

 ssl

 v11.3.2

 [image: Logo]

 Table of contents

 	SSL Application

 	SSL Release Notes

 	User's Guides

 	TLS/DTLS Protocol Overview

 	Examples

 	Erlang Distribution over TLS

 	Standards Compliance

 	
 Modules

 	ssl

 	ssl_crl_cache

 	ssl_crl_cache_api

 	ssl_session_cache_api

 SSL Application

The ssl application provides secure communication over sockets.
Description
The ssl application is an implementation of the TLS (previously known as SSL) and DTLS protocols in
Erlang.
For current statement of standards compliance see the
User's Guide.
Dependencies
The SSL application uses the Public_Key, Asn1 and Crypto application to
handle public keys and encryption, hence these applications must be loaded for
the SSL application to work. In an embedded environment this means they must be
started with application:start/1,2 before the SSL application is started.
Configuration
The application environment configuration parameters in this section are defined
for the SSL application. For more information about configuration parameters,
see the application manual page in Kernel.
Note
All parameters including the wording 'session_ticket' are TLS-1.3 only configuration
and other session parameters are prior to TLS-1.3 only configuration. DTLS versions
are based on TLS versions see standard compliance for mapping.
The environment parameters can be set on the command line, for example:
erl -ssl protocol_version "['tlsv1.2', 'tlsv1.1']"
	protocol_version = ssl:tls_version/0 | [ssl:tls_version/0]
<optional> - Protocol supported by started clients and servers. If this
option is not set, it defaults to all TLS protocols currently supported, more
might be configurable, by the SSL application. This option can be overridden
by the version option to ssl:connect/2,3 and ssl:listen/2.

	dtls_protocol_version = ssl:dtls_version/0 | [ssl:dtls_version/0]
<optional> - Protocol supported by started clients and servers. If this
option is not set, it defaults to all DTLS protocols currently supported, more
might be configurable, by the SSL application. This option can be overridden
by the version option to ssl:connect/2,3 and ssl:listen/2.

	session_lifetime = integer() <optional> - Maximum lifetime of the
session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions
may be invalidated earlier due to the maximum limitation of the session cache
table.

	session_cb = atom() <optional> - Deprecated Since OTP-23.3 replaced by
client_session_cb and server_session_cb

	client_session_cb = atom() <optional> - Since OTP-23.3 Name client of
the session cache callback module that implements the ssl_session_cache_api
behavior. Defaults to ssl_client_session_cache_db.

	server_session_cb = atom() <optional> - Since OTP-23.3 Name of the
server session cache callback module that implements the
ssl_session_cache_api behavior. Defaults to ssl_server_session_cache_db.

	session_cb_init_args = proplist:proplist() <optional> - Deprecated Since
OTP-23.3 replaced by client_session_cb_init_args and
server_session_cb_init_args

	client_session_cb_init_args = proplist:proplist() <optional> - List of
extra user-defined arguments to the init function in the session cache
callback module. Defaults to [].

	server_session_cb_init_args = proplist:proplist() <optional> - List of
extra user-defined arguments to the init function in the session cache
callback module. Defaults to [].

	session_cache_client_max = integer() <optional>

Limits the growth of the clients session cache, that is how many sessions
towards servers that are cached to be used by new client connections. If the
maximum number of sessions is reached, the current cache entries will be
invalidated regardless of their remaining lifetime. Defaults to 1000.
Recommended ssl-8.2.1 or later for this option to work as intended.

	session_cache_server_max = integer() <optional> - Limits the growth of
the servers session cache, that is how many client sessions are cached by the
server. If the maximum number of sessions is reached, the current cache
entries will be invalidated regardless of their remaining lifetime. Defaults
to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

	ssl_pem_cache_clean = integer() <optional> - Number of milliseconds
between PEM cache validations. Defaults to 2 minutes.
Note: The cache can be reloaded by calling ssl:clear_pem_cache/0.

	bypass_pem_cache = boolean() <optional> - Introduced in ssl-8.0.2.
Disables the PEM-cache. Can be used as a workaround for the PEM-cache
bottleneck before ssl-8.1.1. Defaults to false.

	alert_timeout = integer() <optional> - Number of milliseconds between
sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the alert so it may shutdown
gracefully. Defaults to 5000 milliseconds.

	internal_active_n = integer() <optional> - For TLS connections this
value is used to handle the internal socket. As the implementation was changed
from an active once to an active N behavior (N = 100), for performance
reasons, this option exist for possible tweaking or restoring of the old
behavior (internal_active_n = 1) in unforeseen scenarios. The option will not
affect erlang distribution over TLS that will always run in active N mode.
Added in ssl-9.1 (OTP-21.2).

	server_session_tickets_amount = integer() <optional> - Number of session
tickets sent by the server. It must be greater than 0. Defaults to 3.

	server_session_ticket_lifetime = integer() <optional> - Lifetime of
session tickets sent by the server. Servers must not use any value greater
than 604800 seconds (7 days). Expired tickets are automatically removed.
Defaults to 7200 seconds (2 hours).

	server_session_ticket_store_size = integer() <optional> - Sets the
maximum size of the server session ticket store (stateful tickets). Defaults
to 1000. Size limit is enforced by dropping old tickets.

	server_session_ticket_max_early_data = integer() <optional> - Sets the
maximum size of the early data that the server accepts and also configures its
NewSessionTicket messages to include this same size limit in their
early_data_indication extension. Defaults to 16384. Size limit is enforced by
both client and server.

	client_session_ticket_lifetime = integer() <optional> - Lifetime of
session tickets in the client ticket store. Expired tickets are automatically
removed. Defaults to 7200 seconds (2 hours).

	client_session_ticket_store_size = integer() <optional> - Sets the
maximum size of the client session ticket store. Defaults to 1000. Size limit
is enforced by dropping old tickets.

Error Logger and Event Handlers
The SSL application uses OTP logger. TLS/DTLS alerts are logged on
notice level. Unexpected errors are logged on error level. These log entries
will by default end up in the default Erlang log. The option log_level may be
used to in run-time to set the log level of a specific TLS connection, which is
handy when you want to use level debug to inspect the TLS handshake setup.
See Also
application

 SSL Release Notes

This document describes the changes made to the SSL application.
SSL 11.3.2
Fixed Bugs and Malfunctions
	Improve error message for bad arguments to underlying connect.
Own Id: OTP-19697 Aux Id: GH-10007, PR-10016

SSL 11.3.1
Fixed Bugs and Malfunctions
	hs_keylog callback properly handle alert in initial states, where encryption is not yet used. Also add keylog callback invocation for corner-case where server alert is encrypted with application secrets as client is already in connection state.
Own Id: OTP-19635 Aux Id: ERIERL-1235, PR-9849

Improvements and New Features
	The documentation for SSL option verify_fun has been improved.
Own Id: OTP-19676 Aux Id: PR-9691

SSL 11.3
Improvements and New Features
	Refactoring, minor optimizations and improved log printouts.
Own Id: OTP-19367 Aux Id: PR-9019

	supervisor:which_child/2 is now used to make start-up code for TLS-connections simpler and more straight forward, and to increase stability and maintainability of the ssl application.
Own Id: OTP-19406 Aux Id: PR-9231

	The data handling for tls-v1.3 has been optimized.
Own Id: OTP-19430 Aux Id: PR-9305

	Added experimental socket support.
Own Id: OTP-19463 Aux Id: PR-9398

	Improve code health by removing dead code.
Own Id: OTP-19531 Aux Id: PR-9563

	A test module for TLS distribution over socket has been implemented.
Own Id: OTP-19539 Aux Id: PR-9511

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

SSL 11.2.12
Improvements and New Features
	Lower log level for user cancelation as this is not an error case. Also handle possible undecrypted close alert during TLS-1.3 handshake.
Own Id: OTP-19592 Aux Id: PR-9566

SSL 11.2.11
Fixed Bugs and Malfunctions
	Correct the debug functionality for NSS keylogging for TLS-1.3 introduced in OTP-27.3.1 so that TLS-1.3 key updates items always get correct counter value and each item is logged as one single line.
Own Id: OTP-19569 Aux Id: PR-9661

SSL 11.2.10
Fixed Bugs and Malfunctions
	Correct handling of unassigned signature algorithms to properly ignore them instead of failing the handshake.
Own Id: OTP-19529 Aux Id: GH-9483, PR-9486

	Update key mechanism in
CRL cache so that CRL DP with same
URI path component becomes distinguishable from each other.
Own Id: OTP-19549 Aux Id: GH-8891, PR-9612

Improvements and New Features
	Add callback for NSS keylogging so that it can work as expected for all scenarios.
Own Id: OTP-19391 Aux Id: PR-9221

SSL 11.2.9
Fixed Bugs and Malfunctions
	The function for selecting the best server certificate and key pair has been enhanced when several options are available to ensure that the fallback will not always be chosen.
Own Id: OTP-19423 Aux Id: PR-9185

	Avoided duplicating a few algorithms in default values caused by an interoperability workaround not needed in this case.
Own Id: OTP-19428 Aux Id: PR-9288

	Fixed two alert bugs, which could result in a crash instead of an alert.
Own Id: OTP-19433 Aux Id: PR-9308

SSL 11.2.8
Fixed Bugs and Malfunctions
	Setting protocol version to a lower value then supported by default in server API function called after ssl:listen/2 could result in wrong default values being used and connections failing with insufficient security.
Own Id: OTP-19457 Aux Id: PR-9418

	Improve error handling of server name indication fun. This implies that if the sni_fun returns undefined we will attempt connection with original option values, if it returns unrecognized we end the connection with UNRECOGNIZED_NAME alert and if provided options fail option verification we will end the connection with a HANDSHAKE_FAILURE and an error log.
Own Id: OTP-19467 Aux Id: PR-9387, ERIERL-1189

SSL 11.2.7
Fixed Bugs and Malfunctions
	An initiated handshake should always be closed with an alert, some corner cases have been fixed so that this should always be the case.
Own Id: OTP-19411 Aux Id: PR-9273, ERIERL-1174

	Correct option handling to work properly for paused handshaking. Could result in unwanted alerts or or error messages.
Own Id: OTP-19445 Aux Id: GH-9177, PR-9322

SSL 11.2.6
Improvements and New Features
	Enhanced return value spec for active messages from the TLS connection socket.
Own Id: OTP-19387 Aux Id: PR-9067

SSL 11.2.5
Fixed Bugs and Malfunctions
	Avoid generating an internal alert for case that should have been an orderly shutdown by the supervisor.
Own Id: OTP-19311 Aux Id: PR-8980

	If present, extended key-usage TLS (SSL) role check (pk-clientAuth, pk-serverAuth) should always be performed for peer-cert. An intermediate CA cert may relax the requirement if AnyExtendedKeyUsage purpose is present.
In OTP-25.3.2.8, OTP-26.2 and OTP-27.0 these requirements became too relaxed. There where two problems, firstly the peer cert extension was only checked if it was marked critical, and secondly the CA cert check did not assert the relaxed AnyExtendedKeyUsage purpose.
This could result in that certificates might be misused for purposes not intended by the certificate authority.
Thanks to Bryan Paxton for reporting the issue.
Own Id: OTP-19352 Aux Id: PR-9130, CVE-2024-53846, OTP-19240

Improvements and New Features
	Back port certificate_authorities option for TLS-1.3 servers to pre TLS-1.3 servers to enable them to disable the sending of certificate authorities in their certificate request. This will have same affect as the the TLS-1.3 server option although it is handled by a different mechanism in these versions, where the functionality is described to be more of a guidance, although some pre TLS clients have proven to make it mandatory as in TLS-1.3 extension handling.
Own Id: OTP-19325 Aux Id: PR-9001, ERIERL-1147

SSL 11.2.4
Fixed Bugs and Malfunctions
	Refactor trying to also make some optimizations introduced a bug in signature algorithms checks in OTP-26.2.1. This could manifest itself in not being able to negotiate connections using certificates needing to use some TLS-1.2 compatibility legacy signature schemes.
Own Id: OTP-19249 Aux Id: ERIERL-1137, PR-8866

	Correct timeout handling for termination code run for own alerts, so that intended timeout is used instead of falling back to OS TCP-stack timeout that is unreasonably long on some platforms.
Own Id: OTP-19274 Aux Id: PR-8901

	Fix assertion so that works as intended.
This could result in that some TLS-1.2 clients would fail to connect to the the erlang server. Bug introduced in OTP-27.1.1
Own Id: OTP-19288 Aux Id: GH-8908, PR-8916

SSL 11.2.3
Fixed Bugs and Malfunctions
	Starting from TLS-1.3 some server handshake alerts might arrive after ssl:connection/2,3,4 has returned. If the socket is in active mode the controlling process will get the alert message, but passive sockets would only get {error, closed} on next call to ssl:recv/2,3 or ssl/setopts/2. Passive sockets calls will now return {error, error_alert()} instead.
Own Id: OTP-19236 Aux Id: PR-8261

	Servers configured to support only version (pre TLS-1.2) should ignore hello version extension, as it is an unknown extension to them, this will result in that new clients that do not support the old server version will get an insufficient security alert from the server and not a protocol version alert, this is consistent with how old servers not able to support higher protocol versions work.
Own Id: OTP-19257

SSL 11.2.2
Fixed Bugs and Malfunctions
	A race in the kTLS flavour of SSL distribution has been fixed so that inet_drv.c doesn't read ahead too much data, which could cause the kTLS encryption to be activated too late when some encrypted data had already been read into the inet_drv.c buffer as unencrypted.
Own Id: OTP-19175 Aux Id: GH-8561, PR-8690

Improvements and New Features
	All TLS-1.3 terminations are now graceful (previous TLS version terminations already were).
Own Id: OTP-17848

	It is now possible to use a verification fun of arity 4, giving the user fun access to both encoded and decoded versions of the certificate. This is desirable as a workaround for encoding errors preventing re-encoding from being reliable. This also saves some work load if the encoded version is needed.
Note that calling public_key:pkix_path_validation/3 with only decoded certs is not recommended, due to the decoding workarounds, although it will work as long as the workarounds are not needed.
If the decoded version is needed before thecall to public_key it is recommend to use the combined_cert- type to avoid double decoding. Note that the path validation algorithm itself always needs both the encoded and decoded versions of the certs.
The ssl implementation will now benefit from using this function instead of emulating the verify_fun/4.
Own Id: OTP-19169

	Compiler warnings for some removed functions have been corrected to point out the correct replacement functions.
Own Id: OTP-19186 Aux Id: PR-8709

	Include more information in logging of SNI (Server Name Indication) mismatch error.
Own Id: OTP-19187

SSL 11.2.1
Fixed Bugs and Malfunctions
	Check for TLS-1.3 support should check minimum requirements.
Own Id: OTP-19094 Aux Id: GH-8489

	If both TLS-1.3 and TLS-1.2 is supported
and TLS-1.2 negotiated convert TLS-1.3 ECDSA schemes to TLS-1.2 hash and signature pairs for increased interoperability.
Own Id: OTP-19107 Aux Id: GH-8376

	TLS-1.3 negotiation now uses SNI based options correctly instead of ignoring them.
Own Id: OTP-19140

Improvements and New Features
	Make it easier to distinguish between a invalid signature and unsupported signature.
Own Id: OTP-19091

	Enhance ALERT logs to help understand what causes the alert.
Own Id: OTP-19092 Aux Id: GH-8482

	When the default value for signature_algs is used, default the signature_algs_cert to the default value + rsa_pkcs1_sha1 to allow this algorithms for certificates but not for the TLS protocol. This is for better interoperability. If signature_algs is set explicitly signature_algs_cert must also be set explicitly if they should be different.
Own Id: OTP-19152 Aux Id: GH-8588

SSL 11.2
Fixed Bugs and Malfunctions
	Starting a TLS server without sufficient credentials (certificate or anonymous cipher) would work, but it was impossible to connect to it.
This has been corrected to return an error instead of starting the server.
Own Id: OTP-18887 Aux Id: GH-7493, PR-7918

	ASN.1 decoding errors are handled in more places to ensure that errors are returned instead of cause a crash.
Own Id: OTP-18969 Aux Id: GH-8058, PR-8256

	Improved error checking on the API functions.
Own Id: OTP-18992 Aux Id: GH-8066, PR-8156

Improvements and New Features
	The ssl client can negotiate and handle certificate status request (OCSP stapling support on the client side).
Thanks to voltone for interop testing and related discussions.
Own Id: OTP-18606 Aux Id: OTP-16875,OTP-16448

	Memory consumption has been reduced and performance increased by refactoring internal data structures and their usage.
Own Id: OTP-18665 Aux Id: PR-7447

	Added ssl_crl_cache_api:lookup/2 as an optional -callback attribute.
Own Id: OTP-18788 Aux Id: PR-7700

	Key customization support has been extended to allow flexibility for implementers of for instance hardware security modules (HSM) or trusted platform modules (TPM).
Own Id: OTP-18876 Aux Id: PR-7898, PR-7475

	The proc_lib:set_label/1 function is now used to increase observability of ssl processes.
Own Id: OTP-18879

	Brainpool elliptic curves are now supported in TLS-1.3.
Own Id: OTP-18884 Aux Id: PR-8056

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	For security reasons, the CBC ciphers are now longer included in the list of default ciphers for TLS-1.2.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19025 Aux Id: PR-8250

	There is a new cert_policy_opts option to configure certificate policy options for the certificate path validation.
Own Id: OTP-19027 Aux Id: PR-8255

SSL 11.1.4.8
Fixed Bugs and Malfunctions
	Correct handling of unassigned signature algorithms to properly ignore them instead of failing the handshake.
Own Id: OTP-19529 Aux Id: GH-9483, PR-9486

SSL 11.1.4.7
Fixed Bugs and Malfunctions
	An initiated handshake should always be closed with an alert, some corner cases have been fixed so that this should always be the case.
Own Id: OTP-19411 Aux Id: PR-9273, ERIERL-1174

	Correct option handling to work properly for paused handshaking. Could result in unwanted alerts or or error messages.
Own Id: OTP-19445 Aux Id: GH-9177, PR-9322

SSL 11.1.4.6
Fixed Bugs and Malfunctions
	If present, extended key-usage TLS (SSL) role check (pk-clientAuth, pk-serverAuth) should always be performed for peer-cert. An intermediate CA cert may relax the requirement if AnyExtendedKeyUsage purpose is present.
In OTP-25.3.2.8, OTP-26.2 and OTP-27.0 these requirements became too relaxed. There where two problems, firstly the peer cert extension was only checked if it was marked critical, and secondly the CA cert check did not assert the relaxed AnyExtendedKeyUsage purpose.
This could result in that certificates might be misused for purposes not intended by the certificate authority.
Thanks to Bryan Paxton for reporting the issue.
Own Id: OTP-19352 Aux Id: PR-9130, CVE-2024-53846, OTP-19240

SSL 11.1.4.5
Fixed Bugs and Malfunctions
	Avoid generating an internal alert for case that should have been an orderly shutdown by the supervisor.
Own Id: OTP-19311 Aux Id: PR-8980

Improvements and New Features
	Back port certificate_authorities option for TLS-1.3 servers to pre TLS-1.3 servers to enable them to disable the sending of certificate authorities in their certificate request. This will have same affect as the the TLS-1.3 server option although it is handled by a different mechanism in these versions, where the functionality is described to be more of a guidance, although some pre TLS clients have proven to make it mandatory as in TLS-1.3 extension handling.
Own Id: OTP-19325 Aux Id: PR-9001, ERIERL-1147

SSL 11.1.4.4
Fixed Bugs and Malfunctions
	Starting from TLS-1.3 some server handshake alerts might arrive after ssl:connection/2,3,4 has returned. If the socket is in active mode the controlling process will get the alert message, but passive sockets would only get {error, closed} on next call to ssl:recv/2,3 or ssl/setopts/2. Passive sockets calls will now return {error, error_alert()} instead.
Own Id: OTP-19236 Aux Id: PR-8261

	Refactor trying to also make some optimizations introduced a bug in signature algorithms checks in OTP-26.2.1. This could manifest itself in not being able to negotiate connections using certificates needing to use some TLS-1.2 compatibility legacy signature schemes.
Own Id: OTP-19249 Aux Id: ERIERL-1137, PR-8866

	Servers configured to support only version (pre TLS-1.2) should ignore hello version extension, as it is an unknown extension to them, this will result in that new clients that do not support the old server version will get an insufficient security alert from the server and not a protocol version alert, this is consistent with how old servers not able to support higher protocol versions work.
Own Id: OTP-19257 Aux Id: ERIERL-1131

	Correct timeout handling for termination code run for own alerts, so that intended timeout is used instead of falling back to OS TCP-stack timeout that is unreasonably long on some platforms.
Own Id: OTP-19274 Aux Id: PR-8901

SSL 11.1.4.3
Fixed Bugs and Malfunctions
	A race in the kTLS flavour of SSL distribution has been fixed so inet_drv.c doesn't read ahead too much data which could cause the kTLS encryption to be activated too late when some encrypted data had already been read into the inet_drv.c buffer as unencrypted.
Own Id: OTP-19175 Aux Id: GH-8561, PR-8690

Improvements and New Features
	Make sure all TLS-1.3 terminations are graceful (previous TLS version terminations already are).
Own Id: OTP-17848

	Include more information in logging of SNI (Server Name Indication) mismatch error.
Own Id: OTP-19187

SSL 11.1.4.2
Improvements and New Features
	When the default value for signature_algs is used, default the signature_algs_cert to the default value + rsa_pkcs1_sha1 to allow this algorithms for certificates but not for the TLS protocol. This is for better interoperability. If signature_algs is set explicitly signature_algs_cert must also be set explicitly if they should be different.
Own Id: OTP-19152 Aux Id: GH-8588

SSL 11.1.4.1
Fixed Bugs and Malfunctions
	Check for TLS-1.3 support should check minimum requirements.
Own Id: OTP-19094 Aux Id: GH-8489

	If both TLS-1.3 and TLS-1.2 is supported and TLS-1.2 negotiated convert TLS-1.3 ECDSA schemes to TLS-1.2 hash and signature pairs for increased interoperability.
Own Id: OTP-19107 Aux Id: GH-8376

	TLS-1.3 negotiation now uses SNI based options correctly instead of ignoring them.
Own Id: OTP-19140

Improvements and New Features
	Make it easier to distinguish between a invalid signature and unsupported signature.
Own Id: OTP-19091

	Enhance ALERT logs to help understand what causes the alert.
Own Id: OTP-19092 Aux Id: GH-8482

SSL 11.1.4
Fixed Bugs and Malfunctions
	Fix certificate authorities check so that CA closest to peer is not lost. It could manifest itself in a failed connection as the client failed to realize it had a valid certificate chain to send to the server.
Own Id: OTP-19065 Aux Id: GH-8356, PR-8367

	ssl:signature_algs/2 did not list some legacy algorithm schemes correctly when listing all algorithms available.
Own Id: OTP-19067 Aux Id: PR-8379

SSL 11.1.3
Fixed Bugs and Malfunctions
	Cleanup and close all connections in DTLS when the listen socket owner dies.
Improved IPv6 handling in DTLS.
Own Id: OTP-19037 Aux Id: GH-7951 GH-7955

	Fixed a crash in dtls accept.
Own Id: OTP-19059 Aux Id: GH-8338

SSL 11.1.2
Fixed Bugs and Malfunctions
	ssl:prf/5, will start working instead of hanging in a TLS-1.3 context if called appropriately. Note that the implementation has changed and in OTP-27 a more adequate API will be documented.
Own Id: OTP-18890 Aux Id: GH-7911

	Server name verification didn't work if a connection was made with IP-address as a string.
Own Id: OTP-18909 Aux Id: GH-7968

	The fallback after "dh" ssl option was undefined was to get "dh" from ssl options again. This is clearly wrong and now changed to the documented fallback "dhfile" ssl option.
Own Id: OTP-18919 Aux Id: PR-7984

	Correct default value selection for DTLS. Will only affect users linked with really old version of cryptolib library.
Own Id: OTP-18962 Aux Id: GH-8079

	Adhere elliptic curves with RFC 8422 pre TLS-1.3, that is Edwards curves are added to curves that can be used for key exchange, and documentation and implementation of eccs/0,1 are aligned.
Own Id: OTP-18991

Improvements and New Features
	Improve alert reason when ecdhe_rsa key_exchange does not have any common curves to use
Own Id: OTP-18985

SSL 11.1.1
Fixed Bugs and Malfunctions
	Legacy name handling could cause interop problems between TLS-1.3/1.2 client and TLS-1.2 server.
Own Id: OTP-18917 Aux Id: GH-7978

SSL 11.1
Fixed Bugs and Malfunctions
	ssl application will validate id-kp-serverAuth and id-kp-clientAuth extended
key usage only in end entity certificates. public_key application will
disallow "anyExtendedKeyUsage" for CA certificates that includes the extended
key usage extension and marks it critical.
Own Id: OTP-18739

	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

	Correct handling of TLS-1.3 legacy scheme names, could cause interop failures
for TLS-1.2 clients.
Own Id: OTP-18817

	Add missing export for connection_info() API type.
Own Id: OTP-18886

Improvements and New Features
	Fixed server name indication which was not handled properly.
Own Id: OTP-18836 Aux Id: GH-7795

	Align documentation and implementation
Own Id: OTP-18853 Aux Id: PR-7841

	Improve connection setup by optimizing certificate lookup.
Own Id: OTP-18893 Aux Id: PR-7920 PR-7921

SSL 11.0.3
Fixed Bugs and Malfunctions
	Avoid function clause error in ssl:getopts/2 by handling that inet:getopts may
return an empty list during some circumstances, such as the socket being in a
closing state.
Own Id: OTP-18697 Aux Id: GH-7506

	The API function `ssl:recv/3` has been tightened to disallow negative
length, which has never been documented to work, but was passed through and
caused strange errors.
Own Id: OTP-18700 Aux Id: GH-7507

	When a client initiated renegotiation was rejected and the client socket was
in active mode the expected error message to the controlling process was not
sent.
Own Id: OTP-18712 Aux Id: GH-7431

Improvements and New Features
	Add some guidance for signature algorithms configuration in ssl applications
users guide.
Own Id: OTP-18631

SSL 11.0.2
Fixed Bugs and Malfunctions
	Added keylog information to all protocol versions in
ssl:connection_information/2.
Own Id: OTP-18643 Aux Id: ERIERL-932

Improvements and New Features
	Add RFC-6083 considerations for DTLS to enable gen_sctp based callback for the
transport.
Own Id: OTP-18618 Aux Id: ERIERL-932

SSL 11.0.1
Fixed Bugs and Malfunctions
	Make sure that selection of client certificates handle both TLS-1.3 and
TLS-1.2 names correctly. Could cause valid client certificate to not be
selected, and an empty client certificate message to be sent to server.
Own Id: OTP-18588 Aux Id: GH-7264, PR-7277

	Improved ssl:format_error/1 to handle more error tuples.
Own Id: OTP-18596 Aux Id: GH-7247

	Fixed hanging ssl:connect when ssl application is not started.
Own Id: OTP-18603 Aux Id: GH-7297

	Correct handling of retransmission timers, current behavior could cause
unwanted delays.
Own Id: OTP-18632 Aux Id: PR-7300, GH-7301

SSL 11.0
Improvements and New Features
	Remove less that 256 bit ECC from default supported ECC pre TLS-1.3
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14771

	Improved error checking and handling of ssl options.
Own Id: OTP-15903

	With this change, stateless tickets generated by server with anti_replay
option enabled can be used for creating ClientHello throughout ticket
lifetime. Without this change, usability was limited to WindowSize number of
seconds configured for anti_replay option.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18168 Aux Id: PR-6019, GH-6014

	Support for Kernel TLS (kTLS), has been added to the SSL application, for TLS
distribution (-proto_dist inet_tls), the SSL option {ktls, true}. Using
this for general SSL sockets is uncomfortable, undocumented and not
recommended since it requires very platform dependent raw options.
This, for now, only works for some not too old Linux distributions. Roughly, a
kernel 5.2.0 or later with support for UserLand Protocols and the kernel
module tls is required.
Own Id: OTP-18235 Aux Id: PR-6104, PR-5840

	With this change, TLS 1.3 server can be configured to include client
certificate in session ticket.
Own Id: OTP-18253

	With this change, it is possible to configure encryption seed to be used with
TLS1.3 stateless tickets. This enables using tickets on different server
instances.
Own Id: OTP-18254 Aux Id: PR-5982

	Debugging enhancements.
Own Id: OTP-18312

	With this change, maybe keyword atom is not used as function name in ssl code.
Own Id: OTP-18335

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18405 Aux Id:
GH-6672,PR-6702,PR-6768,PR-6700,PR-6769,PR-6812,PR-6814

	For security reasons remove support for SHA1 and DSA algorithms from default
values.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18438 Aux Id: GH-6679

	Mitigate memory usage from large certificate chains by lowering the maximum
handshake size. This should not effect the common cases, if needed it can be
configured to a higher value.
Own Id: OTP-18453

	Change the client default verify option to verify_peer. Note that this makes
it mandatory to also supply trusted CA certificates or explicitly set verify
to verify_none. This also applies when using the so called anonymous test
cipher suites defined in TLS versions pre TLS-1.3.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18455 Aux Id: GH-5899

	Erlang distribution code in Kernel and SSL has been refactored a bit to
facilitate debugging and re-usability, which shouldn't have any noticeable
effects on behaviour or performance.
Own Id: OTP-18456

	Add encoding and decoding of use_srtp hello extension to facilitate for DTLS
users to implement SRTP functionality.
Own Id: OTP-18459

	Refactors the (ssl application to use macros for TLS and DTLS versions
instead of hard-coded tuple numbers. This change improves the maintainability
of ssl
Own Id: OTP-18465 Aux Id: GH-7065

	If the function ssl:renegotiate/1 is called on connection that is running
TLS-1.3 return an error instead of hanging or timing out.
Own Id: OTP-18507

	If a user cancel alert with level warning is received during handshake make it
be handled the same regardless of TLS version. If it is received in connection
in TLS-1.3 regard it as an error as it is inappropriate.
In TLS-1.3 all error alerts are considered FATAL regardless of legacy alert
type. But make sure legacy type is printed in logs to not confuse users that
are expecting the same legacy type as sent by peer.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18531

	Make fail_if_no_peer_cert default true if verify_peer is set on the server,
otherwise the server will accept the connection if verify_peer is set and the
user have forgot to set the fail_if_no_peer_cert and the client did not send a
certificate.
Own Id: OTP-18567

	To make it easier to configure signature algorithms with algorithms that are
moved from the default add the API function signature_algs/2 that lists
possible values. Also make sha224 a non default value.
Own Id: OTP-18572

SSL 10.9.1.7
Fixed Bugs and Malfunctions
	Avoid generating an internal alert for case that should have been an orderly shutdown by the supervisor.
Own Id: OTP-19311 Aux Id: PR-8980

	If present, extended key-usage TLS (SSL) role check (pk-clientAuth, pk-serverAuth) should always be performed for peer-cert. An intermediate CA cert may relax the requirement if AnyExtendedKeyUsage purpose is present.
In OTP-25.3.2.8, OTP-26.2 and OTP-27.0 these requirements became too relaxed. There where two problems, firstly the peer cert extension was only checked if it was marked critical, and secondly the CA cert check did not assert the relaxed AnyExtendedKeyUsage purpose.
This could result in that certificates might be misused for purposes not intended by the certificate authority.
Thanks to Bryan Paxton for reporting the issue.
Own Id: OTP-19352 Aux Id: PR-9130, CVE-2024-53846, OTP-19240

SSL 10.9.1.6
Fixed Bugs and Malfunctions
	Starting from TLS-1.3 some server handshake alerts might arrive after ssl:connection/2,3,4 has returned. If the socket is in active mode the controlling process will get the alert message, but passive sockets would only get {error, closed} on next call to ssl:recv/2,3 or ssl/setopts/2. Passive sockets calls will now return {error, error_alert()} instead.
Own Id: OTP-19236 Aux Id: PR-8261

	Servers configured to support only version (pre TLS-1.2) should ignore hello version extension, as it is an unknown extension to them, this will result in that new clients that do not support the old server version will get an insufficient security alert from the server and not a protocol version alert, this is consistent with how old servers not able to support higher protocol versions work.
Own Id: OTP-19257 Aux Id: ERIERL-1131

	Correct timeout handling for termination code run for own alerts, so that intended timeout is used instead of falling back to OS TCP-stack timeout that is unreasonably long on some platforms.
Own Id: OTP-19274 Aux Id: PR-8901

SSL 10.9.1.5
Fixed Bugs and Malfunctions
	TLS-1.3 negotiation now uses SNI based options correctly instead of ignoring them.
Own Id: OTP-19140

SSL 10.9.1.4
Fixed Bugs and Malfunctions
	Fix certificate authorities check so that CA closest to peer is not lost. It could manifest itself in a failed connection as the client failed to realize it had a valid certificate chain to send to the server.
Own Id: OTP-19065 Aux Id: GH-8356, PR-8367

SSL 10.9.1.3
Fixed Bugs and Malfunctions
	ssl application will validate id-kp-serverAuth and id-kp-clientAuth extended
key usage only in end entity certificates. public_key application will
disallow "anyExtendedKeyUsage" for CA certificates that includes the extended
key usage extension and marks it critical.
Own Id: OTP-18739

	Add missing export for connection_info() API type.
Own Id: OTP-18886

SSL 10.9.1.2
Fixed Bugs and Malfunctions
	The API function `ssl:recv/3` has been tightened to disallow negative
length, which has never been documented to work, but was passed through and
caused strange errors.
Own Id: OTP-18700 Aux Id: GH-7507

	When a client initiated renegotiation was rejected and the client socket was
in active mode the expected error message to the controlling process was not
sent.
Own Id: OTP-18712 Aux Id: GH-7431

SSL 10.9.1.1
Fixed Bugs and Malfunctions
	Added keylog information to all protocol versions in
ssl:connection_information/2.
Own Id: OTP-18643 Aux Id: ERIERL-932

Improvements and New Features
	Add RFC-6083 considerations for DTLS to enable gen_sctp based callback for the
transport.
Own Id: OTP-18618 Aux Id: ERIERL-932

SSL 10.9.1
Fixed Bugs and Malfunctions
	With this change, ssl:connection_information/2 returns correct keylog data
after TLS1.3 key update.
Own Id: OTP-18489

	Client signature algorithm list input order is now honored again , it was
accidently reversed by a previous fix.
Own Id: OTP-18550

SSL 10.9
Fixed Bugs and Malfunctions
	Fixed that new dtls connections from the same client ip port combination
works. If there is a process waiting for accept the new connection will
connect to that, otherwise it will try to re-connect to the old server
connection.
Own Id: OTP-18371 Aux Id: GH-6160

	When shutting down a node that uses SSL distribution (-proto_dist inet_tls),
a confusing error message about an unexpected process exit was printed. This
particular message is no longer generated.
Own Id: OTP-18443 Aux Id: PR-6810

Improvements and New Features
	fixes the type spec for ssl:format_error/1
Own Id: OTP-18366 Aux Id: PR-6565, GH-6506

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

SSL 10.8.7
Improvements and New Features
	Maximize compatibility by ignoring change_cipher_spec during handshake even if
middle_box_mode is not negotiated (mandated by client)
Own Id: OTP-18433 Aux Id: GH-6772

	Move assert of middlebox message after an hello_retry_request to maximize
interoperability. Does not changes semantics of the protocol only allows
unexpected message delay from server.
Own Id: OTP-18467 Aux Id: GH-6807

SSL 10.8.6
Fixed Bugs and Malfunctions
	With this change, tls_sender process is hibernated after sufficient
inactivity.
Own Id: OTP-18314 Aux Id: GH-6373

	Correct handling of legacy schemes so that ECDSA certs using sha1 may be used
for some TLS-1.3 configurations.
Own Id: OTP-18332 Aux Id: GH-6435, PR-6435, ERL-6435

	With this change, tls_sender does not cause logger crash upon key update.
Own Id: OTP-18349

Improvements and New Features
	Enhance warning message
Own Id: OTP-18257 Aux Id: GH-6307

	Provide server option to make certificate_authorities extension in the TLS-1.3
servers certificate request optional. This will allow clients to send
incomplete chains that may be reconstructable and thereby verifiable by the
server, but that would not adhere to the certificate_authorities extension.
Own Id: OTP-18267 Aux Id: PR-6228, GH-6106

	If the verify_fun handles four arguments the DER cert will be supplied as
one of the arguments.
Own Id: OTP-18302 Aux Id: ERIERL-867

SSL 10.8.5
Fixed Bugs and Malfunctions
	Fixes handling of symlinks in cacertfile option.
Own Id: OTP-18266 Aux Id: GH-6328

SSL 10.8.4
Fixed Bugs and Malfunctions
	Reject unexpected application data in all relevant places for all TLS
versions. Also, handle TLS-1.3 middlebox compatibility with more care. This
will make malicious connections fail early and further, mitigate possible DoS
attacks, that would be caught by the handshake timeout.
Thanks to Aina Toky Rasoamanana and Olivier Levillain from Télécom SudParis
for alerting us of the issues in our implementation.
Own Id: OTP-18044

	With this change, value of cacertfile option will be adjusted before loading
certs from the file. Adjustments include converting relative paths to absolute
and converting symlinks to actual file path.
Thanks to Marcus Johansson
Own Id: OTP-18099 Aux Id: PR-6287

