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ABSTRACT

How should Erlang talk to the outside world? - this question
becomes interesting if we want to build distributed applica-
tions where Erlang is one of a number of communicating
components.

We assume these components interact by exchanging mes-
sages - at this level of abstraction, details of programming
language, operating system and host architecture are irrele-
vant. What is important is the ease with which we can con-
struct such systems, and the precision with which we can
isolate faulty components in such a system. Also of impor-
tance is the efficiency (both in terms of CPU and bandwidth
requirements) with which we can send and receive messages
in the system.

One widely adopted solution to this problem involves the
XML family of standards (XML, XML-schemas, SOAP and
WSDL) - we argue that this is inefficient and overly complex
and propose basing our system on a simpler binary scheme
called UBF (Universal Binary Format). The UBF scheme
has the expressive power of the XML set of standards - but
is considerably simpler.

UBF has been prototyped in Erlang - the entire scheme
(equivalent in semantic power to the XML series of stan-
dards) was implemented in a mere 1100 lines of Erlang. UBF
encoding of terms is also shown to be more space efficient
than the existing “Erlang term format”. For example, UBF
encoded parse trees of Erlang programs are on average about
60% of the size of the equivalent ETS format encoding which
is used in the open source Erlang distribution.

Categories and Subject Descriptors

C.2.2 [Computer Communications]: Network Protocols;
D.1 [Software]: Programming Techniques; D.1 [Software]:
Programming Languages

1. INTRODUCTION

We are interested in building reliable distributed systems
out of asynchronously communicating components. We as-
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Figure 1: Black boxes and Contract Checkers

sume that the components are written in different program-
ming languages, run on different operating systems and op-
erate anywhere in the network. For example, some compo-
nents may be written in Erlang, others in Java, others in C;
the components might run on Unix, or Windows or Solaris.

We ask the questions ”How should such systems interact?”
and ”Can we create a convenient language-neutral transport
layer to allow such applications to be easily constructed?”

Suppose further that we have several different components
and that they collaborate to solve some problem - each indi-
vidual component has been tested and is assumed to work,
and yet the system as a whole does not work. Which com-
ponent is in error?

There are a number of conventional methods for solving
parts of this problem, for example, we could use an inter-
face description language (like Sun XDR [14] or ASN.1 [9])
or we could use a more complex framework like Corba [13].
All these methods have associated problems - many of these
methods are supposedly language neutral but in practice
are heavily biased to languages like C or C++ and to 32
bit word length processor architectures. The more com-
plex frameworks (like Corba) are difficult to implement and
are inappropriate for simple applications. Proprietary solu-
tions for component interaction (like Microsoft’s COM and
DCOM) are not considered, since they are both complex
and, more damagingly, not available on all platforms.

Out of this mess a single universal panacea has emerged -
XML. The XML series of standards, notably XML[3], XML-
schemas[6], [15] with SOAP[12], [7], [8] and WSDL[4] has
emerged as the universal solution to this problem.

The XML solution involves three layers:
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e A transport layer - XML provides a simple transport
layer. XML encoded terms can be used to encode com-
plex structured objects.

o A type system - XML schemas provides a type schema
for describing the type of the content of a particular



XML tag.

e A protocol description language - SOAP defines how
simple remote procedure calls can be encoded as XML
terms. More complex interactions between compo-
nents can be described using the Web Service Descrip-
tion Language (WSDL).

The above architectural layering is desirable, in so much
that it separates transport of data (XML), the types of
the data (XML-schemas) and the semantics of interactions
between different components in the network (SOAP and
WDSL).

Unfortunately, while the architecture is essentially cor-
rect, the details leave much to be desired. The individual
components suffer from a number of significant problems.

We argue in the next section of the paper that XML is
overly complex and overly verbose. Following this section
we propose a simpler and more efficient but equally expres-
sive binary format, which could be used as a complement to
XML.

Our proposed schema has been implemented fully in Er-
lang and partially in Java and C - we present some prelimi-
nary results in the final section of the paper.

