

cover

A Coverage Analysis Tool for Erlang
The module cover provides a set of functions for coverage analysis
of Erlang programs, counting how many times each executable line of
code is executed when a program is run. Executable lines are
lines in the body of a clause in a function, case,
receive, or try. Lines in clause heads, blank lines, and lines
containing only comments are not executable.
Coverage analysis can be used to verify that test cases covers all
relevant line in the code being test. It can also be helpful when
looking for bottlenecks in the code.
Before any analysis can take place, the involved modules has to be
cover-compiled. This means that some extra information is added to
the module before it is compiled into a binary which then is
loaded. The source file of the module is not affected and no .beam
file is created. If the runtime system supports coverage natively,
Cover will automatically use that functionality to lower the execution
overhead for cover-compiled code.
Change
Native coverage support was added in Erlang/OTP 27.
Each time a function in a cover-compiled module is called, information about the
call is added to an internal database of Cover. The coverage analysis is
performed by examining the contents of the Cover database. The output Answer
is determined by two parameters: Level and Analysis.
	Level = module
Answer = {Module,Value}, where Module is the module name.

	Level = function
Answer = [{Function,Value}], one tuple for each function in the module. A
function is specified by its module name M, function name F and arity A
as a tuple {M,F,A}.

	Level = clause
Answer = [{Clause,Value}], one tuple for each clause in the module. A clause
is specified by its module name M, function name F, arity A and position
in the function definition C as a tuple {M,F,A,C}.

	Level = line
Answer = [{Line,Value}], one tuple for each executable line in the module. A
line is specified by its module name M and line number in the source file
N as a tuple {M,N}.

	Analysis = coverage
Value = {Cov,NotCov} where Cov is the number of executable lines in the
module, function, clause or line that have been executed at least once and
NotCov is the number of executable lines that have not been executed.

	Analysis = calls
Value = Calls which is the number of times the module, function, or clause
has been called. In the case of line level analysis, Calls is the number of
times the line has been executed.

Distribution
Cover can be used in a distributed Erlang system. One of the nodes in the system
has to be selected as the main node, and all Cover commands must be
executed from that node. The error reason not_main_node is returned if an
interface function is called on one of the remote nodes.
Use cover:start/1 and cover:stop/1 to add or remove nodes. The
same cover-compiled code will be loaded on each node, and analysis
will collect and sum up coverage data results from all nodes.
To only collect data from remote nodes without stopping cover on those nodes,
use cover:flush/1
If the connection to a remote node goes down, the main node will mark it as
lost. If the node comes back it will be added again. If the remote node was
alive during the disconnected period, cover data from before and during this
period will be included in the analysis.

 Summary

 Types

 analyse_answer()

 analyse_fail()

 analyse_file_fail()

 analyse_file_ok()

 analyse_item()

 analyse_ok()

 analyse_option()

 analyse_rsn()

 analyse_value()

 analysis()

 beam_mod_file()

 beam_mod_files()

 compile_beam_result()

 compile_beam_rsn()

 compile_result()

 export_reason()

 file_error()

 level()

 mod_file()

 mod_files()

 modules()

 one_result()

 option()

 Functions

 analyse()

 Equivalent to analyse('_', coverage, function).

 analyse(Arg)

 Analyzes one or more modules as specified by Arg.

 analyse(Arg1, Arg2)

 Analyzes one or more modules as specified by Arg1 and Arg2.

 analyse(Modules, Analysis, Level)

 Perform analysis of one or more cover-compiled modules, as specified by
Analysis and Level, by examining the contents of the internal
database.

 analyse_to_file()

 Equivalent to analyse_to_file('_', []).

 analyse_to_file(Arg)

 If Arg is a list of analyse_option()
options, this call is equivalent to analyse_to_file('_', Arg).

 analyse_to_file(Modules, Options)

 Outputs copies of the source code for the given modules annotated with
execution counts for each executable line.

 async_analyse_to_file(Module)

 Equivalent to async_analyse_to_file/3.

 async_analyse_to_file(Module, OutFileOrOpts)

 Equivalent to async_analyse_to_file/3.

 async_analyse_to_file(Module, OutFile, Options)

 This function works the same way as
analyse_to_file/2 except that it is asynchronous instead
of synchronous.

 compile(ModFiles)

 Equivalent to compile_module(ModFiles, []).

 compile(ModFiles, Options)

 Equivalent to compile_module(ModFile, Options).

 compile_beam(ModFiles)

 Cover-compiles one or more modules based .beam files containing
abstract code (option debug_info).

 compile_beam_directory()

 Equivalent to compile_beam_directory(".").

 compile_beam_directory(Dir)

 Cover-compiles all .beam files in directory Dir in the same way
as compile_beam/1.

 compile_directory()

 Equivalent to compile_directory(".", []).

 compile_directory(Dir)

 Equivalent to compile_directory(Dir, []).

 compile_directory(Dir, Options)

 Compiles all modules (.erl files) in a directory Dir for Cover analysis the
same way as compile_module/1,2 and returns a list of
Result.

 compile_module(ModFiles)

 Equivalent to compile_module(ModFile, []).

 compile_module(ModFiles, Options)

 Cover-compiles one or more modules.

 export(File)

 Equivalent to export(File, '_').

 export(File, Module)

 Exports the current coverage data for Module to the file ExportFile.

 flush(Nodes)

 Fetches data from the Cover database on the remote nodes and stores it on the main
node.

 import(ExportFile)

 Imports coverage data from the file ExportFile created with
export/1,2.

 imported()

 Returns a list of all imported files.

 imported_modules()

 Returns a list of all modules for which there are imported data.

 is_compiled(Module)

 Returns {file, File} if the module Module is cover-compiled, or false
otherwise.

 local_only()

 Only support running Cover on the local node.

 modules()

 Returns a list with all modules that are currently cover-compiled.

 reset()

 Resets all coverage data for all cover-compiled modules in the Cover
database on all nodes.

 reset(Module)

 Resets all coverage data for the cover-compiled module Module in the Cover
database on all nodes.

 start()

 Starts the Cover server which owns the Cover internal database. This function is
called automatically by the other functions in the module.

 start(Nodes)

 Starts a Cover server on the each of given nodes, and loads all cover compiled
modules.

 stop()

 Stops the Cover server and unloads all cover-compiled code.

 stop(Nodes)

 Stops the Cover server and unloads all cover-compiled code on the given nodes.

 which_nodes()

 Returns a list with all nodes that are part of the coverage analysis.

 Types

 analyse_answer()

 (not exported)

 -type analyse_answer() :: {ok, OutFile :: file:filename()} | {error, analyse_rsn()}.

 analyse_fail()

 (not exported)

 -type analyse_fail() :: [{not_cover_compiled, module()}].

 analyse_file_fail()

 (not exported)

 -type analyse_file_fail() :: [analyse_rsn()].

 analyse_file_ok()

 (not exported)

 -type analyse_file_ok() :: [OutFile :: file:filename()].

 analyse_item()

 (not exported)

 -type analyse_item() ::
 (Line :: {M :: module(), N :: non_neg_integer()}) |
 (Clause :: {M :: module(), F :: atom(), A :: arity(), C :: non_neg_integer()}) |
 (Function :: {M :: module(), F :: atom(), A :: arity()}).

 analyse_ok()

 (not exported)

 -type analyse_ok() ::
 [{Module :: module(), Value :: analyse_value()}] |
 [{Item :: analyse_item(), Value :: analyse_value()}].

 analyse_option()

 (not exported)

 -type analyse_option() ::
 html | {outfile, OutFile :: file:filename()} | {outdir, OutDir :: file:filename()}.

 analyse_rsn()

 (not exported)

 -type analyse_rsn() ::
 {not_cover_compiled, Module :: module()} |
 {file, File :: file:filename(), Reason :: term()} |
 {no_source_code_found, Module :: module()}.

 analyse_value()

 (not exported)

 -type analyse_value() ::
 {Cov :: non_neg_integer(), NotCov :: non_neg_integer()} | (Calls :: non_neg_integer()).

 analysis()

 (not exported)

 -type analysis() :: coverage | calls.

 beam_mod_file()

 (not exported)

 -type beam_mod_file() :: (Module :: module()) | (BeamFile :: file:filename()).

 beam_mod_files()

 (not exported)

 -type beam_mod_files() :: beam_mod_file() | [beam_mod_file()].

 compile_beam_result()