	In TLS-1.3, if chain certs are missing (so server auth domain adherence can
not be determined) send peer cert and hope the server is able to recreate a
chain in its auth domain.
Own Id: OTP-18191 Aux Id: GH-6105

	Make sure periodical refresh of CA certificate files repopulates cache
properly.
Own Id: OTP-18195

	Correct internal CRL cache functions to use internal format consistently.
Own Id: OTP-18203 Aux Id: PR-5996

	Incorrect handling of client middlebox negotiation for TLS-1.3 could result in
that a TLS-1.3 server would not use middlebox mode although the client was
expecting it too and failing the negotiation with unexpected message.
Own Id: OTP-18219 Aux Id: GH-6241, PR-6249

	If the "User" process, the process starting the TLS connection, gets killed in
the middle of spawning the dynamic connection tree make sure we do not leave
any processes behind.
Own Id: OTP-18233 Aux Id: GH-6244, PR-6270

Improvements and New Features
	A vulnerability has been discovered and corrected. It is registered as
CVE-2022-37026 "Client Authentication Bypass". Corrections have been released
on the supported tracks with patches 23.3.4.15, 24.3.4.2, and 25.0.2. The
vulnerability might also exist in older OTP versions. We recommend that
impacted users upgrade to one of these versions or later on the respective
tracks. OTP 25.1 would be an even better choice. Impacted are those who are
running an ssl/tls/dtls server using the ssl application either directly or
indirectly via other applications. For example via inets (httpd), cowboy, etc.
Note that the vulnerability only affects servers that request client
certification, that is sets the option {verify, verify_peer}.
Own Id: OTP-18241

SSL 10.8.3
Fixed Bugs and Malfunctions
	The link to crypto:engine_load refered the function with wrong arity.
Own Id: OTP-18173

SSL 10.8.2
Fixed Bugs and Malfunctions
	Improved handling of unexpected messages during the handshake, taking the
right action for unexpected messages.
Own Id: OTP-18145

SSL 10.8.1
Fixed Bugs and Malfunctions
	When a TLS-1.3 enabled client tried to talk to a TLS-1.2 server that coalesces
TLS-1.2 handshake message over one TLS record, the connection could fail due
to some message being handled in the wrong state, this has been fixed.
Own Id: OTP-18087 Aux Id: GH-5961

	Correctly handles supported protocol version change from default to something
else by sni_fun supplied to ssl:handshake/[2,3] together with a TCP-socket
(so called upgrade).
Own Id: OTP-18100 Aux Id: GH-5985

	Also, TLS-1.3 should respond with a protocol version alert if previous
versions, that are supported but not configured, are attempted.
Own Id: OTP-18129 Aux Id: GH-5950

SSL 10.8
Fixed Bugs and Malfunctions
	When a TLS-1.3 enabled client tried to talk to a TLS-1.2 server that coalesces
TLS-1.2 handshake message over one TLS record, the connection could fail due
to some message being handled in the wrong state, this has been fixed.
Own Id: OTP-18087 Aux Id: GH-5961

	Fixed tls-1.3 session ticket lifetime which was discarded to quickly before.
Own Id: OTP-18092 Aux Id: PR-5959

Improvements and New Features
	With this change, it is possible to provide several certificates. Most
appropriate will be selected based on negotiated properties.
Own Id: OTP-15993 Aux Id: GH-4143

	Add options for users to be able to set spawn_opts for TLS processes (sender
and receiver) this may be useful for tuning trade-offs between CPU and Memory
usage.
Own Id: OTP-17855 Aux Id: PR-5328

	Allow key file passwords to be input as a single binary, that is we change the
data type to be the more for the purpose logical data type iodata() instead of
string().
Own Id: OTP-17890

	Logging enhancement, add location information to the warning log message.
Own Id: OTP-18000 Aux Id: PR-5790

	Now also accepts the signature_algs_cert option in TLS-1.2 configuration.
Own Id: OTP-18014

	Handle certificate selection correctly for server fallback and certificate
authorities considerations.
Own Id: OTP-18045 Aux Id: ERIERL-792, OTP-15993

	Enhance handling of handshake decoding errors, especially for certificate
authorities extension to ensure graceful termination.
Own Id: OTP-18085

SSL 10.7.3.9
Fixed Bugs and Malfunctions
	When a client initiated renegotiation was rejected and the client socket was
in active mode the expected error message to the controlling process was not
sent.
Own Id: OTP-18712 Aux Id: GH-7431

SSL 10.7.3.8
Fixed Bugs and Malfunctions
	Added keylog information to all protocol versions in
ssl:connection_information/2.
Own Id: OTP-18643 Aux Id: ERIERL-932

Improvements and New Features
	Add RFC-6083 considerations for DTLS to enable gen_sctp based callback for the
transport.
Own Id: OTP-18618 Aux Id: ERIERL-932

SSL 10.7.3.7
Fixed Bugs and Malfunctions
	Client signature algorithm list input order is now honored again , it was
accidently reversed by a previous fix.
Own Id: OTP-18550

SSL 10.7.3.6
Improvements and New Features
	Maximize compatibility by ignoring change_cipher_spec during handshake even if
middle_box_mode is not negotiated (mandated by client)
Own Id: OTP-18433 Aux Id: GH-6772

	Move assert of middlebox message after an hello_retry_request to maximize
interoperability. Does not changes semantics of the protocol only allows
unexpected message delay from server.
Own Id: OTP-18467 Aux Id: GH-6807

SSL 10.7.3.5
Fixed Bugs and Malfunctions
	Fixes handling of symlinks in cacertfile option.
Own Id: OTP-18266 Aux Id: GH-6328

SSL 10.7.3.4
Fixed Bugs and Malfunctions
	With this change, value of cacertfile option will be adjusted before loading
certs from the file. Adjustments include converting relative paths to absolute
and converting symlinks to actual file path.
Thanks to Marcus Johansson
Own Id: OTP-18099 Aux Id: PR-6287

	Incorrect handling of client middlebox negotiation for TLS-1.3 could result in
that a TLS-1.3 server would not use middlebox mode although the client was
expecting it too and failing the negotiation with unexpected message.
Own Id: OTP-18219 Aux Id: GH-6241, PR-6249

	If the "User" process, the process starting the TLS connection, gets killed in
the middle of spawning the dynamic connection tree make sure we do not leave
any processes behind.
Own Id: OTP-18233 Aux Id: GH-6244, PR-6270

SSL 10.7.3.3
Fixed Bugs and Malfunctions
	Reject unexpected application data in all relevant places for all TLS
versions. Also, handle TLS-1.3 middlebox compatibility with more care. This
will make malicious connections fail early and further, mitigate possible DoS
attacks, that would be caught by the handshake timeout.
Thanks to Aina Toky Rasoamanana and Olivier Levillain from Télécom SudParis
for alerting us of the issues in our implementation.
Own Id: OTP-18044

	The link to crypto:engine_load refered the function with wrong arity.
Own Id: OTP-18173

	Make sure periodical refresh of CA certificate files repopulates cache
properly.
Own Id: OTP-18195

SSL 10.7.3.2
Fixed Bugs and Malfunctions
	Improved handling of unexpected messages during the handshake, taking the
right action for unexpected messages.
Own Id: OTP-18145

SSL 10.7.3.1
Fixed Bugs and Malfunctions
	When a TLS-1.3 enabled client tried to talk to a TLS-1.2 server that coalesces
TLS-1.2 handshake message over one TLS record, the connection could fail due
to some message being handled in the wrong state, this has been fixed.
Own Id: OTP-18087 Aux Id: GH-5961

	Fixed tls-1.3 session ticket lifetime which was discarded to quickly before.
Own Id: OTP-18092 Aux Id: PR-5959

	Correctly handles supported protocol version change from default to something
else by sni_fun supplied to ssl:handshake/[2,3] together with a TCP-socket
(so called upgrade).
Own Id: OTP-18100 Aux Id: GH-5985

	Also, TLS-1.3 should respond with a protocol version alert if previous
versions, that are supported but not configured, are attempted.
Own Id: OTP-18129 Aux Id: GH-5950

Improvements and New Features
	Enhance handling of handshake decoding errors, especially for certificate
authorities extension to ensure graceful termination.
Own Id: OTP-18085

SSL 10.7.3
Fixed Bugs and Malfunctions
	Client certification could fail if TLS-1.3 enabled client negotiated TLS-1.2
connection with the server, this is due to the wrong version being used when
decoding the certificate request message from the server.
Own Id: OTP-18028 Aux Id: GH-5835

	socket option packet_size was not handled in ssl:setops/2 and ssl:getotps/2
Own Id: OTP-18062 Aux Id: GH-5898

	Remove legacy code to fix interoperability with new socket inet_backend.
Own Id: OTP-18071 Aux Id: GH-5930

SSL 10.7.2
Fixed Bugs and Malfunctions
	With this change, potential hanging of pre TLS1.3 client receiving OSCP staple
message is avoided.
Own Id: OTP-17994

SSL 10.7.1
Fixed Bugs and Malfunctions
	Client certification could fail for TLS-1.3 servers that did not include the
certificate_authorities extension in its certificate request message.
Own Id: OTP-17971 Aux Id: GH-5783

SSL 10.7
Fixed Bugs and Malfunctions
	Improved error handling.
Own Id: OTP-17759 Aux Id: GH-5367

	Before this change, net_kernel used with TLS distribution might be leaking
processes in case of connectivity issues.
Own Id: OTP-17815 Aux Id: GH-5332

	Fix makefile dependency bugs.
Own Id: OTP-17847 Aux Id: PR-5574 GH-5548

	Make sure the TLS sender process handles explicit calls to
erlang:disconnect_node properly, avoiding potential hanging problems in
net_kernel.
Own Id: OTP-17929 Aux Id: GH-5708

Improvements and New Features
	Add support for TLS-1.3 certificate_authorities extension. And process
certificate_authorities field in pre-TLS-1.3 certificate requests.
Own Id: OTP-15719

	Support password fun for protected keyfiles in ssl:connect function.
Own Id: OTP-17816 Aux Id: PR-5607

	Add in some cases earlier detection of possible DoS attacks by malicious
clients sending unexpected TLS messages instead of the client hello. Note that
such attacks are already mitigated by providing a timeout for the TLS
handshake.
Own Id: OTP-17903

SSL 10.6.1
Fixed Bugs and Malfunctions
	Improve SNI (server name indication) handling so that protocol version can be
selected with regards to SNI. Also, make sure that
ssl:connection_information/1 returns the correct SNI value.
Own Id: OTP-17794 Aux Id: GH-5341, GH-4450

	Fixed cipher suite listing functions so that the listing of all cipher suites
will be complete. Another fix for cipher suite handling in OTP-24.1
accidentally excludes a few cipher suites from the listing of all cipher
suites.
Own Id: OTP-17829 Aux Id: ERIERL-708

	Reenable legacy cipher suite TLS_RSA_WITH_3DES_EDE_CBC_SHA for explicit
configuration in TLS-1.2, not supported by default.
Own Id: OTP-17879 Aux Id: GH-5624

Improvements and New Features
	Avoid unnecessary logs by better adjusting the tls_sender process to the new
supervisor structure in OTP-24.2
Own Id: OTP-17831

SSL 10.6
Fixed Bugs and Malfunctions
	Allow re-connect on DTLS sockets
Can happen when a computer reboots and connects from the same client port
without the server noticing should be allowed according to RFC.
Own Id: OTP-17411 Aux Id: ERL-1203, GH-4393

	Fix tls and non-tls distribution to use erl_epmd:address_please to figure out
if IPv4 or IPv6 addresses should be used when connecting to the remote node.
Before this fix, a dns lookup of the remote node hostname determined which IP
version was to be used which meant that the hostname had to resolve to a valid
ip address.
Own Id: OTP-17809 Aux Id: PR-5337 GH-5334

Improvements and New Features
	Use supervisor significant child to manage tls connection process and tls
sender process dependency.
Own Id: OTP-17417

	Random generation adjustment for TLS1.3
Own Id: OTP-17699

	Allow any {03,XX} TLS record version in the client hello for maximum
interoperability
Own Id: OTP-17761 Aux Id: GH-5380

SSL 10.5.3
Fixed Bugs and Malfunctions
	Correct typo of ECC curve name in signature algorithm handling. Will make the
signature algorithm ecdsa_secp521r1_sha512 succeed.
Own Id: OTP-17756 Aux Id: GH-5383, PR-5397

	Suppress authenticity warning when option verify_none is explicitly supplied.
Own Id: OTP-17757 Aux Id: GH-5352, PR-5395

SSL 10.5.2
Fixed Bugs and Malfunctions
	Fix TLS-1.2 RSA-PSS negotiation and also fix broken certificate request
message for pre-TLS-1.3 servers.
Own Id: OTP-17688 Aux Id: GH-5255

	Fix CRL issuer verification that under some circumstances could fail with a
function_clause error.
Own Id: OTP-17723 Aux Id: GH-5300

SSL 10.5.1
Fixed Bugs and Malfunctions
	Before that change, TLS downgrade could occasionally fail when data intended
for downgraded socket were delivered together with CLOSE_NOTIFY alert to ssl
app.
Own Id: OTP-17393

	Avoid re-encoding of decoded certificates. This could cause unexpected
failures as some subtle encoding errors can be tolerated when decoding but
hence creating another sequence of bytes if the decoded value is re-encoded.
Own Id: OTP-17657

	Fix possible process leak when the process doing ssl:transport_accept dies
before initiating the TLS handshake.
Own Id: OTP-17666 Aux Id: GH-5239

	Fix dtls memory leak, the replay window code was broken.
Own Id: OTP-17670 Aux Id: GH-5224

SSL 10.5
Fixed Bugs and Malfunctions
	Fix Makefile dependency generation to work no matter what the ERL_TOP folder
is called.
Own Id: OTP-17423 Aux Id: GH-4823 PR-4829

	If trying to downgrade a TLS-1.3 connection to a plain TCP connection,
possible TLS-1.3 session ticket messages will be ignored in the "downgrade"
state while waiting for the close notify alert.
Own Id: OTP-17517 Aux Id: GH-5009

	Corrected error handling to correctly generate an insufficient security alert
when there are no suitable groups that can be negotiated in TLS-1.3 instead of
crashing resulting in an internal error alert.
Own Id: OTP-17521

	Properly handle default session data storage.
When a client tries to reuse an expired session the default server storage
handling would crash losing other session data. This would cause a error
report and possible loss of abbreviated handshakes.
Own Id: OTP-17635 Aux Id: GH-5192

Improvements and New Features
	Add support for RSA-PSS-PSS signatures and signature_algorithms_cert in
TLS-1.2. This is a TLS-1.3 RFC requirement to backport this functionality.
Own Id: OTP-16590 Aux Id: ERL-625, GH-5029

	Use inet:monitor/1 to monitor listen-sockets so that we are compatible with
the new socket backend for gen_tcp.
Own Id: OTP-17392 Aux Id: PR-5050

	Enhance ssl:prf/4 handling and testing
Own Id: OTP-17464

	Enhanced cipher suite filtering functionality, making sure TLS-1.3 and TLS-1.2
cipher suites can be supported correctly together even when TLS-1.2 anonymous
ciphers are included.
Own Id: OTP-17501 Aux Id: GH-4978

	Enhance gracefulness especially in TLS-1.3
Own Id: OTP-17530

SSL 10.4.2
Fixed Bugs and Malfunctions
	Handle cross-signed root certificates when old root expired as reported in
GH-4877.
Own Id: OTP-17475 Aux Id: GH-4877

	The signature selection algorithm has been changed to also verify if the
client supports signatures using the elliptic curve of the server's
public/private key pair. This change fixes #4958.
Own Id: OTP-17529 Aux Id: PR-4979, GH-4958

Improvements and New Features
	Slight optimization of certificate decoding.
Own Id: OTP-17150 Aux Id: GH-4877

SSL 10.4.1
Fixed Bugs and Malfunctions
	Fix cache invalidation problem for CA certs provided by the cacertfile option.
Own Id: OTP-17435 Aux Id: ERIERL-653

SSL 10.4
Fixed Bugs and Malfunctions
	Missing runtime dependencies has been added to this application.
Own Id: OTP-17243 Aux Id: PR-4557

	TLS handshake should fail if OCSP staple is requested but missing. Note that
OCSP support is still considered experimental and only partially implemented.
Own Id: OTP-17343

Improvements and New Features
	Removed ssl:ssl_accept/1,2,3 and ssl:cipher:suites/0,1 use ssl:handshake/1,2,3
and ssl:cipher_suites/2,3 instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16974

	Make TLS handshakes in Erlang distribution concurrent.
Own Id: OTP-17044 Aux Id: PR-2654

	Randomize internal {active,n} optimization when running Erlang distribution
over TLS to spread RAM/CPU spike that may occur when starting up a big
cluster.
Own Id: OTP-17117 Aux Id: PR-2933

	TLS connections now support EdDSA certificates.
Own Id: OTP-17142 Aux Id: PR-4756, GH-4637, GH-4650

	Enhance documentation and logging of certificate handling.
Own Id: OTP-17384 Aux Id: GH-4800

SSL 10.3.1.5
Fixed Bugs and Malfunctions
	Correct corner case of unexpected message handling for pre TLS-1.3 versions,
could cause "late failure" and make the server dependent on its handshake
timeout to prevent possible DoS attacks.
Own Id: OTP-18224

SSL 10.3.1.4
Fixed Bugs and Malfunctions
	The link to crypto:engine_load refered the function with wrong arity.
Own Id: OTP-18173

SSL 10.3.1.3
Fixed Bugs and Malfunctions
	Improved handling of unexpected messages during the handshake, taking the
right action for unexpected messages.
Own Id: OTP-18145

SSL 10.3.1.2
Fixed Bugs and Malfunctions
	Handle cross-signed root certificates when old root expired as reported in
GH-4877.
Own Id: OTP-17475 Aux Id: GH-4877

	The signature selection algorithm has been changed to also verify if the
client supports signatures using the elliptic curve of the server's
public/private key pair. This change fixes #4958.
Own Id: OTP-17529 Aux Id: PR-4979, GH-4958

Improvements and New Features
	Slight optimization of certificate decoding.
Own Id: OTP-17150 Aux Id: GH-4877

SSL 10.3.1.1
Fixed Bugs and Malfunctions
	Fix cache invalidation problem for CA certs provided by the cacertfile option.
Own Id: OTP-17435 Aux Id: ERIERL-653

SSL 10.3.1
Fixed Bugs and Malfunctions
	Retain backwards compatible behavior of verify_fun when handling incomplete
chains that are not verifiable.
Own Id: OTP-17296 Aux Id: GH-4682

	Avoid server session handler crash, this will increase session ruse
opportunities.
Own Id: OTP-17348 Aux Id: ERIERL-641

SSL 10.3
Fixed Bugs and Malfunctions
	Fix CRL handling that previously could fail to find the issuer cert under some
circumstances.
Own Id: OTP-17261 Aux Id: GH-4589

	TLS-1.3 client could, under some circumstances, select an incorrect algorithm
to sign the certificate verification message causing a TLS Decrypt Alert being
issued by the server.
Own Id: OTP-17281 Aux Id: GH-4620

	Correct handling of default values for emulated socket options and retain the
order of the ssl options list to ensure backwards compatible behavior if
options should be set more than once.
Own Id: OTP-17282

Improvements and New Features
	Enhance pre TLS-1.3 session handling so the client and server side handling is
completely separated and client disregards oldest session when reaching max
limit of the session table.
Own Id: OTP-16876

	This change implements the early data feature for TLS 1.3 clients.
TLS 1.3 allows clients to send data in the first flight using a Pre-Shared Key
to authenticate the server and to encrypt the early data.
Own Id: OTP-16985

	This change implements the early data feature for TLS 1.3 servers.
Own Id: OTP-17042

SSL 10.2.4.4
Fixed Bugs and Malfunctions
	Improved handling of unexpected messages during the handshake, taking the
right action for unexpected messages.
Own Id: OTP-18145

SSL 10.2.4.3
Fixed Bugs and Malfunctions
	Fix cache invalidation problem for CA certs provided by the cacertfile option.
Own Id: OTP-17435 Aux Id: ERIERL-653

SSL 10.2.4.2
Fixed Bugs and Malfunctions
	Fix handling of emulated socket options, the previous patch was incomplete,
Own Id: OTP-17305

SSL 10.2.4.1
Fixed Bugs and Malfunctions
	Backport of OTP-17282
Correct handling of default values for emulated socket options and retain the
order of the ssl options list to ensure backwards compatible behavior if
options should be set more than once.
Own Id: OTP-17289 Aux Id: GH-4585

SSL 10.2.4
Fixed Bugs and Malfunctions
	Enhance logging option log_level to support none and all, also restore
backwards compatibility for log_alert option.
Own Id: OTP-17228 Aux Id: ERIERL-614

SSL 10.2.3
Fixed Bugs and Malfunctions
	Avoid race when the first two upgrade server handshakes (that is servers that
use a gen_tcp socket as input to ssl:handshake/2,3) start close to each other.
Could lead to that one of the handshakes would fail.
Own Id: OTP-17190 Aux Id: ERIERL-606

SSL 10.2.2
Fixed Bugs and Malfunctions
	Avoid that upgrade (from TCP to TLS) servers starts multiple session cache
handlers for the same server. This applies to Erlang distribution over TLS
servers.
Own Id: OTP-17139 Aux Id: ERL-1458, OTP-16239

	Legacy cipher suites defined before TLS-1.2 (but still supported) should be
possible to use in TLS-1.2. They where accidentally excluded for available
cipher suites for TLS-1.2 in OTP-23.2.2.
Own Id: OTP-17174 Aux Id: ERIERL-597

Improvements and New Features
	Enable Erlang distribution over TLS to run TLS-1.3, although TLS-1.2 will
still be default.
Own Id: OTP-16239 Aux Id: ERL-1458, OTP-17139

SSL 10.2.1
Fixed Bugs and Malfunctions
	Fix CVE-2020-35733 this only affects ssl-10.2 (OTP-23.2). This vulnerability
could enable a man in the middle attack using a fake chain to a known trusted
ROOT. Also limits alternative chain handling, for handling of possibly
extraneous certs, to improve memory management.
Own Id: OTP-17098

Improvements and New Features
	Add support for AES CCM based cipher suites defined in RFC 7251
Also Correct cipher suite name conversion to OpenSSL names. A few names where
corrected earlier in OTP-16267 For backwards compatible reasons we support
usage of openSSL names for cipher suites. Mostly anonymous suites names where
incorrect, but also some legacy suites.
Own Id: OTP-17100

SSL 10.2
Fixed Bugs and Malfunctions
	SSL's Erlang Distribution Protocol modules inet_tls_dist and inet6_tls_dist
lacked a callback function, so the start flag "-dist_listen false" did not
work, which has now been fixed.
Own Id: OTP-15126 Aux Id: ERL-1375

	Correct OpenSSL names for newer cipher suites using DHE in their name that
accidentally got the wrong value when fixing other older names using EDH
instead.
Own Id: OTP-16267 Aux Id: ERIERL-571, ERIERL-477

	This change improves the handling of DTLS listening dockets, making it
possible to open multiple listeners on the same port with different IP
addresses.
Own Id: OTP-16849 Aux Id: ERL-1339

	Fix a bug that causes cross-build failure.
This change excludes the ssl.d dependency file from the source tarballs.
Own Id: OTP-16921

	This change fixes ssl:peername/1 when called on a DTLS client socket.
Own Id: OTP-16923 Aux Id: ERL-1341, PR-2786

	Retain emulation of active once on a closed socket to behave as before 23.1
Own Id: OTP-17018 Aux Id: ERL-1409

	Corrected server session cache entry deletion pre TLS-1.3. May increase
session reuse.
Own Id: OTP-17019 Aux Id: ERL-1412

Improvements and New Features
	Handle extraneous certs in certificate chains as well as chains that are
incomplete but can be reconstructed or unordered chains. The cert and certfile
options will now accept a list of certificates so that the user may specify
the chain explicitly.
Also, the default value of the depth option has been increased to allow longer
chains by default.
Own Id: OTP-16277

	This change implements optional NSS-style keylog in
ssl:connection_information/2 for debugging purposes.
The keylog contains various TLS secrets that can be loaded in Wireshark to
decrypt TLS packets.
Own Id: OTP-16445 Aux Id: PR-2823

	Use new gen_statem feature of changing callback mode to improve code
maintainability.
Own Id: OTP-16529

	The handling of Service Name Indication has been aligned with RFC8446.
Own Id: OTP-16762

	Add explicit session reuse option to TLS clients for pre TLS-1.3 sessions.
Also, add documentation to Users Guide for such sessions.
Own Id: OTP-16893

SSL 10.1
Fixed Bugs and Malfunctions
	If a passive socket is created, ssl:recv/2,3 is never called and then the peer
closes the socket the controlling process will no longer receive an active
close message.
Own Id: OTP-16697 Aux Id: ERIERL-496

	Data deliver with ssl:recv/2,3 could fail for when using packet mode. This has
been fixed by correcting the flow control handling of passive sockets when
packet mode is used.
Own Id: OTP-16764

	This change fixes a potential man-in-the-middle vulnerability when the ssl
client is configured to automatically handle session tickets
({session_tickets, auto}).
Own Id: OTP-16765

	Fix the internal handling of options 'verify' and 'verify_fun'.
This change fixes a vulnerability when setting the ssl option 'verify' to
verify_peer in a continued handshake won't take any effect resulting in the
acceptance of expired peer certificates.
Own Id: OTP-16767 Aux Id: ERIERL-512

	This change fixes the handling of stateless session tickets when anti-replay
is enabled.
Own Id: OTP-16776 Aux Id: ERL-1316

	Fix a crash due to the faulty handling of stateful session tickets received by
servers expecting stateless session tickets.
This change also improves the handling of faulty/invalid tickets.
Own Id: OTP-16777 Aux Id: ERL-1317

	Correct flow ctrl checks from OTP-16764 to work as intended. Probably will not
have a noticeable affect but will make connections more well behaved under
some circumstances.
Own Id: OTP-16837 Aux Id: ERL-1319, OTP-16764

	Distribution over TLS could exhibit livelock-like behaviour when there is a
constant stream of distribution messages. Distribution data is now chunked
every 16 Mb to avoid that.
Own Id: OTP-16851 Aux Id: PR-2703

Improvements and New Features
	Implement the cookie extension for TLS 1.3.
Own Id: OTP-15855

	Experimental OCSP client support.
Own Id: OTP-16448

	TLS 1.0 -TLS-1.2 sessions tables now have a absolute max value instead of
using a shrinking mechanism when reaching the limit. To avoid out of memory
problems under heavy load situations. Note that this change infers that
implementations of ssl_session_cache_api needs to implement the size function
(introduce in OTP 19) for session reuse to be optimally utilized.
Own Id: OTP-16802 Aux Id: ERIERL-516

SSL 10.0
Fixed Bugs and Malfunctions
	Fix a bug that causes cross-build failure.
This change excludes the ssl.d dependency file from the source tar balls.
Own Id: OTP-16562 Aux Id: ERL-1168

	Correct translation of OpenSSL legacy names for two legacy cipher suites
Own Id: OTP-16573 Aux Id: ERIERL-477

	Correct documentation for PSK identity and SRP username.
Own Id: OTP-16585

	Make sure client hostname check is run when client uses its own verify_fun
Own Id: OTP-16626 Aux Id: ERL-1232

	Improved signature selection mechanism in TLS 1.3 for increased
interoperability.
Own Id: OTP-16638 Aux Id: ERL-1206

Improvements and New Features
	Drop support for SSL-3.0. Support for this legacy TLS version has not been
enabled by default since OTP 19. Now all code to support it has been removed,
that is SSL-3.0 protocol version can not be used and is considered invalid.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14790

	Added support for RSA-PSS signature schemes
Own Id: OTP-15247

	Improve interoperability by implementing the middlebox compatibility mode.
The middlebox compatibility mode makes the TLS 1.3 handshake look more like a
TLS 1.2 handshake and increases the chance of successfully establishing TLS
1.3 connections through legacy middleboxes.
Own Id: OTP-15589

	Utilize new properties of
erlang:dist_ctrl_get_data() for performance
improvement of Erlang distribution over TLS.
Own Id: OTP-16127 Aux Id: OTP-15618

	Calls of deprecated functions in the
Old Crypto API are replaced by calls of
their substitutions.
Own Id: OTP-16346

	Implement cipher suite TLS_AES_128_CCM_8_SHA256.
Own Id: OTP-16391

	This change adds TLS-1.3 to the list of default supported versions. That is,
TLS-1.3 and TLS-1.2 are configured when ssl option 'versions' is not
explicitly set.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16400

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	Extended ssl:versions so that it lists supported, available and implemented
TLS/DTLS versions.
Own Id: OTP-16519

	Added new option exclusive for ssl:cipher_suites/2,3
Own Id: OTP-16532

	Avoid DoS attack against stateful session_tickets by making session ticket ids
unpredictable.
Own Id: OTP-16533

	Add support for the max_fragment_length extension (RFC 6066).
Own Id: OTP-16547 Aux Id: PR-2547

	Add srp_username in ssl:connection_info, update the document with types of
this function.
Own Id: OTP-16584

SSL 9.6.2.3
Fixed Bugs and Malfunctions
	Correct flow ctrl checks from OTP-16764 to work as intended. Probably will not
have a noticeable affect but will make connections more well behaved under
some circumstances.
Own Id: OTP-16837 Aux Id: ERL-1319, OTP-16764

	Fix a bug that causes cross-build failure.
This change excludes the ssl.d dependency file from the source tar balls.
Own Id: OTP-16921

SSL 9.6.2.2
Fixed Bugs and Malfunctions
	Data deliver with ssl:recv/2,3 could fail for when using packet mode. This has
been fixed by correcting the flow control handling of passive sockets when
packet mode is used.
Own Id: OTP-16764

	Fix the internal handling of options 'verify' and 'verify_fun'.
This change fixes a vulnerability when setting the ssl option 'verify' to
verify_peer in a continued handshake won't take any effect resulting in the
acceptance of expired peer certificates.
Own Id: OTP-16767 Aux Id: ERIERL-512

SSL 9.6.2.1
Improvements and New Features
	If a passive socket is created, ssl:recv/2,3 is never called and then the peer
closes the socket the controlling process will no longer receive an active
close message.
Own Id: OTP-16697 Aux Id: ERIERL-496

SSL 9.6.2
Fixed Bugs and Malfunctions
	Fix timing bug that could cause ssl sockets to become unresponsive after an
ssl:recv/3 call timed out
Own Id: OTP-16619 Aux Id: ERL-1213

SSL 9.6.1
Fixed Bugs and Malfunctions
	Correct error handling when the partial_chain fun claims a certificate to be
the trusted cert that is not part of the chain. This bug would hide the
appropriate alert generating an "INTERNAL_ERROR" alert instead.
Own Id: OTP-16567 Aux Id: ERIERL-481

SSL 9.6
Fixed Bugs and Malfunctions
	Correct handling of TLS record limit in TLS-1.3. The max value differs from
previous versions. Also the payload data max record check was broken, that is
record overflow problems could occur if user sent large amounts of data.
Own Id: OTP-16258

	Correct close handling for DTLS
Own Id: OTP-16348 Aux Id: ERL-1110

	Fix ssl:getstat/1-2 to also work for DTLS sockets
Own Id: OTP-16352 Aux Id: ERL-1099

	Correct internal handling och socket active mode to avoid reviving TCP data
aimed for a downgraded TLS socket.
Own Id: OTP-16425

	When using the host name as fallback for SNI (server name indication) strip a
possible trailing dot that is allowed in a host name but not in the SNI. Also
if the server receives a SNI with a trailing dot send an UNRECOGNIZED_NAME
alert.
Own Id: OTP-16437 Aux Id: ERL-1135

	Immediately remove session entries if handshake is abruptly closed at
transport level.
Own Id: OTP-16479

Improvements and New Features
	Implementation of the key and initialization vector update feature, and
general hardening of TLS 1.3.
There are cryptographic limits on the amount of plaintext which can be safely
encrypted under a given set of keys.
This change enforces those limits by triggering automatic key updates on TLS
1.3 connections.
Own Id: OTP-15856

	Add support for TLS 1.3 Session Tickets (stateful and stateless). This allows
session resumption using keying material from a previous successful handshake.
Own Id: OTP-16253

	Add support for key exchange with Edward curves and PSS-RSA padding in
signature verification.
Own Id: OTP-16528

SSL 9.5.3
Fixed Bugs and Malfunctions
	Enhance error handling, all ALERTS shall be handled gracefully and not cause a
crash.
Own Id: OTP-16413 Aux Id: ERL-1136

	Enhance alert logging, in some places the role indication of the alert origin
was missing. So the log would say undefined instead of client or server.
Own Id: OTP-16424

	Two different optimizations did not work together and resulted in the possible
breakage of connections using stream ciphers (that is RC4). Reworked the
implementation to avoid this.
Own Id: OTP-16426 Aux Id: ERL-1136

SSL 9.5.2
Fixed Bugs and Malfunctions
	Fix the handling of GREASE values sent by web browsers when establishing TLS
1.3 connections. This change improves handling of GREASE values in various
protocol elements sent in a TLS 1.3 ClientHello.
Own Id: OTP-16388 Aux Id: ERL-1130

	Correct DTLS listen emulation, could cause problems with opening a new DTLS
listen socket for a port previously used by a now closed DTLS listen socket.
Own Id: OTP-16396 Aux Id: ERL-1118

SSL 9.5.1
Fixed Bugs and Malfunctions
	Add missing alert handling clause for TLS record handling. Could sometimes
cause confusing error behaviors of TLS connections.
Own Id: OTP-16357 Aux Id: ERL-1166

	Fix handling of ssl:recv that happens during a renegotiation. Using the
passive receive function ssl:recv/[2,3] during a renegotiation would fail the
connection with unexpected msg.
Own Id: OTP-16361

SSL 9.5
Fixed Bugs and Malfunctions
	Corrected CRL handling which could cause CRL verification to fail. This could
happen when the CRL distribution point explicitly specifies the CRL issuer,
that is not using the fallback.
Own Id: OTP-16156 Aux Id: ERL-1030

	Correct handling of unordered chains so that it works as expected
Own Id: OTP-16293

	Fix bug causing ssl application to crash when handshake is paused and
ClientHello contains extensions for session resumption
(psk_key_exchange_modes, pre_shared_key).
Own Id: OTP-16295 Aux Id: ERL-1095

	Fix connectivity problems with legacy servers when client is configured to
support a range of protocol versions including TLS 1.3.
Own Id: OTP-16303

Improvements and New Features
	Improve session handling for TLS-1.3 compatibility mode and cleaner internal
handling so that removal of old session data can be more efficient, hopefully
mitigating problems with big session tables during heavy load.
Own Id: OTP-15524 Aux Id: OTP-15352

	Correct handling of DTLS listen socket emulation. Could cause failure to
create new listen socket after process that owned previous listen socket died.
Own Id: OTP-15809 Aux Id: ERL-917

	Add detailed info in ALERT description when client does not send a requested
cert.
Own Id: OTP-16266

SSL 9.4
Fixed Bugs and Malfunctions
	Handling of zero size fragments in TLS could cause an infinite loop. This has
now been corrected.
Own Id: OTP-15328 Aux Id: ERIERL-379

	DTLS record check needs to consider that a resent hello message can have a
different version than the negotiated.
Own Id: OTP-15807 Aux Id: ERL-920

Improvements and New Features
	Basic support for TLS 1.3 Client for experimental use. For more information
see the Standards Compliance chapter of the User's Guide.
Own Id: OTP-15431

	Correct solution for retaining tcp flow control OTP-15802 (ERL-934) as to not
break ssl:recv as reported in (ERL-938)
Own Id: OTP-15823 Aux Id: ERL-934, ERL-938

	Enhance dialyzer specs to reflect implementation better and avoid dialyzer
warnings for the user that wants to use TLS with unix domain sockets.
Own Id: OTP-15851 Aux Id: PR-2235

	Add support for ECDSA signature algorithms in TLS 1.3.
Own Id: OTP-15854

	Correct error handling of TLS downgrade, possible return values form
ssl:close/2 when downgrading is {ok, Port} or {error, Reason}, it could
happen that only ok was returned instead of {error, closed} when downgrade
failed due to that the peer closed the TCP connection.
Own Id: OTP-16027

SSL 9.3.5
Improvements and New Features
	Enhance error handling for erroneous alerts from the peer.
Own Id: OTP-15943

SSL 9.3.4
Fixed Bugs and Malfunctions
	Fix handling of certificate decoding problems in TLS 1.3 similarly as in TLS
1.2.
Own Id: OTP-15900

	Hibernation now works as expected in all cases, was accidentally broken by
optimization efforts.
Own Id: OTP-15910

	Fix interoperability problems with openssl when the TLS 1.3 server is
configured with the option signature_algs_cert.
Own Id: OTP-15913

SSL 9.3.3
Fixed Bugs and Malfunctions
	Correct handshake handling, might cause strange symptoms such as ASN.1
certificate decoding issues.
Own Id: OTP-15879 Aux Id: ERL-968

	Fix handling of the signature_algorithms_cert extension in the ClientHello
handshake message.
Own Id: OTP-15887 Aux Id: ERL-973

	Handle new ClientHello extensions when handshake is paused by the {handshake,
hello} ssl option.
Own Id: OTP-15888 Aux Id: ERL-975