Our type system has an expressive power similar to that
of the expressive power of XML-schemas, though we believe
our scheme to be much simpler. Our contract language has
many similarities to WSDL but again we believe it to be
simpler and more expressive.

Our architecture also has many similarities to the .NET ar-
chitecture, though we believe our architecture to be simpler
and more powerful.

The remainder of the paper describes the system in de-
tail gives some performance figures and describes our initial
experience with the system.

2. PROBLEMS WITH XML

2.1 Complexity

XML, XML-schemas, SOAP and WDSL are a complex
set of inter-related standards. A full implementation of the
above standards requires many tens of thousands of lines of
code and the implementation of a number of minor stan-
dards (like XML-name-spaces and XML-path) etc.

The XML standard itself has a grammar of 89 produc-
tions and requires many pages of explanatory text - entire
text books have been written just to explain the (simple)
standard. Having implement three XML parsers in Erlang [
am in the position to say that XML is decidedly not simple
to implement - amazingly, most of the complexity occurs in
the implementation of a number of features which the vast
majority of programmers will never use (these are antedilu-
vian hang-backs to SGML).

The original design of XML had a notion of structure (de-
scribed by a regular grammar) but no notion of type. Struc-
ture was described using DTDs (Data Type Descriptions) -
but the DTD’s did not themselves have an XML syntax.
This was viewed by some as a disadvantage - XML-schemas
came to the rescue - using XML-schemas XML structures
could be described in XML itself, and a rich set of types
was added.

What was been described by the XML DTD[5]

<!ELEMENT ROOT (A?7,B+,C*)>

became in XML-schemas:

<element name="ROOT">
<complexType content="elementOnly">
<choice>
<element ref="t:A">
<sequence>
<element ref="t:B">
<element ref="t:C">
</sequence>
</choice>
</complexType>
</element>

The notation for saying that the content of a tag should
be of a particular type is equally verbose.

XML-schemas has 19 built-in (or primitive) types and
three type constructors

The net result of this is that, if you want to express types
you have to use XML-schemas. Unfortunately, the verbosity
of the specification makes the schemas difficult to read.

In retrospect, a much simpler alternative would have been
to extend XML with a small number of primitive data types.

For example, XML has a construct like:

<VELEMENT xxx (#PCDATA)>

it would have been easy to extend this with expressions
like:

<!ELEMENT xxx (#INTEGER32)>

Meaning that xxx is a 32 bit integer.
Such an extension would have provided a succinct and
readable alternative to XML schemas.

2.2 Verbosity

XML encodings are incredibly verbose. The designers of
XML excuse themselves with the words: “Terseness in XML
markup is of minimal importance.”[3] Unfortunately, the
very verbosity of XML makes efficient parsing impossible,
since at the very least the parser must examine every sin-
gle input character. This property limits the usefulness of
XML as a transport format for mobile devices with limited
bandwidth.

Interestingly, one of the most common XML applications
designed for such devices, namely WAP, uses an ad hoc
method [11] to compress XML WAP programs, providing
striking evidence that raw XML is inappropriate as a uni-
versal format for low-bandwidth devices.

Another strange property of XML is that binary data
must be encoded prior to transmission. For example, a
JPEG image must first be base64 encoded. Base64 encod-
ing processes data in 24 bit groups, replacing each 3 byte
sequence on input with a 4 byte sequence on output, lines
are limited to 76 characters and only printable characters
are transmitted.

This is all very strange and highly inefficient (especially
considering that SOAP uses TCP/IP for data transport and
TCP/IP itself is designed for efficient transport of binary
data) - the bit about 76 characters probably has something
to do with punched cards, and the restriction to printable
characters has something to do with transmission systems
that may only pass seven bits of a byte in a transparent
manner.
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Figure 2: Client/Server with Contract Checker

Unfortunately the weird quoting rules of SGML apply to
XML - you might naively think that binary data could be
transmitted “as is” - unfortunately you can’t just quote bi-
nary data in XML - if the binary data just happened to
contain a valid XML end tag then chaos would ensue. Most
programming language have quoting conventions which al-
low an arbitrary sequence of characters to be quoted, XML
does not; thus, for example, any data can be placed within
a CDATA block except data containing the string 11> - this
fact severely limits the usefulness of CDATA section, mak-
ing it impossible to (say) quote an arbitrary XML program -
since it itself might contain a CDATA section. One wonders
why such a convention was adopted.