 (not exported)

 -type compile_beam_result() ::
 {ok, module()} | {error, BeamFile :: file:filename()} | {error, Reason :: compile_beam_rsn()}.

 compile_beam_rsn()

 (not exported)

 -type compile_beam_rsn() ::
 non_existing |
 {no_abstract_code, BeamFile :: file:filename()} |
 {encrypted_abstract_code, BeamFile :: file:filename()} |
 {already_cover_compiled, no_beam_found, module()} |
 {{missing_backend, module()}, BeamFile :: file:filename()} |
 {no_file_attribute, BeamFile :: file:filename()} |
 not_main_node.

 compile_result()

 (not exported)

 -type compile_result() :: {ok, Module :: module()} | {error, file:filename()} | {error, not_main_node}.

 export_reason()

 (not exported)

 -type export_reason() ::
 {not_cover_compiled, Module :: module()} |
 {cant_open_file, ExportFile :: file:filename(), FileReason :: term()} |
 not_main_node.

 file_error()

 (not exported)

 -type file_error() :: eacces | enoent.

 level()

 (not exported)

 -type level() :: line | clause | function | module.

 mod_file()

 (not exported)

 -type mod_file() :: (Module :: module()) | (File :: file:filename()).

 mod_files()

 (not exported)

 -type mod_files() :: mod_file() | [mod_file()].

 modules()

 (not exported)

 -type modules() :: module() | [module()].

 one_result()

 (not exported)

 -type one_result() ::
 {ok, {Module :: module(), Value :: analyse_value()}} |
 {ok, [{Item :: analyse_item(), Value :: analyse_value()}]} |
 {error, {not_cover_compiled, module()}}.

 option()

 (not exported)

 -type option() ::
 {i, Dir :: file:filename()} |
 {d, Macro :: atom()} |
 {d, Macro :: atom(), Value :: term()} |
 export_all.

 Functions

 analyse()

 (since OTP 18.0)

 -spec analyse() -> {result, analyse_ok(), analyse_fail()} | {error, not_main_node}.

Equivalent to analyse('_', coverage, function).

 analyse(Arg)

 -spec analyse(Analysis) -> {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Analysis :: analysis();
 (Level) -> {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Level :: level();
 (Modules) -> OneResult | {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Modules :: modules(), OneResult :: one_result().

Analyzes one or more modules as specified by Arg.
If Arg is one of the values in analysis(), this
call is equivalent to analyse('_', Arg, function).
If Arg is one of the values in level(), this
call is equivalent to analyse('_', coverage, Arg).
Otherwise Arg is assumed to be a module name, and this call is equivalent
to analyse(Arg, coverage, function).
Note
To analyze a module whose name overlaps with one the values in
analysis() or level(), the module
name has to be in a list. For example, to analyze a module named calls:
cover:analyse([calls]).

 analyse(Arg1, Arg2)

 -spec analyse(Analysis, Level) -> {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Analysis :: analysis(), Level :: level();
 (Modules, Analysis) ->
 OneResult | {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Analysis :: analysis(), Modules :: modules(), OneResult :: one_result();
 (Modules, Level) ->
 OneResult | {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Level :: level(), Modules :: modules(), OneResult :: one_result().

Analyzes one or more modules as specified by Arg1 and Arg2.
If Arg1 is one of the values in analysis() and
Arg2 is one of the values in level(), this
call is equivalent to analyse('_', Arg1, Arg2).
If Arg2 is one of the values in analysis(),
Arg1 is assumed to be a module and this call is equivalent to
analyse(Arg1, Arg2, function).
If Arg2 is one of the values in level(), Arg1 is
assumed to be a module and this call is equivalent to analyse(Arg1, coverage, Arg2).
Note
To analyze a module whose name overlaps with one of the values in
analysis(), the module name needs to be in a
list. For example, to analyze a module named calls:
cover:analyse([calls], function).

 analyse(Modules, Analysis, Level)

 -spec analyse(Modules, Analysis, Level) ->
 OneResult | {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when
 Analysis :: analysis(),
 Level :: level(),
 Modules :: modules(),
 OneResult :: one_result().

Perform analysis of one or more cover-compiled modules, as specified by
Analysis and Level, by examining the contents of the internal
database.
If Modules is an atom (a single module), the return is OneResult,
otherwise the return is {result, Ok, Fail}.
If Modules is atom '_', all modules that have data in the cover data table
are analysed. Note that this includes both cover-compiled modules and imported
modules.
If a given module is not cover-compiled, this is indicated by the error reason
{not_cover_compiled, Module}.

 analyse_to_file()

 (since OTP 18.0)

 -spec analyse_to_file() -> {result, analyse_file_ok(), analyse_file_fail()} | {error, not_main_node}.

Equivalent to analyse_to_file('_', []).

 analyse_to_file(Arg)

 -spec analyse_to_file(Modules) ->
 Answer |
 {result, analyse_file_ok(), analyse_file_fail()} |
 {error, not_main_node}
 when Modules :: modules(), Answer :: analyse_answer();
 (Options) ->
 {result, analyse_file_ok(), analyse_file_fail()} | {error, not_main_node}
 when Options :: [analyse_option()].

If Arg is a list of analyse_option()
options, this call is equivalent to analyse_to_file('_', Arg).
Otherwise Arg is assumed to be a module, and this call is equivalent to
analyse_to_file(Arg, []).
Note
To analyze a module of the name html (which overlaps with an option
in analyse_option()), it is necessary to
use cover:analyse_to_file/2:
cover:analyse_to_file([html], []).

 analyse_to_file(Modules, Options)

 -spec analyse_to_file(Modules, Options) ->
 Answer |
 {result, analyse_file_ok(), analyse_file_fail()} |
 {error, not_main_node}
 when
 Modules :: modules(),
 Options :: [analyse_option()],
 Answer :: analyse_answer().

Outputs copies of the source code for the given modules annotated with
execution counts for each executable line.
The output file OutFile defaults to Module.COVER.out, and to Module.COVER.html
if option html is used.
If Modules is an atom (one module), the return will be Answer, otherwise the
return will be a list, {result, Ok, Fail}.
If Modules is '_', all modules that have data in the Cover data table
are analysed. Note that this includes both cover-compiled modules and imported
modules.
If a module is not cover-compiled, this is indicated by the error reason
{not_cover_compiled, Module}.
If the source file and/or the output file cannot be opened using file:open/2,
the function returns {error, {file, File, Reason}}, where File is the file
name and Reason is the error reason.
If a module was cover compiled from the .beam file, that is, using
compile_beam/1 or
compile_beam_directory/0,1 , it is assumed that
the source code can be found in one of the following locations:
	the same directory as the .beam file
	../src relative to the directory with .beam file
	the source path in Module:module_info(compile), in which case two paths
are examined:	first the one constructed by joining ../src and the tail of the compiled path
below a trailing src component
	the compiled path itself

If no source code is found, this is indicated by the error reason
{no_source_code_found, Module}.

 async_analyse_to_file(Module)

 (since OTP R14B02)

 -spec async_analyse_to_file(Module) -> pid() when Module :: module().

Equivalent to async_analyse_to_file/3.

 async_analyse_to_file(Module, OutFileOrOpts)

 (since OTP R14B02)

 -spec async_analyse_to_file(Module, OutFile) -> pid()
 when Module :: module(), OutFile :: file:filename();
 (Module, Options) -> pid()
 when Module :: module(), Options :: [Option], Option :: html.

Equivalent to async_analyse_to_file/3.

 async_analyse_to_file(Module, OutFile, Options)

 (since OTP R14B02)

 -spec async_analyse_to_file(Module, OutFile, Options) -> pid()
 when
 Module :: module(),
 OutFile :: file:filename(),
 Options :: [Option],
 Option :: html.

This function works the same way as
analyse_to_file/2 except that it is asynchronous instead
of synchronous.
The spawned process will link with the caller when created. If an
error of type analyse_rsn() occurs while doing
the cover analysis the process will crash with the same error reason
as analyse_to_file would return.

 compile(ModFiles)

 -spec compile(ModFiles) -> Result | [Result] when ModFiles :: mod_files(), Result :: compile_result().

Equivalent to compile_module(ModFiles, []).

 compile(ModFiles, Options)

 -spec compile(ModFiles, Options) -> Result | [Result]
 when ModFiles :: mod_files(), Options :: [option()], Result :: compile_result().