SSL 9.3.2
Fixed Bugs and Malfunctions
	Returned "alert error string" is now same as logged alert string
Own Id: OTP-15844

	Fix returned extension map fields to follow the documentation.
Own Id: OTP-15862 Aux Id: ERL-951

	Avoid DTLS crash due to missing gen_server return value in DTLS packet demux
process.
Own Id: OTP-15864 Aux Id: ERL-962

SSL 9.3.1
Fixed Bugs and Malfunctions
	Missing check of size of user_data_buffer made internal socket behave as an
active socket instead of active N. This could cause memory problems.
Own Id: OTP-15825 Aux Id: ERL-934, OTP-15823

SSL 9.3
Fixed Bugs and Malfunctions
	The distribution handshake with TLS distribution (inet_tls_dist) does now
utilize the socket option {nodelay, true}, which decreases the distribution
setup time significantly.
Own Id: OTP-14792

	Correct shutdown reason to avoid an incorrect crash report
Own Id: OTP-15710 Aux Id: ERL-893

	Enhance documentation and type specifications.
Own Id: OTP-15746 Aux Id: ERIERL-333

Improvements and New Features
	TLS-1.0, TLS-1.1 and DTLS-1.0 are now considered legacy and not supported by
default
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14865

	Use new logger API in ssl. Introduce log levels and verbose debug logging for
SSL.
Own Id: OTP-15055

	Add new API function str_to_suite/1, cipher_suites/3 (list cipher suites as
rfc or OpenSSL name strings) and suite_to_openssl_str/1
Own Id: OTP-15483 Aux Id: ERL-924

	Basic support for TLS 1.3 Server for experimental use. The client is not yet
functional, for more information see the Standards Compliance chapter of the
User's Guide.
Own Id: OTP-15591

	Add support for PSK CCM ciphers from RFC 6655
Own Id: OTP-15626

SSL 9.2.3.7
Fixed Bugs and Malfunctions
	Data deliver with ssl:recv/2,3 could fail for when using packet mode. This has
been fixed by correcting the flow control handling of passive sockets when
packet mode is used.
Own Id: OTP-16764

SSL 9.2.3.6
Fixed Bugs and Malfunctions
	Fix timing bug that could cause ssl sockets to become unresponsive after an
ssl:recv/3 call timed out
Own Id: OTP-16619 Aux Id: ERL-1213

SSL 9.2.3.5
Fixed Bugs and Malfunctions
	Handling of zero size fragments in TLS could cause an infinite loop. This has
now been corrected.
Own Id: OTP-15328 Aux Id: ERIERL-379

SSL 9.2.3.4
Fixed Bugs and Malfunctions
	Hibernation now works as expected in all cases, was accidentally broken by
optimization efforts.
Own Id: OTP-15910

SSL 9.2.3.3
Fixed Bugs and Malfunctions
	Correct handshake handling, might cause strange symptoms such as ASN.1
certificate decoding issues.
Own Id: OTP-15879 Aux Id: ERL-968

SSL 9.2.3.2
Fixed Bugs and Malfunctions
	Returned "alert error string" is now same as logged alert string
Own Id: OTP-15844

SSL 9.2.3.1
Fixed Bugs and Malfunctions
	Correct solution for retaining tcp flow control OTP-15802 (ERL-934) as to not
break ssl:recv as reported in (ERL-938)
Own Id: OTP-15823 Aux Id: ERL-934, ERL-938

SSL 9.2.3
Fixed Bugs and Malfunctions
	Missing check of size of user_data_buffer made internal socket behave as an
active socket instead of active N. This could cause memory problems.
Own Id: OTP-15802 Aux Id: ERL-934

Improvements and New Features
	Back port of bug fix ERL-893 from OTP-22 and document enhancements that will
solve dialyzer warnings for users of the ssl application.
This change also affects public_key, eldap (and inet doc).
Own Id: OTP-15785 Aux Id: ERL-929, ERL-893, PR-2215

SSL 9.2.2
Fixed Bugs and Malfunctions
	With the default BEAST Mitigation strategy for TLS 1.0 an empty TLS fragment
could be sent after a one-byte fragment. This glitch has been fixed.
Own Id: OTP-15054 Aux Id: ERIERL-346

SSL 9.2.1
Fixed Bugs and Malfunctions
	The timeout for a passive receive was sometimes not cancelled and later caused
a server crash. This bug has now been corrected.
Own Id: OTP-14701 Aux Id: ERL-883, ERL-884

	Add tag for passive message (active N) in cb_info to retain transport
transparency.
Own Id: OTP-15679 Aux Id: ERL-861

SSL 9.2
Fixed Bugs and Malfunctions
	Fix bug that an incorrect return value for gen_statem could be created when
alert was a result of handling renegotiation info extension
Own Id: OTP-15502

	Correct check for 3des_ede_cbc, could cause ssl to claim to support
3des_ede_cbc when cryptolib does not.
Own Id: OTP-15539

	Improved DTLS error handling, avoids unexpected connection failure in rare
cases.
Own Id: OTP-15561

	Corrected active once emulation bug that could cause the ssl_closed meassage
to not be sent. Bug introduced by OTP-15449
Own Id: OTP-15666 Aux Id: ERIERL-316,

Improvements and New Features
	Add client option {reuse_session, SessionID::binary()} that can be used
together with new option value {reuse_sessions, save}. This makes it
possible to reuse a session from a specific connection establishment.
Own Id: OTP-15369

	The Reason part of of the error return from the functions connect and
handshake has a better and documented format. This will sometimes differ from
previous returned reasons, however those where only documented as term() and
should for that reason not be relied on.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15423

	Refactor of state handling to improve TLS application data throughput and
reduce CPU overhead
Own Id: OTP-15445

	The SSL code has been optimized in many small ways to reduce CPU load for
encryption/decryption, especially for Erlang's distribution protocol over TLS.
Own Id: OTP-15529

	Add support for active N
Own Id: OTP-15665 Aux Id: ERL-811, PR-2072

SSL 9.1.2
Fixed Bugs and Malfunctions
	Fix encoding of the SRP extension length field in ssl. The old encoding of the
SRP extension length could cause interoperability problems with third party
SSL implementations when SRP was used.
Own Id: OTP-15477 Aux Id: ERL-790

	Guarantee active once data delivery, handling TCP stream properly.
Own Id: OTP-15504 Aux Id: ERL-371

	Correct gen_statem returns for some error cases
Own Id: OTP-15505

SSL 9.1.1
Fixed Bugs and Malfunctions
	Fixed renegotiation bug. Client did not handle server initiated renegotiation
correctly after rewrite to two connection processes, due to ERL-622 commit
d87ac1c55188f5ba5cdf72384125d94d42118c18. This could manifest it self as a "
bad_record_mac" alert.
Also included are some optimizations
Own Id: OTP-15489 Aux Id: ERL-308

SSL 9.1
Fixed Bugs and Malfunctions
	PEM cache was not evicting expired entries due to due to timezone confusion.
Own Id: OTP-15368

	Make sure an error is returned if a "transport_accept socket" is used in some
other call than ssl:handshake* or ssl:controlling_process
Own Id: OTP-15384 Aux Id: ERL-756

	Fix timestamp handling in the PEM-cache could cause entries to not be
invalidated at the correct time.
Own Id: OTP-15402

	Extend check for undelivered data at closing, could under some circumstances
fail to deliver all data that was actually received.
Own Id: OTP-15412 Aux Id: ERL-731

	Correct signature check for TLS-1.2 that allows different algorithms for
signature of peer cert and peer cert key. Not all allowed combinations where
accepted.
Own Id: OTP-15415 Aux Id: ERL-763

	Correct gen_statem return value, could cause renegotiation to fail.
Own Id: OTP-15418 Aux Id: ERL-770

Improvements and New Features
	Add engine support for RSA key exchange
Own Id: OTP-15420 Aux Id: ERIERL-268

	ssl now uses active n internally to boost performance. Old active once
behavior can be restored by setting application variable see manual page for
ssl application (man 6).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15449

SSL 9.0.3
Fixed Bugs and Malfunctions
	Correct alert handling with new TLS sender process, from ssl-9.0.2. CLOSE
ALERTS could under some circumstances be encoded using an incorrect cipher
state. This would cause the peer to regard them as unknown messages.
Own Id: OTP-15337 Aux Id: ERL-738

	Correct handling of socket packet option with new TLS sender process, from
ssl-9.0.2. When changing the socket option {packet, 1|2|3|4} with
ssl:setopts/2 the option must internally be propagated to the sender process
as well as the reader process as this particular option also affects the data
to be sent.
Own Id: OTP-15348 Aux Id: ERL-747

SSL 9.0.2
Fixed Bugs and Malfunctions
	Use separate processes for sending and receiving application data for TLS
connections to avoid potential deadlock that was most likely to occur when
using TLS for Erlang distribution. Note does not change the API.
Own Id: OTP-15122

	Correct handling of empty server SNI extension
Own Id: OTP-15168

	Correct PSK cipher suite handling and add selected_cipher_suite to connection
information
Own Id: OTP-15172

	Adopt to the fact that cipher suite sign restriction are relaxed in TLS-1.2
Own Id: OTP-15173

	Enhance error handling of non existing PEM files
Own Id: OTP-15174

	Correct close handling of transport accepted sockets in the error state
Own Id: OTP-15216

	Correct PEM cache to not add references to empty entries when PEM file does
not exist.
Own Id: OTP-15224

	Correct handling of all PSK cipher suites
Before only some PSK suites would be correctly negotiated and most PSK ciphers
suites would fail the connection.
Own Id: OTP-15285

Improvements and New Features
	TLS will now try to order certificate chains if they appear to be unordered.
That is prior to TLS 1.3, “certificate_list” ordering was required to be
strict, however some implementations already allowed for some flexibility. For
maximum compatibility, all implementations SHOULD be prepared to handle
potentially extraneous certificates and arbitrary orderings from any TLS
version.
Own Id: OTP-12983

	TLS will now try to reconstructed an incomplete certificate chains from its
local CA-database and use that data for the certificate path validation. This
especially makes sense for partial chains as then the peer might not send an
intermediate CA as it is considered the trusted root in that case.
Own Id: OTP-15060

	Option keyfile defaults to certfile and should be trumped with key. This
failed for engine keys.
Own Id: OTP-15193

	Error message improvement when own certificate has decoding issues, see also
issue ERL-668.
Own Id: OTP-15234

	Correct dialyzer spec for key option
Own Id: OTP-15281

SSL 9.0.1
Fixed Bugs and Malfunctions
	Correct cipher suite handling for ECDHE_*, the incorrect handling could
cause an incorrrect suite to be selected and most likely fail the handshake.
Own Id: OTP-15203

SSL 9.0
Fixed Bugs and Malfunctions
	Correct handling of ECDH suites.
Own Id: OTP-14974

	Proper handling of clients that choose to send an empty answer to a
certificate request
Own Id: OTP-15050

Improvements and New Features
	Distribution over SSL (inet_tls) has, to improve performance, been rewritten
to not use intermediate processes and ports.
Own Id: OTP-14465

	Add support for ECDHE_PSK cipher suites
Own Id: OTP-14547

	For security reasons no longer support 3-DES cipher suites by default
* INCOMPATIBILITY with possibly *
Own Id: OTP-14768

	For security reasons RSA-key exchange cipher suites are no longer supported by
default
* INCOMPATIBILITY with possible *
Own Id: OTP-14769

	The interoperability option to fallback to insecure renegotiation now has to
be explicitly turned on.
* INCOMPATIBILITY with possibly *
Own Id: OTP-14789

	Drop support for SSLv2 enabled clients. SSLv2 has been broken for decades and
never supported by the Erlang SSL/TLS implementation. This option was by
default disabled and enabling it has proved to sometimes break connections not
using SSLv2 enabled clients.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14824

	Remove CHACHA20_POLY1305 ciphers form default for now. We have discovered
interoperability problems, ERL-538, that we believe needs to be solved in
crypto.
* INCOMPATIBILITY with possibly *
Own Id: OTP-14882

	Generalize DTLS packet multiplexing to make it easier to add future DTLS
features and uses.
Own Id: OTP-14888

	Use uri_string module instead of http_uri.
Own Id: OTP-14902

	The SSL distribution protocol -proto inet_tls has stopped setting the SSL
option server_name_indication. New verify funs for client and server in
inet_tls_dist has been added, not documented yet, that checks node name if
present in peer certificate. Usage is still also yet to be documented.
Own Id: OTP-14969 Aux Id: OTP-14465, ERL-598

	Deprecate ssl:ssl_accept/[1,2,3] in favour of ssl:handshake/[1,2,3]
Own Id: OTP-15056

	Customizes the hostname verification of the peer certificate, as different
protocols that use TLS such as HTTP or LDAP may want to do it differently
Own Id: OTP-15102 Aux Id: ERL-542, OTP-14962

	Add utility function for converting erlang cipher suites to a string
representation (ERL-600).
Own Id: OTP-15106

	First version with support for DTLS
Own Id: OTP-15142

SSL 8.2.6.4
Fixed Bugs and Malfunctions
	Add engine support for RSA key exchange
Own Id: OTP-15420

SSL 8.2.6.3
Fixed Bugs and Malfunctions
	Extend check for undelivered data at closing, could under some circumstances
fail to deliverd all data that was acctualy recivied.
Own Id: OTP-15412

SSL 8.2.6.2
Fixed Bugs and Malfunctions
	Correct handling of empty server SNI extension
Own Id: OTP-15168

	Correct cipher suite handling for ECDHE_*, the incorrect handling could
cause an incorrrect suite to be selected and most likely fail the handshake.
Own Id: OTP-15203

SSL 8.2.6.1
Fixed Bugs and Malfunctions
	Improve cipher suite handling correcting ECC and TLS-1.2 requierments.
Backport of solution for ERL-641
Own Id: OTP-15178

Improvements and New Features
	Option keyfile defaults to certfile and should be trumped with key. This
failed for engine keys.
Own Id: OTP-15193

SSL 8.2.6
Fixed Bugs and Malfunctions
	Proper handling of clients that choose to send an empty answer to a
certificate request
Own Id: OTP-15050

SSL 8.2.5
Fixed Bugs and Malfunctions
	Fix filter function to not incorrectly exclude AEAD cipher suites
Own Id: OTP-14981

SSL 8.2.4
Fixed Bugs and Malfunctions
	Optimization of bad merge conflict resolution causing dubble decode
Own Id: OTP-14843

	Restore error propagation to OTP-19.3 behaviour, in OTP-20.2 implementation
adjustments to gen_statem needed some further adjustments to avoid a race
condition. This could cause a TLS server to not always report file path errors
correctly.
Own Id: OTP-14852

	Corrected RC4 suites listing function to regard TLS version
Own Id: OTP-14871

	Fix alert handling so that unexpected messages are logged and alerted
correctly
Own Id: OTP-14919

	Correct handling of anonymous cipher suites
Own Id: OTP-14952

Improvements and New Features
	Added new API functions to facilitate cipher suite handling
Own Id: OTP-14760

	Correct TLS_FALLBACK_SCSV handling so that this special flag suite is always
placed last in the cipher suite list in accordance with the specs. Also make
sure this functionality is used in DTLS.
Own Id: OTP-14828

	Add TLS record version sanity check for early as possible error detection and
consistency in ALERT codes generated
Own Id: OTP-14892

SSL 8.2.3
Fixed Bugs and Malfunctions
	Packet options cannot be supported for unreliable transports, that is, packet
option for DTLS over udp will not be supported.
Own Id: OTP-14664

	Ensure data delivery before close if possible. This fix is related to fix in
PR-1479.
Own Id: OTP-14794

Improvements and New Features
	The crypto API is extended to use private/public keys stored in an Engine for
sign/verify or encrypt/decrypt operations.
The ssl application provides an API to use this new engine concept in TLS.
Own Id: OTP-14448

	Implemented renegotiation for DTLS
Own Id: OTP-14563

	A new command line option -ssl_dist_optfile has been added to facilitate
specifying the many options needed when using SSL as the distribution
protocol.
Own Id: OTP-14657

SSL 8.2.2
Fixed Bugs and Malfunctions
	TLS sessions must be registered with SNI if provided, so that sessions where
client hostname verification would fail cannot connect reusing a session
created when the server name verification succeeded.
Own Id: OTP-14632

	An erlang TLS server configured with cipher suites using rsa key exchange, may
be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher
attack) against RSA, which when exploited, may result in plaintext recovery of
encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the
attacker not having gained access to the server’s private key itself.
CVE-2017-1000385
Exploiting this vulnerability to perform plaintext recovery of encrypted
messages will, in most practical cases, allow an attacker to read the
plaintext only after the session has completed. Only TLS sessions established
using RSA key exchange are vulnerable to this attack.
Exploiting this vulnerability to conduct a MiTM attack requires the attacker
to complete the initial attack, which may require thousands of server
requests, during the handshake phase of the targeted session within the window
of the configured handshake timeout. This attack may be conducted against any
TLS session using RSA signatures, but only if cipher suites using RSA key
exchange are also enabled on the server. The limited window of opportunity,
limitations in bandwidth, and latency make this attack significantly more
difficult to execute.
RSA key exchange is enabled by default although least prioritized if server
order is honored. For such a cipher suite to be chosen it must also be
supported by the client and probably the only shared cipher suite.
Captured TLS sessions encrypted with ephemeral cipher suites (DHE or ECDHE)
are not at risk for subsequent decryption due to this vulnerability.
As a workaround if default cipher suite configuration was used you can
configure the server to not use vulnerable suites with the ciphers option like
this:
{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,Suite) =/= rsa]}
that is your code will look somethingh like this:
ssl:listen(Port, [{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,S) =/= rsa]} | Options]).
Thanks to Hanno Böck, Juraj Somorovsky and Craig Young for reporting this
vulnerability.
Own Id: OTP-14748

Improvements and New Features
	If no SNI is available and the hostname is an IP-address also check for
IP-address match. This check is not as good as a DNS hostname check and
certificates using IP-address are not recommended.
Own Id: OTP-14655

SSL 8.2.1
Fixed Bugs and Malfunctions
	Max session table works correctly again
Own Id: OTP-14556

Improvements and New Features
	Customize alert handling for DTLS over UDP to mitigate DoS attacks
Own Id: OTP-14078

	Improved error propagation and reports
Own Id: OTP-14236

SSL 8.2
Fixed Bugs and Malfunctions
	ECDH-ECDSA key exchange supported, was accidentally dismissed in earlier
versions.
Own Id: OTP-14421

	Correct close semantics for active once connections. This was a timing
dependent bug the resulted in the close message not always reaching the ssl
user process.
Own Id: OTP-14443

Improvements and New Features
	TLS-1.2 clients will now always send hello messages on its own format, as
opposed to earlier versions that will send the hello on the lowest supported
version, this is a change supported by the latest RFC.
This will make interoperability with some newer servers smoother. Potentially,
but unlikely, this could cause a problem with older servers if they do not
adhere to the RFC and ignore unknown extensions.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13820

	Allow Erlang/OTP to use OpenSSL in FIPS-140 mode, in order to satisfy specific
security requirements (mostly by different parts of the US federal
government).
See the new crypto users guide "FIPS mode" chapter about building and using
the FIPS support which is disabled by default.
(Thanks to dszoboszlay and legoscia)
Own Id: OTP-13921 Aux Id: PR-1180

	Implemented DTLS cookie generation, required by spec, instead of using a
hardcoded value.
Own Id: OTP-14076

	Implement sliding window replay protection of DTLS records.
Own Id: OTP-14077

	TLS client processes will by default call public_key:pkix_verify_hostname/2 to
verify the hostname of the connection with the server certificates specified
hostname during certificate path validation. The user may explicitly disables
it. Also if the hostname cannot be derived from the first argument to connect
or is not supplied by the server name indication option, the check will not be
performed.
Own Id: OTP-14197

	Extend connection_information/[1,2] . The values session_id, master_secret,
client_random and server_random can no be accessed by
connection_information/2. Note only session_id will be added to
connection_information/1. The rational is that values concerning the
connection security should have to be explicitly requested.
Own Id: OTP-14291

	Chacha cipher suites are currently not tested enough to be most preferred ones
Own Id: OTP-14382

	Basic support for DTLS that been tested together with OpenSSL.
Test by providing the option {protocol, dtls} to the ssl API functions
connect and listen.
Own Id: OTP-14388

SSL 8.1.3.1.1
Fixed Bugs and Malfunctions
	Fix alert handling so that unexpected messages are logged and alerted
correctly
Own Id: OTP-14929

SSL 8.1.3.1
Fixed Bugs and Malfunctions
	An erlang TLS server configured with cipher suites using rsa key exchange, may
be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher
attack) against RSA, which when exploited, may result in plaintext recovery of
encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the
attacker not having gained access to the server’s private key itself.
CVE-2017-1000385
Exploiting this vulnerability to perform plaintext recovery of encrypted
messages will, in most practical cases, allow an attacker to read the
plaintext only after the session has completed. Only TLS sessions established
using RSA key exchange are vulnerable to this attack.
Exploiting this vulnerability to conduct a MiTM attack requires the attacker
to complete the initial attack, which may require thousands of server
requests, during the handshake phase of the targeted session within the window
of the configured handshake timeout. This attack may be conducted against any
TLS session using RSA signatures, but only if cipher suites using RSA key
exchange are also enabled on the server. The limited window of opportunity,
limitations in bandwidth, and latency make this attack significantly more
difficult to execute.
RSA key exchange is enabled by default although least prioritized if server
order is honored. For such a cipher suite to be chosen it must also be
supported by the client and probably the only shared cipher suite.
Captured TLS sessions encrypted with ephemeral cipher suites (DHE or ECDHE)
are not at risk for subsequent decryption due to this vulnerability.
As a workaround if default cipher suite configuration was used you can
configure the server to not use vulnerable suites with the ciphers option like
this:
{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,Suite) =/= rsa]}
that is your code will look somethingh like this:
ssl:listen(Port, [{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,S) =/= rsa]} | Options]).
Thanks to Hanno Böck, Juraj Somorovsky and Craig Young for reporting this
vulnerability.
Own Id: OTP-14748

SSL 8.1.3
Fixed Bugs and Malfunctions
	Remove debug printout
Own Id: OTP-14396

SSL 8.1.2
Fixed Bugs and Malfunctions
	Correct active once emulation, for TLS. Now all data received by the
connection process will be delivered through active once, even when the active
once arrives after that the gen_tcp socket is closed by the peer.
Own Id: OTP-14300

SSL 8.1.1
Fixed Bugs and Malfunctions
	Corrected termination behavior, that caused a PEM cache bug and sometimes
resulted in connection failures.
Own Id: OTP-14100

	Fix bug that could hang ssl connection processes when failing to require more
data for very large handshake packages. Add option max_handshake_size to
mitigate DoS attacks.
Own Id: OTP-14138

	Improved support for CRL handling that could fail to work as intended when an
id-ce-extKeyUsage was present in the certificate. Also improvements where
needed to distributionpoint handling so that all revocations actually are
found and not deemed to be not determinable.
Own Id: OTP-14141

	A TLS handshake might accidentally match old sslv2 format and ssl application
would incorrectly aborted TLS handshake with ssl_v2_client_hello_no_supported.
Parsing was altered to avoid this problem.
Own Id: OTP-14222

	Correct default cipher list to prefer AES 128 before 3DES
Own Id: OTP-14235

Improvements and New Features
	Move PEM cache to a dedicated process, to avoid making the SSL manager process
a bottleneck. This improves scalability of TLS connections.
Own Id: OTP-13874

SSL 8.1
Fixed Bugs and Malfunctions
	List of possible anonymous suites, never supported by default, where incorrect
for some TLS versions.
Own Id: OTP-13926

Improvements and New Features
	Experimental version of DTLS. It is runnable but not complete and cannot be
considered reliable for production usage.
Own Id: OTP-12982

	Add API options to handle ECC curve selection.
Own Id: OTP-13959

SSL 8.0.3
Fixed Bugs and Malfunctions
	A timing related bug in event handling could cause interoperability problems
between an erlang TLS server and some TLS clients, especially noticed with
Firefox as TLS client.
Own Id: OTP-13917

	Correct ECC curve selection, the error could cause the default to always be
selected.
Own Id: OTP-13918

SSL 8.0.2
Fixed Bugs and Malfunctions
	Correctly formed handshake messages received out of order will now correctly
fail the connection with unexpected message.
Own Id: OTP-13853

	Correct handling of signature algorithm selection
Own Id: OTP-13711

Improvements and New Features
	ssl application now behaves gracefully also on partially incorrect input from
peer.
Own Id: OTP-13834

	Add application environment configuration bypass_pem_cache. This can be used
as a workaround for the current implementation of the PEM-cache that has
proven to be a bottleneck.
Own Id: OTP-13883

SSL 8.0.1
Fixed Bugs and Malfunctions
	The TLS/SSL protocol version selection for the SSL server has been corrected
to follow RFC 5246 Appendix E.1 especially in case where the list of supported
versions has gaps. Now the server selects the highest protocol version it
supports that is not higher than what the client supports.
Own Id: OTP-13753 Aux Id: seq13150

SSL 8.0
Fixed Bugs and Malfunctions
	Server now rejects, a not requested client cert, as an incorrect handshake
message and ends the connection.
Own Id: OTP-13651

Improvements and New Features
	Remove default support for DES cipher suites
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13195

	Deprecate the function crypto:rand_bytes and make sure that
crypto:strong_rand_bytes is used in all places that are cryptographically
significant.
Own Id: OTP-13214

	Better error handling of user error during TLS upgrade. ERL-69 is solved by
gen_statem rewrite of ssl application.
Own Id: OTP-13255

	Provide user friendly error message when crypto rejects a key
Own Id: OTP-13256

	Add ssl:getstat/1 and ssl:getstat/2
Own Id: OTP-13415

	TLS distribution connections now allow specifying the options verify_fun,
crl_check and crl_cache. See the documentation. GitHub pull req #956
contributed by Magnus Henoch.
Own Id: OTP-13429 Aux Id: Pull#956

	Remove confusing error message when closing a distributed erlang node running
over TLS
Own Id: OTP-13431

	Remove default support for use of md5 in TLS 1.2 signature algorithms
Own Id: OTP-13463

	ssl now uses gen_statem instead of gen_fsm to implement the ssl connection
process, this solves some timing issues in addition to making the code more
intuitive as the behaviour can be used cleanly instead of having a lot of
workaround for shortcomings of the behaviour.
Own Id: OTP-13464

	Phase out interoperability with clients that offer SSLv2. By default they are
no longer supported, but an option to provide interoperability is offered.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13465

	OpenSSL has functions to generate short (eight hex digits) hashes of issuers
of certificates and CRLs. These hashes are used by the "c_rehash" script to
populate directories of CA certificates and CRLs, e.g. in the Apache web
server. Add functionality to let an Erlang program find the right CRL for a
given certificate in such a directory.
Own Id: OTP-13530

	Some legacy TLS 1.0 software does not tolerate the 1/n-1 content split BEAST
mitigation technique. Add a beast_mitigation SSL option (defaulting to
one_n_minus_one) to select or disable the BEAST mitigation technique.
Own Id: OTP-13629

	Enhance error log messages to facilitate for users to understand the error
Own Id: OTP-13632

	Increased default DH params to 2048-bit
Own Id: OTP-13636

	Propagate CRL unknown CA error so that public_key validation process continues
correctly and determines what should happen.
Own Id: OTP-13656

	Introduce a flight concept for handshake packages. This is a preparation for
enabling DTLS, however it can also have a positive effects for TLS on slow and
unreliable networks.
Own Id: OTP-13678

SSL 7.3.3.2
Fixed Bugs and Malfunctions
	An erlang TLS server configured with cipher suites using rsa key exchange, may
be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher
attack) against RSA, which when exploited, may result in plaintext recovery of
encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the
attacker not having gained access to the server’s private key itself.
CVE-2017-1000385
Exploiting this vulnerability to perform plaintext recovery of encrypted
messages will, in most practical cases, allow an attacker to read the
plaintext only after the session has completed. Only TLS sessions established
using RSA key exchange are vulnerable to this attack.
Exploiting this vulnerability to conduct a MiTM attack requires the attacker
to complete the initial attack, which may require thousands of server
requests, during the handshake phase of the targeted session within the window
of the configured handshake timeout. This attack may be conducted against any
TLS session using RSA signatures, but only if cipher suites using RSA key
exchange are also enabled on the server. The limited window of opportunity,
limitations in bandwidth, and latency make this attack significantly more
difficult to execute.
RSA key exchange is enabled by default although least prioritized if server
order is honored. For such a cipher suite to be chosen it must also be
supported by the client and probably the only shared cipher suite.
Captured TLS sessions encrypted with ephemeral cipher suites (DHE or ECDHE)
are not at risk for subsequent decryption due to this vulnerability.
As a workaround if default cipher suite configuration was used you can
configure the server to not use vulnerable suites with the ciphers option like
this:
{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,Suite) =/= rsa]}
that is your code will look somethingh like this:
ssl:listen(Port, [{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,S) =/= rsa]} | Options]).
Thanks to Hanno Böck, Juraj Somorovsky and Craig Young for reporting this
vulnerability.
Own Id: OTP-14748

SSL 7.3.3
Fixed Bugs and Malfunctions
	Correct ssl:prf/5 to use the negotiated cipher suite's prf function in
ssl:prf/5 instead of the default prf.
Own Id: OTP-13546

	Timeouts may have the value 0, guards have been corrected to allow this
Own Id: OTP-13635

	Change of internal handling of hash sign pairs as the used one enforced to
much restrictions making some valid combinations unavailable.
Own Id: OTP-13670

SSL 7.3.3.0.1
Fixed Bugs and Malfunctions
	An erlang TLS server configured with cipher suites using rsa key exchange, may
be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher
attack) against RSA, which when exploited, may result in plaintext recovery of
encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the
attacker not having gained access to the server’s private key itself.
CVE-2017-1000385
Exploiting this vulnerability to perform plaintext recovery of encrypted
messages will, in most practical cases, allow an attacker to read the
plaintext only after the session has completed. Only TLS sessions established
using RSA key exchange are vulnerable to this attack.
Exploiting this vulnerability to conduct a MiTM attack requires the attacker
to complete the initial attack, which may require thousands of server
requests, during the handshake phase of the targeted session within the window
of the configured handshake timeout. This attack may be conducted against any
TLS session using RSA signatures, but only if cipher suites using RSA key
exchange are also enabled on the server. The limited window of opportunity,
limitations in bandwidth, and latency make this attack significantly more
difficult to execute.
RSA key exchange is enabled by default although least prioritized if server
order is honored. For such a cipher suite to be chosen it must also be
supported by the client and probably the only shared cipher suite.
Captured TLS sessions encrypted with ephemeral cipher suites (DHE or ECDHE)
are not at risk for subsequent decryption due to this vulnerability.
As a workaround if default cipher suite configuration was used you can
configure the server to not use vulnerable suites with the ciphers option like
this:
{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,Suite) =/= rsa]}
that is your code will look somethingh like this:
ssl:listen(Port, [{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,S) =/= rsa]} | Options]).
Thanks to Hanno Böck, Juraj Somorovsky and Craig Young for reporting this
vulnerability.
Own Id: OTP-14748

Improvements and New Features
	Create a little randomness in sending of session invalidation messages, to
mitigate load when whole table is invalidated.
Own Id: OTP-13490

SSL 7.3.2
Fixed Bugs and Malfunctions
	Correct cipher suites conversion and guard expression. Caused problems with
GCM cipher suites and client side option to set signature_algorithms extension
values.
Own Id: OTP-13525

SSL 7.3.1
Fixed Bugs and Malfunctions
	Corrections to cipher suite handling using the 3 and 4 tuple format in
addition to commit 89d7e21cf4ae988c57c8ef047bfe85127875c70c
Own Id: OTP-13511

Improvements and New Features
	Make values for the TLS-1.2 signature_algorithms extension configurable
Own Id: OTP-13261

SSL 7.3
Fixed Bugs and Malfunctions
	Make sure there is only one poller validator at a time for validating the
session cache.
Own Id: OTP-13185

	A timing related issue could cause ssl to hang, especially happened with newer
versions of OpenSSL in combination with ECC ciphers.
Own Id: OTP-13253

	Work around a race condition in the TLS distribution start.
Own Id: OTP-13268

	Big handshake messages are now correctly fragmented in the TLS record layer.
Own Id: OTP-13306

	Improve portability of ECC tests in Crypto and SSL for "exotic" OpenSSL
versions.
Own Id: OTP-13311

	Certificate extensions marked as critical are ignored when using verify_none
Own Id: OTP-13377

	If a certificate doesn't contain a CRL Distribution Points extension, and the
relevant CRL is not in the cache, and the crl_check option is not set to
best_effort , the revocation check should fail.
Own Id: OTP-13378

	Enable TLS distribution over IPv6
Own Id: OTP-13391

Improvements and New Features
	Improve error reporting for TLS distribution
Own Id: OTP-13219

	Include options from connect, listen and accept in
connection_information/1,2
Own Id: OTP-13232

	Allow adding extra options for outgoing TLS distribution connections, as
supported for plain TCP connections.
Own Id: OTP-13285

	Use loopback as server option in TLS-distribution module
Own Id: OTP-13300

	Verify certificate signature against original certificate binary.
This avoids bugs due to encoding errors when re-encoding a decode certificate.
As there exists several decode step and using of different ASN.1 specification
this is a risk worth avoiding.
Own Id: OTP-13334

	Use application:ensure_all_started/2 instead of hard-coding dependencies
Own Id: OTP-13363

SSL 7.2
Fixed Bugs and Malfunctions
	Honor distribution port range options
Own Id: OTP-12838

	Correct supervisor specification in TLS distribution.
Own Id: OTP-13134

	Correct cache timeout
Own Id: OTP-13141

	Avoid crash and restart of ssl process when key file does not exist.
Own Id: OTP-13144

	Enable passing of raw socket options on the format {raw,,,_} to the
underlying socket.
Own Id: OTP-13166

	Hibernation with small or a zero timeout will now work as expected
Own Id: OTP-13189

Improvements and New Features
	Add upper limit for session cache, configurable on ssl application level.
If upper limit is reached, invalidate the current cache entries, e.i the
session lifetime is the max time a session will be kept, but it may be
invalidated earlier if the max limit for the table is reached. This will keep
the ssl manager process well behaved, not exhusting memory. Invalidating the
entries will incrementally empty the cache to make room for fresh sessions
entries.
Own Id: OTP-12392

	Use new time functions to measure passed time.
Own Id: OTP-12457

	Improved error handling in TLS distribution
Own Id: OTP-13142

	Distribution over TLS now honors the nodelay distribution flag
Own Id: OTP-13143

SSL 7.1
Fixed Bugs and Malfunctions
	Add DER encoded ECPrivateKey as valid input format for key option.
Own Id: OTP-12974

	Correct return value of default session callback module
This error had the symptom that the client check for unique session would
always fail, potentially making the client session table grow a lot and
causing long setup times.
Own Id: OTP-12980

Improvements and New Features
	Add possibility to downgrade an SSL/TLS connection to a tcp connection, and
give back the socket control to a user process.
This also adds the possibility to specify a timeout to the ssl:close function.
Own Id: OTP-11397

	Add application setting to be able to change fatal alert shutdown timeout,
also shorten the default timeout. The fatal alert timeout is the number of
milliseconds between sending of a fatal alert and closing the connection.
Waiting a little while improves the peers chances to properly receiving the
alert so it may shutdown gracefully.
Own Id: OTP-12832

SSL 7.0
Fixed Bugs and Malfunctions
	Ignore signature_algorithm (TLS 1.2 extension) sent to TLS 1.0 or TLS 1.1
server
Own Id: OTP-12670

	Improve error handling in TLS distribution module to avoid lingering sockets.
Own Id: OTP-12799 Aux Id: Tom Briden

	Add option {client_renegotiation, boolean()} option to the server-side of
the SSL application.
Own Id: OTP-12815

Improvements and New Features
	Add new API functions to handle CRL-verification
Own Id: OTP-10362 Aux Id: kunagi-215 [126]

	Remove default support for SSL-3.0, due to Poodle vunrability in protocol
specification.
Add padding check for TLS-1.0 to remove Poodle vunrability from TLS 1.0, also
add the option padding_check. This option only affects TLS-1.0 connections and
if set to false it disables the block cipher padding check to be able to
interoperate with legacy software.
Remove default support for RC4 cipher suites, as they are consider too weak.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12390

	Add support for TLS ALPN (Application-Layer Protocol Negotiation) extension.
Own Id: OTP-12580

	Add SNI (Server Name Indication) support for the server side.
Own Id: OTP-12736

SSL 6.0.1.1
Fixed Bugs and Malfunctions
	Gracefully ignore proprietary hash_sign algorithms
Own Id: OTP-12829

SSL 6.0.1
Fixed Bugs and Malfunctions
	Terminate gracefully when receiving bad input to premaster secret calculation
Own Id: OTP-12783

SSL 6.0
Fixed Bugs and Malfunctions
	Exclude self-signed trusted anchor certificates from certificate prospective
certification path according to RFC 3280.
This will avoid some unnecessary certificate processing.
Own Id: OTP-12449

Improvements and New Features
	Separate client and server session cache internally.
Avoid session table growth when client starts many connections in such a
manner that many connections are started before session reuse is possible.
Only save a new session in client if there is no equivalent session already
stored.
Own Id: OTP-11365