3. OUR ARCHITECTURE

Our architecture is shown in Figures 1 and 2. Figure 1
shows a number of communicating components. The com-
ponents are assumed to be black boxes, at any particular
time a component might behave as a client or as a server.
Between the components we place an entity which we call a
contract checker (shown in the diagram as a black blob), the
contact checker checks the legality of the flow of messages
between the components.

We assume the contract checker starts in state S (see Fig-
ure 2); the client sends a message X intended for the server,
the contract checker checks that X is of the correct type and
that it is expected in state S, if so it is sent to the server.
The server responds with a Message x State tuple {M, S1}
the contract checker checks that this message is an expected
response in the current state, if so {M, S1} is sent to the
client and the state of the contract checker updated to S1.1

The contract checker is parameterised with a contract that
specifies the ordering and types of the allowed message se-
quences between the client and the server.

The contract is is written using a simple non-deterministic
finite state machine and a simple type language.

The contract is modeled as a set of four tuples of the form:

{Siru IZ—zﬁu Z)uty Sout}

This means that if the server is in state S;,, and it receives
a message of type 7;, then it may possibly respond with a
message of type 7o, and change its state to Sout.

The contract checker assumes that the start state of the
server is start this is assigned to some state variable S.

If the client sends the server a message X the contract
checker checks that there are some rules in the contract
where S = S;,, and typeof(X) = T;p - if there are any such
rules then the client is said to follow the contract and the

Note that this is unlike the convention RPC mechanism,
where a server responds with a message in response to a
particular query, and the next state of the server (if it is
statefull) is smplied by the protocol.

message X can be safely sent to the server. If no such rules
match, then the client is said to have broken the contract
and both client and server are informed about this.

If the client has sent a valid message then the set of ex-
pected output responses of the server in pruned to a set of
two tuples

{%ut; Sout}

being the allowed set of Type x State tuples that the server
can respond with.

The server must respond with a {Msg, State} tuple - the
contract manager checks if there is a tuple in the response
set where State = S,u: and typeof(Msg) = Tou:

If there is such a tuple then the response is accepted and
Msg is sent back to the client and the global value of the
state S is updated to State.

Note that the operation of the client/server in completely
transparent in normal operation. In the case where both the
client and server follow the contract no changes are made to
the messages passed between the client and server - the only
possible difference between client/server interaction using a
contract checker and not using a contract checker is a a slight
timing difference.

4. UBF - AUNIVERSAL BINARY FORMAT

Contracts are written in a langauge we call UBF. UBF
has two components:

e UBF(A) is a data transport format, it is roughly
equivalent to well-formed XML.

e UBF(B) is a programming language for describing
types in UBF(A) and protocols between clients and
servers. UBF(B) is roughly equivalent to verified XML,
XML-schemas, SOAP and WDSL.

While the XML series of languages had the goal of hav-
ing a human readable format the UBF languages take the
opposite view and provide a "machine friendly” format.

UBF is designed to be easy to implement. As a proof of
concept - UBF drivers for Erlang, Oz, Java and TCL can be
found at the authors web site [1]. Implementors are welcome
to add new languages.

UBEF is designed to be ”language neutral” - UBF(A) de-
fines a language neutral binary format for transporting data
across a network. UBF(B) is a type system for describing
client /server interactions which use UBF(A).

5. UBF(A) - A BINARY TRANSPORT FOR-
MAT

UBF(A) is a transport format, it is designed to be easy
to parse and to be easy to manipulate with a text editor.
UBF(A) is based on a byte encoded virtual machine, 26 byte
codes are reserved. Instead of allocating the bye codes from
0 we use the printable character codes to make the format
easy to read and edit.