Equivalent to compile_module(ModFile, Options).

 compile_beam(ModFiles)

 -spec compile_beam(ModFiles) -> Result | [Result]
 when ModFiles :: beam_mod_files(), Result :: compile_beam_result().

Cover-compiles one or more modules based .beam files containing
abstract code (option debug_info).
Cover-compiling from .beam files is faster than compiling from
source and less hassle, because there is no need to supply options for
include paths or macros. However, the existing .beam files must have
been compiled with option
debug_info so that they contain
abstract code.
If abstract code is missing, the error reason {no_abstract_code, BeamFile} is returned. If the abstract code is encrypted, and no key
is available for decrypting it, the error reason
{encrypted_abstract_code, BeamFile} is returned.
If only the module name (that is, not the full name of the .beam
file) is given to this function, the .beam file is found by calling
code:which(Module). If no .beam file is found,
the error reason non_existing is returned. If the module is already
cover compiled with compile_beam/1, the .beam
file will be picked from the same location as the first time it was
compiled. If the module is already cover-compiled with
compile_module/2, there is no way to find the correct .beam file,
so the error reason {already_cover_compiled, no_beam_found, Module}
is returned.
{error, BeamFile} is returned if the compiled code cannot be loaded on the
node.
If a list of ModFiles is given as input, a list of Result will be returned.
The order of the returned list is undefined.

 compile_beam_directory()

 -spec compile_beam_directory() -> [Result] | {error, Reason}
 when Reason :: file_error(), Result :: compile_beam_result().

Equivalent to compile_beam_directory(".").

 compile_beam_directory(Dir)

 -spec compile_beam_directory(Dir) -> [Result] | {error, Reason}
 when
 Dir :: file:filename(),
 Reason :: file_error(),
 Result :: compile_beam_result().

Cover-compiles all .beam files in directory Dir in the same way
as compile_beam/1.
This function returns a list of compile_beam_result()
if successful. Otherwise, it returns {error, eacces} if the directory is not
readable, and {error, enoent} if the directory does not exist.

 compile_directory()

 -spec compile_directory() -> [Result] | {error, Reason}
 when Reason :: file_error(), Result :: compile_result().

Equivalent to compile_directory(".", []).

 compile_directory(Dir)

 -spec compile_directory(Dir) -> [Result] | {error, Reason}
 when
 Dir :: file:filename(),
 Reason :: file_error(),
 Result :: compile_result().

Equivalent to compile_directory(Dir, []).

 compile_directory(Dir, Options)

 -spec compile_directory(Dir, Options) -> [Result] | {error, Reason}
 when
 Dir :: file:filename(),
 Options :: [option()],
 Reason :: file_error(),
 Result :: compile_result().

Compiles all modules (.erl files) in a directory Dir for Cover analysis the
same way as compile_module/1,2 and returns a list of
Result.
This function returns {error, eacces} if the directory is not readable or
{error, enoent} if the directory does not exist.

 compile_module(ModFiles)

 -spec compile_module(ModFiles) -> Result | [Result]
 when ModFiles :: mod_files(), Result :: compile_result().

Equivalent to compile_module(ModFile, []).

 compile_module(ModFiles, Options)

 -spec compile_module(ModFiles, Options) -> Result | [Result]
 when ModFiles :: mod_files(), Options :: [option()], Result :: compile_result().

Cover-compiles one or more modules.
The module is given by its module name Module or by its file name
File.
The .erl extension can be omitted. If the module is not located in
the current directory, the full path to it must be specified.
Options is a list of compiler options. Only options defining include
file directories and macros are passed to compile:file/2;
everything else is ignored.
If the module is successfully cover-compiled, the function returns
{ok, Module}. Otherwise the function returns {error, File}. Errors and
warnings are printed as they occur.
If a list of ModFiles is given as input, a list of Result
will be returned. The order of the returned results in the list is undefined.
Note that the internal database is initialized during the compilation,
which means that any previously collected coverage data for the module
is lost.

 export(File)

 -spec export(File) -> ok | {error, Reason} when File :: file:filename(), Reason :: export_reason().

Equivalent to export(File, '_').

 export(File, Module)

 -spec export(File, Module) -> ok | {error, Reason}
 when File :: file:filename(), Module :: module(), Reason :: export_reason().

Exports the current coverage data for Module to the file ExportFile.
It is recommended to name the ExportFile with the extension .coverdata.
If Module is '_', data for all cover-compiled or earlier imported
modules is exported.
This function is useful if coverage data from different systems is to be merged.
See also import/1.

 flush(Nodes)

 (since OTP R16B)

 -spec flush(Nodes) -> ok | {error, not_main_node} when Nodes :: node() | [node()].

Fetches data from the Cover database on the remote nodes and stores it on the main
node.

 import(ExportFile)

 -spec import(ExportFile) -> ok | {error, Reason}
 when
 ExportFile :: file:filename(),
 Reason :: {cant_open_file, ExportFile, FileReason :: term()} | not_main_node.

Imports coverage data from the file ExportFile created with
export/1,2.
Any analysis performed after this call will include the imported data.
Note that when compiling a module all existing coverage data is removed,
including imported data. If a module is already compiled when data is imported,
the imported data is added to the existing coverage data.
Coverage data from several export files can be imported into one system. The
coverage data is then added up when analysing.
Coverage data for a module cannot be imported from the same file twice unless
the module is first reset or compiled. The check is based on the filename, so
you can easily fool the system by renaming your export file.

 imported()

 -spec imported() -> [file:filename()] | {error, not_main_node}.

Returns a list of all imported files.

 imported_modules()

 -spec imported_modules() -> [module()] | {error, not_main_node}.

Returns a list of all modules for which there are imported data.

 is_compiled(Module)

 -spec is_compiled(Module) -> {file, File :: file:filename()} | false | {error, not_main_node}
 when Module :: module().

Returns {file, File} if the module Module is cover-compiled, or false
otherwise.
File is the .erl file used by compile_module/1,2
or the .beam file used by compile_beam/1.

 local_only()

 (since OTP 22.0)

 -spec local_only() -> ok | {error, too_late}.

Only support running Cover on the local node.
This function has to be called before any modules have been compiled or
any nodes added. When running in this mode, modules will be
cover-compiled in a more efficient way, but the resulting code will
only work on the same node they were compiled on.

 modules()

 -spec modules() -> [module()] | {error, not_main_node}.

Returns a list with all modules that are currently cover-compiled.

 reset()

 -spec reset() -> ok | {error, not_main_node}.

Resets all coverage data for all cover-compiled modules in the Cover
database on all nodes.

 reset(Module)

 -spec reset(Module) -> ok | {error, not_main_node} | {error, {not_cover_compiled, Module}}
 when Module :: module().

Resets all coverage data for the cover-compiled module Module in the Cover
database on all nodes.
If Module is not cover-compiled, the function returns
{error, {not_cover_compiled, Module}}.

 start()

 -spec start() -> {ok, pid()} | {error, Reason} when Reason :: {already_started, pid()} | term().

Starts the Cover server which owns the Cover internal database. This function is
called automatically by the other functions in the module.

 start(Nodes)

 -spec start(Nodes) -> {ok, StartedNodes} | {error, not_main_node} | {error, local_only}
 when Nodes :: node() | [node()], StartedNodes :: [node()].

Starts a Cover server on the each of given nodes, and loads all cover compiled
modules.
This call will fail if cover:local_only/0 has been called.

 stop()

 -spec stop() -> ok | {error, not_main_node}.

Stops the Cover server and unloads all cover-compiled code.

 stop(Nodes)

 -spec stop(Nodes) -> ok | {error, not_main_node} when Nodes :: node() | [node()].

Stops the Cover server and unloads all cover-compiled code on the given nodes.
Data stored in the Cover database on the remote nodes is fetched and stored on
the main node.

 which_nodes()

 -spec which_nodes() -> [node()].

Returns a list with all nodes that are part of the coverage analysis.
Note that the current node is not included, because it is always part
of the analysis.

