

 tftp

 v1.2.3

 [image: Logo]

 Table of contents

 	TFTP Release Notes

 	User's Guides

 	Overview

 	Examples

 	
 Modules

 	tftp

 	tftp_logger

 TFTP Release Notes

Tftp 1.2.3
Improvements and New Features
	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

Tftp 1.2.2
Fixed Bugs and Malfunctions
	Fix specs in tftp:read_file function.
Own Id: OTP-19446 Aux Id: PR-9327, ERIERL-1179

Tftp 1.2.1
Improvements and New Features
	The legacy dependency to error_logger has been removed. logger is now used.
Own Id: OTP-19114

Tftp 1.2
Improvements and New Features
	There is a new tftp_logger callback behavior module.
Own Id: OTP-18787 Aux Id: PR-7700

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

Tftp 1.1.1
Fixed Bugs and Malfunctions
	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

Tftp 1.1
Improvements and New Features
	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

Tftp 1.0.4
Improvements and New Features
	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

Tftp 1.0.3
Fixed Bugs and Malfunctions
	Missing runtime dependencies has been added to this application.
Own Id: OTP-17243 Aux Id: PR-4557

Tftp 1.0.2
Improvements and New Features
	Removed compiler warnings.
Own Id: OTP-16317 Aux Id: OTP-16183

Tftp 1.0.1
Fixed Bugs and Malfunctions
	Improved documentation.
Own Id: OTP-15190

TFTP 1.0
First released version
	Inets application was split into multiple smaller protocol specific
applications. The TFTP application is a standalone TFTP client and server with
the same functionality as TFTP in Inets.
Own Id: OTP-14113

 Overview

Trivial File Transfer Protocol (TFTP) is a very simple protocol used
to transfer files over the transport datagram protocol UDP.
On the client side, function read_file/3 and
write_file/3 spawn a temporary client process
establishing contact with a TFTP daemon and perform the file transfer.
tftp uses a callback module to handle the file transfer. Two such callback
modules are provided, tftp_binary and tftp_file. See
read_file/3 and write_file/3 for
details. You can also implement your own callback modules, see
callbacks.
Security Considerations
As stated in (RFC 1350)
be aware that "Since TFTP includes no login or access
control mechanisms, care must be taken in the rights granted to a TFTP
server process so as not to violate the security of the server hosts
file system. TFTP is often installed with controls such that only
files that have public read access are available via TFTP and writing
files via TFTP is disallowed."

 Examples

The start/1 function starts a daemon process listening for UDP
packets on a port. When it receives a request for read or write, it spawns a
temporary server process handling the transfer.
This is a simple example of starting the TFTP server and reading the content of
a sample file using the TFTP client.
Step 1. Create a sample file to be used for the transfer:
 $ echo "Erlang/OTP 21" > file.txt
Step 2. Start the TFTP server:
 1> {ok, Pid} = tftp:start([{port, 19999}]).
 {ok,<0.65.0>}
Step 3. Start the TFTP client (in another shell):
 1> tftp:read_file("file.txt", binary, [{port, 19999}]).
 {ok,<<"Erlang/OTP 21\n">>}