Simplicity is the goal, so we define a minimal set of prim-
itive types (four, compared with XML-schemas which has
19) and two types of “glue” for building complex types from
more simple types.



5.1 Primitive types

UBF(A) has four primitive types. When a primitive tag
is recognized it is pushed onto the ”recognition stack” in our
decoder. The primitive types are:

Integers - integers are written as sequences of bytes de-
scribed by the regular expression [-][0-9]+. That
is, an optional minus (to denote a negative integer)
followed by a sequence of at least one digits. No re-
strictions are made as to the precision of the integer,
precision issues are be dealt with in UBF(B).

Strings - strings are written enclosed in double quotes,
thus:

Within a string two quoting conventions are observed,
" must be written \" and \ must be written \\ - no
other quotings are allowed (this is so we can write a
double quote within a string).

Binary Data - binary data is encoded, thus:
Int ~...."

First an integer, representing the length of the binary
data is encoded, this is followed by a tilde, the data
itself which must be exactly the length given in the
integer and than a closing tilde. The closing tilde has
no significance and is retained for readability. White
space can be added between the integer length and the
data for readability.

Constants - constants are encoded as strings, only using a
single quote instead of a double quote.

Constants are commonly found in symbolic languages
like Lisp, Prolog or Erlang. In C they would be rep-
resented by hashed strings. The essential property of
an constant is that two constants can be compared for
equality in constant time.

In addition any item can be followed by a semantic tag
this is written ¢...¢. This tag has no meaning in UBF(A)
but might have a meaning in UBF(B). For example:

12456 ~....~ ‘jpg’

Represents 12456 bytes of raw data with the semantic tag
7jpg”. UBF(A) does not know what ”jpg” means - this is
passed on to UBF(B) which might know what it means -
finally the end application is expected to know what to do
with an object of type ”jpg”, it might for example know that
this represents an image. UBF(A) will just encode the tag,
UBF(B) will type check the tag, and the application should
be able to understand the tag.

5.2 Compound types

Having defined our four simple type we define two type of
?glue” for making compound objects.

Structs - structures are written:

{ Obj1 0bj2 ... Objn }

The byte codes for { and } are used to delimit a struc-
ture. Objl..0bjn are arbitrary UBF(A) objects. The
decoder and encoder must map UBF(A) objects onto
an appropriate representation in the application pro-
gramming language (for example structs in C, arrays
in Java, tuples in Erlang etc.).

Structs are used to represent Fized numbers of objects

Lists -lists are used to represent variable numbers of objects.
They are written with the syntax:

# ObjN & ObjN-1 & ... & 0bj2 & Obj1l
This represents a list of objects - the first object in the
list is Obj1 the second 0bj2 etc.- Note that the objects
are presented in reverse order. Lisp programmers will
recognize # as an operator that pushes NIL (or end of
list) onto the recognition stack and & as an operator
that takes the top two items on the recognition stack
and replaces them by a list cell.

Finally we need to know when an object has finished. The
operator $ signifies end of object. When $ is encountered
there should be only one item on the recognition stack.

5.3 White space

For convenience blank, carriage return, line feed, tab and
comma are treated as white space. Comments can be in-
cluded in UBF(A) with the syntax %. . .% the usual quoting
convention applies.

5.4 Caching optimizations

So far we have used exactly 26 control, characters, namely:
%"~ < {3#&\s\n\t\r,-01234567890

This leaves us with 230 unallocated byte codes. These are
used as follows: The byte code sequence

>C

Where C is not one of the reserved byte codes or > means
store the top of the recognition stack in the register reg[C]
and pop the recognition stack.

Subsequent reuse of the single character C means ”push
reg[C] onto the recognition stack”

6. PROGRAMMING BY CONTRACT

Central to UBF is the idea of a contract. The contract
regulates the set of legal conversations that can take place
between a client and a server.