 Table of contents

 	Tools Release Notes

 	User's Guides

 	cover - The Coverage Analysis Tool

 	cprof - The Call Count Profiler

 	The Erlang mode for Emacs

 	fprof - The File Trace Profiler

 	lcnt - The Lock Profiler

 	Xref - The Cross Reference Tool

 	References

 	Erlang mode for Emacs

 	
 Modules

 	cover

 	cprof

 	eprof

 	fprof

 	lcnt

 	make

 	tags

 	tprof

 	xref

 Tools Release Notes

This document describes the changes made to the Tools application.
Tools 4.1.2
Fixed Bugs and Malfunctions
	A crash has been eliminated in tprof:collect/0 when unloading a module while collecting traces.
Own Id: OTP-19135 Aux Id: GH-8483, PR-8547

	Improved the indent-region Emacs command, which could indent badly when inside multiline string.
Own Id: OTP-19396 Aux Id: PR-9186

	eprof:start_profiling/3 can now return information about which process it failed to trace.
Own Id: OTP-19419 Aux Id: PR-9219

	Fixed a race condition when processes cause the Cover server to be started at the same time.
Own Id: OTP-19517 Aux Id: PR-9124

	Fix bug in tprof where the session name could not be set.
Own Id: OTP-19580 Aux Id: PR-9648

	Add tprof to the .app file.
Own Id: OTP-19628 Aux Id: PR-9787

Improvements and New Features
	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

Tools 4.1.1
Fixed Bugs and Malfunctions
	Fixed some deprecated errors on emacs-29.
Own Id: OTP-19273 Aux Id: PR-8879

	The cover tool could sometimes wrongly report lines as uncovered.
Own Id: OTP-19289 Aux Id: GH-8867, PR-8919

	Fixed tprof:format(IoDevice, ...) to not demand unicode encoding supported by IoDevice.
Own Id: OTP-19299 Aux Id: PR-8949

Tools 4.1
Fixed Bugs and Malfunctions
	tprof no longer crashes when using pause/restart/continue when profiling all modules.
Own Id: OTP-19136 Aux Id: GH-8472, PR-8472, PR-8541

	On systems supporting native coverage, calls to cover could hang or crash if cover-compiled module had been reloaded from outside cover. This has been corrected so that cover now recovers from the error and and sends a report to the logger about the failure to retrieve coverage information.
Own Id: OTP-19203 Aux Id: GH-8661, PR-8742

Improvements and New Features
	Figures in the documentation have been improved.
Own Id: OTP-19130 Aux Id: PR-7226

Tools 4.0
Fixed Bugs and Malfunctions
	Dialyzer warnings due to type specs added in dbg have been eliminated.
Own Id: OTP-18860

	In Erlang/OTP 26, doing a cover analysis on the line level would return multiple entries for lines on which multiple functions were defined.
For example, consider this module:
-module(foo).
-export([bar/0, baz/0]).

bar() -> ok. baz() -> not_ok.
In Erlang/OTP 26, analysing on the line level would return two entries
for line 4:
1> cover:compile_module(foo).
{ok,foo}
2> foo:bar().
ok
3> cover:analyse(foo, coverage, line).
{ok,[{{foo,4},{1,0}},{{foo,4},{0,1}}]}
4> cover:analyse(foo, calls, line).
{ok,[{{foo,4},1},{{foo,4},0}]}
In Erlang/OTP 27, there will only be a single entry for line 4:
1> cover:compile_module(foo).
{ok,foo}
2> foo:bar().
ok
3> cover:analyse(foo, coverage, line).
{ok,[{{foo,4},{1,0}}]}
4> cover:analyse(foo, calls, line).
{ok,[{{foo,4},1}]}
Own Id: OTP-18998 Aux Id: GH-8159, PR-8182

	Fixed align command in emacs mode.
Own Id: OTP-19026 Aux Id: PR-8155

Improvements and New Features
	Triple-Quoted Strings has been implemented as per EEP 64. See String in the Reference Manual.
Example:
1> """
 a
 b
 c
 """.
"a\nb\nc"
Adjacent string literals without intervening white space is now a syntax error, to avoid possible confusion with triple-quoted strings. For example:
1> "abc""xyz".
"xyz".
* 1:6: adjacent string literals without intervening white space
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-18750 Aux Id: OTP-18746, PR-7313, PR-7451

	There is a new tool tprof, which combines the functionality of eprof and cprof under one interface and adds heap profiling. It also has functionality to help with profiling process hierarchies.
Example:
1> tprof:profile(lists, seq, [1, 16], #{type => call_memory}).

****** Process <0.92.0> -- 100.00% of total ***
FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 5 32 6.40 [100.00]
 32 [100.0]
ok
Own Id: OTP-18756 Aux Id: PR-6639

	Native coverage support has been implemented in the JIT. It will automatically be used by the cover tool to reduce the execution overhead when running cover-compiled code.
There are also new APIs to support native coverage without using the cover tool.
To instrument code for native coverage it must be compiled with the line_coverage option.
To enable native coverage in the runtime system, start it like so:
$ erl +JPcover true
There are also the following new functions for supporting native coverage:
	code:coverage_support/0
	code:get_coverage/2
	code:reset_coverage/1
	code:get_coverage_mode/0
	code:get_coverage_mode/1
	code:set_coverage_mode/1

Own Id: OTP-18856 Aux Id: PR-7856

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	Improved the align command in emacs mode.
Own Id: OTP-19080 Aux Id: PR-8288

Tools 3.6
Improvements and New Features
	Map comprehensions as suggested in EEP 58 has now been implemented.
Own Id: OTP-18413 Aux Id: EEP-58, PR-6727

	The instrument module has been moved from tools to runtime_tools.
Own Id: OTP-18487 Aux Id: PR-6829

Tools 3.5.3
Improvements and New Features
	Removed the previously undocumented and unsupported emem tool.
Own Id: OTP-17892 Aux Id: PR-5591

Tools 3.5.2
Fixed Bugs and Malfunctions
	Erlang-mode fixed for newer versions of xref using CL-Lib structures instead
of EIEIO classes.
Own Id: OTP-17746 Aux Id: GH-5314, PR-5324

Tools 3.5.1
Fixed Bugs and Malfunctions
	The cover tool would not work on modules compiled with the tuple_calls
option.
Own Id: OTP-17440 Aux Id: GH-4796

Tools 3.5
Fixed Bugs and Malfunctions
	For cover-compiled code, the error behaviour of list and binary comprehensions
that used andalso/orelse in guards could be changed so that a filter that
was supposed be evaluated in guard context was evaluated in body context. That
is, there was a possibility that comprehensions that did not raise exceptions
could raise exceptions when being run using cover.
Own Id: OTP-17221 Aux Id: PR-4547

Improvements and New Features
	Support for handling abstract code created before OTP R15 has been dropped.
Own Id: OTP-16678 Aux Id: PR-2627

	Add types and specifications for documentation.
Own Id: OTP-16957

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

Tools 3.4.4
Fixed Bugs and Malfunctions
	cover would crash when compiling a module having an exported function named
clauses.
Own Id: OTP-17162 Aux Id: GH-4549, PR-2997, PR-4555, elixir-lang/elixir#10666

	If beam_lib is asked to return abstract code for a BEAM file produced by
Elixir and Elixir is not installed on the computer, beam_lib will no longer
crash, but will return an error tuple. The cover:compile_beam() and
cover:compile_beam_directory() functions have been updated to also return an
error tuple in that situation.
Own Id: OTP-17194 Aux Id: GH-4353

	Make emacs mode work on emacs-27.
Own Id: OTP-17225 Aux Id: PR-4542, GH-4451

Tools 3.4.3
Fixed Bugs and Malfunctions
	Correct the Xref analysis undefined_functions to not report internally
generated behaviour_info/1.
Own Id: OTP-17191 Aux Id: OTP-16922, ERL-1476, GH-4192

Tools 3.4.2
Fixed Bugs and Malfunctions
	Correct the Xref analysis exports_not_used to not report internally
generated behaviour_info/1.
Own Id: OTP-16922 Aux Id: PR-2752

Tools 3.4.1
Fixed Bugs and Malfunctions
	Correct the Xref analysis locals_not_used to find functions called
exclusively from on_load functions.
Own Id: OTP-16854 Aux Id: PR-2750

Tools 3.4
Improvements and New Features
	Updates for new erlang:term_to_iovec() BIF.
Own Id: OTP-16128 Aux Id: OTP-15618

	Improved the presentation of allocations and carriers in the instrument
module.
Own Id: OTP-16327

	Minor updates due to the new spawn improvements made.
Own Id: OTP-16368 Aux Id: OTP-15251