tftp behaviour

Trivial FTP.
Interface module for the tftp application.
Overwiew
This is a complete implementation of the following IETF standards:
RFC 1350, The TFTP Protocol (revision 2).
RFC 2347, TFTP Option Extension.
RFC 2348, TFTP Blocksize Option.
RFC 2349, TFTP Timeout Interval and Transfer Size Options.
The only feature that not is implemented in this release is
the "netascii" transfer mode.
The start function starts a daemon process which, listens
for UDP packets on a port. When it receives a request for read or
write it spawns a temporary server process which handles the actual
transfer of the file. On the client side the
read_file/3 and write_file/3
functions spawns a temporary client process which establishes contact
with a TFTP daemon and performs the actual transfer of the file.
Most of the options are common for both the client and the server
side, but some of them differs a little.
Callbacks
A tftp callback module is to be implemented as a tftp behavior and export
the functions listed in the following.
On the server side, the callback interaction starts with a call to open/5 with
the registered initial callback state. open/5 is expected to open the
(virtual) file. Then either function Module:read/1 or
Module:write/2 is invoked repeatedly, once per transferred block. At
each function call, the state returned from the previous call is obtained. When
the last block is encountered, function Module:read/1 or
Module:write/2 is expected to close the (virtual) file and return its
last state. Function Module:abort/3 is only used in error situations.
Function prepare/5 is not used on the server side.
On the client side, the callback interaction is the same, but it starts and ends
a bit differently. It starts with a call to prepare/5 with the same arguments
as open/5 takes. prepare/5 is expected to validate the TFTP options
suggested by the user and to return the subset of them that it accepts. Then the
options are sent to the server, which performs the same TFTP option negotiation
procedure. The options that are accepted by the server are forwarded to function
open/5 on the client side. On the client side, function open/5 must accept
all option as-is or reject the transfer. Then the callback interaction follows
the same pattern as described for the server side. When the last block is
encountered in Module:read/1 or Module:write/2, the returned
state is forwarded to the user and returned from read_file/3 or
write_file/3.
If a callback (performing the file access in the TFTP server) takes too long
time (more than the double TFTP time-out), the server aborts the connection and
sends an error reply to the client. The server simply
assumes that the client has given up.
If the TFTP server receives yet another request from the same client (same host
and port) while it already has an active connection to the client, it ignores
the new request if the request is equal to the first one (same filename and
options). This implies that the (new) client will be served by the already
ongoing connection on the server side. By not setting up yet another connection,
in parallel with the ongoing one, the server consumes less resources.

 Summary

 Types

 access()

 Access mode.

 connection_option()

 All options most of them common to the client and server.

 error_code()

 Error reason codes.

 option()

 Specific TFTP protocol options

 peer()

 Information about the peer provided for callback.

 Callbacks: Client API

 open(Peer, Access, Filename, Mode, SuggestedOptions, State)

 Opens a file for read or write access.

 Callbacks

 abort/3

 Invoked when the file transfer is aborted.

 prepare(Peer, Access, Filename, Mode, SuggestedOptions, InitialState)

 Prepares to open a file on the client side.

 read(State)

 Reads a chunk from the file.

 write/2

 Writes a chunk to the file.

 Client API

 read_file(RemoteFilename, LocalFilename, Options)

 Reads a (virtual) file RemoteFilename from a TFTP server.

 write_file(RemoteFilename, LocalFilename, Options)

 Writes a (virtual) file RemoteFilename to a TFTP server.

 Server API

 change_config(Pid, Options)

 Changes configuration a TFTP Server

 info(Pid)

 Returns information about all TFTP server.

 start(Options)

 Starts a daemon process listening for UDP packets on a port.

 Types

 access()

 (not exported)

 -type access() :: read | write.

Access mode.

 connection_option()

 (not exported)

 -type connection_option() :: {atom(), term()} | option().

All options most of them common to the client and server.
	{debug, Level::none | error | warning | brief | normal | verbose | all}
Controls the level of debug printouts. Default is none.

	{host, Host::inet:hostname()} -
The name or IP address of the host where the TFTP daemon resides. This option
is only used by the client.

	{port, Port::inet:port_number()}
The TFTP port where the daemon listens. Defaults is the standardized
number 69. On the server side, it can sometimes make sense to set it to 0,
meaning that the daemon just picks a free port (which one is returned by
function info/1).
If a socket is connected already, option {udp, [{fd, integer()}]} can be
used to pass the open file descriptor to gen_udp. This can be automated by
using a command-line argument stating the prebound file descriptor number. For
example, if the port is 69 and file descriptor 22 is opened by
setuid_socket_wrap, the command-line argument "-tftpd_69 22" triggers the
prebound file descriptor 22 to be used instead of opening port 69. The UDP
option {udp, [{fd, 22}]} is automatically added. See init:get_argument/
about command-line arguments and gen_udp:open/2 about UDP options.

	{port_policy, random | inet:port_number() | {range, Min::inet:port_number(), Max::inet:port_nuber()}
Policy for the selection of the temporary port that is used by the
server/client during the file transfer. Default is random, which is the
standardized policy. With this policy a randomized free port is used. A single
port or a range of ports can be useful if the protocol passes through a
firewall.