A software component (the contract checker) is placed
between a client and server and it checks that all interactions
between the client and server are legal.

The contract is written using types - the contract says (in
a formal language) something like:

“If I am in state S and you send me a message
of type T1 then I will reply with a message type
T2 and move to state S1, or, I will reply with a
message of type T3 and move to state S2 ... etc.”

The contract checker dynamically checks that both sides
involved in a transaction obey the contract. Our contracts
are expressing in a language we call UBF(B).

UBF(B) has:
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Figure 3: Client server with a contract checker.

A type system - for describing the types of UBF(A) ob-
jects.

A protocol description language - for describing client-
server interaction in terms of a non-deterministic finite
state machine.

An LALR(1) grammar for UBF can be found in appendix
A.

6.1 The type system

The type system used here to describe the type of UFB(A)
encoded objects is a simplified version of the type system
used to describe Erlang terms[2]. The notation:

e int() Means a UBF(A) integer.

e string() Means a UBF(A) string.

constant () Means a UBF(A) constant.

bin() Means a UBF(A) binary data item.
e X() Means an Object of type X
UBF(A) literals are written as follows:
e "..." - denotes a UBF(A) string.
o [a-z] [a-zA-Z0-9_]* - denotes a UBF(A) constant.
e [-1[0-9]1+ - denotes a UBF(A) integer.

Complex types are defined recursively:

{T1, T2, ., Tn} Is the tuple type if T1 .. Tn are types.
We say that {X1, X2, ., Xn} is of type
{T1, T2, ., Tn} if X1 is of type T1, X2 is of type

T2, ... and Xn is of type Tn.

[T] Is the list type if T is a type. We say that
# Xn & Xn-1 & ... X2 & X1 is of type [T] if all Xi
are of type T.

T1|T2 Is the alternation type if T1 and T2 are types. We
say that X is of type T1 | T2 if X is of type T1 or if X
is of type T2.

6.2 New types
New types are introduced in UBF(B) with the notation:

+TYPES X() = Typel; Type2;

Where Typel, Type2, ... are simple types, literal types or
complex types.
Examples of types are:

+TYPES

person() = {person,
firstname(),
lastname(),
sex(),
age(};

firstname() = string();

lastname() = string();

age() = int();

sex() = male | female;

people() = [person()].

This type schema defines a number of different types. For
example, it is easily seen that:

’person’ >p
# {p "jim" "smith" ’male’ 10} &
{p "susan" "jones" ’female’ 14} & $

Is of type people().

Note that unlike XML UBF(A) encoded terms do not con-
tain any tag information. To make this clearer, suppose we
had made an XML data structure to represent the same
information, this might be something like:

<people>
<person>
<firstname>jim</firstname>
<lastname>smith</lastname>
<sex>male</sex>
<age>10</age>
</person>
<person>
<firstname>susan</firstname>
<lastname>jones</lastname>
<sex>female</sex>
<age>14</age>
</person>
</people>



The XML data structure contains a large number of re-
dundant tags - whereas our representation omits all the tags
The sizes of the first representation is 65 bytes and the sec-
ond 215 (ignoring white space which is redundant) - we
might thus expect that parsing the UBF expression would be
at least three times as fast as parsing the XML expression.

Note that UBF(B) type is a language independent type
schema. It defines the types of messages after encoding, and
is thus universally applicable to any programming language
which produces UBF encoded data.

Language independent type schemas are the basis of Con-
tracts between clients are servers.

6.3 The Contract Language

We start with a simple example:

+NAME("file_server").
+VSN("ubf1.0").

+TYPES

info() = info;
description() = description;
services() = services;

contract () = contract;

file() = string();

1sQ) = 1s;

files() = {files, [file()1};
getFile() = {get, file(O};
noSuchFile() = noSuchFile.

+STATE start
1s() => files() & start;
getFile() => binary() & start
| noSuchFile() & stop.

+ANYSTATE
info() => string();
description() => string();
contract () => term().