	The PEM cache is now validated by a background process, instead of always
keeping it if it is small enough and clearing it otherwise. That strategy
required that small caches where cleared by API function if a file changes on
disk.
However export the API function to clear the cache as it may still be useful.
Own Id: OTP-12391

	Add padding check for TLS-1.0 to remove Poodle vulnerability from TLS 1.0,
also add the option padding_check. This option only affects TLS-1.0
connections and if set to false it disables the block cipher padding check to
be able to interoperate with legacy software.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12420

	Add support for TLS_FALLBACK_SCSV used to prevent undesired TLS version
downgrades. If used by a client that is vulnerable to the POODLE attack, and
the server also supports TLS_FALLBACK_SCSV, the attack can be prevented.
Own Id: OTP-12458

SSL 5.3.8
Fixed Bugs and Malfunctions
	Make sure the clean rule for ssh, ssl, eunit and otp_mibs actually removes
generated files.
Own Id: OTP-12200

Improvements and New Features
	Change code to reflect that state data may be secret to avoid breaking
dialyzer contracts.
Own Id: OTP-12341

SSL 5.3.7
Fixed Bugs and Malfunctions
	Handle the fact that servers may send an empty SNI extension to the client.
Own Id: OTP-12198

SSL 5.3.6
Fixed Bugs and Malfunctions
	Corrected handling of ECC certificates, there where several small issues with
the handling of such certificates in the ssl and public_key application. Now
ECC signed ECC certificates shall work and not only RSA signed ECC
certificates.
Own Id: OTP-12026

	Check that the certificate chain ends with a trusted ROOT CA e.i. a
self-signed certificate, but provide an option partial_chain to enable the
application to define an intermediat CA as trusted.
Own Id: OTP-12149

Improvements and New Features
	Add decode functions for SNI (Server Name Indication)
Own Id: OTP-12048

SSL 5.3.5
Fixed Bugs and Malfunctions
	ssl:recv now returns {error, einval} if applied to a non passive socket, the
same as gen_tcp:recv.
Thanks to Danil Zagoskin for reporting this issue
Own Id: OTP-11878

	Corrected handling of default values for signature_algorithms extension in
TLS-1.2 and corresponding values used in previous versions that does not
support this extension.
Thanks to Danil Zagoskin
Own Id: OTP-11886

	Handle socket option inheritance when pooling of accept sockets is used
Own Id: OTP-11897

	Make sure that the list of versions, possibly supplied in the versions option,
is not order dependent.
Thanks to Ransom Richardson for reporting this issue
Own Id: OTP-11912

	Reject connection if the next_protocol message is sent twice.
Own Id: OTP-11926

	Correct options handling when ssl:ssl_accept/3 is called with new ssl options
after calling ssl:listen/2
Own Id: OTP-11950

Improvements and New Features
	Gracefully handle unknown alerts
Thanks to Atul Atri for reporting this issue
Own Id: OTP-11874

	Gracefully ignore cipher suites sent by client not supported by the SSL/TLS
version that the client has negotiated.
Thanks to Danil Zagoskin for reporting this issue
Own Id: OTP-11875

	Gracefully handle structured garbage, i.e a client sends some garbage in a ssl
record instead of a valid fragment.
Thanks to Danil Zagoskin
Own Id: OTP-11880

	Gracefully handle invalid alerts
Own Id: OTP-11890

	Generalize handling of default ciphers
Thanks to Andreas Schultz
Own Id: OTP-11966

	Make sure change cipher spec is correctly handled
Own Id: OTP-11975

SSL 5.3.4
Fixed Bugs and Malfunctions
	Fix incorrect dialyzer spec and types, also enhance documentation.
Thanks to Ayaz Tuncer.
Own Id: OTP-11627

	Fix possible mismatch between SSL/TLS version and default ciphers. Could
happen when you specified SSL/TLS-version in optionlist to listen or accept.
Own Id: OTP-11712

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

Improvements and New Features
	Moved elliptic curve definition from the crypto NIF/OpenSSL into Erlang code,
adds the RFC-5639 brainpool curves and makes TLS use them (RFC-7027).
Thanks to Andreas Schultz
Own Id: OTP-11578

	Unicode adaptations
Own Id: OTP-11620

	Added option honor_cipher_order. This instructs the server to prefer its own
cipher ordering rather than the client's and can help protect against things
like BEAST while maintaining compatibility with clients which only support
older ciphers.
Thanks to Andrew Thompson for the implementation, and Andreas Schultz for the
test cases.
Own Id: OTP-11621

	Replace boolean checking in validate_option with is_boolean guard.
Thanks to Andreas Schultz.
Own Id: OTP-11634

	Some function specs are corrected or moved and some edoc comments are
corrected in order to allow use of edoc. (Thanks to Pierre Fenoll)
Own Id: OTP-11702

	Correct clean up of certificate database when certs are inputted in pure DER
format.The incorrect code could cause a memory leek when certs where inputted
in DER. Thanks to Bernard Duggan for reporting this.
Own Id: OTP-11733

	Improved documentation of the cacertfile option
Own Id: OTP-11759 Aux Id: seq12535

	Avoid next protocol negotiation failure due to incorrect option format.
Own Id: OTP-11760

	Handle v1 CRLs, with no extensions and fixes issues with IDP (Issuing
Distribution Point) comparison during CRL validation.
Thanks to Andrew Thompson
Own Id: OTP-11761

	Server now ignores client ECC curves that it does not support instead of
crashing.
Thanks to Danil Zagoskin for reporting the issue and suggesting a solution.
Own Id: OTP-11780

	Handle SNI (Server Name Indication) alert unrecognized_name and gracefully
deal with unexpected alerts.
Thanks to Masatake Daimon for reporting this.
Own Id: OTP-11815

	Add possibility to specify ssl options when calling ssl:ssl_accept
Own Id: OTP-11837

SSL 5.3.3
Fixed Bugs and Malfunctions
	Add missing validation of the server_name_indication option and test for its
explicit use. It was not possible to set or disable the default
server_name_indication as the validation of the option was missing.
Own Id: OTP-11567

	Elliptic curve selection in server mode now properly selects a curve suggested
by the client, if possible, and the fallback alternative is changed to a more
widely supported curve.
Own Id: OTP-11575

	Bug in the TLS hello extension handling caused the server to behave as it did
not understand secure renegotiation.
Own Id: OTP-11595

SSL 5.3.2
Fixed Bugs and Malfunctions
	Honors the clients advertised support of elliptic curves and no longer sends
incorrect elliptic curve extension in server hello.
Own Id: OTP-11370

	Fix initialization of DTLS fragment reassembler, in previously contributed
code, for future support of DTLS . Thanks to Andreas Schultz.
Own Id: OTP-11376

	Corrected type error in client_preferred_next_protocols documentation. Thanks
to Julien Barbot.
Own Id: OTP-11457

Improvements and New Features
	TLS code has been refactored to prepare for future DTLS support. Also some
DTLS code is in place but not yet runnable, some of it contributed by Andreas
Schultz and some of it written by the OTP team. Thanks to to Andreas for his
participation.
Own Id: OTP-11292

	Remove extraneous dev debug code left in the close function. Thanks to Ken
Key.
Own Id: OTP-11447

	Add SSL Server Name Indication (SNI) client support. Thanks to Julien Barbot.
Own Id: OTP-11460

SSL 5.3.1
Fixed Bugs and Malfunctions
	Setopts during renegotiation caused the renegotiation to be unsuccessful.
If calling setopts during a renegotiation the FSM state might change during
the handling of the setopts messages, this is now handled correctly.
Own Id: OTP-11228

	Now handles signature_algorithm field in digitally_signed properly with proper
defaults. Prior to this change some elliptic curve cipher suites could fail
reporting the error "bad certificate".
Own Id: OTP-11229

	The code emulating the inet header option was changed in the belief that it
made it inet compatible. However the testing is a bit hairy as the inet option
is actually broken, now the tests are corrected and the header option should
work in the same broken way as inet again, preferably use the bitsyntax
instead.
Own Id: OTP-11230

Improvements and New Features
	Make the ssl manager name for erlang distribution over SSL/TLS relative to the
module name of the ssl_manager.
This can be beneficial when making tools that rename modules for internal
processing in the tool.
Own Id: OTP-11255

	Add documentation regarding log_alert option.
Own Id: OTP-11271

SSL 5.3
Fixed Bugs and Malfunctions
	Honor the versions option to ssl:connect and ssl:listen.
Own Id: OTP-10905

	Next protocol negotiation with reused sessions will now succeed
Own Id: OTP-10909

Improvements and New Features
	Add support for PSK (Pre Shared Key) and SRP (Secure Remote Password) cipher
suites, thanks to Andreas Schultz.
Own Id: OTP-10450 Aux Id: kunagi-269 [180]

	Fix SSL Next Protocol Negotiation documentation. Thanks to Julien Barbot.
Own Id: OTP-10955

	Fix ssl_connection to support reading proxy/chain certificates. Thanks to
Valentin Kuznetsov.
Own Id: OTP-10980

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

SSL 5.2.1
Improvements and New Features
	Transport callback handling is changed so that gen_tcp is treated as a special
case where inet will be called directly for functions such as setopts, as
gen_tcp does not have its own setopts. This will enable users to use the
transport callback for other customizations such as websockets.
Own Id: OTP-10847

	Follow up to OTP-10451 solved in ssl-5.2 R16A. Make sure format_error return
good strings. Replace confusing legacy atoms with more descriptive atoms.
Own Id: OTP-10864

SSL 5.1.2.1
Improvements and New Features
	Make log_alert configurable as option in ssl, SSLLogLevel added as option to
inets conf file
Own Id: OTP-11259

SSL 5.2
Fixed Bugs and Malfunctions
	SSL: TLS 1.2, advertise sha224 support, thanks to Andreas Schultz.
Own Id: OTP-10586

	If an ssl server is restarted with new options and a client tries to reuse a
session the server must make sure that it complies to the new options before
agreeing to reuse it.
Own Id: OTP-10595

	Now handles cleaning of CA-certificate database correctly so that there will
be no memory leek, bug was introduced in ssl- 5.1 when changing implementation
to increase parallel execution.
Impact: Improved memory usage, especially if you have many different
certificates and upgrade tcp-connections to TLS-connections.
Own Id: OTP-10710

Improvements and New Features
	Support Next Protocol Negotiation in TLS, thanks to Ben Murphy for the
contribution.
Impact: Could give performance benefit if used as it saves a round trip.
Own Id: OTP-10361 Aux Id: kunagi-214 [125]

	TLS 1.2 will now be the default TLS version if sufficient crypto support is
available otherwise TLS 1.1 will be default.
Impact: A default TLS connection will have higher security and hence it may be
perceived as slower then before.
Own Id: OTP-10425 Aux Id: kunagi-275 [186]

	It is now possible to call controlling_process on a listen socket, same as in
gen_tcp.
Own Id: OTP-10447

	Remove filter mechanisms that made error messages backwards compatible with
old ssl but hid information about what actually happened.
This does not break the documented API however other reason terms may be
returned, so code that matches on the reason part of {error, Reason} may
fail.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10451 Aux Id: kunagi-270 [181]

	Added missing dependencies to Makefile
Own Id: OTP-10594

	Removed deprecated function ssl:pid/0, it has been pointless since R14 but has
been keep for backwards compatibility.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10613 Aux Id: kunagi-331 [242]

	Refactor to simplify addition of key exchange methods, thanks to Andreas
Schultz.
Own Id: OTP-10709

SSL 5.1.2
Fixed Bugs and Malfunctions
	ssl:ssl_accept/2 timeout is no longer ignored
Own Id: OTP-10600

SSL 5.1.1
Fixed Bugs and Malfunctions
	ssl:recv/3 could "loose" data when the timeout occurs. If the timeout in
ssl:connect or ssl:ssl_accept expired the ssl connection process was not
terminated as it should, this due to gen_fsm:send_all_state_event timeout is a
client side time out. These timouts are now handled by the gen_fsm-procss
instead.
Own Id: OTP-10569

Improvements and New Features
	Better termination handling that avoids hanging.
Own Id: OTP-10574

SSL 5.1
Fixed Bugs and Malfunctions
	Sometimes the client process could receive an extra {error, closed} message
after ssl:recv had returned {error, closed}.
Own Id: OTP-10118

	ssl v3 alert number 41 (no_certificate_RESERVED) is now recognized
Own Id: OTP-10196

Improvements and New Features
	Experimental support for TLS 1.1 is now available, will be officially
supported from OTP-R16. Thanks to Andreas Schultz for implementing the first
version.
Own Id: OTP-8871

	Experimental support for TLS 1.2 is now available, will be officially
supported from OTP-R16. Thanks to Andreas Schultz for implementing the first
version.
Own Id: OTP-8872

	Removed some bottlenecks increasing the applications parallelism especially
for the client side.
Own Id: OTP-10113

	Workaround for handling certificates that wrongly encode X509countryname in
utf-8 when the actual value is a valid ASCCI value of length 2. Such
certificates are accepted by many browsers such as Chrome and Fierfox so for
interoperability reasons we will too.
Own Id: OTP-10222

SSL 5.0.1
Fixed Bugs and Malfunctions
	Robustness and improvement to distribution over SSL
Fix a bug where ssl_tls_dist_proxy would crash at caller timeout. Fix a bug
where a timeout from the SSL layer would block the distribution indefinitely.
Run the proxy exclusively on the loopback interface. (Thanks to Paul Guyot)
Own Id: OTP-9915

	Fix setup loop of SSL TLS dist proxy
Fix potential leak of processes waiting indefinitely for data from closed
sockets during socket setup phase. (Thanks to Paul Guyot)
Own Id: OTP-9916

	Correct spelling of registered (Thanks to Richard Carlsson)
Own Id: OTP-9925

	Added TLS PRF function to the SSL API for generation of additional key
material from a TLS session. (Thanks to Andreas Schultz)
Own Id: OTP-10024

SSL 5.0
Fixed Bugs and Malfunctions
	Invalidation handling of sessions could cause the time_stamp field in the
session record to be set to undefined crashing the session clean up process.
This did not affect the connections but would result in that the session table
would grow.
Own Id: OTP-9696 Aux Id: seq11947

	Changed code to use ets:foldl and throw instead of ets:next traversal,
avoiding the need to explicitly call ets:safe_fixtable. It was possible to get
a badarg-crash under special circumstances.
Own Id: OTP-9703 Aux Id: seq11947

	Send ssl_closed notification to active ssl user when a tcp error occurs.
Own Id: OTP-9734 Aux Id: seq11946

	If a passive receive was ongoing during a renegotiation the process evaluating
ssl:recv could be left hanging for ever.
Own Id: OTP-9744

Improvements and New Features
	Support for the old ssl implementation is dropped and the code is removed.
Own Id: OTP-7048

	The erlang distribution can now be run over the new ssl implementation. All
options can currently not be set but it is enough to replace to old ssl
implementation.
Own Id: OTP-7053

	public_key, ssl and crypto now supports PKCS-8
Own Id: OTP-9312

	Implements a CBC timing attack counter measure. Thanks to Andreas Schultz for
providing the patch.
Own Id: OTP-9683

	Mitigates an SSL/TLS Computational DoS attack by disallowing the client to
renegotiate many times in a row in a short time interval, thanks to Tuncer
Ayaz for alerting us about this.
Own Id: OTP-9739

	Implements the 1/n-1 splitting countermeasure to the Rizzo Duong BEAST attack,
affects SSL 3.0 and TLS 1.0. Thanks to Tuncer Ayaz for alerting us about this.
Own Id: OTP-9750

SSL 4.1.6
Fixed Bugs and Malfunctions
	replace "a ssl" with "an ssl" reindent pkix_path_validation/3 Trivial
documentation fixes (Thanks to Christian von Roques)
Own Id: OTP-9464

Improvements and New Features
	Adds function clause to avoid denial of service attack. Thanks to Vinod for
reporting this vulnerability.
Own Id: OTP-9364

	Error handling code now takes care of inet:getopts/2 and inets:setopts/2
crashes. Thanks to Richard Jones for reporting this.
Own Id: OTP-9382

	Support explicit use of packet option httph and httph_bin
Own Id: OTP-9461

	Decoding of hello extensions could fail to come to the correct conclusion due
to an error in a binary match pattern. Thanks to Ben Murphy.
Own Id: OTP-9589

SSL 4.1.5
Improvements and New Features
	Calling gen_tcp:connect with option {ip, {127,0,0,1}} results in an exit
with reason badarg. Neither SSL nor INETS This was not caught, resulting in
crashes with incomprehensible reasons.
Own Id: OTP-9289 Aux Id: seq11845

SSL 4.1.3
Fixed Bugs and Malfunctions
	Fixed error in cache-handling fix from ssl-4.1.2
Own Id: OTP-9018 Aux Id: seq11739

	Verification of a critical extended_key_usage-extension corrected
Own Id: OTP-9029 Aux Id: seq11541

SSL 4.1.2
Fixed Bugs and Malfunctions
	The ssl application caches certificate files, it will now invalidate cache
entries if the diskfile is changed.
Own Id: OTP-8965 Aux Id: seq11739

	Now runs the terminate function before returning from the call made by
ssl:close/1, as before the caller of ssl:close/1 could get problems with the
reuseaddr option.
Own Id: OTP-8992

SSL 4.1.1
Fixed Bugs and Malfunctions
	Correct handling of client certificate verify message When checking the client
certificate verify message the server used the wrong algorithm identifier to
determine the signing algorithm, causing a function clause error in the
public_key application when the key-exchange algorithm and the public key
algorithm of the client certificate happen to differ.
Own Id: OTP-8897

Improvements and New Features
	For testing purposes ssl now also support some anonymous cipher suites when
explicitly configured to do so.
Own Id: OTP-8870

	Sends an error alert instead of crashing if a crypto function for the selected
cipher suite fails.
Own Id: OTP-8930 Aux Id: seq11720

SSL 4.1
Improvements and New Features
	Updated ssl to ignore CA certs that violate the asn1-spec for a certificate,
and updated public key asn1 spec to handle inherited DSS-params.
Own Id: OTP-7884

	Changed ssl implementation to retain backwards compatibility for old option
{verify, 0} that shall be equivalent to {verify, verify_none}, also
separate the cases unknown ca and selfsigned peer cert, and restored return
value of deprecated function public_key:pem_to_der/1.
Own Id: OTP-8858

	Changed the verify fun so that it differentiate between the peer certificate
and CA certificates by using valid_peer or valid as the second argument to the
verify fun. It may not always be trivial or even possible to know when the
peer certificate is reached otherwise.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8873

SSL 4.0.1
Fixed Bugs and Malfunctions
	The server now verifies the client certificate verify message correctly,
instead of causing a case-clause.
Own Id: OTP-8721

	The client hello message now always include ALL available cipher suites (or
those specified by the ciphers option). Previous implementation would filter
them based on the client certificate key usage extension (such filtering only
makes sense for the server certificate).
Own Id: OTP-8772

	Fixed handling of the option {mode, list} that was broken for some packet
types for instance line.
Own Id: OTP-8785

	Empty packets were not delivered to the client.
Own Id: OTP-8790

	Building in a source tree without prebuilt platform independent build results
failed on the SSL examples when:
	cross building. This has been solved by not building the SSL examples during
a cross build.
	building on Windows.

Own Id: OTP-8791

	Fixed a handshake error which occurred on some ssl implementations.
Own Id: OTP-8793

Improvements and New Features
	Revise the public_key API - Cleaned up and documented the public_key API to
make it useful for general use, also changed ssl to use the new API.
Own Id: OTP-8722

	Added support for inputing certificates and keys directly in DER format these
options will override the pem-file options if specified.
Own Id: OTP-8723

	To gain interoperability ssl will not check for padding errors when using TLS
1.0. It is first in TLS 1.1 that checking the padding is an requirement.
Own Id: OTP-8740

	Changed the semantics of the verify_fun option in the ssl-application so that
it takes care of both application handling of path validation errors and
verification of application specific extensions. This means that it is now
possible for the server application in verify_peer mode to handle path
validation errors. This change moved some functionality earlier in ssl to the
public_key application.
Own Id: OTP-8770

	Added the functionality so that the verification fun will be called when a
certificate is considered valid by the path validation to allow access to each
certificate in the path to the user application. Also try to verify
subject-AltName, if unable to verify it let the application verify it.
Own Id: OTP-8825

SSL 4.0
Improvements and New Features
	New ssl now support client/server-certificates signed by dsa keys.
Own Id: OTP-8587

	Ssl has now switched default implementation and removed deprecated certificate
handling. All certificate handling is done by the public_key application.
Own Id: OTP-8695

 TLS/DTLS Protocol Overview

Purpose
Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer
(SSL), are cryptographic protocols designed to provide communications security
over a computer network. The protocols use X.509 certificates and hence public
key (asymmetric) cryptography to authenticate the counterpart with whom they
communicate, and to exchange a symmetric key for payload encryption. The
protocol provides data/message confidentiality (encryption), integrity (through
message authentication code checks) and host verification (through certificate
path validation). DTLS (Datagram Transport Layer Security) that is based on TLS
but datagram oriented instead of stream oriented.
Erlang Support
The Erlang SSL application implements the TLS/DTLS protocol for the currently
supported versions, see the ssl manual page.
By default TLS is run over the TCP/IP protocol even though you can plug in any
other reliable transport protocol with the same Application Programming
Interface (API) as the gen_tcp module in Kernel. DTLS is by default run over
UDP/IP, which means that application data has no delivery guarantees. Other
transports, such as SCTP, may be supported in future releases.
If a client and a server wants to use an upgrade mechanism, such as defined by
RFC 2817, to upgrade a regular TCP/IP connection to a TLS connection, this is
supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual
hosting. Note this is a TLS feature only.
Security Overview
To achieve authentication and privacy, the client and server perform a TLS/DTLS
handshake procedure before transmitting or receiving any data. During the
handshake, they agree on a protocol version and cryptographic algorithms,
generate shared secrets using public key cryptographies, and optionally
authenticate each other with digital certificates.
Data Privacy and Integrity
A symmetric key algorithm has one key only. The key is used for both
encryption and decryption. These algorithms are fast, compared to public key
algorithms (using two keys, one public and one private) and are therefore
typically used for encrypting bulk data.
The keys for the symmetric encryption are generated uniquely for each connection
and are based on a secret negotiated in the TLS/DTLS handshake.
The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS
Record Protocol, which uses a keyed-hash Message Authenticity Code (MAC), or a
Hash-based MAC (HMAC), to protect the message data integrity. From the TLS RFC:
"A Message Authentication Code is a one-way hash computed from a message and
some secret data. It is difficult to forge without knowing the secret data. Its
purpose is to detect if the message has been altered."
Digital Certificates
A certificate is similar to a driver's license, or a passport. The holder of the
certificate is called the subject. The certificate is signed with the private
key of the issuer of the certificate. A chain of trust is built by having the
issuer in its turn being certified by another certificate, and so on, until you
reach the so called root certificate, which is self-signed, that is, issued by
itself.
Certificates are issued by Certification Authorities (CAs) only. A handful of
top CAs in the world issue root certificates. You can examine several of these
certificates by clicking through the menus of your web browser.
Peer Authentication
Authentication of the peer is done by public key path validation as defined in
RFC 3280. This means basically the following:
	Each certificate in the certificate chain is issued by the previous one.
	The certificates attributes are valid.
	The root certificate is a trusted certificate that is present in the trusted
certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but
the client only sends one if requested by the server. If the client does not
have an appropriate certificate, it can send an "empty" certificate to the
server.
The client can choose to accept some path evaluation errors, for example, a web
browser can ask the user whether to accept an unknown CA root certificate. The
server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server is to accept or reject an
"empty" certificate as response to a certificate request.
TLS Sessions - Prior to TLS-1.3
From the TLS RFC: "A TLS session is an association between a client and a
server. Sessions are created by the handshake protocol. Sessions define a set of
cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new
security parameters for each connection."
Session data is by default kept by the SSL application in a memory storage,
hence session data is lost at application restart or takeover. Users can define
their own callback module to handle session data storage if persistent data
storage is required. Session data is also invalidated when session database
exceeds its limit or 24 hours after being saved (RFC max lifetime
recommendation). The amount of time the session data is to be saved can be
configured.
By default the TLS/DTLS clients try to reuse an available session and by default
the TLS/DTLS servers agree to reuse sessions when clients ask for it. See also
Session Reuse Prior to TLS-1.3
TLS-1.3 session tickets
In TLS 1.3 the session reuse is replaced by a new session tickets mechanism
based on the prior to shared key concept. This mechanism also obsoletes the session
tickets from RFC5077, not implemented by this application. See also
Session Tickets and Session Resumption in TLS-1.3

 Examples

To see relevant version information for ssl, call ssl:versions/0 .
To see all supported cipher suites, call
ssl:cipher_suites(all, 'tlsv1.3'). The available
cipher suites for a connection depend on the TLS version and prior to TLS-1.3 also on
the certificate. To see the default cipher suite list change all to default.
Note that TLS 1.3 and previous versions do not have any cipher suites in common,
for listing cipher suites for a specific version use
ssl:cipher_suites(exclusive, 'tlsv1.3'). Specific
cipher suites that you want your connection to use can also be specified.
Default is to use the strongest available.
Warning
Enabling cipher suites using RSA as a key exchange algorithm is
strongly discouraged (only available prior to TLS-1.3). For some
configurations software preventions may exist, and can make them usable if they work,
but relying on them to work is risky and there are many more reliable
cipher suites that can be used instead.
The following sections shows small examples of how to set up client/server
connections using the Erlang shell. The returned value of the sslsocket is
abbreviated with [...] as it can be fairly large and is opaque to the user
except for the purpose of pattern matching.
Note
Note that client certificate verification is optional for the server and needs
additional conguration on both sides to work. The Certificate and keys, in the
examples, are provided using the ssl:cert_key_conf/0 supplied in the certs_keys
introduced in OTP 25.
Basic Client
 1 > ssl:start(), ssl:connect("google.com", 443, [{verify, verify_peer},
 {cacerts, public_key:cacerts_get()}]).
 {ok,{sslsocket, [...]}}
Basic Connection
Step 1: Start the server side:
1 server> ssl:start().
ok
Step 2: with alternative certificates, in this example the EDDSA certificate
will be preferred if TLS-1.3 is negotiated and the RSA certificate will always
be used for TLS-1.2 as it does not support the EDDSA algorithm:
2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certs_keys, [#{certfile => "eddsacert.pem",
 keyfile => "eddsakey.pem"},
 #{certfile => "rsacert.pem",
 keyfile => "rsakey.pem",
 password => "foobar"}
]},{reuseaddr, true}]).
{ok,{sslsocket, [...]}}
Step 3: Do a transport accept on the TLS listen socket:
3 server> {ok, TLSTransportSocket} = ssl:transport_accept(ListenSocket).
{ok,{sslsocket, [...]}}
Note
ssl:transport_accept/1 and ssl:handshake/2 are separate functions so that the
handshake part can be called in a new Erlang process dedicated to handling the
connection
Step 4: Start the client side:
1 client> ssl:start().
ok
Be sure to configure trusted certificates to use for server certificate
verification.
2 client> {ok, Socket} = ssl:connect("localhost", 9999,
 [{verify, verify_peer},
 {cacertfile, "cacerts.pem"}, {active, once}], infinity).
{ok,{sslsocket, [...]}}
Step 5: Do the TLS handshake:
4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
{ok,{sslsocket, [...]}}
Note
A real server should use ssl:handshake/2, which accepts a timeout, to avoid DoS
attacks. In the example the timeout defaults to infinity.
Step 6: Send a message over TLS:
5 server> ssl:send(Socket, "foo").
ok
Step 7: Flush the shell message queue to see that the message sent on the
server side is recived by the client side:
3 client> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok
Upgrade Example - TLS only
Upgrading a a TCP/IP connection to a TLS connections is mostly used when there
is a desire have unencrypted communication first and then later secure the
communication channel by using TLS. Note that the client and server need to
agree to do the upgrade in the protocol doing the communication. This is concept
is often referenced as STARTLS and used in many protocols such as SMTP,
FTPS and HTTPS via a proxy.
Warning
Maximum security recommendations are however moving away from such solutions.
To upgrade to a TLS connection:
Step 1: Start the server side:
1 server> ssl:start().
 ok
Step 2: Create a normal TCP listen socket and ensure active is set to
false and not set to any active mode otherwise TLS handshake messages can be
delivered to the wrong process.
2 server> {ok, ListenSocket} = gen_tcp:listen(9999, [{reuseaddr, true},
 {active, false}]).
 {ok, #Port<0.475>}
Step 3: Accept client connection:
3 server> {ok, Socket} = gen_tcp:accept(ListenSocket).
 {ok, #Port<0.476>}
Step 4: Start the client side:
1 client> ssl:start().
 ok
2 client> {ok, Socket} = gen_tcp:connect("localhost", 9999, [], infinity).
Step 5: Do the TLS handshake:
4 server> {ok, TLSSocket} = ssl:handshake(Socket, [{verify, verify_peer},
 {fail_if_no_peer_cert, true},
 {cacertfile, "cacerts.pem"},
 {certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]}]).
 {ok,{sslsocket,[...]}}
Step 6: Upgrade to a TLS connection. The client and server must agree upon the
upgrade. The server must be prepared to be a TLS server before the client can do
a successful connect.
3 client>{ok, TLSSocket} = ssl:connect(Socket, [{verify, verify_peer},
 {cacertfile, "cacerts.pem"},
 {certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]}], infinity).
{ok,{sslsocket,[...]}}
Step 7: Send a message over TLS:
4 client> ssl:send(TLSSocket, "foo").
 ok
Step 8: Set active once on the TLS socket:
5 server> ssl:setopts(TLSSocket, [{active, once}]).
 ok
Step 9: Flush the shell message queue to see that the message sent on the
client side is recived by the server side:
5 server> flush().
 Shell got {ssl,{sslsocket,[...]},"foo"}
 ok
Customizing cipher suites
Fetch default cipher suite list for a TLS/DTLS version. Change default to all to
get all possible cipher suites.
1> Default = ssl:cipher_suites(default, 'tlsv1.2').
 [#{cipher => aes_256_gcm,key_exchange => ecdhe_ecdsa,
 mac => aead,prf => sha384},]
In OTP 20 it is desirable to remove all cipher suites that uses rsa key exchange
(removed from default in 21)
2> NoRSA =
 ssl:filter_cipher_suites(Default,
 [{key_exchange, fun(rsa) -> false;
 (_) -> true
 end}]).
 [...]
Pick just a few suites
 3> Suites =
 ssl:filter_cipher_suites(Default,
 [{key_exchange, fun(ecdh_ecdsa) -> true;
 (_) -> false
 end},
 {cipher, fun(aes_128_cbc) -> true;
 (_) ->false
 end}]).

[#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
 mac => sha256,prf => sha256},
 #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
 prf => default_prf}]
Make some particular suites the most preferred, or least preferred by changing
prepend to append.
 4>ssl:prepend_cipher_suites(Suites, Default).
 [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
 mac => sha256,prf => sha256},
 #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
 prf => default_prf},
 #{cipher => aes_256_cbc,key_exchange => ecdhe_ecdsa,
 mac => sha384,prf => sha384}, ...]
Customizing signature algorithms(TLS-1.2)/schemes(TLS-1.3)
Starting from TLS-1.2 signature algorithms (called signature schemes in TLS-1.3)
is something that can be negotiated and hence also configured. These
algorithms/schemes will be used for digital signatures in protocol messages and
in certificates.
Note
TLS-1.3 schemes have atom names whereas TLS-1.2 configuration is two element
tuples composed by one hash algorithm and one signature algorithm. When both
versions are supported the configuration can be a mix of these as both
versions might be negotiated. All rsa_pss based schemes are back ported to
TLS-1.2 and can be used also in a TLS-1.2 configuration. In TLS-1.2 the
signature algorithms chosen by the server will also be affected by the chiper
suite that is chosen, which is not the case in TLS-1.3.
Using the function ssl:signature_algs/2 will let you inspect different aspects
of possible configurations for your system. For example if TLS-1.3 and TLS-1.2
is supported the default signature_algorithm list in OTP-26 and cryptolib from
OpenSSL 3.0.2 would look like:
 1> ssl:signature_algs(default, 'tlsv1.3').
 %% TLS-1.3 schemes
 [eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
 ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
 rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
 rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256,
 %% Legacy schemes only valid for certificate signatures in TLS-1.3
 %% (would have a tuple name in TLS-1.2 only configuration)
 rsa_pkcs1_sha512,rsa_pkcs1_sha384,rsa_pkcs1_sha256
 %% TLS 1.2 algorithms
 {sha512,ecdsa},
 {sha384,ecdsa},
 {sha256,ecdsa}]
If you want to add support for non default supported algorithms you should
append them to the default list as the configuration is in prefered order,
something like this:
 MySignatureAlgs = ssl:signature_algs(default, 'tlsv1.3') ++ [{sha, rsa}, {sha, dsa}],
 ssl:connect(Host,Port,[{signature_algs, MySignatureAlgs,...]}),
 ...
See also ssl:signature_algs/2 and sign_algo()
Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines
using the following mechanism:
1> ssl:start().
ok
Load a crypto engine, should be done once per engine used. For example
dynamically load the engine called MyEngine:
2> {ok, EngineRef} =
crypto:engine_load(<<"dynamic">>,
[{<<"SO_PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>],
[]).
{ok,#Ref<0.2399045421.3028942852.173962>}
Create a map with the engine information and the algorithm used by the engine:
3> PrivKey =
 #{algorithm => rsa,
 engine => EngineRef,
 key_id => "id of the private key in Engine"}.
Use the map in the ssl key option:
4> {ok, SSLSocket} =
 ssl:connect("localhost", 9999,
 [{cacertfile, "cacerts.pem"},
 {certs_keys, [#{certfile => "cert.pem", key => PrivKey}]}
], infinity).

See also crypto documentation
NSS keylog
The NSS keylog debug feature can be used by authorized users to for instance
enable wireshark to decrypt TLS packets.
The option to be used is for legacy reasons called keep_secrets and of course
defaults to false. The legacy value true will enable you retrieve keylogging from
the connection in a polling manner and does not work as intended for all use cases.
 {ok, [{keylog, KeylogItems}]} = ssl:connection_information(CSock, [keylog]).
 file:write(FileHandle, [[KeylogItem,$\n] || KeylogItem <- KeylogItems]).
Instead you should use the option values {keylog, fun()} or
{keylog_hs, fun()} to retrieve keylogs on all key update events or to
retrieve keylog if the connection fails during the handshake.
Warning
Note that enabling this is for debug
purposes and defeats the purpose of the TLS protocol, so use with
care.
An outline of this use case:
 Me = self(),
 Fun = fun(KeylogInfo) ->
 Me ! {keylog, KeylogInfo}
 end,
 Options = [{keep_secrets, {keylog, Fun} ...]

 ...

 receive
 {keylog	,#{items := KeylogItems, client_random := Rand}} ->
	 FileHandle = get_file(Rand),
	 file:write(FileHandle, [[KeylogItem,$\n] || KeylogItem <- KeylogItems])
 ...
Session Reuse Prior to TLS 1.3
Clients can request to reuse a session established by a previous full handshake
between that client and server by sending the id of the session in the initial
handshake message. The server may or may not agree to reuse it. If agreed the
server will send back the id and if not it will send a new id. The ssl
application has several options for handling session reuse.
On the client side the ssl application will save session data to try to automate
session reuse on behalf of the client processes on the Erlang node. Note that
only verified sessions will be saved for security reasons, that is session
resumption relies on the certificate validation to have been run in the original
handshake. To minimize memory consumption only unique sessions will be saved
unless the special save value is specified for the following option
{reuse_sessions, boolean() | save} in which case a full handshake will be
performed and that specific session will have been saved before the handshake
returns. The session id and even an opaque binary containing the session data
can be retrieved using ssl:connection_information/1 function. A saved session
(guaranteed by the save option) can be explicitly reused using
{reuse_session, SessionId}. Also it is possible for the client to reuse a
session that is not saved by the ssl application using
{reuse_session, {SessionId, SessionData}}.
Note
When using explicit session reuse, it is up to the client to make sure that
the session being reused is for the correct server and has been verified.
Here follows a client side example, divide into several steps for readability.
Step 1 - Automated Session Reuse
1> ssl:start().
ok

2>{ok, C1} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"}]).
{ok,{sslsocket,{gen_tcp,#Port<0.7>,tls_connection,undefined}, ...}}

3> ssl:connection_information(C1, [session_id]).
{ok,[{session_id,<<95,32,43,22,35,63,249,22,26,36,106,
 152,49,52,124,56,130,192,137,161,
 146,145,164,232,...>>}]}

%% Reuse session if possible, note that if C2 is really fast the session
%% data might not be available for reuse.
4>{ok, C2} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_sessions, true}]).
{ok,{sslsocket,{gen_tcp,#Port<0.8>,tls_connection,undefined}, ...]}}

%% C2 got same session ID as client one, session was automatically reused.
5> ssl:connection_information(C2, [session_id]).
{ok,[{session_id,<<95,32,43,22,35,63,249,22,26,36,106,
 152,49,52,124,56,130,192,137,161,
 146,145,164,232,...>>}]}
Step 2- Using save Option
%% We want save this particular session for
%% reuse although it has the same basis as C1
6> {ok, C3} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_sessions, save}]).