	{udp, Options::gen_udp:option}

	{use_tsize, boolean()}
Flag for automated use of option tsize. With this set to true, the
write_file/3 client determines the filesize and sends it
to the server as the standardized tsize option. A
read_file/3 client acquires only a filesize from the server
by sending a zero tsize.

	{max_tsize, MaxTsize::pos_integer() | infinity}
Threshold for the maximal filesize in bytes. The transfer is aborted if the
limit is exceeded. Default is infinity.

	{max_conn, MaxConn::pos_integer() | infinity}
Threshold for the maximal number of active connections. The daemon rejects the
setup of new connections if the limit is exceeded. Default is infinity.

	TftpOption::option()
Name and value of a TFTP option.

	{reject, Feature:: access() | TftpKey::string()}
Controls which features to reject. This is mostly useful for the server as it
can restrict the use of certain TFTP options or read/write access.

	{callback, {RegExp ::string(), Module::module(), State :: term()}}
Registration of a callback module. When a file is to be transferred, its local
filename is matched to the regular expressions of the registered callbacks.
The first matching callback is used during the transfer. See read_file/3 and
write_file/3.
The callback module must implement the tftp behavior, see
callbacks.

	{logger, module()}
Callback module for customized logging of errors, warnings, and info messages.
The callback module must implement the tftp_logger behavior. The default
module is tftp_logger.

	{max_retries, MaxRetries::non_neg_integer()}
Threshold for the maximal number of retries. By default the server/client
tries to resend a message up to five times when the time-out expires.

 error_code()

 (not exported)

 -type error_code() ::
 undef | enoent | eacces | enospc | badop | eexist | baduser | badopt | pos_integer().

Error reason codes.

 option()

 -type option() :: {string(), Value :: string()}.

Specific TFTP protocol options

 peer()

 (not exported)

 -type peer() :: {PeerType :: inet | inet6, PeerHost :: inet:ip_address(), PeerPort :: port()}.

Information about the peer provided for callback.

 Callbacks: Client API

 open(Peer, Access, Filename, Mode, SuggestedOptions, State)

 (since OTP 18.1)

 -callback open(Peer :: peer(),
 Access :: access(),
 Filename :: file:name(),
 Mode :: string(),
 SuggestedOptions :: [option()],
 State :: [] | [{root_dir, string()}] | term()) ->
 {ok, AcceptedOptions :: [option()], NewState :: term()} |
 {error, {Code :: error_code(), string()}}.

Opens a file for read or write access.
On the client side, where the open/5 call has been preceded by a call to
prepare/5, all options must be accepted or rejected.
On the server side, where there is no preceding prepare/5 call, no new options
can be added, but those present in SuggestedOptions can be omitted or replaced
with new values in AcceptedOptions.

 Callbacks

 abort/3

 (since OTP 18.1)

 -callback abort(Code :: error_code(), string(), State :: term()) -> ok.

Invoked when the file transfer is aborted.
The callback function is expected to clean up its used resources after the
aborted file transfer, such as closing open file descriptors and so on. The
function is not invoked if any of the other callback functions returns an error,
as it is expected that they already have cleaned up the necessary resources.
However, it is invoked if the functions fail (crash).

 prepare(Peer, Access, Filename, Mode, SuggestedOptions, InitialState)

 (since OTP 18.1)

 -callback prepare(Peer :: peer(),
 Access :: access(),
 Filename :: file:name(),
 Mode :: string(),
 SuggestedOptions :: [option()],
 InitialState :: [] | [{root_dir, string()}]) ->
 {ok, AcceptedOptions :: [option()], NewState :: term()} |
 {error, {Code :: error_code(), string()}}.

Prepares to open a file on the client side.
No new options can be added, but those present in SuggestedOptions can be
omitted or replaced with new values in AcceptedOptions.
This is followed by a call to open/4 before any read/write access is
performed. AcceptedOptions is sent to the server, which replies with the
options that it accepts. These are then forwarded to open/4 as
SuggestedOptions.

 read(State)

 (since OTP 18.1)

 -callback read(State :: term()) ->
 {more, binary(), NewState :: term()} |
 {last, binary(), integer()} |
 {error, {Code :: error_code(), string()}}.