The program starts with a sequence of type definitions
(these follow the TYPES keyword) - these define the types
of the message that are visible across the interface to the
component.

Here, for example we see type getFile() is defined as
{get, file()} where file() is of type string().

Given this definition it can easily be seen that the UBF(A)
sequence of characters {’get’ "image.jpg"}$ belongs to
this type.

Reading further (in the STATE part of the program) we see
the rule:

+STATE start
1sO) => files() & start;
getFile() => bin() & start
| noSuchFile() & stop.

In English, this rule means:

If the system is in the state start and if it re-
ceives a message of type 1s() then respond with
a message of type files() and move into the
start state, otherwise, if a message of type

getFile() is received then either respond with
a message of type bin() and move to the state
start, or respond with a message of type
noSuchFile() and move to the state stop.

To continue with our example, we requested a file named
image. jpg the valid responses are of type bin() or
noSuchFile() which corresponds to UBF(A) encoded se-
quences like NNN~ ... ~$ or ’noSuchFile’$.

Note that it might not always be possible for a component
to distinguish between two different state transitions on the
basis of the response alone. Consider the following fragment
of a contract:

+TYPES running()
error ()

string();
string().

+STATE running
request() => ok() & running;
| error() & stopping.

If we knew a component was in the state running and
we sent it a message of type request() then we would ex-
pect it to respond with one of the types ok() or error() -
unfortunately these types are indistinguishable, since both
are represented as strings in UBF(A). For this reason we
require that the server responds with a State X Message
pair, not just a message. The server explicitly reveals its
next state to the contract checker.

7. IMPLEMENTATION DETAILS

The entire UBF system has been prototyped in Erlang.
The entire system is about 1100 lines of commented Erlang
code.

UBF encoding/decoding 391 lines.

Contract parsing 270 lines.

Contract checker and type checker - 301 lines.

e Run-time infrastructure and support libraries - 130
lines.

This compares favorably with the complexity of an XML
implementation - as an example an incomplete implementa-
tion of XML which I wrote two years ago has 2765 lines of
Erlang code. This should be compared with the 391 lines of
code in the UBF implementation.

8. PERFORMANCE

So far, the system has been implemented entirely in Er-
lang and no thought given to embedding the UBF encod-
ing/decoding software and the type checking software into
the Erlang run-time system.

The only measure of performance we give here concerns
the packing density of UBF encoded Erlang terms.

As a simple check we compared the size of the encoding
of the parse tree of a number of Erlang modules, with the
size of the a binary produced by evaluating the expression:

size(term_to_binary(epp:parse_file(F, [1, [1)))



The algorithm used to serialize the term representing the
parse tree was a simple two-pass optimizer which cached
the most frequently used constants which occurred in the
program.

Based on a sample of 24 files we observed than on average
the UBF(A) encoded data was 59 % of the size of the cor-
responding data when encoded in the Erlang external term
format. In applications where bandwidth is expensive and
communication relatively slow (for example, communication
using mobile devices and GPRS) such a reduction in data
volume would have considerable benefit.

9. FUTURE WORK

Our system of contracts uses only a very simple type sys-
tem, it is easy to envisage extensions to allow more complex
types and extensions to describe non-functional properties
of the system.

The non-functional properties of the system are of partic-
ular interest, an example of these might be to add simple
timing constraints, allowing rules such as:

+STATE S1
T1 => T2 & S2 before Timel
| T3 & S3 after Time2

meaning that if a component is in state S1 and receives
a message of type T1 then it might respond with a message
of type T2 and change to state S2 within Timel or, respond
with a message of type T3 and change state to a state S3
after a time Time2.

Stricter contracts with timing constraints could be very
useful in designing real-time systems of interacting compo-
nents.

Other extensions could be imagined which would allow us
to define contracts like subroutines - so that one contract
you use a sub-contract to perform a specific task.