Tools 3.3.1.1
Fixed Bugs and Malfunctions
	cover would crash when compiling a module having an exported function named
clauses.
Own Id: OTP-17162 Aux Id: GH-4549, PR-2997, PR-4555, elixir-lang/elixir#10666

Tools 3.3.1
Fixed Bugs and Malfunctions
	An Emacs warning due to lacking type in defcustom declaration has been fixed.
Own Id: OTP-16356

	Improve emacs indentation.
Own Id: OTP-16472 Aux Id: ERL-1140

	The cover tool could generate instrumented code for a module that would cause
warnings to be issued.
Own Id: OTP-16476 Aux Id: ERL-1147

	Fixed generated fprof analysis format to also handle
data in maps.
Own Id: OTP-16498 Aux Id: ERL-814

Tools 3.3
Fixed Bugs and Malfunctions
	Improve -spec indentation in emacs mode.
Own Id: OTP-16164

Improvements and New Features
	The Emacs erlang-mode function that lets the user open the documentation for
an Erlang/OTP function in an Emacs buffer has been improved. Bugs in this
function has been fixed and and the user will now be asked if the man pages
should be downloaded automatically by Emacs when they can't be found on the
system. To test this functionality, put the cursor over the function name in a
call to an Erlang/OTP function (e.g., "io:format("arg")") and type C-c C-d
(i.e., Ctrl-key and c-key and then Ctrl-key and d-key). There is also a new
menu item under the Erlang menu (labeled "Man - Function Under Cursor").
Own Id: OTP-16174

Tools 3.2.1
Fixed Bugs and Malfunctions
	cover would fail to start if two processes tried to start it at the exact
same time.
Own Id: OTP-15813 Aux Id: ERL-943

Tools 3.2
Fixed Bugs and Malfunctions
	Add cprof and tags modules to .app file so that they are included in
releases.
Own Id: OTP-15534 Aux Id: PR-2078

	Improved documentation parsing in emacs erldoc functionality.
Own Id: OTP-15699 Aux Id: PR-2184

Improvements and New Features
	The cover tool now uses the counters module instead of ets for updating
the counters for how many times a line has been executed. By default, Cover
will work with distributed nodes, but a new function cover:local_only/0
allows running the Cover in a restricted but faster local-only mode.
The increase in speed will vary depending on the type of code being
cover-compiled, but as an example, the compiler test suite runs more than
twice as fast with the new Cover.
Own Id: OTP-15575

Tools 3.1.0.1
Fixed Bugs and Malfunctions
	cover would fail to start if two processes tried to start it at the exact
same time.
Own Id: OTP-15813 Aux Id: ERL-943

Tools 3.1
Fixed Bugs and Malfunctions
	Minor fixes for make clean.
Own Id: OTP-15657

Improvements and New Features
	In the HTML file generated by cover:analyse_to_file/1,2, a link is now added
to the line number. This makes it easier to share pointers to specific lines.
Own Id: OTP-15541

	Uncovered lines are now marked with a sad face, :-(, in the HTML output from
cover:analyse_to_file/1,2. This is to make these lines easier to find by
search.
Own Id: OTP-15542

Tools 3.0.2
Improvements and New Features
	Remove emacs warnings and added more tests.
Own Id: OTP-15476

Tools 3.0.1
Improvements and New Features
	The HTML pages generated by cover:analyse_to_file/1 and related functions is
improved for readability.
Own Id: OTP-15213 Aux Id: PR-1807

	Add alignment functionality in emacs.
Own Id: OTP-15239 Aux Id: PR-1728

Tools 3.0
Improvements and New Features
	Added instrument:allocations and instrument:carriers for retrieving
information about memory utilization and fragmentation.
The old instrument interface has been removed, as have the related options
+Mim and +Mis.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14961

Tools 2.11.2.2
Fixed Bugs and Malfunctions
	cover would fail to start if two processes tried to start it at the exact
same time.
Own Id: OTP-15813 Aux Id: ERL-943

Tools 2.11.2.1
Fixed Bugs and Malfunctions
	Minor fixes for make clean.
Own Id: OTP-15657

Tools 2.11.2
Fixed Bugs and Malfunctions
	A counting bug is corrected in Cover. The bug was introduced in Erlang/OTP
18.0.
Own Id: OTP-14817 Aux Id: PR 1641

	The lcnt server will no longer crash if lcnt:information/0 is called
before lcnt:collect/0.
Own Id: OTP-14912

	lcnt:collect will now implicitly start the lcnt server, as per the
documentation.
Own Id: OTP-14913

Improvements and New Features
	Improved indentation in emacs and various other updates.
Own Id: OTP-14944

Tools 2.11.1
Fixed Bugs and Malfunctions
	Removed all old unused files in the documentation.
Own Id: OTP-14475 Aux Id: ERL-409, PR-1493

Tools 2.11
Fixed Bugs and Malfunctions
	The predefined Xref analysis locals_not_used no longer reports unused
functions with the -on_load() attribute.
The new predefined Xref variable OL holds all functions with the
-on_load() attribute.
Own Id: OTP-14344

	In fprof when sampling multiple processes and analyzing with totals set to
true, the output now sums together all caller and callee entries which
concerns the same function. Previous behaviour was to report each contributing
entry separately.
Own Id: OTP-14500

Improvements and New Features
	Lock counting can now be fully toggled at runtime in the lock counting
emulator (-emu_type lcnt). Everything is enabled by default to match the old
behavior, but specific categories can be toggled at will with minimal runtime
overhead when disabled. Refer to the documentation on lcnt:rt_mask/1 for
details.
Own Id: OTP-13170

	lcnt:collect and lcnt:clear will no longer block all other threads in the
runtime system.
Own Id: OTP-14412

	General Unicode improvements.
Own Id: OTP-14462

	Tools are updated to show Unicode atoms correctly.
Own Id: OTP-14464

	Add erlang:iolist_to_iovec/1, which converts an iolist() to an
erlang:iovec(), which suitable for use with enif_inspect_iovec.
Own Id: OTP-14520

Tools 2.10.1
Fixed Bugs and Malfunctions
	In OTP-20.0, the behavior of c, make, and ct_make was changed so that in some
cases the beam files by default would be written to the directory where the
source files were found. This is now changed back to the old behavior so beam
files are by default written to current directory.
Own Id: OTP-14489 Aux Id: ERL-438

Tools 2.10
Fixed Bugs and Malfunctions
	In some situations, make:all() and friends did not detect changes in include
files located in the current directory. This is now corrected.
Own Id: OTP-14339 Aux Id: ERL-395

Improvements and New Features
	The make module now accepts the {emake,Emake} option.
Own Id: OTP-14253

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

Tools 2.9.1
Improvements and New Features
	Improved edoc support in emacs mode.
Own Id: OTP-14217 Aux Id: PR-1282

Tools 2.9
Fixed Bugs and Malfunctions
	Fix unhandled trace event send_to_non_existing_process in fprof.
Own Id: OTP-13998

Improvements and New Features
	Improved edoc support in emacs erlang-mode.
Own Id: OTP-13945 Aux Id: PR-1157

	Added erldoc to emacs mode which opens html documentation in browser from
emacs. For example M-x erldoc-browse RET lists:foreach/2.
Own Id: OTP-14018 Aux Id: PR-1197

Tools 2.8.6
Fixed Bugs and Malfunctions
	Errors in type specification and Emacs template generation for
gen_statem:code_change/4 has been fixed from bugs.erlang.org's Jira cases
ERL-172 and ERL-187.
Own Id: OTP-13746 Aux Id: ERL-172, ERL-187

	Fix gc_start/gc_end in fprof tags when parsing old trace logs.
Own Id: OTP-13778 Aux Id: PR-1136

	make (tools) and ct_make (common_test) would crash if an Erlang source
file contained a -warning() directive.
Own Id: OTP-13855

Tools 2.8.5
Fixed Bugs and Malfunctions
	Correct a bug when adding multiple modules to an Xref server. The bug was
introduced in OTP-19.0.
Own Id: OTP-13708 Aux Id: ERL-173

Tools 2.8.4
Fixed Bugs and Malfunctions
	Update fprof to use the new 'spawned' trace event to determine when a process
has been created.
Own Id: OTP-13499

Improvements and New Features
	Optimize adding multiple modules to an Xref server.
Own Id: OTP-13593