{ok,{sslsocket,{gen_tcp,#Port<0.9>,tls_connection,undefined}, ...]}}

%% A full handshake is performed and we get a new session ID
7> {ok, [{session_id, ID}]} = ssl:connection_information(C3, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}

%% Use automatic session reuse
8> {ok, C4} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_sessions, true}]).

{ok,{sslsocket,{gen_tcp,#Port<0.10>,tls_connection,
 undefined}, ...]}}

%% The "saved" one happened to be selected, but this is not a guarantee
9> ssl:connection_information(C4, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}

%% Make sure to reuse the "saved" session
10> {ok, C5} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_session, ID}]).
{ok,{sslsocket,{gen_tcp,#Port<0.11>,tls_connection,
 undefined}, ...]}}

11> ssl:connection_information(C5, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}
Step 3 - Explicit Session Reuse
%% Perform a full handshake and the session will not be saved for reuse
12> {ok, C9} =
ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_sessions, false},
 {server_name_indication, disable}]).
{ok,{sslsocket,{gen_tcp,#Port<0.14>,tls_connection, ...}}

%% Fetch session ID and data for C9 connection
12> {ok, [{session_id, ID1}, {session_data, SessData}]} =
 ssl:connection_information(C9, [session_id, session_data]).
{ok,[{session_id,<<9,233,4,54,170,88,170,180,17,96,202,
 85,85,99,119,47,9,68,195,50,120,52,
 130,239,...>>},
 {session_data,<<131,104,13,100,0,7,115,101,115,115,105,
 111,110,109,0,0,0,32,9,233,4,54,170,...>>}]}

%% Explicitly reuse the session from C9
13> {ok, C10} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_session, {ID1, SessData}}]).
{ok,{sslsocket,{gen_tcp,#Port<0.15>,tls_connection,
 undefined}, ...}}

14> ssl:connection_information(C10, [session_id]).
{ok,[{session_id,<<9,233,4,54,170,88,170,180,17,96,202,
 85,85,99,119,47,9,68,195,50,120,52,
 130,239,...>>}]}
Step 4 - Not Possible to Reuse Explicit Session by ID Only
%% Try to reuse the session from C9 using only the id
15> {ok, E} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_session, ID1}]).
{ok,{sslsocket,{gen_tcp,#Port<0.18>,tls_connection,
 undefined}, ...}}

%% This will fail (as it is not saved for reuse)
%% and a full handshake will be performed, we get a new id.
16> ssl:connection_information(E, [session_id]).
{ok,[{session_id,<<87,46,43,126,175,68,160,153,37,29,
 196,240,65,160,254,88,65,224,18,63,
 18,17,174,39,...>>}]}
On the server side the the {reuse_sessions, boolean()} option determines if
the server will save session data and allow session reuse or not. This can be
further customized by the option {reuse_session, fun()} that may introduce a
local policy for session reuse.
Session Tickets and Session Resumption in TLS 1.3
TLS 1.3 introduces a new secure way of resuming sessions by using session
tickets. A session ticket is an opaque data structure that is sent in the
pre_shared_key extension of a ClientHello, when a client attempts to resume a
session with keying material from a previous successful handshake.
Session tickets can be stateful or stateless. A stateful session ticket is a
database reference (session ticket store) and used with stateful servers, while
a stateless ticket is a self-encrypted and self-authenticated data structure
with cryptographic keying material and state data, enabling session resumption
with stateless servers.
The choice between stateful or stateless depends on the server requirements as
the session tickets are opaque for the clients. Generally, stateful tickets are
smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but
they offer different guarantees against anti-replay. See also
Anti-Replay Protection in TLS 1.3
Session tickets are sent by servers on newly established TLS connections. The
number of tickets sent and their lifetime are configurable by application
variables. See also SSL's configuration.
Session tickets are protected by application traffic keys, and in stateless
tickets, the opaque data structure itself is self-encrypted.
An example with automatic and manual session resumption:
 {ok, _} = application:ensure_all_started(ssl).
 LOpts = [{certs_keys, [#{certfile => "cert.pem",
 keyfile => "key.pem"}]},
 {versions, ['tlsv1.2','tlsv1.3']},
 {session_tickets, stateless}].
 {ok, LSock} = ssl:listen(8001, LOpts).
 {ok, ASock} = ssl:transport_accept(LSock).
Step 2 (client): Start the client and connect to server:
 {ok, _} = application:ensure_all_started(ssl).
 COpts = [{cacertfile, "cert.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, auto}].
 ssl:connect("localhost", 8001, COpts).
Step 3 (server): Start the TLS handshake:
 {ok, CSocket} = ssl:handshake(ASock).
A connection is established using a full handshake. Below is a summary of the
exchanged messages:
 >>> TLS 1.3 Handshake, ClientHello ...
 <<< TLS 1.3 Handshake, ServerHello ...
 <<< Handshake, EncryptedExtensions ...
 <<< Handshake, Certificate ...
 <<< Handshake, CertificateVerify ...
 <<< Handshake, Finished ...
 >>> Handshake, Finished ...
 <<< Post-Handshake, NewSessionTicket ...
At this point the client has stored the received session tickets and ready to
use them when establishing new connections to the same server.
Step 4 (server): Accept a new connection on the server:
 {ok, ASock2} = ssl:transport_accept(LSock).
Step 5 (client): Make a new connection:
 ssl:connect("localhost", 8001, COpts).
Step 6 (server): Start the handshake:
 {ok, CSock2} =ssl:handshake(ASock2).
The second connection is a session resumption using keying material from the
previous handshake:
 >>> TLS 1.3 Handshake, ClientHello ...
 <<< TLS 1.3 Handshake, ServerHello ...
 <<< Handshake, EncryptedExtensions ...
 <<< Handshake, Finished ...
 >>> Handshake, Finished ...
 <<< Post-Handshake, NewSessionTicket ...
Manual handling of session tickets is also supported. In manual mode, it is the
responsibility of the client to handle received session tickets.
Step 7 (server): Accept a new connection on the server:
 {ok, ASock3} = ssl:transport_accept(LSock).
Step 8 (client): Make a new connection to server:
 {ok, _} = application:ensure_all_started(ssl).
 COpts2 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, manual}].
 ssl:connect("localhost", 8001, COpts).
Step 9 (server): Start the handshake:
 {ok, CSock3} = ssl:handshake(ASock3).
After the handshake is performed, the user process receivess messages with the
tickets sent by the server.
Step 10 (client): Receive a new session ticket:
 Ticket = receive {ssl, session_ticket, {_, TicketData}} -> TicketData end.
Step 11 (server): Accept a new connection on the server:
 {ok, ASock4} = ssl:transport_accept(LSock).
Step 12 (client): Initiate a new connection to the server with the session
ticket received in Step 10:
 {ok, _} = application:ensure_all_started(ssl).
 COpts2 = [{cacertfile, "cert.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, manual},
 {use_ticket, [Ticket]}].
 ssl:connect("localhost", 8001, COpts).
Step 13 (server): Start the handshake:
 {ok, CSock4} = ssl:handshake(ASock4).
Early Data in TLS-1.3
TLS 1.3 allows clients to send data on the first flight if the endpoints have a
shared crypographic secret (pre-shared key). This means that clients can send
early data if they have a valid session ticket received in a previous successful
handshake. For more information about session resumption see
Session Tickets and Session Resumption in TLS 1.3.
The security properties of Early Data are weaker than other kinds of TLS data.
This data is not forward secret, and it is vulnerable to replay attacks. For
available mitigation strategies see
Anti-Replay Protection in TLS 1.3.
In normal operation, clients will not know which, if any, of the available
mitigation strategies servers actually implement, and hence must only send early
data which they deem safe to be replayed. For example, idempotent HTTP
operations, such as HEAD and GET, can usually be regarded as safe but even they
can be exploited by a large number of replays causing resource limit exhaustion
and other similar problems.
An example of sending early data with automatic and manual session ticket
handling:
Server
early_data_server() ->
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 LOpts = [{certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]},
 {reuseaddr, true},
 {versions, ['tlsv1.2','tlsv1.3']},
 {session_tickets, stateless},
 {early_data, enabled},
],
 {ok, LSock} = ssl:listen(Port, LOpts),
 %% Accept first connection
 {ok, ASock0} = ssl:transport_accept(LSock),
 {ok, CSock0} = ssl:handshake(ASock0),
 %% Accept second connection
 {ok, ASock1} = ssl:transport_accept(LSock),
 {ok, CSock1} = ssl:handshake(ASock1),
 Sock.
Client (automatic ticket handling):
early_data_auto() ->
 %% First handshake 1-RTT - get session tickets
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
 COpts0 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {session_tickets, auto}],
 {ok, Sock0} = ssl:connect("localhost", Port, COpts0),

 %% Wait for session tickets
 timer:sleep(500),
 %% Close socket if server cannot handle multiple
 %% connections e.g. openssl s_server
 ssl:close(Sock0),

 %% Second handshake 0-RTT
 COpts1 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {session_tickets, auto},
 {early_data, Data}],
 {ok, Sock} = ssl:connect("localhost", Port, COpts1),
 Sock.

Client (manual ticket handling):
early_data_manual() ->
 %% First handshake 1-RTT - get session tickets
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
 COpts0 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {session_tickets, manual}],
 {ok, Sock0} = ssl:connect("localhost", Port, COpts0),

 %% Wait for session tickets
 Ticket =
 receive
 {ssl, session_ticket, Ticket0} ->
 Ticket0
 end,

 %% Close socket if server cannot handle multiple connections
 %% e.g. openssl s_server
 ssl:close(Sock0),

 %% Second handshake 0-RTT
 COpts1 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {session_tickets, manual},
 {use_ticket, [Ticket]},
 {early_data, Data}],
 {ok, Sock} = ssl:connect("localhost", Port, COpts1),
 Sock.
Anti-Replay Protection in TLS 1.3
The TLS 1.3 protocol does not provide inherent protection for replay of 0-RTT
data but describes mechanisms that SHOULD be implemented by compliant server
implementations. The implementation of TLS 1.3 in the SSL application employs
all standard methods to prevent potential threats.
Single-use tickets
This mechanism is available with stateful session tickets. Session tickets can
only be used once, subsequent use of the same ticket results in a full
handshake. Stateful servers enforce this rule by maintaining a database of
outstanding valid tickets.
Client Hello Recording
This mechanism is available with stateless session tickets. The server records a
unique value derived from the ClientHello (PSK binder) in a given time window.
The ticket's age is verified by using both the "obsfuscated_ticket_age" and an
additional timestamp encrypted in the ticket data. As the used datastore allows
false positives, apparent replays will be answered by doing a full 1-RTT
handshake.
Freshness Checks
This mechanism is available with the stateless session tickets. As the ticket
data has an embedded timestamp, the server can determine if a ClientHello was
sent reasonably recently and accept the 0-RTT handshake, otherwise if falls back
to a full 1-RTT handshake. This mechanism is tightly coupled with the previous
one, it prevents storing an unlimited number of ClientHellos.
The current implementation uses a pair of Bloom filters to implement the last
two mechanisms. Bloom filters are fast, memory-efficient, probabilistic data
structures that can tell if an element may be in a set or if it is definitely
not in the set.
If the option anti_replay is defined in the server, a
pair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored).
The current Bloom filter is used for WindowSize seconds to store new
elements. At the end of the time window the Bloom filters are rotated (the
current Bloom filter becomes the old and an empty Bloom filter is set as
current.
The Anti-Replay protection feature in stateless servers executes in the
following steps when a new ClientHello is received:
	Reported ticket age (obfuscated ticket age) shall be less than ticket
lifetime.
	Actual ticket age shall be less than the ticket lifetime (stateless session
tickets contain the servers timestamp when the ticket was issued).
	ClientHello created with the ticket shall be sent relatively recently
(freshness checks).
	If all above checks passed both current and old Bloom filters are checked
to detect if binder was already seen. Being a probabilistic data structure,
false positives can occur and they trigger a full handshake.
	If the binder is not seen, the binder is validated. If the binder is valid,
the server proceeds with the 0-RTT handshake.

Using DTLS
Using DTLS has basically the same API as TLS. You need to add the option
{protocol, dtls} to the connect and listen functions. For example
 client>{ok, Socket} = ssl:connect("localhost", 9999, [{protocol, dtls},
 {verify, verify_peer},
 {cacertfile, "cacerts.pem"}],
 infinity).
{ok,{sslsocket, [...]}}

 Erlang Distribution over TLS

This section describes how the Erlang distribution can use TLS to get extra
verification and security.
The Erlang distribution can in theory use almost any connection-based protocol
as bearer. However, a module that implements the protocol-specific parts of the
connection setup is needed. The default distribution module is inet_tcp_dist
in the Kernel application. When starting an Erlang node distributed,
net_kernel uses this module to set up listen ports and connections.
In the SSL application, an extra distribution module, inet_tls_dist, can be
used as an alternative. All distribution connections will use TLS and all
participating Erlang nodes in a distributed system must use this distribution
module.
The security level depends on the parameters provided to the TLS connection
setup. Erlang node cookies are however always used, as they can be used to
differentiate between two different Erlang networks.
To set up Erlang distribution over TLS:
	Step 1: Build boot scripts including the SSL application.
	Step 2: Specify the distribution module for net_kernel.
	Step 3: Specify the security options and other SSL options.
	Step 4: Set up the environment to always use TLS.

The following sections describe these steps.
Building Boot Scripts Including the SSL Application
Boot scripts are built using the systools utility in the SASL application. For
more information on systools, see the SASL documentation. This is only an
example of what can be done.
The simplest boot script possible includes only the Kernel and STDLIB
applications. Such a script is located in the bin directory of the Erlang
distribution. The source for the script is found under the Erlang installation
top directory under releases/<OTP version>/start_clean.rel.
Do the following:
	Copy that script to another location (and preferably another name).
	Add the applications Crypto, Public Key, and SSL with their current version
numbers after the STDLIB application.

The following shows an example .rel file with TLS added:
 {release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
 [{kernel,"2.15"},
 {stdlib,"1.18"},
 {crypto, "2.0.3"},
 {public_key, "0.12"},
 {asn1, "4.0"},
 {ssl, "5.0"}
]}.
The version numbers differ in your system. Whenever one of the applications
included in the script is upgraded, change the script.
Do the following:
	Build the boot script.
Assuming the .rel file is stored in a file start_ssl.rel in the current
directory, a boot script can be built as follows:

 1> systools:make_script("start_ssl",[]).
There is now a start_ssl.boot file in the current directory.
Do the following:
	Test the boot script. To do this, start Erlang with the -boot command-line
parameter specifying this boot script (with its full path, but without the
.boot suffix). In UNIX it can look as follows:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> whereis(ssl_manager).
<0.41.0>
The whereis function-call verifies that the SSL application is started.
As an alternative to building a bootscript, you can explicitly add the path to
the SSL ebin directory on the command line. This is done with command-line
option -pa. This works as the SSL application does not need to be started for
the distribution to come up, as a clone of the SSL application is hooked into
the Kernel application. So, as long as the SSL application code can be reached,
the distribution starts. The -pa method is only recommended for testing
purposes.
Note
The clone of the SSL application must enable the use of the SSL code in such
an early bootstage as needed to set up the distribution. However, this makes
it impossible to soft upgrade the SSL application.
Specifying Distribution Module for net_kernel
The distribution module for TLS is named inet_tls_dist and is specified on the
command line with option -proto_dist. The argument to -proto_dist is to be
the module name without suffix _dist. So, this distribution module is
specified with -proto_dist inet_tls on the command line.
Extending the command line gives the following:
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
For the distribution to be started, give the emulator a name as well:
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>
However, a node started in this way refuses to talk to other nodes, as no TLS
parameters are supplied (see the next section).
Specifying TLS Options
The TLS distribution options can be written into a file that is consulted when
the node is started. This file name is then specified with the command line
argument -ssl_dist_optfile.
Any available TLS option can be specified in an options file.
Note
Options that take a fun() has to use the syntax fun Mod:Func/Arity since a
function body cannot be compiled when consulting a file. Also the encoding
of the file can be specified as defined by module epp.
Warning
Do not tamper with the socket options list, binary, active, packet,
nodelay and deliver since they are used by the distribution protocol handler
itself. Other raw socket options such as packet_size may interfere severely,
so beware!
For TLS to work, at least a public key and a certificate must be specified for
the server side and the client needs to specify CAs that it trusts (client certification
is optional and requires more configuration).
In the following example (to keep it simple), the PEM file "/home/me/ssl/erlserver.pem"
contains both the server certificate and its private key .
Create a file named for example "/home/me/ssl/ssl_test@myhost.conf":
[{server,
 [{certfile, "/home/me/ssl/erlserver.pem"}]},
 {client,
 [{cacertfile, "/home/me/ssl/client_trusted.pem"}]}].
And then start the node like this (line breaks in the command are for
readability, and shall not be there when typed):
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
 -sname ssl_test
The options in the {server, Opts} tuple are used when calling
ssl:handshake/3, and the options in the {client, Opts} tuple are used when
calling ssl:connect/4.
For the client, the option {server_name_indication, atom_to_list(TargetNode)}
is added when connecting. This makes it possible to use the client option
{verify, verify_peer}, and the client will verify that the certificate matches
the node name you are connecting to. This only works if the the server
certificate is issued to the name
atom_to_list(TargetNode).
For the server it is also possible to use the option {verify, verify_peer} and
the server will only accept client connections with certificates that are
trusted by a root certificate that the server knows. A client that presents an
untrusted certificate will be rejected. This option is preferably combined with
{fail_if_no_peer_cert, true} or a client will still be accepted if it does not
present any certificate.
A node started in this way is fully functional, using TLS as the distribution
protocol.
verify_fun Configuration Example
The verify_fun option creates a reference to the implementing
function since the configuration is evaluated as an Erlang term. In
an example file for use with -ssl_dist_optfile:
[{server,[{fail_if_no_peer_cert,true},
 {certfile,"/home/me/ssl/cert.pem"},
 {keyfile,"/home/me/ssl/privkey.pem"},
 {cacertfile,"/home/me/ssl/ca_cert.pem"},
 {verify,verify_peer},
 {verify_fun,{fun mydist:verify/3,"any initial value"}}]},
 {client,[{certfile,"/home/me/ssl/cert.pem"},
 {keyfile,"/home/me/ssl/privkey.pem"},
 {cacertfile,"/home/me/ssl/ca_cert.pem"},
 {verify,verify_peer},
 {verify_fun,{fun mydist:verify/3,"any initial value"}}]}].

mydist:verify/3 will be called with:
	OtpCert, the other party's certificate PKIX Certificates
	SslStatus, OTP's verification outcome, such as valid or a tuple {bad_cert, unknown_ca}
	Init will be "any initial value"

A pattern for verify/3 will look like:
verify(OtpCert, _SslStatus, Init) ->
 IsOk = is_ok(OtpCert, Init),
 NewInitValue = "some new value",
 case IsOk of
 true ->
 {valid, NewInitValue};
 false ->
 {failure, NewInitValue}
 end.
verify_fun can accept a verify/4 function, which will receive:
	OtpCert, the other party's certificate PKIX Certificates
	DerCert, the other party's original DER Encoded certificate
	SslStatus, OTP's verification outcome, such as valid or a tuple {bad_cert, unknown_ca}
	Init will be "any initial value"

The verify/4 can use the DerCert for atypical workarounds such as
handling decoding errors and directly verifying signatures.
For more details see {verify_fun, Verify} in common_option_cert
Note
The legacy command line format for verify_fun cannot be used
in a -ssl_dist_optfile file as described below in
Specifying TLS Options (Legacy).
Using TLS distribution over IPv6
It is possible to use TLS distribution over IPv6 instead of IPv4. To do this,
pass the option -proto_dist inet6_tls instead of -proto_dist inet_tls when
starting Erlang, either on the command line or in the ERL_FLAGS environment
variable.
An example command line with this option would look like this:
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet6_tls
 -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
 -sname ssl_test
A node started in this way will only be able to communicate with other nodes
using TLS distribution over IPv6.
Specifying TLS Options (Legacy)
Note
The following section describes TLS Option handling prior to OTP 20.2
and can only handle a small subset of the actual available options.
It is here only for the sake of backwards compatibility .
As in the previous section the PEM file "/home/me/ssl/erlserver.pem" contains
both the server certificate and its private key.
On the erl command line you can specify options that the TLS distribution adds
when creating a socket.
The simplest TLS options in the following list can be specified by adding the
prefix server_ or client_ to the option name:
	certfile
	keyfile
	password
	cacertfile
	verify
	verify_fun (write as {Module, Function, InitialUserState})
	crl_check
	crl_cache (write as Erlang term)
	reuse_sessions
	secure_renegotiate
	depth
	hibernate_after
	ciphers (use old string format)

Note that verify_fun needs to be written in a different form than the
corresponding TLS option, since funs are not accepted on the command line.
The server can also take the options dhfile and fail_if_no_peer_cert (also
prefixed).
client_-prefixed options are used when the distribution initiates a
connection to another node. server_-prefixed options are used when accepting
a connection from a remote node.
Raw socket options, such as packet and size must not be specified on the
command line.
The command-line argument for specifying the TLS options is named
-ssl_dist_opt and is to be followed by pairs of SSL options and their values.
Argument -ssl_dist_opt can be repeated any number of times.
An example command line doing the same as the example in the previous section
can now look as follows (line breaks in the command are for readability, and
shall not be there when typed):
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem"
 -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true
 -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>
Setting up Environment to Always Use TLS
A convenient way to specify arguments to Erlang is to use environment variable
ERL_FLAGS. All the flags needed to use the TLS distribution can be specified
in that variable and are then interpreted as command-line arguments for all
subsequent invocations of Erlang.
In a Unix (Bourne) shell, it can look as follows (line breaks are for
readability, they are not to be there when typed):
$ ERL_FLAGS="-boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_opt server_certfile /home/me/ssl/erlserver.pem
 -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
 {progname,["erl "]},
 {sname,["ssl_test"]},
 {boot,["/home/me/ssl/start_ssl"]},
 {proto_dist,["inet_tls"]},
 {ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
 {ssl_dist_opt,["server_secure_renegotiate","true",
 "client_secure_renegotiate","true"]
 {home,["/home/me"]}]
The init:get_arguments() call verifies that the correct arguments are supplied
to the emulator.

 Standards Compliance

Purpose
This section describes the current state of standards compliance of the ssl
application.
Common (prior to TLS 1.3)
	For security reasons RSA key exchange cipher suites are no longer supported by
default, but can be configured. (OTP 21)
	For security reasons DES cipher suites are no longer supported by default, but
can be configured. (OTP 20)
	For security reasons 3DES cipher suites are no longer supported by default,
but can be configured. (OTP 21)
	Renegotiation Indication Extension
RFC 5746 is supported
	Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman
Certificates cipher suites.
	Elliptic Curve cipher suites are supported if the Crypto application supports
it and named curves are used.
	Export cipher suites are not supported as the U.S. lifted its export
restrictions in early 2000.
	IDEA cipher suites are not supported as they have become deprecated by the TLS
1.2 specification so it is not motivated to implement them.
	Compression is not supported.
	It is possible to use Pre-Shared Key (PSK) and Secure Remote Password (SRP)
cipher suites, but they are not enabled by default and need addition configuration.

Common
	CRL validation is supported.
	Policy certificate extensions are supported. (OTP 27)
	'Server Name Indication' extension
(RFC 6066) is supported.
	Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol
Negotiation (NPN) are supported.

SSL 2.0
For security reasons SSL-2.0 is not supported. Interoperability with SSL-2.0
enabled clients dropped. (OTP 21)
SSL 3.0
For security reasons SSL-3.0 is no longer supported at all. (OTP 23)
For security reasons SSL-3.0 is no longer supported by default, but can be
configured. (OTP 19)
TLS 1.0
For security reasons TLS-1.0 is no longer supported by default, but can be
configured. (OTP 22)
TLS 1.1
For security reasons TLS-1.1 is no longer supported by default, but can be
configured. (OTP 22)
TLS 1.2
Supported
DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) is no longer supported by
default, but can be configured. (OTP 22)
DTLS 1.2
Supported (based on TLS 1.2)
DTLS 1.3
Not yet supported
TLS 1.3
OTP-22 introduces support for TLS 1.3. The current implementation supports a
selective set of cryptographic algorithms:
	Key Exchange: ECDHE groups supported by default
	Groups: all standard groups supported for the Diffie-Hellman key exchange
	Groups: Support brainpool groups from RFC 8734
	Ciphers: all mandatory cipher suites are supported
	Signature Algorithms: All algorithms form RFC 8446
	Certificates: RSA, ECDSA and EDDSA keys

Other notable features:
	PSK and session resumption is supported (stateful and stateless tickets)
	Anti-replay protection using Bloom-filters with stateless tickets
	Early data and 0-RTT is supported
	Key and Initialization Vector Update is supported

For more detailed information see the
Standards Compliance below.
The following table describes the current state of standards compliance for TLS
1.3.
(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not
Applicable)

	Section	Feature	State	Since
	1.3. Updates Affecting TLS 1.2		C	24.1
		Version downgrade protection mechanism	C	22
		RSASSA-PSS signature schemes	C	24.1
		supported_versions (ClientHello) extension	C	22
		signature_algorithms_cert extension	C	24.1
	2. Protocol Overview		PC	22
		(EC)DHE	C	22
		PSK-only	NC	
		PSK with (EC)DHE	C	22.2
	2.1. Incorrect DHE share	HelloRetryRequest	C	22
	2.2. Resumption and Pre-Shared Key (PSK)		C	22.2
	2.3. 0-RTT Data		PC	23.3
	4.1.1. Cryptographic Negotiation		C	22.2
		supported_groups extension	C	22
		signature_algorithms extension	C	22
		pre_shared_key extension	C	22.2
	4.1.2. Client Hello	Client	PC	22.1
		server_name (RFC6066)	C	23.2
		max_fragment_length (RFC6066)	C	23.0
		status_request (RFC6066)	C	27.0
		supported_groups (RFC7919)	C	22.1
		signature_algorithms (RFC8446)	C	22.1
		use_srtp (RFC5764)	C	26.0
		heartbeat (RFC6520)	NC	
		application_layer_protocol_negotiation (RFC7301)	C	22.1
		signed_certificate_timestamp (RFC6962)	NC	
		client_certificate_type (RFC7250)	NC	
		server_certificate_type (RFC7250)	NC	
		padding (RFC7685)	NC	
		key_share (RFC8446)	C	22.1
		pre_shared_key (RFC8446)	C	22.2
		psk_key_exchange_modes (RFC8446)	C	22.2
		early_data (RFC8446)	C	23.3
		cookie (RFC8446)	C	23.1
		supported_versions (RFC8446)	C	22.1
		certificate_authorities (RFC8446)	C	24.3
		oid_filters (RFC8446)	NC	
		post_handshake_auth (RFC8446)	NC	
		signature_algorithms_cert (RFC8446)	C	22.1
		Server	PC	22
		server_name (RFC6066)	C	23.2
		max_fragment_length (RFC6066)	C	23.0
		status_request (RFC6066)	NC	
		supported_groups (RFC7919)	C	22
		signature_algorithms (RFC8446)	C	22
		use_srtp (RFC5764)	C	26.0
		heartbeat (RFC6520)	NC	
		application_layer_protocol_negotiation (RFC7301)	C	22.1
		signed_certificate_timestamp (RFC6962)	NC	
		client_certificate_type (RFC7250)	NC	
		server_certificate_type (RFC7250)	NC	
		padding (RFC7685)	NC	
		key_share (RFC8446)	C	22
		pre_shared_key (RFC8446)	C	22.2
		psk_key_exchange_modes (RFC8446)	C	22.2
		early_data (RFC8446)	C	23.3
		cookie (RFC8446)	C	23.1
		supported_versions (RFC8446)	C	22
		oid_filters (RFC8446)	NC	
		post_handshake_auth (RFC8446)	NC	
		signature_algorithms_cert (RFC8446)	C	22
	4.1.3. Server Hello	Client	C	22.2
		Version downgrade protection	C	22.1
		key_share (RFC8446)	C	22.1
		pre_shared_key (RFC8446)	C	22.2
		supported_versions (RFC8446)	C	22.1
		use_srtp (RFC5764)	C	26.0
		Server	C	22.2
		Version downgrade protection	C	22
		key_share (RFC8446)	C	22
		pre_shared_key (RFC8446)	C	22.2
		supported_versions (RFC8446)	C	22
		use_srtp (RFC5764)	C	26.0
	4.1.4. Hello Retry Request	Server	C	22
		key_share (RFC8446)	C	22
		cookie (RFC8446)	C	23.1
		supported_versions (RFC8446)	C	22
	4.2.1. Supported Versions	Client	C	22.1
		Server	C	22
	4.2.2. Cookie	Client	C	23.1
		Server	C	23.1
	4.2.3. Signature Algorithms	Client	C	24
		rsa_pkcs1_sha256	C	22.1
		rsa_pkcs1_sha384	C	22.1
		rsa_pkcs1_sha512	C	22.1
		ecdsa_secp256r1_sha256	C	22.1
		ecdsa_secp384r1_sha384	C	22.1
		ecdsa_secp521r1_sha512	C	22.1
		rsa_pss_rsae_sha256	C	22.1
		rsa_pss_rsae_sha384	C	22.1
		rsa_pss_rsae_sha512	C	22.1
		ed25519	C	24
		ed448	C	24
		rsa_pss_pss_sha256	C	23
		rsa_pss_pss_sha384	C	23
		rsa_pss_pss_sha512	C	23
		rsa_pkcs1_sha1	C	22.1
		ecdsa_sha1	C	22.1
		Server	C	24
		rsa_pkcs1_sha256	C	22
		rsa_pkcs1_sha384	C	22
		rsa_pkcs1_sha512	C	22
		ecdsa_secp256r1_sha256	C	22.1
		ecdsa_secp384r1_sha384	C	22.1
		ecdsa_secp521r1_sha512	C	22.1
		rsa_pss_rsae_sha256	C	22
		rsa_pss_rsae_sha384	C	22
		rsa_pss_rsae_sha512	C	22
		ed25519	C	24
		ed448	C	24
		rsa_pss_pss_sha256	C	23
		rsa_pss_pss_sha384	C	23
		rsa_pss_pss_sha512	C	23
		rsa_pkcs1_sha1	C	22
		ecdsa_sha1	C	22
	4.2.4. Certificate Authorities	Client	C	24.3
		Server	C	24.3
	4.2.5. OID Filters	Client	NC	
		Server	NC	
	4.2.6. Post-Handshake Client Authentication	Client	NC	
		Server	NC	
	4.2.7. Supported Groups	Client	C	22.1
		secp256r1	C	22.1
		secp384r1	C	22.1
		secp521r1	C	22.1
		x25519	C	22.1
		x448	C	22.1
		ffdhe2048	C	22.1
		ffdhe3072	C	22.1
		ffdhe4096	C	22.1
		ffdhe6144	C	22.1
		ffdhe8192	C	22.1
		Server	C	22
		secp256r1	C	22
		secp384r1	C	22
		secp521r1	C	22
		x25519	C	22
		x448	C	22
		ffdhe2048	C	22
		ffdhe3072	C	22
		ffdhe4096	C	22
		ffdhe6144	C	22
		ffdhe8192	C	22
	4.2.8. Key Share	Client	C	22.1
		Server	C	22
	4.2.9. Pre-Shared Key Exchange Modes	Client	C	22.2
		Server	C	22.2
	4.2.10. Early Data Indication	Client	C	23.3
		Server	C	23.3
	4.2.11. Pre-Shared Key Extension	Client	C	22.2
		Server	C	22.2
	4.2.11.1. Ticket Age	Client	C	22.2
		Server	C	22.2
	4.2.11.2. PSK Binder	Client	C	22.2
		Server	C	22.2
	4.2.11.3. Processing Order	Client	NC	
		Server	NC	
	4.3.1. Encrypted Extensions	Client	PC	22.1
		server_name (RFC6066)	C	23.2
		max_fragment_length (RFC6066)	C	23.0
		supported_groups (RFC7919)	NC	
		use_srtp (RFC5764)	NC	
		heartbeat (RFC6520)	NC	
		application_layer_protocol_negotiation (RFC7301)	C	23.0
		client_certificate_type (RFC7250)	NC	
		server_certificate_type (RFC7250)	NC	
		early_data (RFC8446)	C	23.3
		Server	PC	22
		server_name (RFC6066)	C	23.2
		max_fragment_length (RFC6066)	C	23.0
		supported_groups (RFC7919)	NC	
		use_srtp (RFC5764)	NC	
		heartbeat (RFC6520)	NC	
		application_layer_protocol_negotiation (RFC7301)	C	23.0
		client_certificate_type (RFC7250)	NC	
		server_certificate_type (RFC7250)	NC	
		early_data (RFC8446)	C	23.3
	4.3.2. Certificate Request	Client	PC	22.1
		status_request (RFC6066)	NC	
		signature_algorithms (RFC8446)	C	22.1
		signed_certificate_timestamp (RFC6962)	NC	
		certificate_authorities (RFC8446)	C	24.3
		oid_filters (RFC8446)	NC	
		signature_algorithms_cert (RFC8446)	C	22.1
		Server	PC	22
		status_request (RFC6066)	NC	
		signature_algorithms (RFC8446)	C	22
		signed_certificate_timestamp (RFC6962)	NC	
		certificate_authorities (RFC8446)	C	24.3
		oid_filters (RFC8446)	NC	
		signature_algorithms_cert (RFC8446)	C	22
	4.4.1. The Transcript Hash		C	22
	4.4.2. Certificate	Client	PC	22.1
		Arbitrary certificate chain orderings	C	22.2
		Extraneous certificates in chain	C	23.2
		status_request (RFC6066)	C	27.0
		signed_certificate_timestamp (RFC6962)	NC	
		Server	PC	22
		status_request (RFC6066)	NC	
		signed_certificate_timestamp (RFC6962)	NC	
	4.4.2.1. OCSP Status and SCT Extensions	Client	PC	27.0
		Server	NC	
	4.4.2.2. Server Certificate Selection		C	24.3
		The certificate type MUST be X.509v3, unless explicitly negotiated otherwise	C	22
		The server's end-entity certificate's public key (and associated restrictions) MUST be compatible with the selected authentication algorithm from the client's "signature_algorithms" extension (currently RSA, ECDSA, or EdDSA).	C	22
		The certificate MUST allow the key to be used for signing with a signature scheme indicated in the client's "signature_algorithms"/"signature_algorithms_cert" extensions	C	22
		The "server_name" and "certificate_authorities" extensions are used to guide certificate selection. As servers MAY require the presence of the "server_name" extension, clients SHOULD send this extension, when applicable.	C	24.3
	4.4.2.3. Client Certificate Selection		PC	22.1
		The certificate type MUST be X.509v3, unless explicitly negotiated otherwise	C	22.1
		If the "certificate_authorities" extension in the CertificateRequest message was present, at least one of the certificates in the certificate chain SHOULD be issued by one of the listed CAs.	C	24.3
		The certificates MUST be signed using an acceptable signature algorithm	C	22.1
		If the CertificateRequest message contained a non-empty "oid_filters" extension, the end-entity certificate MUST match the extension OIDs that are recognized by the client	NC	
	4.4.2.4. Receiving a Certificate Message	Client	C	22.1
		Server	C	22
	4.4.3. Certificate Verify	Client	C	22.1
		Server	C	22
	4.4.4. Finished	Client	C	22.1
		Server	C	22
	4.5. End of Early Data	Client	C	23.3
		Server	C	23.3
	4.6.1. New Session Ticket Message	Client	C	23.3
		early_data (RFC8446)	C	23.3
		Server	C	23.3
		early_data (RFC8446)	C	23.3
	4.6.2. Post-Handshake Authentication	Client	NC	
		Server	NC	
	4.6.3. Key and Initialization Vector Update	Client	C	22.3
		Server	C	22.3
	5.1. Record Layer		C	22
		MUST NOT be interleaved with other record types	C	22
		MUST NOT span key changes	C	22
		MUST NOT send zero-length fragments	C	22
		Alert messages MUST NOT be fragmented	C	22
	5.2. Record Payload Protection		C	22
	5.3. Per-Record Nonce		C	22
	5.4. Record Padding		PC	22
		MAY choose to pad	NC	
		MUST NOT send Handshake and Alert records that have a zero-length TLSInnerPlaintext.content	NC	
		The padding sent is automatically verified	C	22
	5.5. Limits on Key Usage		C	22.3
	6.1. Closure Alerts		22	

		close_notify	C	22	
		user_cancelled	C	22	

	6.2. Error Alerts		PC	22
	7.1. Key Schedule		C	22
	7.2. Updating Traffic Secrets		C	22
	7.3. Traffic Key Calculation		C	22
	7.5. Exporters		PC	26.3
	8. 0-RTT and Anti-Replay		C	22.2
	8.1. Single-Use Tickets		C	22.2
	8.2. Client Hello Recording		C	22.2
	8.3. Freshness Checks		C	22.2
	9.1. Mandatory-to-Implement Cipher Suites		C	22.1
		MUST implement the TLS_AES_128_GCM_SHA256	C	22
		SHOULD implement the TLS_AES_256_GCM_SHA384	C	22
		SHOULD implement the TLS_CHACHA20_POLY1305_SHA256	C	22
		Digital signatures	C	22.1
		MUST support rsa_pkcs1_sha256 (for certificates)	C	22
		MUST support rsa_pss_rsae_sha256 (for CertificateVerify and certificates)	C	22
		MUST support ecdsa_secp256r1_sha256	C	22.1
		Key Exchange	C	22
		MUST support key exchange with secp256r1	C	22
		SHOULD support key exchange with X25519	C	22
	9.2. Mandatory-to-Implement Extensions		C	23.2
		Supported Versions	C	22
		Cookie	C	23.1
		Signature Algorithms	C	22
		Signature Algorithms Certificate	C	22
		Negotiated Groups	C	22
		Key Share	C	22
		Server Name Indication	C	23.2
		MUST send and use these extensions	C	22.2
		"supported_versions" is REQUIRED for ClientHello, ServerHello and HelloRetryRequest	C	22.1
		"signature_algorithms" is REQUIRED for certificate authentication	C	22
		"supported_groups" is REQUIRED for ClientHello messages using (EC)DHE key exchange	C	22
		"key_share" is REQUIRED for (EC)DHE key exchange	C	22
		"pre_shared_key" is REQUIRED for PSK key agreement	C	22.2
		"psk_key_exchange_modes" is REQUIRED for PSK key agreement	C	22.2
		TLS 1.3 ClientHello	C	22.1
		If not containing a "pre_shared_key" extension, it MUST contain both a "signature_algorithms" extension and a "supported_groups" extension.	C	22.1
		If containing a "supported_groups" extension, it MUST also contain a "key_share" extension, and vice versa. An empty KeyShare.client_shares vector is permitted.	C	22.1
		TLS 1.3 ServerHello	C	23.2
		MUST support the use of the "server_name" extension	C	23.2
	9.3. Protocol Invariants		C	22.1
		MUST correctly handle extensible fields	C	22.1
		A client sending a ClientHello MUST support all parameters advertised in it. Otherwise, the server may fail to interoperate by selecting one of those parameters.	C	22.1
		A server receiving a ClientHello MUST correctly ignore all unrecognized cipher suites, extensions, and other parameters. Otherwise, it may fail to interoperate with newer clients. In TLS 1.3, a client receiving a CertificateRequest or NewSessionTicket MUST also ignore all unrecognized extensions.	C	22.1
		A middlebox which terminates a TLS connection MUST behave as a compliant TLS server	NA	
		A middlebox which forwards ClientHello parameters it does not understand MUST NOT process any messages beyond that ClientHello. It MUST forward all subsequent traffic unmodified. Otherwise, it may fail to interoperate with newer clients and servers.	NA	
	B.4. Cipher Suites		C	23
		TLS_AES_128_GCM_SHA256	C	22
		TLS_AES_256_GCM_SHA384	C	22
		TLS_CHACHA20_POLY1305_SHA256	C	22
		TLS_AES_128_CCM_SHA256	C	22
		TLS_AES_128_CCM_8_SHA256	C	23
	C.1. Random Number Generation and Seeding		C	22
	C.2. Certificates and Authentication		C	22
	C.3. Implementation Pitfalls		PC	22
	C.4. Client Tracking Prevention		C	22.2
	C.5. Unauthenticated Operation		C	22
	D.1. Negotiating with an Older Server		C	22.2
	D.2. Negotiating with an Older Client		C	22
	D.3. 0-RTT Backward Compatibility		NC	
	D.4. Middlebox Compatibility Mode		C	23
	D.5. Security Restrictions Related to Backward Compatibility		C	22

Table: Standards Compliance

ssl

Interface functions for TLS (Transport Layer Security)
and DTLS (Datagram Transport Layer Security).
Note
The application's name is still SSL because the first versions of the
TLS protocol were named SSL (Secure Socket Layer). However, no version
of the old SSL protocol is supported by this application.
Example:
1> ssl:start(), ssl:connect("google.com", 443, [{verify, verify_peer},
 {cacerts, public_key:cacerts_get()}]).
{ok,{sslsocket, [...]}}
See Examples for detailed usage and more examples of
this API.
Special Erlang node configuration for the application can be found in
SSL Application.