Reads a chunk from the file.
The callback function is expected to close the file when the last file chunk is
encountered. When an error is encountered, the callback function is expected to
clean up after the aborted file transfer, such as closing open file descriptors,
and so on. In both cases there will be no more calls to any of the callback
functions.

 write/2

 (since OTP 18.1)

 -callback write(binary(), State :: term()) ->
 {more, NewState :: term()} |
 {last, FileSize :: integer()} |
 {error, {Code :: error_code(), string()}}.

Writes a chunk to the file.
The callback function is expected to close the file when the last file chunk is
encountered. When an error is encountered, the callback function is expected to
clean up after the aborted file transfer, such as closing open file descriptors,
and so on. In both cases there will be no more calls to any of the callback
functions.

 Client API

 read_file(RemoteFilename, LocalFilename, Options)

 -spec read_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState} | {error, Reason}
 when
 RemoteFilename :: file:filename(),
 LocalFilename :: file:filename_all() | binary,
 Options :: [connection_option()],
 LastCallbackState :: term(),
 Reason :: term().

Reads a (virtual) file RemoteFilename from a TFTP server.
If LocalFilename is the atom binary, tftp_binary is used as callback
module. It concatenates all transferred blocks and returns them as one single
binary in LastCallbackState.
If LocalFilename is a string and there are no registered callback modules,
tftp_file is used as callback module. It writes each transferred block to the
file named LocalFilename and returns the number of transferred bytes in
LastCallbackState.
If LocalFilename is a string and there are registered callback modules,
LocalFilename is tested against the regexps of these and the callback module
corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

 write_file(RemoteFilename, LocalFilename, Options)

 -spec write_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState} | {error, Reason}
 when
 RemoteFilename :: file:filename(),
 LocalFilename :: file:filename_all() | binary,
 Options :: [option()],
 LastCallbackState :: term(),
 Reason :: term().

Writes a (virtual) file RemoteFilename to a TFTP server.
If LocalFilename is a binary, tftp_binary is used as callback module. The
binary is transferred block by block and the number of transferred bytes is
returned in LastCallbackState.
If LocalFilename is a string and there are no registered callback modules,
tftp_file is used as callback module. It reads the file named LocalFilename
block by block and returns the number of transferred bytes in
LastCallbackState.
If LocalFilename is a string and there are registered callback modules,
LocalFilename is tested against the regexps of these and the callback module
corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

 Server API

 change_config(Pid, Options)

Changes configuration a TFTP Server

 info(Pid)

Returns information about all TFTP server.

 start(Options)

 -spec start(Options) -> {ok, Pid} | {error, Reason}
 when Options :: [connection_option()], Pid :: pid(), Reason :: term().

Starts a daemon process listening for UDP packets on a port.
When it receives a request for read or write, it spawns a temporary
server process handling the actual transfer of the (virtual) file.

tftp_logger behaviour

Trivial FTP logger.
A tftp_logger callback module is to be implemented as a tftp_logger behavior
and export the following functions:

 Summary

 Callbacks

 error_msg(Format, Args)

 Logs an error message. See logger:error/2 for details.

 info_msg(Format, Args)

 Logs an info message. See logger:info/2 for details.

 warning_msg(Format, Args)

 Logs a warning message. See logger:warning/2 for details.

 Callbacks

 error_msg(Format, Args)

 (since OTP 18.1)

 (optional)

 -callback error_msg(Format :: io:format(), Args :: [term()]) -> ok.

Logs an error message. See logger:error/2 for details.

 info_msg(Format, Args)

 (since OTP 18.1)

 (optional)

 -callback info_msg(Format :: io:format(), Args :: [term()]) -> ok.

Logs an info message. See logger:info/2 for details.

 warning_msg(Format, Args)

 (since OTP 18.1)

 (optional)

 -callback warning_msg(Format :: io:format(), Args :: [term()]) -> ok.

Logs a warning message. See logger:warning/2 for details.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png
EEEEEE