	Various emacs mode improvements, such as better tags support.
Own Id: OTP-13610

Tools 2.8.3
Fixed Bugs and Malfunctions
	cover:compile_beam/1 and cover:compile_beam_directory/1,2 crashed when
trying to compile a beam file without a 'file' attribute. This has been
corrected and an error is returned instead.
Thanks to Louis-Philippe Gauthier for reporting this bug.
Own Id: OTP-13200

	Fix a bit string comprehension bug in Cover.
Own Id: OTP-13277 Aux Id: PR 856

Tools 2.8.2
Fixed Bugs and Malfunctions
	The emacs mode does not add a newline after the arrow on -callback lines
anymore.
Own Id: OTP-13042

Tools 2.8.1
Fixed Bugs and Malfunctions
	If a module includes eunit.hrl, a parse transform adds the function test/0 on
line 0 in the module. A bug in OTP-18.0 caused cover:analyse_to_file/1 to fail
to insert cover data in the output file when line 0 existed in the cover data
table. This is now corrected.
Own Id: OTP-12981

Tools 2.8
Fixed Bugs and Malfunctions
	In order to improve performance of the cover tool, new functions are added for
cover compilation and analysis on multiple files. This allows for more
parallelisation.
Some improvements of the data base access is also done in order to improve the
performance when analysing and resetting cover data.
Minor incompatibility: An error reason from analyse_to_file is changed from
no_source_code_found to {no_source_code_found,Module}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12330 Aux Id: seq12757

	Attempting to do a cover analysis when neither source code nor beam file
could be found would hang the cover server. Corrected to return a proper
error.
Own Id: OTP-12806

Improvements and New Features
	Allow maps for supervisor flags and child specs
Earlier, supervisor flags and child specs were given as tuples. While this is
kept for backwards compatibility, it is now also allowed to give these
parameters as maps, see sup_flags and
child_spec.
Own Id: OTP-11043

	Remove Mnemosyne rules support.
Own Id: OTP-12511

	Add printout of total number of calls and time in eprof
Own Id: OTP-12681

Tools 2.7.2
Fixed Bugs and Malfunctions
	Fix lcnt sorting and printout of histograms.
Own Id: OTP-12364

	Fix a Unicode bug in the tags module.
Own Id: OTP-12567

	Fix tags completion in erlang.el for GNU Emacs 23+
Own Id: OTP-12583

Tools 2.7.1
Fixed Bugs and Malfunctions
	Fixed a typo in erlang-mode comment.
Own Id: OTP-12214

	Add a skeleton for -spec in Erlang mode for Emacs
Own Id: OTP-12283

Improvements and New Features
	Cover no longer crashes when compiling receive and the like with just an
after clause. Thanks to José Valim for providing a fix.
Own Id: OTP-12328

Tools 2.7
Improvements and New Features
	Add log2 histogram to lcnt for lock wait time
Own Id: OTP-12059

Tools 2.6.15
Fixed Bugs and Malfunctions
	Removed erlang:bitstr_to_list/1 and erlang:list_to_bitstr/1. They were
added by mistake, and have always raised an undefined exception when called.
Own Id: OTP-11942

Tools 2.6.14
Fixed Bugs and Malfunctions
	Removed the support for the query keyword from emacs mode (Thanks to Paul
Oliver)
Own Id: OTP-11568

	Emacs mode improvements (Thanks to Steve Vinoski)
Own Id: OTP-11601

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

	The emacs erlang mode now match erlang keywords more carefully (Thanks to
Steve Vinoski)
Own Id: OTP-11786

	The emacs erlang-mode now auto loads for more file types (Thanks to Phil
Hagelberg)
Own Id: OTP-11788

Improvements and New Features
	cover can run on itself. Also, support for reading BEAM files produced by
ancient OTP versions before R9C has been removed.
Own Id: OTP-11692

	Support maps in cover
Own Id: OTP-11764

Tools 2.6.13
Fixed Bugs and Malfunctions
	Erlang-specific compilation error regexp is added in erlang-eunit.el. This
defvar was earlier in erlang.el, but was erroneously removed in R15B02, while
still used by erlang-eunit.el.
Own Id: OTP-11417 Aux Id: seq12447

	Take compiler options from beam in cover:compile_beam. Thanks to Péter Gömöri.
Own Id: OTP-11439

	Silence warnings (Thanks to Anthony Ramine)
Own Id: OTP-11517

Improvements and New Features
	Add iodata, nonempty_string to built-in type highlighting for emacs. Thanks to
Paul Oliver.
Own Id: OTP-11394

Tools 2.6.12
Improvements and New Features
	Remove trailing spaces in Emacs templates. Thanks to Roberto Aloi.
Own Id: OTP-11198

	Fixed the Emacs erlang-mode to accommodate the coding style where lists
written across several lines have each line starting with a comma. Thanks to
Magnus Henoch.
Own Id: OTP-11242

	Make the Emacs Erlang mode TRAMP-aware when compiling. Thanks to Tomas
Abrahamsson.
Own Id: OTP-11270

Tools 2.6.11
Fixed Bugs and Malfunctions
	When cover:stop(Node) was called on a non-existing node, a process waiting for
cover data from the node would hang forever. This has been corrected.
Own Id: OTP-10979

Improvements and New Features
	Make cover smarter about finding source from beam.
In particular, search using the source path in module_info if the current
heuristic fails.
Own Id: OTP-10902

	Remove Flymake dependency in erlang-pkg.el. Thanks to Magnus Henoch.
Own Id: OTP-10930

	Erlang-mode: Add autoload cookies for file extension associations. Thanks to
Magnus Henoch.
Own Id: OTP-10999

	Postscript files no longer needed for the generation of PDF files have been
removed.
Own Id: OTP-11016

	Fix a race condition when there're several applications in apps directory.
Thanks to Manuel Rubio.
Own Id: OTP-11028

	New option for eprof, 'set_on_spawn'. This option was previously always on and
is also the default.
Own Id: OTP-11144

Tools 2.6.10
Improvements and New Features
	Fix a bug in cover when used with no_auto_import. Thanks to José Valim.
Own Id: OTP-10778

Tools 2.6.9
Fixed Bugs and Malfunctions
	Add missing modules in app-file
Own Id: OTP-10439

	Make erlang-mode more compatible with package.el (Thanks to Gleb Peregud)
Own Id: OTP-10465

	Fix various typos (thanks to Tuncer Ayaz)
Own Id: OTP-10611

	Add separate face for exported functions (Thanks to Thomas Järvstrand)
Own Id: OTP-10637

	The BIF highlighting in the emacs mode has been updated to correspond with the
correct BIFs.
Own Id: OTP-10774

Improvements and New Features
	Support for Unicode has been implemented.
Own Id: OTP-10302

	A new function, cover:flush(Nodes), is added which will fetch data from remote
nodes without stopping cover on those nodes. This is used by test_server and
common_test when it is safe to assume that the node will be terminated after
the test anyway. The purpose is to avoid processes crashing when re-loading
the original beam if the processes is still running old code.
Remote nodes will now continue to count code coverage if the connection to the
main node is broken. Earlier, a broken connection would cause the cover_server
on the remote node to die and thus any still cover compiled modules would
cause process crash when trying to insert cover data in ets tables that used
to exist on the cover_server. The new functionality also involves
synchronization with the main node if the nodes are reconnected.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10523 Aux Id: OTP-10427

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Fix syntax highlighting of $\' in Emacs mode. Thanks to Magnus Henoch.
Own Id: OTP-10766

Tools 2.6.8
Fixed Bugs and Malfunctions
	The last tuple fun call has been removed from fprof.
Own Id: OTP-10091 Aux Id: seq12067

	Fix indentation of record fields in Emacs (Thanks to Tomas Abrahamsson)
Own Id: OTP-10120

	Documentation fixes (Thanks to Ricardo Catalinas Jiménez)
Own Id: OTP-10121

	Remove Erlang-specific compilation error regexp in erlang.el
Own Id: OTP-10168

	Fix highlighting of atoms ending with a dollar sign
Like this: 'atom$'. In that example, the last single quote should be
recognised as ending the atom. This needs a font-lock workaround similar to
the one for strings. Thanks to Magnus Henoch
Own Id: OTP-10178

	Xref now accepts filenames with character codes greater than 126. (Thanks to
Emile Joubert for reporting the issue.)
Own Id: OTP-10192

	Add test_indentation target to lib/tools/emacs/Makefile
Automatically indent test.erl.orig, save to test.erl, and compare to
test.erl.intended. Thanks to Magnus Henoch.
Own Id: OTP-10226