 Summary

 Types: Algorithms

 cipher()

 Cipher algorithms that can be used for payload encryption.

 cipher_filters()

 Filter that allows you to customize cipher suite list.

 cipher_suites()

 A list of cipher suites that should be supported.

 ciphers()

 Cipher suite formats.

 erl_cipher_suite()

 Erlang cipher suite representation

 group()

 TLS-1.3 key exchange configuration.

 hash()

 Hash algorithms used together with signing and encryption functions.

 kex_algo()

 Cipher Suite Key Exchange Algorithm will be any
in TLS-1.3 as key exchange is no longer part of cipher suite
configuration in TLS-1.3.

 named_curve()

 Key exchange configuration prior to TLS-1.3.

 rsassa_pss_scheme()

 Supported in TLS-1.3 and TLS-1.2.

 sha2()

 SHA2 hash algorithms.

 sign_algo()

 Signature algorithms.

 sign_scheme()

 Signature schemes, defined by TLS-1.3, and replacing signature algorithms from TLS-1.2.

 signature_algs()

 Explicitly list acceptable signature algorithms for certificates and handshake
messages in the preferred order.

 srp_param_type()

 SRP cipher suite configuration prior to TLS-1.3.

 Types: Algorithms Legacy

 legacy_cipher()

 Cipher algorithms that are no longer supported by default for security reasons.

 legacy_hash()

 Hash algorithms that are no longer supported by default for security reasons.

 legacy_named_curve()

 Key exchange configuration prior to TLS-1.3.

 legacy_sign_algo()

 Signature algorithms that are no longer supported by default for security reasons.

 legacy_sign_scheme()

 This is only used for certificate signatures if TLS-1.2 is negotiated,
meaning that the peer only supports TLS-1.2, but we also support
TLS-1.3.

 old_cipher_suite()

 For backwards compatibility only; do not use.

 Types: Certificates

 anchor_fun()

 Claim an intermediate CA in the chain as trusted.

 cert_key_conf()

 Configuration of the entity certificate and its corresponding key.

 crl_cache_opts()

 Options for using built-in CRL cache support.

 key()

 The user's private key.

 Types: Client Options

 client_option()

 The following options are specific to the client side, or have
different semantics for the client and server

 client_option_cert()

 Certificate-related options specific to the client side, or with
different semantics for the client and server.

 client_option_legacy()

 Legacy client options.

 client_option_pre_tls13()

 Options only relevant to TLS versions prior to TLS-1.3.

 client_option_tls13()

 Options only relevant for TLS-1.3.

 Types: Client and Server Options

 common_option()

 Options common to both client and server side.

 common_option_cert()

 Common certificate related options to both client and server.

 common_option_dtls()

 Common options to client and server only valid for DTLS.

 common_option_legacy()

 Legacy options considered deprecated in favor of other options,
insecure to use, or plainly not relevant anymore.

 common_option_pre_tls13()

 Options common to client and server side prior to TLS-1.3.

 common_option_tls13()

 Common options to both client and server for TLS-1.3.

 Types: Deprecated

 prf_random()

 deprecated

 Types: Info

 connection_info()

 Key value list convening some information about the established connection.

 connection_info_keys()

 TLS connection keys for which information can be retrieved.

 connection_info_pre_tls13()

 TLS connection information relevant prior to TLS-1.3.

 security_info()

 TLS connection information that can be used for NSS key logging.

 Types: Server Options

 server_option()

 Options specific to the server side, or with different semantics for the client and server.

 server_option_cert()

 Certificate related options for a server.

 server_option_legacy()

 Legacy server options.

 server_option_pre_tls13()

 Options only relevant to TLS versions prior to TLS-1.3.

 server_option_tls13()

 Options only relevant for TLS-1.3.

 Types: Socket

 active_msgs()

 The type for the messages that are delivered to the owner of a
TLS/DTLS socket in active mode.

 dtls_legacy_version()

 A DTLS protocol version that are no longer supported by default for security reasons.

 dtls_version()

 DTLS protocol version.

 error_alert()

 If a TLS connection fails a TLS protocol ALERT will be sent/received.

 host()

 A name or address to a host.

 protocol_extensions()

 Client hello extensions.

 protocol_version()

 TLS or DTLS protocol version.

 reason()

 Error reason for debug purposes.

 session_id()

 Identifies a TLS session prior to TLS-1.3.

 socket()

 A socket that can be used to perform a so-called "START-TLS", which
means using an already connected socket previously used for plain TCP
traffic and upgrading it to use TLS.

 socket_option()

 Options for the transport socket.

 sslsocket()

 An opaque reference to the TLS/DTLS connection.

 tls_alert()

 TLS Alert Protocol reasons.

 tls_client_option()

 An option that can be supplied to a TLS client.

 tls_legacy_version()

 A TLS protocol version that are no longer supported by default for security reasons.

 tls_option()

 An option related to the TLS/DTLS protocol.

 tls_server_option()

 An option that can be supplied to a TLS server.

 tls_version()

 TLS protocol version.

 transport_option()

 Transport option defines a callback module and message tags to handle the underlying transport socket.

 Types

 keylog_info()

 keylog_item()

 Client API

 connect(TCPSocket, TLSOptions)

 Equivalent to connect(TCPSocket, TLSOptions, infinity).

 connect(TCPSocketOrHost, TLSOptionsOrPort, TimeoutOrTLSOptions)

 Opens a TLS/DTLS connection.

 connect(Host, Port, TLSOptions, Timeout)

 Opens a TLS/DTLS connection to Host, Port.

 Client and Server API

 close(SslSocket)

 Closes a TLS/DTLS connection.

 close(SslSocket, How)

 Closes or downgrades a TLS connection.

 controlling_process(SslSocket, NewController)

 Assigns a new controlling process to the SSL socket.

 handshake_cancel(Socket)

 Cancel the handshake with a fatal USER_CANCELED alert.

 handshake_continue(HsSocket, Options)

 Equivalent to handshake_continue(HsSocket, Options, infinity).

 handshake_continue(HsSocket, Options, Timeout)

 Continue the TLS handshake, possibly with new, additional, or changed options.

 recv(SslSocket, Length)

 Equivalent to recv(Socket, Length, infinity).

 recv(SslSocket, Length, Timeout)

 Receives a packet from a socket in passive mode.

 send(SslSocket, Data)

 Writes Data to SslSocket.

 setopts(SslSocket, Options)

 Sets options according to Options for socket SslSocket.

 shutdown(SslSocket, How)

 Immediately closes a socket in one or two directions.

 Deprecated API

 prf(SslSocket, Secret, Label, Seed, WantedLength)

 deprecated

 Uses the Pseudo-Random Function (PRF) of a TLS session to generate extra key
material.

 Pre TLS-1.3 API

 eccs()

 Returns a list of all supported elliptic curves, including legacy
curves, for all TLS/DTLS versions prior to TLS-1.3.

 eccs(Version)

 Returns the elliptic curves supported by default for Version.

 renegotiate(SslSocket)

 Initiates a new handshake.

 Server API

 handshake(HsSocket)

 Equivalent to handshake(HsSocket, infinity).

 handshake(HsSocket, OptionsOrTimeout)

 Performs the TLS/DTLS server-side handshake.

 handshake(Socket, Options, Timeout)

 Performs the TLS/DTLS server-side handshake.

 listen(Port, Options)

 Creates an SSL listen socket.

 transport_accept(ListenSocket)

 Equivalent to transport_accept(ListenSocket, infinity).

 transport_accept(ListenSocket, Timeout)

 Accepts an incoming connection request on a listen socket.

 TLS-1.3 Only API

 groups()

 Returns all supported groups in TLS 1.3.

 groups(Description)

 Returns default supported groups in TLS 1.3.

 update_keys(SslSocket, Type)

 Create new session keys.

 Utility Functions

 append_cipher_suites(Deferred, Suites)

 Make Deferred suites become the least preferred suites.

 cipher_suites(Description, Version)

 Lists all available cipher suites corresponding to Description.

 cipher_suites(Description, Version, StringType)

 Equivalent to cipher_suites/2, but lists RFC or OpenSSL string names instead of
erl_cipher_suite().

 clear_pem_cache()

 Clears the PEM cache.

 connection_information(SslSocket)

 Returns the most relevant information about the connection.

 connection_information(SslSocket, Items)

 Returns the requested information items about the connection if they are
defined.

 export_key_materials(SslSocket, Labels, Contexts, WantedLengths)

 Equivalent to export_key_materials(TLSSocket, Labels, Contexts, WantedLengths, true).

 export_key_materials(SslSocket, Labels, Contexts, WantedLengths, ConsumeSecret)

 Uses a Pseudo-Random Function (PRF prior to TLS-1.3) or a Key
Derivation Function (HKDF in TLS-1.3) for a TLS connection to
generate and export keying materials.

 filter_cipher_suites(Suites, Filters)

 Removes cipher suites if any of the filter functions returns false for any part
of the cipher suite.

 format_error(Error)

 Presents the error returned by an SSL function as a printable string.

 getopts(SslSocket, OptionNames)

 Gets the values of the specified socket options.

 getstat(SslSocket)

 Get statistics for the underlying socket.

 getstat(SslSocket, Options)

 Get one or more statistic values for the underlying socket.

 negotiated_protocol(SslSocket)

 Returns the protocol negotiated through ALPN or NPN extensions.

 peercert(SslSocket)

 The peer certificate is returned as a DER-encoded binary.

 peername(SslSocket)

 Returns the address and port number of the peer.

 prepend_cipher_suites(Preferred, Suites)

 Make Preferred suites become the most preferred suites.

 signature_algs(Description, Version)

 Lists all available signature algorithms corresponding to Description.

 sockname(SslSocket)

 Returns the local address and port number of socket SslSocket.

 start()

 Equivalent to start(temporary).

 start(Type)

 Starts the SSL application.

 stop()

 Stops the SSL application.

 str_to_suite(CipherSuiteName)

 Converts an RFC or OpenSSL name string to an erl_cipher_suite/0

 suite_to_openssl_str(CipherSuite)

 Converts an erl_cipher_suite() value to
an OpenSSL name string.

 suite_to_str(CipherSuite)

 Converts an erl_cipher_suite() value to an RFC
name string.

 versions()

 Lists information, mainly concerning TLS/DTLS versions, in runtime for debugging
and testing purposes.

 Types: Algorithms

 cipher()

 -type cipher() ::
 aes_256_gcm | aes_128_gcm | aes_256_ccm | aes_128_ccm | chacha20_poly1305 | aes_256_ccm_8 |
 aes_128_ccm_8 | aes_128_cbc | aes_256_cbc |
 legacy_cipher().

Cipher algorithms that can be used for payload encryption.

 cipher_filters()

 -type cipher_filters() ::
 [{key_exchange | cipher | mac | prf,
 fun((kex_algo() | cipher() | hash() | aead | default_prf) -> true | false)}].

Filter that allows you to customize cipher suite list.

 cipher_suites()

 (not exported)

 -type cipher_suites() :: ciphers().

A list of cipher suites that should be supported.
Function ssl:cipher_suites/2 can be used to find all
cipher suites that are supported by default and all cipher suites that can be
configured.
If you compose your own cipher_suites/0 make sure they are
filtered for crypto library support using ssl:filter_cipher_suites/2
.
The following function can help creating customized cipher suite lists:
	ssl:append_cipher_suites/2
	ssl:prepend_cipher_suites/2
	ssl:suite_to_str/1
	ssl:str_to_suite/1
	ssl:suite_to_openssl_str/1

Note
Note that TLS-1.3 and TLS-1.2 use different sets of cipher suites. To
support both versions, cipher suites from both sets need to be
included. If the supplied list does not comply with the configured
versions or crypto library, that is, resulting in an empty list, the option
will fall back to its appropriate default value for the configured
versions.
Non-default cipher suites, including anonymous cipher suites (prior to
TLS 1.3), are supported for interoperability and testing
purposes. These can be used by adding them to your cipher suite
list. Note that they also need to be supported and enabled by the peer
to be actually used, and they may require additional configuration;
see srp_param_type().

 ciphers()

 -type ciphers() :: [erl_cipher_suite()] | string().

Cipher suite formats.
For backwards compatibility, cipher suites can be configured as a
colon-separated string of cipher suite RFC names (or even old OpenSSL
names). However, a more flexible approach is to use utility functions
together with cipher_filters() if a customized
cipher suite option is needed.

 erl_cipher_suite()

 -type erl_cipher_suite() ::
 #{key_exchange := kex_algo(),
 cipher := cipher(),
 mac := hash() | aead,
 prf := hash() | default_prf}.

Erlang cipher suite representation
Warning
Enabling cipher suites using RSA as a key exchange algorithm is
strongly discouraged (only available prior to TLS-1.3). For some
configurations software preventions may exist, and can make them
usable if they work, but relying on them to work is risky. There
exists more reliable cipher suites that can be used instead.

 group()

 -type group() ::
 x25519 | x448 | secp256r1 | secp384r1 | secp521r1 | ffdhe2048 | ffdhe3072 | ffdhe4096 |
 ffdhe6144 | ffdhe8192.

TLS-1.3 key exchange configuration.

 hash()

 -type hash() :: sha2() | legacy_hash().

Hash algorithms used together with signing and encryption functions.

 kex_algo()

 -type kex_algo() ::
 ecdhe_ecdsa | ecdh_ecdsa | ecdh_rsa | rsa | dhe_rsa | dhe_dss | srp_rsa | srp_dss | dhe_psk |
 rsa_psk | psk | ecdh_anon | dh_anon | srp_anon | any.

Cipher Suite Key Exchange Algorithm will be any
in TLS-1.3 as key exchange is no longer part of cipher suite
configuration in TLS-1.3.

 named_curve()

 -type named_curve() ::
 x25519 | x448 | secp521r1 | brainpoolP512r1 | brainpoolP384r1 | secp384r1 | brainpoolP256r1 |
 secp256r1 |
 legacy_named_curve().

Key exchange configuration prior to TLS-1.3.

 rsassa_pss_scheme()

 (not exported)

 -type rsassa_pss_scheme() ::
 rsa_pss_rsae_sha512 | rsa_pss_rsae_sha384 | rsa_pss_rsae_sha256 | rsa_pss_pss_sha512 |
 rsa_pss_pss_sha384 | rsa_pss_pss_sha256.

Supported in TLS-1.3 and TLS-1.2.

 sha2()

 (not exported)

 -type sha2() :: sha512 | sha384 | sha256.

SHA2 hash algorithms.

 sign_algo()

 -type sign_algo() :: eddsa | ecdsa | rsa | legacy_sign_algo().

Signature algorithms.

 sign_scheme()

 -type sign_scheme() ::
 eddsa_ed25519 | eddsa_ed448 | ecdsa_secp521r1_sha512 | ecdsa_secp384r1_sha384 |
 ecdsa_secp256r1_sha256 | ecdsa_brainpoolP512r1tls13_sha512 |
 ecdsa_brainpoolP384r1tls13_sha384 | ecdsa_brainpoolP256r1tls13_sha256 |
 rsassa_pss_scheme() |
 legacy_sign_scheme().

Signature schemes, defined by TLS-1.3, and replacing signature algorithms from TLS-1.2.
Explicitly list acceptable signature schemes in the preferred
order.
Overrides the algorithms supplied in
signature_algs option for certificates.
In addition to the signature_algorithms extension from TLS 1.2,
TLS 1.3 (RFC 5246 Section 4.2.3)
adds the signature_algorithms_cert extension which enables having special
requirements on the signatures used in the certificates that differs from the
requirements on digital signatures as a whole. If this is not required this
extension is not needed.
The client will send a signature_algorithms_cert extension (in the
client hello message), if TLS version 1.2 (back-ported to TLS 1.2 in
24.1) or later is used, and the signature_algs_cert option is
explicitly specified. By default, only the
signature_algs extension is sent with the
exception of when signature_algs option is not explicitly specified,
in which case it will append the rsa_pkcs1_sha1 algorithm to the
default value of signature_algs and use it as value for
signature_algs_cert to allow certificates to have this signature but
still disallow sha1 use in the TLS protocol, since 27.0.1 and 26.2.5.2.
Note
Note that supported signature schemes for TLS-1.2 are
legacy_sign_scheme()
and rsassa_pss_scheme().

 signature_algs()

 -type signature_algs() :: [{hash(), sign_algo()} | sign_scheme()].

Explicitly list acceptable signature algorithms for certificates and handshake
messages in the preferred order.
The client will send its list as the client hello
signature_algorithm extension introduced in TLS-1.2; see Section
7.4.1.4.1 in RFC 5246. Before
TLS-1.2, these algorithms where implicitly chosen and partly derived
from the cipher suite.
In TLS-1.2 a somewhat more explicit negotiation is made possible using a list of
{HashAlgo, SignAlgo} tuples.
In TLS-1.3, these algorithm pairs are replaced by signature
schemes that are completely decoupled from the
cipher suite.
Signature algorithms used for certificates can be overridden by the
signature schemes supplied by the
signature_algs_cert option.
The TLS-1.2 default is Default_TLS_12_Alg_Pairs interleaved with
rsa_pss_schemes since ssl-11.0 (Erlang/OTP 25). pss_pss is
preferred over pss_rsae, which in turn is preferred over rsa.
The list for Default_TLS_12_Alg_Pairs is defined as follows:
[
{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa}
]
Change
	Support for {md5, rsa} was removed from the TLS-1.2 default in
ssl-8.0 (Erlang/OTP 22).
	Support for {sha, _} (SHA1) and {sha224, _} was removed
from the TLS-1.2 default in ssl-11.0 (Erlang/OTP 26).

The list for rsa_pss_schemes is defined as follows:
[rsa_pss_pss_sha512,
rsa_pss_pss_sha384,
rsa_pss_pss_sha256,
rsa_pss_rsae_sha512,
rsa_pss_rsae_sha384,
rsa_pss_rsae_sha256]
The list of TLS_13_Legacy_Schemes is defined as follows:
[
%% Legacy algorithms only applicable to certificate signatures
rsa_pkcs1_sha512, %% Corresponds to {sha512, rsa}
rsa_pkcs1_sha384, %% Corresponds to {sha384, rsa}
rsa_pkcs1_sha256, %% Corresponds to {sha256, rsa}
]
The list of Default_TLS_13_Schemes is defined as follows:
[
%% EDDSA
eddsa_ed25519,
eddsa_ed448

%% ECDSA
ecdsa_secp521r1_sha512,
ecdsa_secp384r1_sha384,
ecdsa_secp256r1_sha256] ++

%% RSASSA-PSS
rsa_pss_schemes()
Change
EDDSA was made highest priority in ssl-10.8 (Erlang/OTP 25).
The TLS-1.3 default is Default_TLS_13_Schemes.
If both TLS-1.3 and TLS-1.2 are supported the default is:
Default_TLS_13_Schemes ++ TLS_13_Legacy_Schemes ++
Default_TLS_12_Alg_Pairs %% not represented in TLS_13_Legacy_Schemes
to ensure that appropriate algorithms can be chosen for the negotiated
version.
Note
TLS-1.2 algorithms will not be negotiated for TLS-1.3, but the TLS-1.3
RSASSA-PSS (rsassa_pss_scheme())
signature schemes can be negotiated also for TLS-1.2 from Erlang/OTP
24.1 (fully working from Erlang/OTP 24.1.3). However, if both TLS 1.3
and TLS 1.2 are supported using defaults, and TLS 1.3 is negotiated,
the corresponding TLS 1.2 algorithms for TLS 1.3 legacy signature
schemes will be treated as legacy schemes and applied only to
certificate signatures.

 srp_param_type()

 -type srp_param_type() :: srp_8192 | srp_6144 | srp_4096 | srp_3072 | srp_2048 | srp_1536 | srp_1024.

SRP cipher suite configuration prior to TLS-1.3.

 Types: Algorithms Legacy

 legacy_cipher()

 (not exported)

 -type legacy_cipher() :: '3des_ede_cbc' | des_cbc | rc4_128.

Cipher algorithms that are no longer supported by default for security reasons.

 legacy_hash()

 (not exported)

 -type legacy_hash() :: sha224 | sha | md5.

Hash algorithms that are no longer supported by default for security reasons.

 legacy_named_curve()

 (not exported)

 -type legacy_named_curve() ::
 sect571r1 | sect571k1 | sect409k1 | sect409r1 | sect283k1 | sect283r1 | secp256k1 |
 sect239k1 | sect233k1 | sect233r1 | secp224k1 | secp224r1 | sect193r1 | sect193r2 |
 secp192k1 | secp192r1 | sect163k1 | sect163r1 | sect163r2 | secp160k1 | secp160r1 | secp160r2.

Key exchange configuration prior to TLS-1.3.
These curves have been deprecated by RFC 8422.

 legacy_sign_algo()

 (not exported)

 -type legacy_sign_algo() :: dsa.

Signature algorithms that are no longer supported by default for security reasons.

 legacy_sign_scheme()

 (not exported)

 -type legacy_sign_scheme() ::
 rsa_pkcs1_sha512 | rsa_pkcs1_sha384 | rsa_pkcs1_sha256 | ecdsa_sha1 | rsa_pkcs1_sha1.

This is only used for certificate signatures if TLS-1.2 is negotiated,
meaning that the peer only supports TLS-1.2, but we also support
TLS-1.3.

 old_cipher_suite()

 -type old_cipher_suite() ::
 {kex_algo(), cipher(), hash()} | {kex_algo(), cipher(), hash() | aead, hash()}.

For backwards compatibility only; do not use.

 Types: Certificates

 anchor_fun()

 (not exported)

 -type anchor_fun() :: fun().

Claim an intermediate CA in the chain as trusted.
fun(Chain::[public_key:der_encoded()]) ->
 {trusted_ca, DerCert::public_key:der_encoded()} | unknown_ca.
TLS then uses public_key:pkix_path_validation/3 with the selected CA
as the trusted anchor and verifies the rest of the chain.

 cert_key_conf()

 -type cert_key_conf() ::
 #{cert => public_key:der_encoded() | [public_key:der_encoded()],
 key => key(),
 certfile => file:filename(),
 keyfile => file:filename(),
 password => iodata() | fun(() -> iodata())}.

Configuration of the entity certificate and its corresponding key.
A certificate (or possibly a list including the certificate and its
chain certificates, where the entity certificate must be the first
element in the list or the first entry in the file) and its associated
key. For the PEM file format, there can also be a password associated
with the file containing the key.
For maximum interoperability, the certificates in the chain should be
in the correct order, as the chain will be sent as-is to the peer. If
chain certificates are not provided, certificates from the configured
trusted CA certificates will be used to construct the chain. See
client_option_cert() and
server_option_cert() for more
information.

 crl_cache_opts()

 (not exported)

 -type crl_cache_opts() :: {Module :: atom(), {DbHandle :: internal | term(), Args :: list()}}.

Options for using built-in CRL cache support.
Specify how to perform lookup and caching of certificate revocation
lists (CRLs). Module defaults to ssl_crl_cache with DbHandle
being internal, and Args being [].
There are two implementations available:
	ssl_crl_cache - Implementation 1
This module maintains a cache of CRLs. CRLs can be added to the
cache using ssl_crl_cache:insert/1, and can optionally be
automatically fetched through HTTP if the following argument is
specified:

	{http, timeout()}
 Enables fetching of CRLs specified as http URIs in X.509 certificate
 extensions. Requires the
 Inets application.

	ssl_crl_hash_dir - Implementation 2
This module makes use of a directory where CRLs are
stored in files named by the hash of the issuer name.
The file names consist of eight hexadecimal digits followed by .rN, where
N is an integer, for example 1a2b3c4d.r0. For the first version of the CRL, N
starts at zero, and for each new version, N is incremented by one. The
OpenSSL utility c_rehash creates symlinks according to this pattern.
For a given hash value, this module finds all consecutive .r*
files starting from zero, and those files taken together make up the
revocation list. CRL files with nextUpdate fields in the past or
issued by a different CA that happens to have the same name hash
are excluded.
The following argument is required:
	{dir, string()}

Specifies the directory in which the CRLs can be found.

 key()

 -type key() ::
 {'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' | 'PrivateKeyInfo',
 public_key:der_encoded()} |
 #{algorithm := sign_algo(),
 engine := crypto:engine_ref(),
 key_id := crypto:key_id(),
 password => crypto:password()} |
 #{algorithm := sign_algo(),
 sign_fun := fun(),
 sign_opts => list(),
 encrypt_fun => fun(),
 encrypt_opts => list()}.

The user's private key.
The key can be provided either directly as a DER-encoded entity,
indirectly using a crypto engine/provider (with key reference
information), or as an Erlang fun (with possible custom options).
The latter two options can be used for customized signing with
hardware security modules (HSM) or trusted platform modules (TPM).
	A DER encoded key will need to specify the ASN-1 type used to create the
encoding.
	An engine/provider needs to specify specific information to support this
concept and can optionally be password protected; see also
crypto:engine_load/3 and
Crypto User's Guide.
	A fun option should include a fun that mimics public_key:sign/4 and possibly
public_key:private_encrypt/4 if legacy
versions TLS-1.0 and TLS-1.1 must be supported.

 Types: Client Options

 client_option()

 (not exported)

 -type client_option() ::
 client_option_cert() |
 common_option_cert() |
 {alpn_advertised_protocols, AppProtocols :: [AppProto :: binary()]} |
 {max_fragment_length, MaxLen :: undefined | 512 | 1024 | 2048 | 4096} |
 client_option_tls13() |
 common_option_tls13() |
 client_option_pre_tls13() |
 common_option_pre_tls13() |
 common_option_dtls() |
 client_option_legacy() |
 common_option_legacy().

The following options are specific to the client side, or have
different semantics for the client and server:
	{alpn_advertised_protocols, AppProtocols} - Application layer protocol
The list of protocols supported by the client to be sent to the server to be
used for an Application-Layer Protocol Negotiation (ALPN). If the server
supports ALPN, it will choose a protocol from this list; otherwise it will
fail the connection with a no_application_protocol alert. A server that does
not support ALPN will ignore this value. The list of protocols must not contain
an empty binary.

	{max_fragment_length, MaxLen} - Max fragment length extension
Specifies the maximum fragment length the client is prepared to accept from the
server. See RFC 6066.

 client_option_cert()

 -type client_option_cert() ::
 {verify, Verify :: verify_peer | verify_none} |
 {cacerts, CACerts :: [public_key:der_encoded()] | [public_key:combined_cert()]} |
 {cacertfile, CACertFile :: file:filename()} |
 {server_name_indication, SNI :: inet:hostname() | disable} |
 {customize_hostname_check, HostNameCheckOpts :: list()} |
 {certificate_authorities, boolean()} |
 {stapling, Stapling :: staple | no_staple | map()}.

Certificate-related options specific to the client side, or with
different semantics for the client and server.
	{verify, Verify} - Verification of certificates
This option specifies whether certificates are to be verified.
If Verify is verify_peer, which is the default, it is required
to also provide one of the options cacerts or cacertfile in
order for the certificate verification to succeed. For example, an
HTTPS client can use option {cacerts, public_key:cacerts_get()} to
use the trusted CA certificates provided by the operating system.
If Verify is verify_none, all X.509-certificate path
validation errors will be ignored.
Change
The default for Verify was changed to verify_peer in
Erlang/OTP 26.

	{cacerts, CACerts} - Trusted certificates
The DER-encoded trusted certificates. If this option is supplied it overrides
option cacertfile.
Function public_key:cacerts_get/0 can be used to retrieve to the
trusted CA certificates provided by the operating system.

	{cacertfile, CertFile} - End entity certificate
 Path to a file containing PEM-encoded CA certificates. The CA certificates are
 used during server authentication and when building the client certificate
 chain.
Note
When PEM caching is enabled, files provided with this option will be checked
for updates at fixed time intervals specified by the
ssl_pem_cache_clean environment parameter.

	{server_name_indication, SNI} - Server Name Indication extension
Specify the hostname to be used in TLS Server Name Indication extension. If not
specified it will default to the Host argument of
connect/3,4 unless it is of type inet:ip_address().
The hostname will also be used in the hostname verification of the peer
certificate using public_key:pkix_verify_hostname/2.
The special value disable prevents the Server Name Indication extension from
being sent and disables the hostname verification check.

	{customize_hostname_check, HostNameCheckOpts} - Customization option
Customizes the hostname verification of the peer certificate, as various
protocols that use TLS, such as HTTP or LDAP, may require different approaches. For
example, here is how to use standard hostname checking for HTTPS implemented in
Public_Key:
{customize_hostname_check, [{match_fun, public_key:pkix_verify_hostname_match_fun(https)}]}
For futher description of the customize options, see
public_key:pkix_verify_hostname/3.

	{client_certificate_authorities, UseCertAuth} - Inter-op hint option
If UseCertAuth is set to true, sends the certificate authorities
extension in the TLS-1.3 client hello. The default is false. Note
that setting UseCertAuth to true can result in a significant
overhead if there exists many trusted CA certificates. (Since
Erlang/OTP 24.3.)

	{stapling, Stapling} - Certificate revocation check option
If Stapling is atom staple or a map, OCSP stapling will be
enabled, meaning that an extension of type "status_request" will be
included in the client hello to indicate the desire to receive
certificate status information.
If Stapling is set to no_staple (the default), OCSP stapling will be disabled.
Note
Even if requested by the client, the OCSP response might not be
provided by the server. In such event, SSL will proceed with
the handshake and generate a {missing, stapling_response} logger
event.
When Stapling is given as a map, boolean ocsp_nonce key can
indicate whether an OCSP nonce should be requested by the client
(default is false).
Note
The OCSP response can be provided without a nonce value — even if it was requested
by the client. In such cases SSL will proceed with the handshake and generate
a {missing, ocsp_nonce} logger event.

 client_option_legacy()

 (not exported)

 -type client_option_legacy() ::
 {client_preferred_next_protocols,
 NextAppProtocols ::
 {Precedence :: server | client, ClientPrefs :: [AppProto :: binary()]} |
 {Precedence :: server | client,
 ClientPrefs :: [AppProto :: binary()],
 Default :: (AppProto :: binary())}}.

Legacy client options.
	{client_preferred_next_protocols, NextAppProtocols} - Next Protocol Negotiation
ALPN (Application-Layer Protocol Negotiation)
deprecates NPN (Next Protocol Negotiation) and this option.
Indicates that the client wants to perform Next Protocol Negotiation.
If Precedence is server, the negotiated protocol is the first protocol to be
shown on the server advertised list that is also on the client preference
list.
If Precedence is client, the negotiated protocol is the first protocol to be
shown on the client preference list that is also on the server advertised
list.
If the client does not support any of the server advertised protocols or the
server does not advertise any protocols, the client falls back to the first
protocol in its list or to the default protocol (if a default is supplied). If
the server does not support Next Protocol Negotiation, the connection terminates
if no default protocol is supplied.

 client_option_pre_tls13()

 (not exported)

 -type client_option_pre_tls13() ::
 {reuse_session, SessionRef :: session_id() | {session_id(), SessionData :: binary()}} |
 {reuse_sessions, Reuse :: boolean() | save} |
 {psk_identity, PskID :: string()} |
 {srp_identity, SrpID :: {Username :: string(), Password :: string()}} |
 {fallback, LegacyFallback :: boolean()}.

Options only relevant to TLS versions prior to TLS-1.3.
	{reuse_session, SessionRef} - Explicit session reuse
Reuses a specific session.
Since Erlang/OTP 21.3, if the session was saved earlier using option
{reuse_sessions, save}, the session can be referred by its session ID.
Since Erlang/OTP 22.3, the session can be explicitly specified by
its session ID and associated data.
See also
SSL User's Guide, Session Reuse pre TLS 1.3.

	{reuse_sessions, Reuse} - Enables later session reuse
When Reuse is set to save, a new connection will be negotiated and saved for later
reuse. The session ID can be fetched with connection_information/2 and used
with the client option reuse_session.
When Reuse is set to true, automated session reuse will be
performed, if possible. If a new session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse.
Since: OTP 21.3.

	{psk_identity, PskID} - Option for use with PSK cipher suites
Specifies the identity the client presents to the server. The matching secret is
found by the fun given in the user_lookup_fun option.

	{srp_identity, SrpID} - Option for use SRP cipher suites
Specifies the username and password to use to authenticate to the server.

	{fallback, LegacyFallback} - Inter-op legacy client option
Send special cipher suite TLS_FALLBACK_SCSV to avoid an undesired TLS version
downgrade. Defaults to false.
Warning
This option is not needed in normal TLS usage and must not be used to
implement new clients. However, legacy clients that retries connections in the
following manner:
ssl:connect(Host, Port, [...{versions, ['tlsv2', 'tlsv1.1', 'tlsv1']}])
ssl:connect(Host, Port, [...{versions, [tlsv1.1', 'tlsv1']}, {fallback, true}])
ssl:connect(Host, Port, [...{versions, ['tlsv1']}, {fallback, true}])
can use it to avoid undesired TLS version downgrade. Note that
TLS_FALLBACK_SCSV must also be supported by the server for the prevention to
work.

 client_option_tls13()

 (not exported)

 -type client_option_tls13() ::
 {session_tickets, SessionTickets :: disabled | manual | auto} |
 {use_ticket, Tickets :: [binary()]} |
 {early_data, binary()} |
 {middlebox_comp_mode, MiddleBoxMode :: boolean()}.

