of the release to downgrade to.

See Also
app(4), appup(4), rel(4), release_handler(3), systools(3)

script

42 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

script
Name

The boot script describes how the Erlang runtime system is started. It contains instructions on which code to load
and which processes and applications to start.

Command erl -boot Name starts the system with a boot file called Name.boot, which is generated from the
Name.script file, using systools:script2boot/1.

The .script file is generated by systools from a .rel file and from .app files.

File Syntax
The boot script is stored in a file with extension .script. The file has the following syntax:

{script, {Name, Vsn},
 [
 {progress, loading},
 {preLoaded, [Mod1, Mod2, ...]},
 {path, [Dir1,"$ROOT/Dir",...]}.
 {primLoad, [Mod1, Mod2, ...]},
 ...
 {kernel_load_completed},
 {progress, loaded},
 {kernelProcess, Name, {Mod, Func, Args}},
 ...
 {apply, {Mod, Func, Args}},
 ...
 {progress, started}]}.

Name = string()

Defines the system name.

Vsn = string()

Defines the system version.

{progress, Term}

Sets the "progress" of the initialization program. The init:get_status/0 function returns the current value
of the progress, which is {InternalStatus,Term}.

{path, [Dir]}

Dir is a string. This argument sets the load path of the system to [Dir]. The load path used to load modules is
obtained from the initial load path, which is given in the script file, together with any path flags that were supplied
in the command-line arguments. The command-line arguments modify the path as follows:

• -pa Dir1 Dir2 ... DirN adds the directories DirN, DirN-1, ..., Dir2, Dir1 to the
front of the initial load path.

• -pz Dir1 Dir2 ... DirN adds the directories Dir1, Dir2, ..., DirN to the end of the
initial load path.

• -path Dir1 Dir2 ... DirN defines a set of directories Dir1, Dir2, ..., DirN, which replace
the search path given in the script file. Directory names in the path are interpreted as follows:

• Directory names starting with / are assumed to be absolute path names.

script

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 43

• Directory names not starting with / are assumed to be relative the current working directory.

• The special $ROOT variable can only be used in the script, not as a command-line argument. The
given directory is relative the Erlang installation directory.

{primLoad, [Mod]}

Loads the modules [Mod] from the directories specified in Path. The script interpreter fetches the appropriate
module by calling erl_prim_loader:get_file(Mod). A fatal error that terminates the system occurs
if the module cannot be located.

{kernel_load_completed}

Indicates that all modules that must be loaded before any processes are started are loaded. In interactive mode,
all {primLoad,[Mod]} commands interpreted after this command are ignored, and these modules are loaded
on demand. In embedded mode, kernel_load_completed is ignored, and all modules are loaded during
system start.

{kernelProcess, Name, {Mod, Func, Args}}

Starts the "kernel process" Name by evaluating apply(Mod, Func, Args). The start function is to return
{ok, Pid} or ignore. The init process monitors the behavior of Pid and terminates the system if Pid dies.
Kernel processes are key components of the runtime system. Users do not normally add new kernel processes.

{apply, {Mod, Func, Args}}.

The init process evaluates apply(Mod, Func, Args). The system terminates if this results in an error. The
boot procedure hangs if this function never returns.

Note:
In an interactive system, the code loader provides demand-driven code loading, but in an embedded system the
code loader loads all code immediately. The same version of code is used in both cases. The code server calls
init:get_argument(mode) to determine if it is to run in demand mode or non-demand driven mode.

See Also
systools(3)

	System Architecture Support Libraries (SASL)
	SASL User's Guide
	Introduction
	Scope
	Prerequisites

	SASL Error Logging
	Supervisor Report
	Progress Report
	Crash Report
	Example

	Multi-File Error Report Logging
	Report Browser
	Starting Report Browser
	Online Help
	List Reports in Server
	Show Reports
	Search Reports
	Stop Server

	Reference Manual
	sasl
	alarm_handler
	clear_alarm/1
	get_alarms/0
	set_alarm/1

	rb
	filter/1
	filter/2
	grep/1
	h/0
	help/0
	list/0
	list/1
	log_list/0
	log_list/1
	rescan/0
	rescan/1
	show/0
	show/1
	start/0
	start/1
	start_log/1
	stop/0
	stop_log/0

	release_handler
	check_install_release/1
	check_install_release/2
	create_RELEASES/4
	install_file/2
	install_release/1
	install_release/2
	make_permanent/1
	remove_release/1
	reboot_old_release/1
	set_removed/1
	set_unpacked/2
	unpack_release/1
	which_releases/0
	which_releases/1
	upgrade_app/2
	downgrade_app/2
	downgrade_app/3
	upgrade_script/2
	downgrade_script/3
	eval_appup_script/4

	systools
	make_relup/3
	make_relup/4
	make_script/1
	make_script/2
	make_tar/1
	make_tar/2
	script2boot/1

	appup
	rel
	relup
	script