Tools 2.6.7
Fixed Bugs and Malfunctions
	Makefiles in erts, hipe and tools have been corrected to enable parallel make,
i.e MAKEFLAGS=-jX where X is the parallelity number. As a result of this
dependencies were corrected since that is what is needed for parallel make to
work.
Own Id: OTP-9857 Aux Id: OTP-9451

	Minor suppressions and fixes of compilation warnings
Own Id: OTP-10016

Tools 2.6.6.6
Fixed Bugs and Malfunctions
	Update system profiling principles to reflect eprof performance improvements.
Own Id: OTP-9656

	[cover] fix leftover {'DOWN', ..} msg in callers queue
After stopping cover with cover:stop() there could still be a {'DOWN',...}
leftover message in the calling process's message queue. This unexpected
leftover could be eliminated if erlang:demonitor/2 with option flush would be
used in certain points
Own Id: OTP-9694

	Add deps as erlang-flymake include directory.
Update erlang-flymake to recognize the "deps" folder as an include directory.
This makes erlang-flymake compatible with the rebar dependency management
tool's default folder structure, which puts included dependencies in
"deps".(Thanks to Kevin Albrecht)
Own Id: OTP-9791

Improvements and New Features
	Variables are now now allowed in 'fun M:F/A' as suggested by Richard O'Keefe
in EEP-23.
The representation of 'fun M:F/A' in the abstract format has been changed in
an incompatible way. Tools that directly read or manipulate the abstract
format (such as parse transforms) may need to be updated. The compiler can
handle both the new and the old format (i.e. extracting the abstract format
from a pre-R15 BEAM file and compiling it using compile:forms/1,2 will work).
The syntax_tools application can also handle both formats.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9643

	Tuple funs (a two-element tuple with a module name and a function) are now
officially deprecated and will be removed in R16. Use 'fun M:F/A' instead.
To make you aware that your system uses tuple funs, the very first time a
tuple fun is applied, a warning will be sent to the error logger.
Own Id: OTP-9649

	Eliminate use of deprecated regexp module
Own Id: OTP-9810

Tools 2.6.6.5
Fixed Bugs and Malfunctions
	Teach the emacs mode to compile yecc and leex files
If visiting a .yrl or .xrl file in emacs with erlang-mode, then the
`erlang-compile' function (normally bound to C-c C-k), now knows how to
compile yecc and leex files, and then, if that compilation succeeds, also
compiles the resulting .erl files.
Also introduce a `erlang-compile-command-function-alist' to make it possible
to hook in other functions for computing compilation commands/expressions,
depending on file name. (Thanks to Tomas Abrahamsson)
Own Id: OTP-9503

Improvements and New Features
	Bugs in xref(3) have been fixed. (Thanks to Matthias Lang.)
Own Id: OTP-9416

Tools 2.6.6.4
Fixed Bugs and Malfunctions
	Change make:files to behave more like erlc
This change removes the unnecessary checks on the files when make:files is
called and allows the error checking to be done in compile:file, where the
error messages are produced. It does not affect the return value.
(Thanks to Sam bobroff)
Own Id: OTP-9179

	add user specified compiler options on form reloading
In order to be able to test non-exported functions from another (test) module
it is necessary to compile the specific module (at least during the test
phase) with the exportall compiler option. This allows complete separation of
testing and productive code. At the moment it is not possible to combine this
with a test code coverage using the cover module. The problem is that when
cover compiling a module using cover:compile* the code is reloaded into the
emulator omitting/filtering the passed user options. In my example above the
export_all option would be removed and the non-exported functions cannot be
called any more. (Thanks to Tobias Schlager)
Own Id: OTP-9204

	Inhibit electric newline after "->" when inside a type spec
The Erlang mode for Emacs inserts a newline after every "->", which saves you
one keystroke when writing a function, but that is inappropriate when writing
a type spec, as you'd normally keep the spec on one line. This change inhibits
the automatic insertion when the current line starts with "-spec" or
"-type".(Thanks to Magnus Henoch)
Own Id: OTP-9255

	Add a check logic to prevent file descriptor leak
cover module handle files as raw in export and import. Assert counts of ports
are the same at the beginning and at the end of the test case.(Thanks to
Shunichi Shinohara)
Own Id: OTP-9300

Tools 2.6.6.3
Fixed Bugs and Malfunctions
	Declare indentation options as "safe" in erlang-mode for Emacs
Emacs has a facility for setting options on a per-file basis based on comments
in the source file. By default, all options are considered "unsafe", and the
user is queried before the variable is set. This patch declares the variables
erlang-indent-level, erlang-indent-guard and erlang-argument-indent to be
safe, if the value specified in the source file is valid.
Such declarations usually look like this:
%% -- erlang-indent-level: 2 --
and appear on the first line of the file. (thanks to Magnus Henoch)
Own Id: OTP-9122

Improvements and New Features
	Cover has been improved to take less memory and allow parallel analysis of
cover data. Data collection from nodes is now done in parallel and it is now
possible to issue multiple analyse and analyse_to_file requests at the same
time. A new function call async_analyse_to_file has also been introduced, see
the documentation for more details.
Own Id: OTP-9043 Aux Id: seq11771

Tools 2.6.6.2
Fixed Bugs and Malfunctions
	eprof: API sort mismatch has now been fixed.
Own Id: OTP-8853

	eprof: fix division by zero in statistics
Own Id: OTP-8963

Tools 2.6.6.1
Fixed Bugs and Malfunctions
	cover will now show ampersand characters in the source code correctly.
(Thanks to Tom Moertel.)
Own Id: OTP-8776

Tools 2.6.6
Fixed Bugs and Malfunctions
	A race condition affecting Cover has been removed.
Own Id: OTP-8469

	Emacs improvements:
Fixed emacs-mode installation problems.
Fixed a couple of -spec and -type indentation and font-lock problems.
Fixed error messages on emacs-21.
Magnus Henoch fixed several issues.
Ralf Doering, Klas Johansson and Chris Bernard contributed various emacs-eunit
improvements.
Klas Johansson and Dave Peticolas added emacs-flymake support.
Own Id: OTP-8530

Improvements and New Features
	Xref has been updated to use the re module instead of the deprecated
regexp module.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8472

	When given the option {builtins,true} Xref now adds calls to operators.
Own Id: OTP-8647

	eprof has been reimplemented with support in the Erlang virtual machine and
is now both faster (i.e. slows down the code being measured less) and scales
much better. In measurements we saw speed-ups compared to the old eprof
ranging from 6 times (for sequential code that only uses one scheduler/core)
up to 84 times (for parallel code that uses 8 cores).
Note: The API for the eprof has been cleaned up and extended. See the
documentation.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8706

Tools 2.6.5.1
Fixed Bugs and Malfunctions
	A bug concerning bit comprehensions has been fixed in Cover. The bug was
introduced in R13B03. (Thanks to Matthew Sackman.)
Own Id: OTP-8340

Improvements and New Features
	Add lock profiling tool.
The Lock profiling tool, lcnt, can make use of the internal lock statistics
when the runtime system is built with this feature enabled.
This provides a mechanism to examine potential lock bottlenecks within the
runtime itself.
- Add erts_debug:lock_counters({copy_save, bool()}). This option enables or
disables statistics saving for destroyed processes and ets-tables. Enabling
this might consume a lot of memory.
- Add id-numbering for lock classes which is otherwise undefined.
Own Id: OTP-8424

	emacs: Moved code skeletons to a separate file and and added a configurable
variable to choose skeleton. Thanks Dave Peticolas.
Own Id: OTP-8446

Tools 2.6.5
Fixed Bugs and Malfunctions
	The coverage analysis tool cover has been improved when it comes to handling
list and bit string comprehensions (a counter for each qualifier), bit syntax
expressions (the Value and Size expressions), and try expressions (the body
called Exprs in the Reference Manual). A few (not all) situations where
several expressions are put on the same line are also handled better than
before.
Own Id: OTP-8188 Aux Id: seq11397

	When loading Cover compiled code on remote nodes running code in the loaded
module, a badarg failure was sometimes the result. This bug has been fixed.
Own Id: OTP-8270 Aux Id: seq11423

	The short-circuit operators andalso and orelse are now handled correctly
by the coverage analysis tool cover (it is no longer checked that the second
argument returns a Boolean value.)
Own Id: OTP-8273