Options only relevant for TLS-1.3.
	{session_tickets, SessionTickets} - Use of session tickets
Configures the session ticket functionality. Allowed values are disabled,
manual, and auto. If it is set to manual the client will send the ticket
information to user process in a 3-tuple:
{ssl, session_ticket, {SNI, TicketData}}
where SNI is the ServerNameIndication and TicketData is the extended ticket
data that can be used in subsequent session resumptions.
If it is set to auto, the client automatically handles received tickets and
tries to use them when making new TLS connections (session resumption with
pre-shared keys).
Ticket lifetime, the number of tickets sent by the server, and the
maximum number of tickets stored by the server in stateful mode are configured
by application variables.
See also
SSL User's Guide, Session Tickets and Session Resumption in TLS 1.3.

	{use_ticket, Tickets}
Configures the session tickets to be used for session resumption. It is a
mandatory option in manual mode ({session_tickets, manual}).
Note
Session tickets are only sent to the user if option session_tickets is set to
manual
This option is supported by TLS-1.3. See also
SSL User's Guide, Session Tickets and Session Resumption in TLS 1.3.

	{early_data, EarlyData}
Configures the early data to be sent by the client.
To verify that the server has the intention to process the early
data, the following tuple is sent to the user process:
{ssl, SslSocket, {early_data, Result}}
where Result is either accepted or rejected.
Warning
It is the responsibility of the user to handle rejected EarlyData and to
resend when appropriate.

	{middlebox_comp_mode, MiddleBoxMode}
Configures the middlebox compatibility mode for a TLS-1.3 connection.
A significant number of middleboxes misbehave when a TLS-1.3
connection is negotiated. Implementations can increase the chance of
making connections through those middleboxes by adapting the TLS-1.3
handshake to resemble that of a TLS-1.2 handshake.
The middlebox compatibility mode is enabled (true) by default.

 Types: Client and Server Options

 common_option()

 (not exported)

 -type common_option() ::
 {protocol, tls | dtls} |
 {handshake, hello | full} |
 {ciphers, cipher_suites()} |
 {signature_algs, signature_algs()} |
 {signature_algs_cert, [sign_scheme()]} |
 {keep_secrets,
 KeepSecrets ::
 boolean() |
 {keylog_hs, fun((Info :: keylog_info()) -> any())} |
 {keylog, fun((Info :: keylog_info()) -> any())}} |
 {max_handshake_size, HandshakeSize :: pos_integer()} |
 {versions, [protocol_version()]} |
 {log_level, Level :: logger:level() | none | all} |
 {hibernate_after, HibernateTimeout :: timeout()} |
 {receiver_spawn_opts, SpawnOpts :: [erlang:spawn_opt_option()]} |
 {sender_spawn_opts, SpawnOpts :: [erlang:spawn_opt_option()]}.

Options common to both client and server side.
	{protocol, Protocol} - Choose TLS or DTLS protocol for the transport layer security.
Defaults to tls.

	{handshake, Completion} - Possibly pause handshake at hello stage.
Defaults to full. If hello is specified the handshake will pause
after the hello message, allowing the user to make decisions based
on hello extensions before continuing or aborting the handshake by
calling handshake_continue/3 or handshake_cancel/1.

	{keep_secrets, KeepSecrets} - Configures a TLS connection for keylogging.
In order to be able retrieve all keylog information on a TLS connection, it must be
configured in advance.
Warning
The keylog information defeats the purpose of the protocol
and enabling it makes the user responsible for the information
not ending up compromising security, it is intended for debugging.
The keep_secrets functionality is disabled (false) by default.
If set to legacy value true keylog information can be retrieved from the connection
using connection_information/2.
Added in OTP 23.2.
Note
Note that having to ask the connection has some drawbacks
as for instance you can not get keylog information for
failed connections, and other keylog items have
to be retrieved in a polling manner and are not correctly
formatted for key_updates.
Since OTP 27.3.1 you may instead of true provide a callback fun
providing keylog information for either just failing handshakes or
for entire connections, by setting keep_secrets option to
{keylog_hs, fun()} or {keylog, fun()}. The fun is of arity one and
will be called with keylog information
keylog_info() as an argument. keylog_hs fun
will only be called if the handshake fails, and is only relevant for
TLS-1.3 that has encrypted messages before the first handshake is
complete.keylog fun will be called every time some secrets are
updated and provide keylog for that update that is during the
connection establishment and after that at renegotiation or key update (depending on TLS protocol version). When a fun is used the
connection_information/2 can not be used to retrieve key log
information. For more information see NSS
keylog.

	{max_handshake_size, HandshakeSize} - Limit the acceptable handshake packet size.
Used to limit the size of valid TLS handshake packets to avoid DoS
attacks.
Integer (24 bits, unsigned). Defaults to 256*1024.

	{hibernate_after, HibernateTimeout} - Hibernate inactive connection processes.
When an integer-value is specified, the TLS/DTLS connection goes into hibernation
after the specified number of milliseconds of inactivity, thus reducing its
memory footprint. When not specified the process never goes into hibernation.

	{log_level, Level} - Specifies the log level for a TLS/DTLS connection.
Alerts are logged on notice
level, which is the default level. The level debug triggers verbose logging of
TLS/DTLS protocol messages. See also SSL Application

	{receiver|sender_spawn_opts, SpawnOpts} - Configure erlang spawn opts.
Configures spawn options of TLS sender and receiver processes.
Setting up garbage collection options can be helpful for trade-offs between CPU
usage and memory usage. See erlang:spawn_opt/2.
For connections using Erlang distribution, the default sender option
is [...{priority, max}]; this priority option cannot be changed. For all
connections, ...link is added to receiver and cannot be changed.

 common_option_cert()

 (not exported)

 -type common_option_cert() ::
 {certs_keys, CertsKeys :: [cert_key_conf()]} |
 {depth, AllowedCertChainLen :: pos_integer()} |
 {verify_fun, Verify :: {Verifyfun :: fun(), InitialUserState :: any()}} |
 {cert_policy_opts,
 PolicyOpts ::
 [{policy_set, [public_key:oid()]} |
 {explicit_policy, boolean()} |
 {inhibit_policy_mapping, boolean()} |
 {inhibit_any_policy, boolean()}]} |
 {allow_any_ca_purpose, Allow :: boolean()} |
 {crl_check, Check :: boolean() | peer | best_effort} |
 {crl_cache, crl_cache_opts()} |
 {partial_chain, anchor_fun()}.

Common certificate related options to both client and server.
	{certs_keys, CertsKeys} - At least one certificate and key pair.
A list of a certificate (or possible a certificate and its chain)
and the associated key of the certificate that can be used to
authenticate the client or the server. The certificate key pair that
is considered best and matches negotiated parameters for the
connection will be selected.
The different signature algorithms are prioritized in the following
order: eddsa, ecdsa, rsa_pss_pss, rsa, and dsa. If more
than one key is supplied for the same signature algorithm, they will
be prioritized by strength (except for engine keys; see the next
paragraph). This offers flexibility to, for instance, configure a
newer certificate that is expected to be used in most cases, and an
older but acceptable certificate that will only be used to
communicate with legacy systems. Note that there is a trade off
between the induced overhead and the flexibility; thus, alternatives
should be chosen for good reasons.
Engine keys will be favored over other keys. As engine keys cannot
be inspected, supplying more than one engine key makes no sense.
When this option is specified it overrides all single certificate
and key options. For examples, see the User's Guide.
Note
eddsa certificates are only supported by TLS-1.3 implementations that do not support dsa
certificates. rsa_pss_pss (RSA certificates using Probabilistic Signature
Scheme) are supported in TLS-1.2 and TLS-1.3, but some TLS-1.2 implementations
do not support rsa_pss_pss.

	{depth, AllowedCertChainLen} - Limits the accepted number of certificates in the certificate chain.
Maximum number of non-self-issued intermediate certificates that can follow the
peer certificate in a valid certification path. So, if depth is 0 the PEER must
be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROOT-CA; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default
value is 10. Used to mitigate DoS attack possibilities.

	{verify_fun, Verify} - Customize certificate path validation
The verification fun is to be defined as follows:
fun(OtpCert :: #'OTPCertificate'{},
 Event, InitialUserState :: term()) ->
 {valid, UserState :: term()} |
 {fail, Reason :: term()} | {unknown, UserState :: term()}.

fun(OtpCert :: #'OTPCertificate'{}, DerCert :: public_key:der_encoded(),
 Event, InitialUserState :: term()) ->
 {valid, UserState :: term()} |
 {fail, Reason :: term()} | {unknown, UserState :: term()}.

Types:
 Event = {bad_cert, Reason :: atom() |
 {revoked, atom()}} |
 {extension, #'Extension'{}} |
 valid |
 valid_peer
The verification fun is called during the X.509-path validation when
an error occurs or an extension unknown to the SSL application is
encountered. It is also called when a certificate is considered
valid by the path validation to allow access to each certificate in
the path to the user application. It differentiates between the peer
certificate and the CA certificates by using valid_peer or valid
as Event argument to the verification fun. See the Public_Key
User's Guide for definition
of #'OTPCertificate'{} and #'Extension'{}.
	If the verify callback fun returns {fail, Reason}, the verification process
is immediately stopped, an alert is sent to the peer, and the TLS/DTLS
handshake terminates.
	If the verify callback fun returns {valid, UserState}, the verification
process continues.
	If the verify callback fun always returns {valid, UserState}, the TLS/DTLS
handshake does not terminate regardless of verification failures, and the
connection is established.
	If called with an extension unknown to the user application, the fun is to
return {unknown, UserState}.

Note that if the fun returns unknown for an extension marked as critical,
validation will fail.
Default option verify_fun in verify_peer mode:
{fun(_, _, {bad_cert, _} = Reason, _) ->
 {fail, Reason};
 (_, _, {extension, _}, UserState) ->
 {unknown, UserState};
 (_, _, valid, UserState) ->
 {valid, UserState};
 (_, _, valid_peer, UserState) ->
 {valid, UserState}
 end, []}
Default option verify_fun in mode verify_none:
 {fun(_, _, {bad_cert, _}, UserState) ->
 {valid, UserState};
 (_, _, {extension, #'Extension'{critical = true}}, UserState) ->
 {valid, UserState};
 (_, _, {extension, _}, UserState) ->
 {unknown, UserState};
 (_, _, valid, UserState) ->
 {valid, UserState};
 (_, _, valid_peer, UserState) ->
 {valid, UserState}
 end, []}
The possible path validation errors are given in the form {bad_cert, Reason},
where Reason is:
	unknown_ca
No trusted CA was found in the trusted store. The trusted
CA is normally a so-called ROOT CA, which is a self-signed certificate. Trust
can be claimed for an intermediate CA (the trusted anchor does not have to be
self-signed according to X-509) by using option partial_chain.

	selfsigned_peer
The chain consisted only of one self-signed certificate.

	{invalid_ext_keyusage, [public_key:oid()]}

 If the peer certificate specifies the extended keyusage extension and does
 not include the purpose for either being a TLS server (id-kp-ServerAuth) or
 TLS client (id-kp-ClientAuth) depending on the peers role.
	{ca_invalid_ext_keyusage, [public_key:oid()]}

 If a CA certificate specifies the extended keyusage extension and does
 not include the purpose for either being a TLS server
 (id-kp-ServerAuth) or TLS client (id-kp-ClientAuth) depending
 on the role of the peer chained with this CA, or the option allow_any_ca_purpose is set to true
 but the special any-value (anyExtendedKeyUsage) is not included in the CA cert purposes.
	PKIX X-509-path validation error
For possible reasons, see public_key:pkix_path_validation/3.

	{cert_policy_opts, PolicyOpts} - Handle certificate policies.
Configure X.509 certificate policy handling for the certificate path validation process;
see public_key:pkix_path_validation/3 for
more details.

	{allow_any_ca_purpose, boolean()} - Handle certificate extended key usages extension
If a CA certificate has an extended key usage extension but it does not want to
restrict the usages of the key it can include a special anyExtendedKeyUsage purpose.
If this is option is set to true all key usage purposes is automatically
accepted for a CA that include that purpose, the options default to false.

	{cerl_check, Check} - Handle certificate revocation lists.
Perform CRL (Certificate Revocation List) verification
(public_key:pkix_crls_validate/3) on all
the certificates during the path validation
(public_key:pkix_path_validation/3) of
the certificate chain. Check defaults to false.
The meaning of Check is as follows:
	false
No checks are performed.

	peer
Check is only performed on the peer certificate.

	best_effort
If certificate revocation status cannot be determined it will be accepted as valid.
The CA certificates specified for the connection will be used to construct the
certificate chain validating the CRLs.
The CRLs will be fetched from a local or external cache. See
ssl_crl_cache_api.

 common_option_dtls()

 (not exported)

 -type common_option_dtls() ::
 {use_srtp, UseSrtp :: #{protection_profiles := [binary()], mki => binary()}}.

Common options to client and server only valid for DTLS.
	{use_srtp, UseSrtp} - Configures the use_srtp DTLS hello extension.
In order to negotiate the use of SRTP data protection, clients include an
extension of type "use_srtp" in the DTLS extended client hello. This extension
MUST only be used when the data being transported is RTP or RTCP.
The value is a map with a mandatory protection_profiles parameter
and an optional mki parameter.
protection_profiles configures the list of the client's acceptable SRTP
Protection Profiles. Each profile is a 2-byte binary. Example:
#{protection_profiles => [<<0,2>>, <<0,5>>]}
mki configures the SRTP Master Key Identifier chosen by the client.
The srtp_mki field contains the value of the SRTP MKI which is associated with
the SRTP master keys derived from this handshake. Each SRTP session MUST have
exactly one master key that is used to protect packets at any given time. The
client MUST choose the MKI value so that it is distinct from the last MKI value
that was used, and it SHOULD make these values unique for the duration of the
TLS session.
Note
OTP does not handle SRTP, so an external implementations of SRTP
encoder/decoder and a packet demultiplexer are needed to make use of the
use_srtp extension. See also option transport_option.
Servers that receive an extended hello containing a "use_srtp" extension can
agree to use SRTP by including an extension of type "use_srtp", with the chosen
protection profile in the extended server hello. This extension MUST only be
used when the data being transported is RTP or RTCP.

 common_option_legacy()

 (not exported)

 -type common_option_legacy() ::
 {cert, Cert :: public_key:der_encoded() | [public_key:der_encoded()]} |
 {certfile, CertPem :: file:filename()} |
 {key, Key :: key()} |
 {keyfile, KeyPem :: file:filename()} |
 {password, KeyPemPasswd :: iodata() | fun(() -> iodata())} |
 {log_alert, LogAlert :: boolean()} |
 {padding_check, PaddingCheck :: boolean()} |
 {beast_mitigation, one_n_minus_one | zero_n | disabled} |
 {ssl_imp, Imp :: new | old}.

Legacy options considered deprecated in favor of other options,
insecure to use, or plainly not relevant anymore.
	{cert, Certs}
Use option certs_keys instead.

	{certfile, CertPem}
Use option certs_keys instead.

	{keyfile, KeyPem}
Use option certs_keys instead.

	{password, KeyPemPasswd}
Use option certs_keys instead.

	{log_alert, LogAlert}
If LogAlert is false, TLS/DTLS Alert reports are not displayed. Deprecated in OTP
22; use {log_level, Level} instead.

	{padding_check, PaddingCheck} - Inter-op trade-off option
Affects TLS-1.0 connections only. If set to false, it disables the block
cipher padding check to be able to interoperate with legacy software.
Warning
Using {padding_check, false} makes TLS vulnerable to the Poodle attack.

	{beast_mitigation, BeastMitigation} - Inter-op trade-off option
Affects TLS-1.0 connections only. Used to change the BEAST mitigation strategy
to interoperate with legacy software. Defaults to one_n_minus_one.
one_n_minus_one - Perform 1/n-1 BEAST mitigation.
zero_n - Perform 0/n BEAST mitigation.
disabled - Disable BEAST mitigation.
Warning
Using {beast_mitigation, disabled} makes TLS-1.0 vulnerable to the BEAST
attack.

	{ssl_imp, Imp}
Deprecated since OTP 17; has no effect.

 common_option_pre_tls13()

 (not exported)

 -type common_option_pre_tls13() ::
 {eccs, NamedCurves :: [named_curve()]} |
 {secure_renegotiate, SecureRenegotiate :: boolean()} |
 {user_lookup_fun, {Lookupfun :: fun(), UserState :: any()}}.

Options common to client and server side prior to TLS-1.3.
	{eccs, NamedCurves} - Named Elliptic Curves
Elliptic curves that can be used in pre TLS-1.3 key exchange.

	{secure_renegotiate, SecureRenegotiate} - Inter-operate trade-off option
Specifies whether to reject renegotiation attempt that does not live
up to RFC 5746. By default,
SecureRenegotiate is true, meaning that secure renegotiation is
enforced. If SecureRenegotiate is false secure renegotiation
will still be used if possible, but it falls back to insecure
renegotiation if the peer does not support if RFC
5746.

	{user_lookup_fun, {LookupFun, UserState}} - PSK/SRP cipher suite option
The lookup fun is to be defined as follows:
fun(psk, PSKIdentity :: binary(), UserState :: term()) ->
 {ok, SharedSecret :: binary()} | error;
fun(srp, Username :: binary(), UserState :: term()) ->
 {ok, {SRPParams :: srp_param_type(), Salt :: binary(),
 DerivedKey :: binary()}} | error.
For Pre-Shared Key (PSK) cipher suites, the lookup fun is called by the client
and server to determine the shared secret. When called by the client,
PSKIdentity is the hint presented by the server or undefined. When
called by the server, PSKIdentity is the identity presented by the client.
For Secure Remote Password (SRP), the fun is only used by the server to obtain
parameters that it uses to generate its session keys. DerivedKey is to be
derived according to RFC 2945
and RFC 5054:
crypto:sha([Salt, crypto:sha([Username, <<$:>>, Password])])

 common_option_tls13()

 -type common_option_tls13() ::
 {supported_groups, [group()]} | {key_update_at, KeyUpdateAt :: pos_integer()}.

Common options to both client and server for TLS-1.3.
	{supported_groups, Groups} - Key exchange option
TLS 1.3 introduces the "supported_groups" extension, which is used for negotiating
the Diffie-Hellman parameters in a TLS 1.3 handshake. Both client and server can
specify a list of parameters that they are willing to use.
If not specified it will use a default list ([x25519, x448, secp256r1, secp384r1]) that is filtered based on the installed crypto library version.

	{key_update_at, KeyUpdateAt} - Session key renewal
Configures the maximum amount of bytes that can be sent on a TLS 1.3 connection
before an automatic key update is performed.
There are cryptographic limits on the amount of plaintext which can be safely
encrypted under a given set of keys. The current default ensures that data
integrity will not be breached with probability greater than 1/2^57. For more
information see
Limits on Authenticated Encryption Use in TLS.

 Types: Deprecated

 prf_random()

 This type is deprecated. the type ssl:prf_random() is deprecated; Only used in deprecated function prf/5 and will no longer be needed..

 -type prf_random() :: client_random | server_random.

 Types: Info

 connection_info()

 -type connection_info() ::
 [{protocol, protocol_version()} |
 {session_resumption, boolean()} |
 {selected_cipher_suite, erl_cipher_suite()} |
 {sni_hostname, term()} |
 {ciphers, [erl_cipher_suite()]}] |
 connection_info_pre_tls13() |
 security_info().

Key value list convening some information about the established connection.

 connection_info_keys()

 -type connection_info_keys() ::
 [protocol | selected_cipher_suite | sni_hostname | session_resumption | ciphers |
 client_random | server_random | master_secret | keylog | session_id | session_data | ecc |
 srp_username].

TLS connection keys for which information can be retrieved.

 connection_info_pre_tls13()

 (not exported)

 -type connection_info_pre_tls13() ::
 [{session_id, session_id()} |
 {session_data, binary()} |
 {ecc, {named_curve, term()}} |
 {srp_username, term()}].

TLS connection information relevant prior to TLS-1.3.

 security_info()

 (not exported)

 -type security_info() ::
 [{client_random, binary()} |
 {server_random, binary()} |
 {master_secret, binary()} |
 {keylog, [keylog_item()]}].

TLS connection information that can be used for NSS key logging.

 Types: Server Options

 server_option()

 (not exported)

 -type server_option() ::
 server_option_cert() |
 common_option_cert() |
 {alpn_preferred_protocols, AppProtocols :: [binary()]} |
 {sni_hosts, SNIHosts :: [{inet:hostname(), [server_option() | common_option()]}]} |
 {sni_fun,
 SNIFun :: fun((string()) -> [server_option() | common_option()] | unrecognized | undefined)} |
 server_option_pre_tls13() |
 common_option_pre_tls13() |
 server_option_tls13() |
 common_option_tls13() |
 common_option_dtls() |
 server_option_legacy() |
 common_option_legacy().

Options specific to the server side, or with different semantics for the client and server.
	{alpn_preferred_protocols, AppProtocols} - Application Layer Protocol Negotiation
Indicates that the server will try to perform Application-Layer
Protocol Negotiation (ALPN).
The list of protocols is in order of preference. The protocol negotiated will be
the first in the list that matches one of the protocols advertised by the
client. If no protocol matches, the server will fail the connection with a
no_application_protocol alert.
The negotiated protocol can be retrieved using the
negotiated_protocol/1 function.

	{sni_fun, SNIFun}
If the server receives a SNI (Server Name Indication) from the
client, the given fun SNIFun will be called to retrieve
server_option() for the indicated
server. These options will override previously specified server options.
The sni_fun can indicate that it does not recognize the server name by
returning unrecognized in which case the connection will be closed with an
unrecognized_name alert. If the
sni_fun returns undefined the connection will be attempted with the default
options supplied to listen/2 or handshake/2,3.
Note
The options sni_fun and sni_hosts are mutually exclusive.

	{sni_hosts, SNIHosts}
If the server receives a SNI (Server Name Indication) from the client matching a
host listed in the sni_hosts option, the specific options for that host will
override previously specified options. If no match is found it behaves as
option sni_fun that returns undefined.
Note
The options sni_fun and sni_hosts are mutually exclusive.

 server_option_cert()

 -type server_option_cert() ::
 {cacerts, CACerts :: [public_key:der_encoded()] | [public_key:combined_cert()]} |
 {cacertfile, CACertFile :: file:filename()} |
 {verify, Verify :: verify_none | verify_peer} |
 {fail_if_no_peer_cert, FailNoPeerCert :: boolean()} |
 {certificate_authorities, ServerCertAuth :: boolean()}.

Certificate related options for a server.
	{cacerts, CACerts} - Trusted certificates.
The DER-encoded trusted certificates. If this option is supplied, it overrides
the cacertfile option.

	{verify, Verify} - Verify certificates.
Client certificates are an optional part of the TLS protocol. A server performs
X.509 certificate path validation only in verify_peer mode. By default the server
is in verify_none mode and, hence, will not send an certificate request to the
client. When using verify_peer you may also want to specify the options
fail_if_no_peer_cert and certificate_authorities.

	{fail_if_no_peer_cert, FailNoPeerCert} - Legacy trade-off option
Used together with {verify, verify_peer} by an TLS/DTLS server. If set to
true, the server fails if the client does not have a certificate to send, that
is, sends an empty certificate. If set to false, it fails only if the client
sends an invalid certificate (an empty certificate is considered valid).
Defaults to false.

	{certificate_authorities, ServerCertAuth} - Inter-operate hint option
Determines whether a TLS-1.3 server should include the authorities extension in its
certificate request message that is sent when the option verify is set to
verify_peer. Defaults to true.
If set to false for older TLS versions its corresponding certificate authorities
definition in its certificate request will be set to the empty list instead of
including the appropriate certificate authorities. This has the same affect
as excluding the TLS-1.3 extension.
A reason to exclude the extension would be if the server wants to communicate
with clients incapable of sending complete certificate chains that adhere to the
extension, but the server still has the capability to recreate a chain that it
can verify.

 server_option_legacy()

 (not exported)

 -type server_option_legacy() :: {next_protocols_advertised, NextAppProtocols :: [binary()]}.

Legacy server options.
	{next_protocols_advertised, NextAppProtocols}
ALPN (Application-Layer Protocol Negotiation)
deprecates NPN (Next Protocol Negotiation) described here.
List of protocols to send to the client if the client indicates that it supports
the Next Protocol extension. The client can select a protocol that is not on
this list. The list of protocols must not contain an empty binary. If the server
negotiates a Next Protocol, it can be accessed using the
negotiated_protocol/1 method.

 server_option_pre_tls13()

 (not exported)

 -type server_option_pre_tls13() ::
 {client_renegotiation, ClientRengotiation :: boolean()} |
 {reuse_sessions, ReuseSessions :: boolean()} |
 {reuse_session, ReuseSession :: fun()} |
 {honor_cipher_order, HonorServerCipherOrder :: boolean()} |
 {honor_ecc_order, HonorServerECCOrder :: boolean()} |
 {dh, DHDer :: public_key:der_encoded()} |
 {dhfile, DhFile :: file:filename()} |
 {psk_identity, PSKHint :: string()}.

Options only relevant to TLS versions prior to TLS-1.3.
	{client_renegotiation, ClientRengotiation} - DoS attack avoidance option
In protocols that support client-initiated renegotiation, the resource cost
of such an operation is higher for the server than the client. This can act as a
vector for denial-of-service (DoS) attacks. The SSL application already takes measures
to counter-act such attempts, but client-initiated renegotiation can be completely
disabled by setting this option to false. The default value is true. Note
that disabling renegotiation can result in long-lived connections becoming
unusable due to limits on the number of messages the underlying cipher suite can
encipher.

	{reuse_sessions, ReuseSessions} - Enable session reuse
The boolean value true specifies that the server will agree to reuse sessions.
Setting it to false will result in an empty session table, meaning that no sessions
will be reused.

	{reuse_session, ReuseSession} - Local server reuse policy
Enables the TLS/DTLS server to have a local policy for deciding whether a session
is to be reused. Meaningful only if reuse_sessions is set to true.
ReuseSession should be a fun:
 fun(SuggestedSessionId, PeerCert, Compression, CipherSuite)
SuggestedSessionId is a binary(),
PeerCert is a DER-encoded certificate,
Compression is an enumeration integer, and CipherSuite is of type
erl_cipher_suite().

	{psk_identity, PSKHint} - Inter-operate hint option
Specifies the server identity hint that the server presents to the client.

	{honor_cipher_order, HonorServerCipherOrder} - Trade-off option alters protocol defined behavior
If true, use the server's preference for ECC curve selection. If false (the
default), use the client's preference.

	{honor_ecc_order, HonorServerECCOrder} - Trade-off option alters protocol defined behavior
If true, use the server's preference for ECC curve selection. If false (the
default), use the client's preference.

	{dh, DHder} - Affects DH key exchange cipher suites
The DER-encoded Diffie-Hellman parameters. If specified, it overrides option
dhfile.

	{dh_file, DHfile} - Affects DH key exchange cipher suites
Path to a file containing PEM-encoded Diffie Hellman parameters to be used by
the server if a cipher suite using Diffie Hellman key exchange is negotiated. If
not specified, default parameters are used.

 server_option_tls13()

 (not exported)

 -type server_option_tls13() ::
 {session_tickets,
 SessionTickets :: disabled | stateful | stateless | stateful_with_cert | stateless_with_cert} |
 {stateless_tickets_seed, TicketSeed :: binary()} |
 {anti_replay,
 '10k' | '100k' |
 {BloomFilterWindowSize :: pos_integer(),
 BloomFilterHashFunctions :: pos_integer(),
 BloomFilterBits :: pos_integer()}} |
 {cookie, Cookie :: boolean()} |
 {early_data, EarlyData :: enabled | disabled}.

Options only relevant for TLS-1.3.
	{session_tickets, SessionTickets}
Configures the session ticket functionality. Allowed values for SessionTickets are:
	disabled
	stateful
	stateless
	stateful_with_cert
	stateless_with_cert

If SessionTickets is not set to disabled, session resumption with pre-shared
keys is enabled and the server will send stateful or stateless session tickets to the
client after successful connections.
Note
In pre-shared key session ticket resumption, there is no certificate
exchange involved. Therefore, ssl:peercert/1 will not return the
peer certificate, as it is only communicated during the initial
handshake. To associate the client certificate from the original
handshake with the tickets it issues, the server options
stateful_with_cert or stateless_with_cert can be used.
A stateful session ticket is a database reference to internal state information.
A stateless session ticket is a self-encrypted binary that contains both
cryptographic keying material and state data.
Warning
When SessionTickets is set to stateful_with_cert, the client
certificate is stored along with the internal state information,
leading to increased memory consumption. Conversely, when it is set
to stateless_with_cert, the client certificate is encoded in the
self-encrypted binary sent to the client, resulting in an increase
in payload size.
See also SSL User's Guide, Session Tickets and Session Resumption in TLS 1.3.

	{stateless_tickets_seed, TicketSeed} - Option for statless tickets
Configures the seed used for the encryption of stateless session tickets.
Allowed values are any randomly generated binary/0. If this option is not
configured, an encryption seed will be randomly generated.
Warning
Reusing the ticket encryption seed between multiple server instances enables
stateless session tickets to work across multiple server instances, but it
breaks anti-replay protection across instances.
Inaccurate time synchronization between server instances can also affect
session ticket freshness checks, potentially causing false negatives as well
as false positives.

	{anti_replay, AntiReplay} - Option for statless tickets
Configures the server's built-in anti replay feature based on Bloom filters.
Allowed values for AntiReplay are the pre-defined '10k',
'100k', or a custom 3-tuple that defines the properties of the
bloom filters:
{WindowSize, HashFunctions, Bits}. WindowSize is the number of seconds after
the current Bloom filter is rotated and also the window size used for freshness
checks of ClientHello. HashFunctions is the number hash functions and Bits
is the number of bits in the bit vector. '10k' and '100k' are simple
defaults with the following properties:
	'10k': Bloom filters can hold 10000 elements with 3% probability of false
positives. WindowSize: 10, HashFunctions: 5, Bits: 72985 (8.91 KiB).
	'100k': Bloom filters can hold 100000 elements with 3% probability of false
positives. WindowSize: 10, HashFunctions: 5, Bits: 729845 (89.09 KiB).

See also SSL User's Guide, Anti-Replay Protection in TLS
1.3.

	{cookie, Cookie} - Option for HelloRetryRequest behavior
If Cookie is true, which is the default, the server sends a
cookie extension in its HelloRetryRequest messages.
The cookie extension has two main purposes. It allows the server to force the
client to demonstrate reachability at their apparent network address (thus
providing a measure of DoS protection). This is primarily useful for
non-connection-oriented transports. It also allows offloading the server's
state to the client. The cookie extension is enabled by default as it is a
mandatory extension in RFC8446.

	{early_data, EarlyData} - Option for accepting or rejecting Early Data
Configures if the server accepts (enabled) or rejects (disabled) early data
sent by a client. The default value is disabled.

 Types: Socket

 active_msgs()

 -type active_msgs() ::
 {ssl, sslsocket(), Data :: binary() | list()} |
 {ssl_closed, sslsocket()} |
 {ssl_error, sslsocket(), Alert :: error_alert() | (Reason :: any())} |
 {ssl_passive, sslsocket()}.

The type for the messages that are delivered to the owner of a
TLS/DTLS socket in active mode.
The ssl_error reason may convey a TLS protocol alert if such an event occurs
after the connection has been established. The most common case when this will
happen is on the client side when a TLS-1.3 server requests a client certificate
and the provided certificate is not accepted by the server, as it will be
verified after the server has sent its last handshake message.
The ssl_passive message is sent only when the socket is in {active, N} mode
and the counter has dropped to 0. It indicates that the socket has transitioned
to passive ({active, false}) mode.

 dtls_legacy_version()

 (not exported)

 -type dtls_legacy_version() :: dtlsv1.

A DTLS protocol version that are no longer supported by default for security reasons.

 dtls_version()

 (not exported)

 -type dtls_version() :: 'dtlsv1.2' | dtls_legacy_version().

DTLS protocol version.

 error_alert()

 -type error_alert() :: {tls_alert, {tls_alert(), Description :: string()}}.

If a TLS connection fails a TLS protocol ALERT will be sent/received.
An atom reflecting the raised alert, according to the TLS protocol, and a description string
with some further details will be returned.

 host()

 -type host() :: inet:hostname() | inet:ip_address().

A name or address to a host.

 protocol_extensions()

 -type protocol_extensions() ::
 #{renegotiation_info => binary(),
 signature_algs => signature_algs(),
 alpn => binary(),
 srp => binary(),
 next_protocol => binary(),
 max_frag_enum => 1..4,
 ec_point_formats => [0..2],
 elliptic_curves => [public_key:oid()],
 sni => inet:hostname()}.

Client hello extensions.

 protocol_version()

 -type protocol_version() :: tls_version() | dtls_version().

TLS or DTLS protocol version.

 reason()

 -type reason() :: term().

Error reason for debug purposes.
Not to be matched.

 session_id()

 -type session_id() :: binary().

Identifies a TLS session prior to TLS-1.3.

 socket()

 -type socket() :: gen_tcp:socket() | socket:socket().

A socket that can be used to perform a so-called "START-TLS", which
means using an already connected socket previously used for plain TCP
traffic and upgrading it to use TLS.
Both sides needs to agree on the upgrade.

 socket_option()

 -type socket_option() :: gen_tcp:connect_option() | gen_tcp:listen_option() | gen_udp:option().

Options for the transport socket.
The default socket options are
[{mode, list}, {packet, 0}, {header, 0}, {active, true}].
For valid options, see inet, gen_tcp, and gen_udp
in Kernel. Note that stream-oriented options such as packet are
only relevant for TLS and not DTLS.

 sslsocket()

 -type sslsocket() :: any().

An opaque reference to the TLS/DTLS connection.
Note that despite being opaque, matching sslsocket() instances is allowed.

 tls_alert()

 -type tls_alert() ::
 close_notify | unexpected_message | bad_record_mac | record_overflow | handshake_failure |
 bad_certificate | unsupported_certificate | certificate_revoked | certificate_expired |
 certificate_unknown | illegal_parameter | unknown_ca | access_denied | decode_error |
 decrypt_error | export_restriction | protocol_version | insufficient_security |
 internal_error | inappropriate_fallback | user_canceled | no_renegotiation |
 unsupported_extension | certificate_unobtainable | unrecognized_name |
 bad_certificate_status_response | bad_certificate_hash_value | unknown_psk_identity |
 no_application_protocol.

TLS Alert Protocol reasons.

 tls_client_option()

 -type tls_client_option() :: client_option() | common_option() | socket_option() | transport_option().

An option that can be supplied to a TLS client.

 tls_legacy_version()

 (not exported)

 -type tls_legacy_version() :: tlsv1 | 'tlsv1.1'.

A TLS protocol version that are no longer supported by default for security reasons.

 tls_option()

 -type tls_option() :: tls_client_option() | tls_server_option().

An option related to the TLS/DTLS protocol.

 tls_server_option()

 -type tls_server_option() :: server_option() | common_option() | socket_option() | transport_option().

An option that can be supplied to a TLS server.

 tls_version()

 (not exported)

 -type tls_version() :: 'tlsv1.2' | 'tlsv1.3' | tls_legacy_version().

TLS protocol version.

 transport_option()

 (not exported)

 -type transport_option() ::
 {cb_info,
 {CallbackModule :: atom(), DataTag :: atom(), ClosedTag :: atom(), ErrTag :: atom()}} |
 {cb_info,
 {CallbackModule :: atom(),
 DataTag :: atom(),
 ClosedTag :: atom(),
 ErrTag :: atom(),
 PassiveTag :: atom()}}.

Transport option defines a callback module and message tags to handle the underlying transport socket.
Can be used to customize the transport layer. The tag
values should be the values used by the underlying transport in its active mode
messages.
Defaults to {gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS.
Note
For backward compatibility a tuple of size four will be converted to a
tuple of size five, where PassiveTag is the DataTag element with
_passive appended.
For TLS the callback module must implement a reliable transport
protocol, behave as gen_tcp, and have functions corresponding to
inet:setopts/2, inet:getopts/2, inet:peername/1, inet:sockname/1, and
inet:port/1. The callback gen_tcp is treated specially and calls inet
directly. For DTLS this feature is considered experimental.

 Types

 keylog_info()

 -type keylog_info() :: #{items => [keylog_item()], client_random => binary()}.

 keylog_item()

 (not exported)

 -type keylog_item() :: unicode:chardata().

 Client API

 connect(TCPSocket, TLSOptions)

 (since OTP R14B)

 -spec connect(TCPSocket, TLSOptions) -> {ok, sslsocket()} | {error, Reason}
 when
 TCPSocket :: socket(),
 TLSOptions :: [tls_client_option()],
 Reason :: closed | {options, any()} | error_alert() | reason().

Equivalent to connect(TCPSocket, TLSOptions, infinity).

 connect(TCPSocketOrHost, TLSOptionsOrPort, TimeoutOrTLSOptions)

 -spec connect(TCPSocketOrHost, TLSOptionsOrPort, TimeoutOrTLSOptions) ->
 {ok, sslsocket()} | {ok, sslsocket(), Ext :: protocol_extensions()} | {error, Reason}
 when
 TCPSocketOrHost :: socket() | host(),
 TLSOptionsOrPort :: [tls_client_option()] | inet:port_number(),
 TimeoutOrTLSOptions :: [tls_client_option()] | timeout(),
 Reason :: closed | timeout | {options, any()} | error_alert() | reason().