10. RUNNING THE SYSTEM

Since our system essentially exchanges characters, we can
use telnet to observe a session and test the behaviour of the
system. Here is an examples of commands issued in a telnet
session where the client is talking directly to the file server
specified by the file_server contract given above:

’info’$
{"I am a mini file server",’start’}$

Recall the the system starts in the state start the con-
tract says that the info command can be sent in any state.
The response should be a string, and the new state (in this
case start since the state is not changed by an ANYSTATE
rule).

The application returns a two tuple, containing a descrip-
tive string and the new state. This is converted by the appli-
cation driver to the UBF tuple {"I am ... ", ’start’}$.

Ilsj$

{{’files’,
#
"ubf.erl"&
"client.erl"&
"Makefile"& ...}
‘start’}$

Here the client sends a message of type 1s() - the server
responds with tuple {{’files’,#..., ’start’}$ message.
This first element in the tuple is of type files().

Finally we ask the system to describe itself:

’contract’$

{’contract’,

{{’name’,"file_server"},
{’info’,"I am a mini file server"},
{’description’,"

Commands :

’1s’$ List files
{’get’ File} => Length ~ ... ~
| noSuchFile
“}J
{’services’,#},
{’states’,
#{’start’,
#{’input’,{’tuple’ ,#{’prim’,’file’}&
{’constant’,’get’}&},
#{’output’,{’constant’, ’noSuchFile’}, ’stop’}&
{’output’,{’prim’,’binary’}, ’start’}&}&
{’input’,{’constant’,’1s’},
#{’output’,
{’tuple’,
#{’1list’,{’prim’, ’string’}}&
{’constant’,’files’}&}, ’start’ }&}&}&},
{’types’,
#{’file’,{’prim’,’string’}}&}}}$

The system responds to a message of type info() with a
parse tree representing the contract itself.

In our contract itself we used the generic type term() to
describe the contract. The contract itself is a well typed
term in UBF, but a discussion of the abstracted form of the
contract itself is not relevant to this paper.

The example is given to illustrate the introspective power
of the system. Not only can we run the system, we can also
ask the system to describe itself. We believe this to be a
desirable property of a distributed component in a system
of communicating components.

11. ALARGER CONTRACT

Our previous examples showed the basic syntax of a con-
tract. We finish with a more complex example. The contract
below describes an IRC[10] like protocol.

+NAME ("irc").

+VSN("ub£f1.0").

+TYPES

info () = info;
description() = description;
contract () = contract;
bool() = true | false;
nick() = string();
oldnick() = string();

newnick() = string();



group() = string();

logon() = logon;

proceed() = {ok, nick()}

listGroups() = groups;

groups () = [groupO];

joinGroup() = {join, group(}
leaveGroup() = {leave, group()};

ok () = ok;

changeNick() = {nick, nick()}

YA send a message to a group";
msg() = {msg, group(), string()}
msgEvent () = {msg, nick(), group(), string(};
joinEvent () = {joins, nick(), group()};
leaveEvent () = {leaves, nick(), group(};

changeNameEvent () = {changesName,
oldnick() ,newnick(), group()}.

%% I am assigned an initial (random) nick
+STATE start logon() => proceed() & active.
+STATE active

listGroups() => groups() & active;
joinGroup() => ok() & active;
leaveGroup() => ok() & active;
changeNick() => bool() & active;

YAA false if not in group
msg () => bool() & active;

EVENT => msgEvent();
EVENT => joinEvent(); % Nick joins group
EVENT => leaveEvent(); % Nick leaves group
EVENT => changeNameEvent(). % Nick changes name

% Message from group

+ANYSTATE
info() => string();
description() => string();
contract () => term().

This example introduces a new keyword EVENT. The syn-
tax:

+STATE S1

EVENT => T2;

means that the server can spontaneously send a message
of type T2 to the client. Normally, messages are send to the
client in reponse to requests, EVENT is used for asynchronous
single messages from the server to the client. Since the server
cannot be sure that the client has received such a message
no change of state in the server is allowed.

12. EXPERIENCE

The initial version of UBF was completed in about three
weeks of intensive programming - the system design changed
was re-designed implemented and re-implemented several
times.