Opens a TLS/DTLS connection.
connect(TCPSocket, TLSOptions, Timeout).
Upgrades a gen_tcp (or equivalent) connected socket to a TLS socket by
performing the client-side TLS handshake.
connect(Host, Port, TLSOptions).
Opens a TLS/DTLS connection to Host, Port. This call is equivalent to:
connect(Host, Port, TLSOptions, infinity).

 connect(Host, Port, TLSOptions, Timeout)

 -spec connect(Host, Port, TLSOptions, Timeout) ->
 {ok, sslsocket()} | {ok, sslsocket(), Ext :: protocol_extensions()} | {error, Reason}
 when
 Host :: host(),
 Port :: inet:port_number(),
 TLSOptions :: [tls_client_option()],
 Timeout :: timeout(),
 Reason :: closed | timeout | {options, any()} | error_alert() | reason().

Opens a TLS/DTLS connection to Host, Port.
When the verify option is set to verify_peer, the
public_key:pkix_verify_hostname/2 check will be performed in addition to the usual
X.509-path validation checks. If the check fails, the error {bad_cert, hostname_check_failed} will be propagated to the path validation fun,
where it is possible to do customized checks
by using the full possibilities of the public_key:pkix_verify_hostname/3 API.
When the server_name_indication option is provided, its value (the DNS name)
will be used as ReferenceID to public_key:pkix_verify_hostname/2. When no
server_name_indication option is given, the Host argument will be used as
Server Name Indication extension. The Host argument will also be used for the
public_key:pkix_verify_hostname/2 check. If the Host argument is an
inet:ip_address() the ReferenceID used for the
check will be {ip, Host}; otherwise dns_id will be assumed with a fallback to
ip if that fails.
Note
According to good practices, certificates should not use IP addresses as
"server names", especially outside a closed network.
If the {handshake, hello} option is used, the handshake is paused after
receiving the server hello message and the success response is
{ok, SslSocket, Ext} instead of {ok, SslSocket}. Thereafter the handshake is
continued or canceled by calling handshake_continue/3 or handshake_cancel/1.
If the active option is set to once, true, or an integer value, the process
owning the SSL socket will receive messages of type
active_msgs().

 Client and Server API

 close(SslSocket)

 -spec close(SslSocket) -> ok | {error, Reason} when SslSocket :: sslsocket(), Reason :: any().

Closes a TLS/DTLS connection.

 close(SslSocket, How)

 (since OTP 18.1)

 -spec close(SslSocket, How) -> ok | {ok, port()} | {ok, port(), Data} | {error, Reason}
 when
 SslSocket :: sslsocket(),
 How :: timeout() | {NewController :: pid(), timeout()},
 Data :: binary(),
 Reason :: any().

Closes or downgrades a TLS connection.
In the latter case the transport connection will be handed over to the
NewController process after receiving the TLS close alert from the
peer. The returned transport socket will have the following options
set: [{active, false}, {packet, 0}, {mode, binary}].
In case of downgrade, the close function might return some binary data that
should be treated by the user as the first bytes received on the downgraded
connection.

 controlling_process(SslSocket, NewController)

 -spec controlling_process(SslSocket, NewController) -> ok | {error, Reason}
 when SslSocket :: sslsocket(), NewController :: pid(), Reason :: any().

Assigns a new controlling process to the SSL socket.
A controlling process is the owner of an SSL socket and receives all
messages from the socket.

 handshake_cancel(Socket)

 (since OTP 21.0)

 -spec handshake_cancel(#sslsocket{socket_handle :: term(),
 connection_handler :: term(),
 payload_sender :: term(),
 transport_cb :: term(),
 connection_cb :: term(),
 tab :: term(),
 listener_config :: term()}) ->
 any().

Cancel the handshake with a fatal USER_CANCELED alert.

 handshake_continue(HsSocket, Options)

 (since OTP 21.0)

 -spec handshake_continue(HsSocket, Options) -> {ok, SslSocket} | {error, Reason}
 when
 HsSocket :: sslsocket(),
 Options :: [client_option() | server_option() | common_option()],
 SslSocket :: sslsocket(),
 Reason :: closed | timeout | error_alert().

Equivalent to handshake_continue(HsSocket, Options, infinity).

 handshake_continue(HsSocket, Options, Timeout)

 (since OTP 21.0)

 -spec handshake_continue(HsSocket, Options, Timeout) -> {ok, SslSocket} | {error, Reason}
 when
 HsSocket :: sslsocket(),
 Options :: [client_option() | server_option() | common_option()],
 Timeout :: timeout(),
 SslSocket :: sslsocket(),
 Reason :: closed | timeout | error_alert().

Continue the TLS handshake, possibly with new, additional, or changed options.

 recv(SslSocket, Length)

 -spec recv(SslSocket, Length) -> {ok, Data} | {error, reason()}
 when
 SslSocket :: sslsocket(),
 Length :: non_neg_integer(),
 Data :: binary() | list() | HttpPacket,
 HttpPacket :: any().

Equivalent to recv(Socket, Length, infinity).

 recv(SslSocket, Length, Timeout)

 -spec recv(SslSocket, Length, Timeout) -> {ok, Data} | {error, reason()}
 when
 SslSocket :: sslsocket(),
 Length :: non_neg_integer(),
 Data :: binary() | list() | HttpPacket,
 Timeout :: timeout(),
 HttpPacket :: any().

Receives a packet from a socket in passive mode.
A closed socket is indicated by return value {error, closed}.
Argument Length is meaningful only when the socket is in mode raw
and denotes the number of bytes to read. If Length is zero, all
available bytes are returned. If Length is greater than zero,
exactly Length bytes are returned, or an error; possibly discarding
less than Length bytes of data when the socket gets closed from
the other side.
Optional argument Timeout specifies a time-out in milliseconds. The default
value is infinity.

 send(SslSocket, Data)

 -spec send(SslSocket, Data) -> ok | {error, reason()} when SslSocket :: sslsocket(), Data :: iodata().

Writes Data to SslSocket.
A notable return value is {error, closed} indicating that the socket is
closed.

 setopts(SslSocket, Options)

 -spec setopts(SslSocket, Options) -> ok | {error, reason()}
 when SslSocket :: sslsocket(), Options :: [gen_tcp:option()].

Sets options according to Options for socket SslSocket.

 shutdown(SslSocket, How)

 (since OTP R14B)

 -spec shutdown(SslSocket, How) -> ok | {error, reason()}
 when SslSocket :: sslsocket(), How :: read | write | read_write.

Immediately closes a socket in one or two directions.
How == write means closing the socket for writing, but reading from
it is still possible.
To handle siutations where the peer has performed a shutdown on the
write side, option {exit_on_close, false} is useful.

 Deprecated API

 prf(SslSocket, Secret, Label, Seed, WantedLength)

 (since OTP R15B01)

 This function is deprecated. ssl:prf/5 is deprecated; Use export_key_materials/4 instead. Note that in OTP 28 the 'testing' way of calling this function will no longer be supported..

 -spec prf(SslSocket, Secret, Label, Seed, WantedLength) -> {ok, binary()} | {error, reason()}
 when
 SslSocket :: sslsocket(),
 Secret :: binary() | master_secret,
 Label :: binary(),
 Seed :: [binary() | prf_random()],
 WantedLength :: non_neg_integer().

Uses the Pseudo-Random Function (PRF) of a TLS session to generate extra key
material.
It either takes user-generated values for Secret and Seed or atoms
directing it to use a specific value from the session security parameters.
Note
This function is replaced by export_key_materials/4, the officially
documented API function since OTP 27, which is equivalent to
prf(TLSSocket, master_secret, Label, [client_random, server_random, Context], WantedLength). Other ways of calling this
function were for testing purposes only and has no use case. When
called in a TLS-1.3 context it will now behave as
export_key_materials(TLSSocket, [Label], [Context], [WantedLength]).

 Pre TLS-1.3 API

 eccs()

 (since OTP 19.2)

 -spec eccs() -> NamedCurves when NamedCurves :: [named_curve()].

Returns a list of all supported elliptic curves, including legacy
curves, for all TLS/DTLS versions prior to TLS-1.3.

 eccs(Version)

 (since OTP 19.2)

 -spec eccs(Version) -> NamedCurves
 when
 Version :: 'tlsv1.2' | 'tlsv1.1' | tlsv1 | 'dtlsv1.2' | dtlsv1,
 NamedCurves :: [named_curve()].

Returns the elliptic curves supported by default for Version.
This is a subset of what eccs/0 returns.

 renegotiate(SslSocket)

 (since OTP R14B)

 -spec renegotiate(SslSocket) -> ok | {error, reason()} when SslSocket :: sslsocket().

Initiates a new handshake.
A notable return value is {error, renegotiation_rejected} indicating
that the peer refused to go through with the renegotiation, but the
connection is still active using the previously negotiated session.
TLS-1.3 has removed the renegotiation feature from earlier TLS
versions and instead adds a new feature called key update, which
replaces the most important part of renegotiation: the refreshing of
session keys. This is triggered automatically after reaching a
plaintext limit and can be configured using the key_update_at option
in common_option_tls13/0.

 Server API

 handshake(HsSocket)

 (since OTP 21.0)

 -spec handshake(HsSocket) -> {ok, SslSocket} | {ok, SslSocket, Ext} | {error, Reason}
 when
 HsSocket :: sslsocket(),
 SslSocket :: sslsocket(),
 Ext :: protocol_extensions(),
 Reason :: closed | timeout | error_alert().

Equivalent to handshake(HsSocket, infinity).

 handshake(HsSocket, OptionsOrTimeout)

 (since OTP 21.0)

 -spec handshake(HsSocket, OptionsOrTimeout) -> {ok, SslSocket} | {ok, SslSocket, Ext} | {error, Reason}
 when
 HsSocket :: sslsocket(),
 OptionsOrTimeout :: timeout() | [server_option()],
 SslSocket :: sslsocket(),
 Ext :: protocol_extensions(),
 Reason :: closed | timeout | error_alert().

Performs the TLS/DTLS server-side handshake.
If the second argument is a timeout value:
handshake(HsSocket, Timeout).
this call is equivalent to:
handshake(HsSocket, [], Timeout).
Otherwise, if the second argument is a list of options:
handshake(HsSocket, Options).
this call is equivalent to:
handshake(HsSocket, Options, infinity).

 handshake(Socket, Options, Timeout)

 (since OTP 21.0)

 -spec handshake(Socket, Options, Timeout) -> {ok, SslSocket} | {ok, SslSocket, Ext} | {error, Reason}
 when
 Socket :: socket() | sslsocket(),
 SslSocket :: sslsocket(),
 Options :: [server_option() | common_option()],
 Timeout :: timeout(),
 Ext :: protocol_extensions(),
 Reason :: closed | timeout | {options, any()} | error_alert().

Performs the TLS/DTLS server-side handshake.
Returns a new TLS/DTLS socket if the handshake is successful.
If Socket is a ordinary socket(), upgrades a
gen_tcp or equivalent socket to an SSL socket by performing the
TLS server-side handshake and returning a TLS socket.
Note
The ordinary Socket must be in passive mode ({active, false})
before calling this function and before the client tries to connect
with TLS; otherwise, the behavior of this function is undefined. The
best way to ensure this is to create the ordinary listen socket in
passive mode.
If Socket is an sslsocket(), provides extra
TLS/DTLS options to those specified in listen/2 and then performs
the TLS/DTLS handshake. Returns a new TLS/DTLS socket if the handshake
is successful.
Warning
Not setting the timeout makes the server more vulnerable to Denial of
Service (DoS) attacks.
If option {handshake, hello} is specified the handshake is paused after
receiving the client hello message and the success response is
{ok, SslSocket, Ext} instead of {ok, SslSocket}. Thereafter the handshake is
continued or canceled by calling handshake_continue/3 or handshake_cancel/1.
If option active is set to once, true, or an integer value, the process
owning the sslsocket() will receive messages of type
active_msgs().

 listen(Port, Options)

 -spec listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
 when
 Port :: inet:port_number(),
 Options :: [tls_server_option()],
 ListenSocket :: sslsocket(),
 Reason :: {options, any()} | reason().

Creates an SSL listen socket.

 transport_accept(ListenSocket)

 -spec transport_accept(ListenSocket) -> {ok, SslSocket} | {error, Reason}
 when ListenSocket :: sslsocket(), SslSocket :: sslsocket(), Reason :: reason().

Equivalent to transport_accept(ListenSocket, infinity).

 transport_accept(ListenSocket, Timeout)

 -spec transport_accept(ListenSocket, Timeout) -> {ok, SslSocket} | {error, Reason}
 when
 ListenSocket :: sslsocket(),
 Timeout :: timeout(),
 SslSocket :: sslsocket(),
 Reason :: reason().

Accepts an incoming connection request on a listen socket.
ListenSocket must be a socket returned from listen/2. The socket
returned is to be passed to handshake/1,2,3 to
complete the handshake and establish the TLS/DTLS connection.
Warning
Most API functions require that the TLS/DTLS connection is established to work
as expected.
The accepted socket inherits the options set for ListenSocket in listen/2.
The default value for Timeout is infinity. If Timeout is specified and no
connection is accepted within the given time, {error, timeout} is returned.

 TLS-1.3 Only API

 groups()

 (since OTP 27.0)

 -spec groups() -> [group()].

Returns all supported groups in TLS 1.3.
Existed since OTP 22.0; documented as of OTP 27.

 groups(Description)

 (since OTP 27.0)

 -spec groups(Description) -> [group()] when Description :: default.

Returns default supported groups in TLS 1.3.
Existed since OTP 22.0; documented as of OTP 27.

 update_keys(SslSocket, Type)

 (since OTP 22.3)

 -spec update_keys(SslSocket, Type) -> ok | {error, reason()}
 when SslSocket :: sslsocket(), Type :: write | read_write.

Create new session keys.
There are cryptographic limits on the amount of plaintext which can be safely
encrypted under a given set of keys. If the amount of data surpasses those
limits, a key update is triggered and a new set of keys are installed. See also
the key_update_at option in common_option_tls13/0.
This function can be used to explicitly start a key update on a TLS-1.3
connection. There are two types of key updates: if Type is write,
only the writing key is updated; if Type is read_write, both the
reading and writing keys are updated.

 Utility Functions

 append_cipher_suites(Deferred, Suites)

 (since OTP 20.3)

 -spec append_cipher_suites(Deferred, Suites) -> ciphers()
 when Deferred :: ciphers() | cipher_filters(), Suites :: ciphers().

Make Deferred suites become the least preferred suites.
The Deferred suites will be put at the end of the cipher suite list
Suites after removing them from Suites if present. Deferred can
be a list of cipher suites or a list of filters in which case the
filters are used on Suites to extract the deferred cipher list.

 cipher_suites(Description, Version)

 (since OTP 20.3)

 -spec cipher_suites(Description, Version) -> ciphers()
 when
 Description :: default | all | exclusive | anonymous | exclusive_anonymous,
 Version :: protocol_version().

Lists all available cipher suites corresponding to Description.
The exclusive and exclusive_anonymous option will exclusively
list cipher suites first supported in Version, whereas the other options are
inclusive from the lowest possible version to Version. The all option
includes all suites except anonymous suites. No anonymous suites are supported
by default.
Note
TLS-1.3 has no overlapping cipher suites with previous TLS versions, meaning that
the result of cipher_suites(all, 'tlsv1.3') contains a separate
set of suites that can be used with TLS-1.3 and another set that can be used if a lower
version is negotiated. The so-called PSK and SRP suites (prior to TLS-1.3)
need extra configuration to work; namely the option user_lookup_function. No
anonymous suites are supported by TLS-1.3.
Also note that the cipher suites returned by this function are the cipher
suites that the OTP SSL application can support provided that they are
supported by the crypto library linked with the OTP Crypto application. Use
ssl:filter_cipher_suites(Suites, []) to filter
the list for the current crypto library. Note that cipher suites may be filtered
out because they are too old or too new depending on the crypto library.

 cipher_suites(Description, Version, StringType)

 (since OTP 22.0)

 -spec cipher_suites(Description, Version, StringType) -> [string()]
 when
 Description :: default | all | exclusive | anonymous,
 Version :: protocol_version(),
 StringType :: rfc | openssl.

Equivalent to cipher_suites/2, but lists RFC or OpenSSL string names instead of
erl_cipher_suite().

 clear_pem_cache()

 (since OTP 17.5)

 -spec clear_pem_cache() -> ok.

Clears the PEM cache.
PEM files, used by SSL API-functions, are cached for performance
reasons. The cache is automatically checked at regular intervals to
determine whether any cache entries should be invalidated.
This function provides a way to unconditionally clear the entire cache, thereby
forcing a reload of previously cached PEM files.

 connection_information(SslSocket)

 (since OTP 18.0)

 -spec connection_information(SslSocket) -> {ok, Result} | {error, reason()}
 when SslSocket :: sslsocket(), Result :: connection_info().

Returns the most relevant information about the connection.
Some items that are undefined will be filtered out. No values
that affect the security of the connection will be returned.
Note
The legacy cipher_suite item was removed in OTP 23. Previously it returned
the cipher suite in its (undocumented) legacy format. It is replaced by
selected_cipher_suite.

 connection_information(SslSocket, Items)

 (since OTP 18.0)

 -spec connection_information(SslSocket, Items) -> {ok, Result} | {error, reason()}
 when
 SslSocket :: sslsocket(),
 Items :: connection_info_keys(),
 Result :: connection_info().

Returns the requested information items about the connection if they are
defined.
Note that the values for client_random, server_random, master_secret, and keylog
affect the security of connection.
In order to retrieve keylog information from a TLS
connection, the keep_secrets option must be configured in advance.
Note
If only undefined options are requested the resulting list can be empty.

 export_key_materials(SslSocket, Labels, Contexts, WantedLengths)

 (since OTP 27.0)

 -spec export_key_materials(SslSocket, Labels, Contexts, WantedLengths) ->
 {ok, ExportKeyMaterials} | {error, reason()}
 when
 SslSocket :: sslsocket(),
 Labels :: [binary()],
 Contexts :: [binary() | no_context],
 WantedLengths :: [non_neg_integer()],
 ExportKeyMaterials :: [binary()].

Equivalent to export_key_materials(TLSSocket, Labels, Contexts, WantedLengths, true).

 export_key_materials(SslSocket, Labels, Contexts, WantedLengths, ConsumeSecret)

 (since OTP 27.0)

 -spec export_key_materials(SslSocket, Labels, Contexts, WantedLengths, ConsumeSecret) ->
 {ok, ExportKeyMaterials} |
 {error, exporter_master_secret_already_consumed | bad_input}
 when
 SslSocket :: sslsocket(),
 Labels :: [binary()],
 Contexts :: [binary() | no_context],
 WantedLengths :: [non_neg_integer()],
 ConsumeSecret :: boolean(),
 ExportKeyMaterials :: [binary()].

Uses a Pseudo-Random Function (PRF prior to TLS-1.3) or a Key
Derivation Function (HKDF in TLS-1.3) for a TLS connection to
generate and export keying materials.
In TLS-1.3, using no_context is equivalent to specifying an empty
context (an empty binary). Prior to TLS-1.3, no_context and an empty
context will produce different results.
The ConsumeSecret argument is relevant only in TLS-1.3, causing the
TLS-1.3 exporter_master_secret to be consumed, thereby making it
unavailable and increasing security. Further attempts to call this
function will fail.

 filter_cipher_suites(Suites, Filters)

 (since OTP 20.3)

 -spec filter_cipher_suites(Suites, Filters) -> Ciphers
 when
 Suites :: ciphers(), Filters :: cipher_filters(), Ciphers :: ciphers().

Removes cipher suites if any of the filter functions returns false for any part
of the cipher suite.
If no filter function is supplied for some part, the default behavior
treats it as a filter function that returns true. For
examples, see Customizing cipher suites
. Additionally, this function
also filters the cipher suites to exclude cipher suites not supported
by the crypto library used by the OTP Crypto application, meaning that
ssl:filter_cipher_suites(Suites, [])
is equivalent to applying only the filters for crypto library support.

 format_error(Error)

 -spec format_error(Error) -> ReasonStr when Error :: {error, reason()} | reason(), ReasonStr :: string().

Presents the error returned by an SSL function as a printable string.

 getopts(SslSocket, OptionNames)

 -spec getopts(SslSocket, OptionNames) -> {ok, [gen_tcp:option()]} | {error, reason()}
 when SslSocket :: sslsocket(), OptionNames :: [gen_tcp:option_name()].

Gets the values of the specified socket options.

 getstat(SslSocket)

 (since OTP 19.0)

 -spec getstat(SslSocket) -> {ok, OptionValues} | {error, inet:posix()}
 when SslSocket :: sslsocket(), OptionValues :: [{inet:stat_option(), integer()}].

Get statistics for the underlying socket.

 getstat(SslSocket, Options)

 (since OTP 19.0)

 -spec getstat(SslSocket, Options) -> {ok, OptionValues} | {error, inet:posix()}
 when
 SslSocket :: sslsocket(),
 Options :: [inet:stat_option()],
 OptionValues :: [{inet:stat_option(), integer()}].

Get one or more statistic values for the underlying socket.
See inet:getstat/2 for further details.

 negotiated_protocol(SslSocket)

 (since OTP 18.0)

 -spec negotiated_protocol(SslSocket) -> {ok, Protocol} | {error, Reason}
 when
 SslSocket :: sslsocket(),
 Protocol :: binary(),
 Reason :: protocol_not_negotiated | closed.

Returns the protocol negotiated through ALPN or NPN extensions.

 peercert(SslSocket)

 -spec peercert(SslSocket) -> {ok, Cert} | {error, reason()}
 when SslSocket :: sslsocket(), Cert :: public_key:der_encoded().

The peer certificate is returned as a DER-encoded binary.
The certificate can be
decoded with public_key:pkix_decode_cert/2. Suggested further reading about
certificates is Public_Key User's Guide
and SSL User's Guide.

 peername(SslSocket)

 -spec peername(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
 when
 SslSocket :: sslsocket(), Address :: inet:ip_address(), Port :: inet:port_number().

Returns the address and port number of the peer.

 prepend_cipher_suites(Preferred, Suites)

 (since OTP 20.3)

 -spec prepend_cipher_suites(Preferred, Suites) -> ciphers()
 when Preferred :: ciphers() | cipher_filters(), Suites :: ciphers().

Make Preferred suites become the most preferred suites.
The Preferred suites will be put at the head of the cipher suite
list Suites after removing them from Suites if
present. Preferred can be a list of cipher suites or a list of
filters in which case the filters are used on Suites to extract the
preferred cipher list.

 signature_algs(Description, Version)

 (since OTP 26.0)

 -spec signature_algs(Description, Version) -> signature_algs()
 when Description :: default | all | exclusive, Version :: protocol_version().

Lists all available signature algorithms corresponding to Description.
The exclusive option will exclusively list algorithms or algorithm schemes for
that protocol version, whereas the default and all options lists the
combined list to support the range of protocols from (D)TLS-1.2, the first
version to support configuration of the signature algorithms, to Version.
Example:
1> ssl:signature_algs(default, 'tlsv1.3').
[eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256,
rsa_pkcs1_sha512,rsa_pkcs1_sha384,rsa_pkcs1_sha256,
{sha512,ecdsa},
{sha384,ecdsa},
{sha256,ecdsa}]

2> ssl:signature_algs(all, 'tlsv1.3').
[eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256,
rsa_pkcs1_sha512,rsa_pkcs1_sha384,rsa_pkcs1_sha256,
{sha512,ecdsa},
{sha384,ecdsa},
{sha256,ecdsa},
{sha224,ecdsa},
{sha224,rsa},
{sha,rsa},
{sha,dsa}]

3> ssl:signature_algs(exclusive, 'tlsv1.3').
[eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256]
Note
Some TLS-1-3 scheme names overlap with TLS-1.2 algorithm-tuple-pair-names and
then TLS-1.3 names will be used, for example rsa_pkcs1_sha256 instead of
{sha256, rsa}. These are legacy algorithms in TLS-1.3 that apply only to
certificate signatures in this version of the protocol.

 sockname(SslSocket)

 -spec sockname(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
 when
 SslSocket :: sslsocket(), Address :: inet:ip_address(), Port :: inet:port_number().

Returns the local address and port number of socket SslSocket.

 start()

 (since OTP R14B)

 -spec start() -> ok | {error, reason()}.

Equivalent to start(temporary).

 start(Type)

 (since OTP R14B)

 -spec start(permanent | transient | temporary) -> ok | {error, reason()}.

Starts the SSL application.

 stop()

 (since OTP R14B)

 -spec stop() -> ok.

Stops the SSL application.

 str_to_suite(CipherSuiteName)

 (since OTP 22.0)

 -spec str_to_suite(CipherSuiteName) -> erl_cipher_suite() | {error, {not_recognized, CipherSuiteName}}
 when CipherSuiteName :: string().

Converts an RFC or OpenSSL name string to an erl_cipher_suite/0
Returns an error if the cipher suite is not supported or the name is
not a valid cipher suite name.

 suite_to_openssl_str(CipherSuite)

 (since OTP 22.0)

 -spec suite_to_openssl_str(CipherSuite) -> string() when CipherSuite :: erl_cipher_suite().

Converts an erl_cipher_suite() value to
an OpenSSL name string.
PRE TLS-1.3 these names differ for RFC names

 suite_to_str(CipherSuite)

 (since OTP 21.0)

 -spec suite_to_str(CipherSuite) -> string() when CipherSuite :: erl_cipher_suite().

Converts an erl_cipher_suite() value to an RFC
name string.

 versions()

 (since OTP R14B)

 -spec versions() -> [VersionInfo]
 when
 VersionInfo ::
 {ssl_app, string()} |
 {supported | available | implemented, [tls_version()]} |
 {supported_dtls | available_dtls | implemented_dtls, [dtls_version()]}.

Lists information, mainly concerning TLS/DTLS versions, in runtime for debugging
and testing purposes.
	app_vsn - The application version of the SSL application.

	supported - TLS versions supported with current application environment
and crypto library configuration. Overridden by a version option on
connect/2,3,4, listen/2, and
handshake/2,3. For the negotiated TLS version, see
connection_information/1.

	supported_dtls - DTLS versions supported with current application
environment and crypto library configuration. Overridden by a version option
on connect/2,3,4, listen/2, and
handshake/2,3. For the negotiated DTLS version, see
connection_information/1.

	available - All TLS versions supported with the linked crypto library.

	available_dtls - All DTLS versions supported with the linked crypto
library.

	implemented - All TLS versions supported by the SSL application if
linked with a crypto library with the necessary support.

	implemented_dtls - All DTLS versions supported by the SSL application if
linked with a crypto library with the necessary support.

ssl_crl_cache

CRL cache
Implements an internal CRL (Certificate Revocation List) cache. In addition to
implementing the ssl_crl_cache_api behaviour the following functions are
available.

 Summary

 Types

 crl_src()

 A source to input CRLs

 Functions

 delete(Entries)

 Delete CRLs from the ssl applications local cache.

 insert(CRLSrc)

 Equivalent to insert/2.

 insert(DistPointURI, CRLSrc)

 Insert CRLs into the ssl applications local cache, with or without a
distribution point reference URI

 Types

 crl_src()

 (since OTP 18.0)

 -type crl_src() :: {file, file:filename()} | {der, public_key:der_encoded()}.

A source to input CRLs

 Functions

 delete(Entries)

 (since OTP 18.0)

 -spec delete(Entries) -> ok | {error, Reason}
 when Entries :: crl_src() | uri_string:uri_string(), Reason :: ssl:reason().

Delete CRLs from the ssl applications local cache.

 insert(CRLSrc)

 (since OTP 18.0)

 -spec insert(CRLSrc) -> ok | {error, Reason} when CRLSrc :: crl_src(), Reason :: ssl:reason().

Equivalent to insert/2.

 insert(DistPointURI, CRLSrc)

 (since OTP 18.0)

 -spec insert(DistPointURI, CRLSrc) -> ok | {error, Reason}
 when
 DistPointURI :: uri_string:uri_string(), CRLSrc :: crl_src(), Reason :: ssl:reason().

Insert CRLs into the ssl applications local cache, with or without a
distribution point reference URI

ssl_crl_cache_api behaviour

API for a TLS CRL (Certificate Revocation List) cache.
When TLS performs certificate path validation according to
RFC 5280 it should also perform CRL
validation checks. To enable the CRL checks the application needs access to
CRLs. A database of CRLs can be set up in many different ways. This module
provides the behavior of the API needed to integrate an arbitrary CRL cache with
the erlang ssl application. It is also used by the application itself to provide
a simple default implementation of a CRL cache.

 Summary

 Types

 crl_cache_ref()

 Reference to the CRL cache.

 dist_point()

 For description see
X509 certificates records

 logger_info()

 Information for ssl applications use of Logger(3)

 Callbacks

 fresh_crl(DistPoint, CRL)

 fun fresh_crl/2 will be used as input option update_crl to
public_key:pkix_crls_validate/3.

 lookup(DistPoint, CacheRef)

 Backwards compatibility, replaced by lookup/3

 lookup(Distpoint, Issuer, CacheRef)

 Lookup the CRLs belonging to the distribution point Distributionpoint. This
function may choose to only look in the cache or to follow distribution point
links depending on how the cache is administrated.

 select(IssuerOrDPLocations, CacheRef)

 Select the CRLs in the cache that are issued by Issuer unless the value is a
list of so called general names, see
X509 certificates records, originating
form #'DistributionPoint'.cRLissuer and representing different mechanism to
obtain the CRLs. The cache callback needs to use the appropriate entry to
retrieve the CRLs or return an empty list if it does not exist.

 Types

 crl_cache_ref()

 (since OTP 18.0)

 -type crl_cache_ref() :: any().

Reference to the CRL cache.

 dist_point()

 (since OTP 18.0)

 -type dist_point() ::
 #'DistributionPoint'{distributionPoint :: term(), reasons :: term(), cRLIssuer :: term()}.

For description see
X509 certificates records

 logger_info()

 (since OTP 18.0)

 -type logger_info() ::
 {logger:level(), Report :: #{description => string(), reason => term()}, logger:metadata()}.

Information for ssl applications use of Logger(3)

 Callbacks

 fresh_crl(DistPoint, CRL)

 (since OTP 18.0)

 -callback fresh_crl(DistPoint :: dist_point(), CRL :: public_key:der_encoded()) ->
 public_key:der_encoded() | {logger, logger_info(), public_key:der_encoded()}.

fun fresh_crl/2 will be used as input option update_crl to
public_key:pkix_crls_validate/3.
It is possible to return logger info, since OTP 22.2, that will be used by the TLS connection to
produce log events.

 lookup(DistPoint, CacheRef)

 (since OTP 18.0)

 (optional)

 -callback lookup(DistPoint :: dist_point(), CacheRef :: crl_cache_ref()) ->
 not_available |
 [public_key:der_encoded()] |
 {{logger, logger_info()}, [public_key:der_encoded()]}.

Backwards compatibility, replaced by lookup/3

 lookup(Distpoint, Issuer, CacheRef)

 (since OTP 19.0)

 -callback lookup(Distpoint :: dist_point(), Issuer :: public_key:issuer_name(), CacheRef :: crl_cache_ref()) ->
 not_available |
 [public_key:der_encoded()] |
 {{logger, logger_info()}, [public_key:der_encoded()]}.

Lookup the CRLs belonging to the distribution point Distributionpoint. This
function may choose to only look in the cache or to follow distribution point
links depending on how the cache is administrated.
The Issuer argument contains the issuer name of the certificate to
be checked. Normally the returned CRL should be issued by this
issuer, except if the cRLIssuer field of DistributionPoint has a
value, in which case that value should be used instead.
In an earlier version of this API, the lookup function received two
arguments, omitting Issuer. For compatibility, this is still
supported: if there is no lookup/3 function in the
callback module,lookup/2 is called instead.
It is possible to return logger info, since OTP 22.2, that will be used by the TLS connection to
produce log events.

 select(IssuerOrDPLocations, CacheRef)

 (since OTP 18.0)

 -callback select(IssuerOrDPLocations, CacheRef) -> [CRL] | {logger, logger_info(), [CRL]}
 when
 CRL :: public_key:der_encoded(),
 IssuerOrDPLocations :: public_key:issuer_name() | list(),
 CacheRef :: crl_cache_ref().

Select the CRLs in the cache that are issued by Issuer unless the value is a
list of so called general names, see
X509 certificates records, originating
form #'DistributionPoint'.cRLissuer and representing different mechanism to
obtain the CRLs. The cache callback needs to use the appropriate entry to
retrieve the CRLs or return an empty list if it does not exist.
It is possible to return logger info, since OTP 22.2, that will be used by the TLS connection to
produce log events.

ssl_session_cache_api behaviour

TLS session cache API
Defines the API for the TLS session cache (pre TLS-1.3) so that the data storage
scheme can be replaced by defining a new callback module implementing this API.

 Summary

 Types

 partial_key()

 The opaque part of the key. Does not need to be handled by the callback.

 session()

 The session data that is stored for each session.

 session_cache_key()

 A key to an entry in the session cache.

 session_cache_ref()

 A term that can be used to reference the cache.

 Callbacks

 delete(CacheRef, Key)

 Deletes a cache entry.

 foldl(Fun, Acc0, CacheRef)

 Calls Fun(Elem, AccIn) on successive elements of the cache, starting with
 AccIn == Acc0.

 init(InitArgs)

 Performs possible initializations of the cache and returns a reference to it
that is used as parameter to the other API functions.

 lookup(CacheRef, Key)

 Looks up a cache entry. Is to be callable from any process.

 select_session(CacheRef, Server)

 Selects sessions that can be reused, that is sessions that include PartialKey
in its key. Is to be callable from any process.

 size(CacheRef)

 Returns the number of sessions in the cache.

 terminate(CacheRef)

 Takes care of possible cleanup that is needed when the cache handling process
terminates.

 update(CacheRef, Key, Session)

 Caches a new session or updates an already cached one.

 Types

 partial_key()

 (since OTP R14B)

 -opaque partial_key()

The opaque part of the key. Does not need to be handled by the callback.

 session()

 (since OTP R14B)

 -opaque session()

The session data that is stored for each session.

 session_cache_key()

 (since OTP R14B)

 -type session_cache_key() :: {partial_key(), ssl:session_id()}.

A key to an entry in the session cache.

 session_cache_ref()

 (since OTP R14B)

 -type session_cache_ref() :: any().

A term that can be used to reference the cache.

 Callbacks

 delete(CacheRef, Key)

 (since OTP R14B)

 -callback delete(CacheRef, Key) -> DoNotCare
 when CacheRef :: session_cache_ref(), Key :: session_cache_key(), DoNotCare :: any().

Deletes a cache entry.
Is only called from the cache handling process.

 foldl(Fun, Acc0, CacheRef)

 (since OTP R14B)

 (optional)

 -callback foldl(Fun, Acc0, CacheRef) -> Acc
 when Fun :: fun(), Acc0 :: term(), CacheRef :: session_cache_ref(), Acc :: term().

Calls Fun(Elem, AccIn) on successive elements of the cache, starting with
 AccIn == Acc0.
Fun/2 must return a new accumulator, which is passed to the
next call. The function returns the final value of the accumulator. Acc0 is
returned if the cache is empty.
Note
Since OTP-23.3 this functions is only used on the client side and does not
need to implemented for a server cache.

 init(InitArgs)

 (since OTP 18.0)

 -callback init(InitArgs) -> CacheRef when InitArgs :: list(), CacheRef :: session_cache_ref().

Performs possible initializations of the cache and returns a reference to it
that is used as parameter to the other API functions.
Is called by the cache handling processes init function, hence
putting the same requirements on it as a normal process init
function. This function is called twice when starting the SSL
application, once with the role client and once with the role server,
as the SSL application must be prepared to take on both roles.
Includes property {role, client | server} in init argument list.
Currently this is the only predefined property, there can also be
user-defined properties. See also application environment variable
session_cb_init_args.

 lookup(CacheRef, Key)

 (since OTP R14B)

 -callback lookup(CacheRef, Key) -> Session
 when
 CacheRef :: session_cache_ref(),
 Key :: session_cache_key(),
 Session :: session() | undefined.

Looks up a cache entry. Is to be callable from any process.

 select_session(CacheRef, Server)

 (since OTP R14B)

 (optional)

 -callback select_session(CacheRef, Server) -> Sessions
 when
 CacheRef :: session_cache_ref(),
 Server :: {ssl:host(), inet:port_number()} | inet:port_number(),
 Sessions :: [session()].

Selects sessions that can be reused, that is sessions that include PartialKey
in its key. Is to be callable from any process.
Note
Since OTP-23.3 This functions is only used on the client side and does not
need to implemented for a server cache.

 size(CacheRef)

 (since OTP 19.3)

 -callback size(CacheRef) -> Size when CacheRef :: session_cache_ref(), Size :: pos_integer().

Returns the number of sessions in the cache.
If size exceeds the maximum number of sessions, the current cache
entries will be invalidated regardless of their remaining lifetime. Is
to be callable from any process.

 terminate(CacheRef)

 (since OTP R14B)

 -callback terminate(CacheRef) -> DoNotCare when CacheRef :: session_cache_ref(), DoNotCare :: any().

Takes care of possible cleanup that is needed when the cache handling process
terminates.

 update(CacheRef, Key, Session)

 (since OTP R14B)

 -callback update(CacheRef, Key, Session) -> DoNotCare
 when
 CacheRef :: session_cache_ref(),
 Key :: session_cache_key(),
 Session :: session() | undefined,
 DoNotCare :: any().

Caches a new session or updates an already cached one.
Is only called from the cache handling process.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png
EEEEEE