Once the basic infrastructure was running a simple inter-
face to Oz was implemented - and following this an interface
to Java. The Oz and Java implementation only concerned
UBF(A) and not the contract language or checker.

The first non-toy application (IRC) was implemented to
test the system on a non-trivial example. I started by writ-
ing the contract and then made an Erlang client and server
which followed the contract.

Interestingly the contract checker proved extremely help-
ful in developing the IRC system - I often develop systems by
writing a client and server in the same time frame, shifting
attention between the client and server as necessary. Using
the contract checker proved helpful in rapidly identifying
which of the two components was in error in the event of
an error. Also, since the intermediate communication has a
fairly readable ASCII subset I was able to test the server by
typing simple text queries in a telnet session - in this way
I was able to immediately test the server (and the interac-
tion between the client and server) using telnet, rather than
my Erlang code (which at some stages was only partially
complete).

Interestingly the contract checker often complained about
contract violations that I did not believe, so I erroneously
assumed that the code for checking the contracts was incor-
rect. Almost invariably the contract checker was right and
I was wrong. I think we have a tendency to believe what
we had expected to see - and not that which was actually
present - the contract checker had no such biases.

Concentration on the contact itself caused an interesting
psychological shift of perspective and forced me to think
about the system in meta-level terms considering the client
and server as only stupid black box which did what they were
told. Trying to write the contracts in a clear manner was also
an exercise which resulted in a clearer understanding of the
problem by forcing me to think in terms of what messages
are sent between the client and server - and nothing else.

The contract proved also a valuable and easy to under-
stand specification of the problem. Having implemented an
Erlang client and server and a graphic based Erlang client
we decided to add a Java client.

The Java client was developed independently by Luke
Gorrie using only the UBF specification and the irc con-
tract. When it came to testing the contract checker could
provide extremely precise error diagnostics - of the form:

I was in state S and I expected you to send me a
message of type 7 but you sent me the message
M which is wrong.

Armed with such precise diagnostics it was easy to debug
the Java program. Needless to say when the Java client
talked to the Erlang server the system worked first time.
Testing both the Java client and the Erlang server could
be done independently using only a modified form of the
contract checker and the contract concerned.

Having developed the system we have a hight degree of
confidence in it’s correctness - and if it should fail we’ll im-
mediately know which component is broken.
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APPENDIX
A. UBF GRAMMAR



form -> ’+’ °NAME ’(’ string ’)’ dot.
form -> ’+’ °VSN’ ’(’ string ’)’ dot.
form -> >+’ ’TYPES’ types dot.

form -> ’+’ ’STATE’ atom transitions dot.
form -> ’+’ ’ANYSTATE’anyrules dot.

types -> typeDef ’;’ types.
types -> typeDef.

typeDef -> atom ’(’ ’)’ ’=’ type annotation.

annotation -> string.
annotation -> ’$empty’.

type -> primType ’|’ type.
type -> primType.

primType -> ’int’ O ).
primType -> ’string’ (’ ’)’.
primType -> ’constant’ ’(° ’)’.
primType -> ’bin’ 10 ).
primType -> atom O ).

primType -> ’{’ typeSeq ’}’.
primType -> ’[’ type ’]’.

primType -> atom.

primType -> integer.

primType -> integer ’.’ ’.’ integer.
primType -> string.

typeSeq -> type.
typeSeq -> type ’,’ typeSeq.

typeRef -> atom ’(° ’)’.

transitions -> transition ’;’ transitioms.
transitions -> transition.

transition -> typeRef ’=>’ outputs.
transition -> ’EVENT’ ’=>’ typeRef.

outputs -> responseAndState ’|’ outputs.
outputs -> responseAndState.

responseAndState -> typeRef ‘&’ atom.

anyrules -> anyrule ’;’ anyrules.
anyrules -> anyrule.

anyrule -> typeRef ’=>’ typeRef.
strings -> string ’,’ strings.

strings -> string.
strings -> ’$empty’.
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