Tools 2.6.4
Fixed Bugs and Malfunctions
	cover now properly escapes greater-than and less-than characters in comments
in HTML reports. (Thanks to Magnus Henoch.)
Own Id: OTP-7939

Tools 2.6.3
Improvements and New Features
	xref:start/1 does now allow anonymous XREF processes to be started
Own Id: OTP-7831

Tools 2.6.2
Fixed Bugs and Malfunctions
	A bug in the Xref scanner has been fixed.
Own Id: OTP-7423

	A bug in Fprof where the function 'undefined' appeared to call 'undefined' has
been corrected.
Own Id: OTP-7509

Tools 2.6.1
Improvements and New Features
	The documentation has been updated so as to reflect the last updates of the
Erlang shell as well as the minor modifications of the control sequence p of
the io_lib module.
Superfluous empty lines have been removed from code examples and from Erlang
shell examples.
Own Id: OTP-6944 Aux Id: OTP-6554, OTP-6911

	tuple_size/1 and byte_size/1 have been
substituted for size/1.
Own Id: OTP-7009

	The coverage analysis tool cover now handles the short-circuit Boolean
expressions andalso/2 and orelse/2 properly.
Own Id: OTP-7095

Tools 2.6
Fixed Bugs and Malfunctions
	The cover tool could use huge amounts of memory when used in a distributed
system.
Own Id: OTP-6758

Tools 2.5.5
Fixed Bugs and Malfunctions
	Missing buffer-local declaration in erlang.el has been added. Before this fix
there could arise problems in other emacs modes after visiting a buffer using
the erlang mode.
Own Id: OTP-6721

	Key-map for 'backward-delete-char-untabif updated to work properly with
Xemacs.
Own Id: OTP-6723

Improvements and New Features
	Minor updates of Xref.
Own Id: OTP-6586

	Minor Makefile changes.
Own Id: OTP-6689 Aux Id: OTP-6742

	"C-u C-c C-k" now does a compile with both "debug_info" and "export_all".
Own Id: OTP-6741

Tools 2.5.4.1
Improvements and New Features
	Changes due to internal interface changes in the erts application which are
needed at compile-time. No functionality has been changed.
Own Id: OTP-6611 Aux Id: OTP-6580

Tools 2.5.4
Fixed Bugs and Malfunctions
	Made change to support the function erlang-find-tag for xemacs and emacs-21.
Own Id: OTP-6512

Improvements and New Features
	Minor updates of xref for future compatibility.
Own Id: OTP-6513

Tools 2.5.3
Fixed Bugs and Malfunctions
	eprof did not work reliably in the SMP emulator, because the trace receiver
process could not process the trace messages fast enough. Therefore, eprof
now blocks the other schedulers while profiling.
Own Id: OTP-6373

Tools 2.5.2
Fixed Bugs and Malfunctions
	Fprof traces could become truncated for the SMP emulator. This bug has now
been corrected.
Own Id: OTP-6246

Tools 2.5.1
Fixed Bugs and Malfunctions
	eprof now works somewhat better in the SMP emulator.
Own Id: OTP-6152

Tools 2.5
Fixed Bugs and Malfunctions
	Fixed some bugs in make:
make:files/1,2 can now handle a file in another directory as argument,
similar to make:all/0,1.
When specifying a file name including the .erl extension in Emakefile,
make:all/0,1 looked for the object code in the wrong place.
When specifying a file name including the .erl extension in Emakefile and
some compile options for the file, make:files/0,1 did not use the options as
it should do.
Own Id: OTP-6057 Aux Id: seq10299

	cover: When cover:stop() was called, the cover compiled code was not
unloaded (as stated in the documentation) but simply marked as 'old'. This
meant that processes lingering in (or with funs referencing to) the cover
compiled code would survive even when the cover server and its ETS tables was
terminated.
Now the cover compiled code is unloaded, meaning that processes lingering
in/with references to it will be killed when cover:stop is called, instead
of later crashing with badarg when trying to bump counters in ETS tables no
longer existing.

Improvements and New Features
	Replaced call to deprecated function file:file_info/1 with call to
filelib:is_dir/1 and filelib:is_regular/1 in tags.erl.
Own Id: OTP-6079

Tools 2.4.7
Fixed Bugs and Malfunctions
	A bug in fprof profiling causing erroneous inconsistent trace failure has
been corrected.
Own Id: OTP-5922 Aux Id: seq10203

Tools 2.4.6
Fixed Bugs and Malfunctions
	Emacs: erlang-man-function and erlang-man-module used a pattern matching
to find the requested module that sometimes yielded unexpected results. For
example, erlang-man-module file would display the man page for
CosFileTransfer_File.
Own Id: OTP-5746 Aux Id: seq10096

	Some compiler warnings and Dialyzer warnings were eliminated in the Tools
application.
When tracing to a port (which fprof does), there could be fake schedule
out/schedule in messages sent for a process that had exited.
Own Id: OTP-5757

Tools 2.4.5
Fixed Bugs and Malfunctions
	The cross reference tool xref did not handle the new fun M:F/A construct
properly. This problem has been fixed.
Own Id: OTP-5653

Tools 2.4.4
Fixed Bugs and Malfunctions
	The cover tool did not escape '<' and '>' not being part of HTML tags in
HTML log files.
Own Id: OTP-5588

Tools 2.4.3
Improvements and New Features
	It is now possible to encrypt the debug information in beam files, to help
keep the source code secret. See compile for how to provide the key for
encrypting, and beam_lib for how to provide the key for decryption so that
tools such as Debugger, xref, or cover can be used.
The beam_lib:chunks/2 functions now accepts an additional chunk type
'compile_info' to retrieve the compilation information directly as a term.
(Thanks to Tobias Lindahl.)
Own Id: OTP-5460 Aux Id: seq9787

Tools 2.4.2
Fixed Bugs and Malfunctions
	The cover tool could not analyze empty modules on module level.
Own Id: OTP-5418

Tools 2.4.1
Fixed Bugs and Malfunctions
	The xref analysis locals_not_used could return too many functions. This
problem has been fixed.
Own Id: OTP-5071

	The cover tool could not always compile parse transformed modules. This
problem has been fixed.
Own Id: OTP-5305

 cover - The Coverage Analysis Tool

Introduction
The module cover provides a set of functions for coverage analysis of Erlang
programs, counting how many times each executable line
is executed.
Coverage analysis can be used to verify test cases, making sure all relevant
code is covered, and can be helpful when looking for bottlenecks in the code.
Getting Started With Cover
Example
Assume that a test case for the following program should be verified:
-module(channel).
-behaviour(gen_server).

-export([start_link/0,stop/0]).
-export([alloc/0,free/1]). % client interface
-export([init/1,handle_call/3,terminate/2]). % callback functions

start_link() ->
 gen_server:start_link({local,channel}, channel, [], []).

stop() ->
 gen_server:call(channel, stop).

%%%-Client interface functions---

alloc() ->
 gen_server:call(channel, alloc).

free(Channel) ->
 gen_server:call(channel, {free,Channel}).

%%%-gen_server callback functions--

init(_Arg) ->
 {ok,channels()}.

handle_call(stop, _Client, Channels) ->
 {stop,normal,ok,Channels};

handle_call(alloc, _Client, Channels) ->
 {Ch,Channels2} = alloc(Channels),
 {reply,{ok,Ch},Channels2};

handle_call({free,Channel}, _Client, Channels) ->
 Channels2 = free(Channel, Channels),
 {reply,ok,Channels2}.

terminate(_Reason, _Channels) ->
 ok.

%%%-Internal functions---

channels() ->
 [ch1,ch2,ch3].

alloc([Channel|Channels]) ->
 {Channel,Channels};
alloc([]) ->
 false.

free(Channel, Channels) ->
 [Channel|Channels].
The test case is implemented as follows:
-module(test).
-export([s/0]).

s() ->
 {ok,Pid} = channel:start_link(),
 {ok,Ch1} = channel:alloc(),
 ok = channel:free(Ch1),
 ok = channel:stop().
Preparation
First of all, Cover must be started. This spawns a process which owns the Cover
database where all coverage data will be stored.
1> cover:start().
{ok,<0.90.0>}
To include other nodes in the coverage analysis, use
cover:start/1. All cover-compiled modules will then be loaded on all
nodes, and data from all nodes will be summed up when analysing. For
simplicity this example only involves the current node.
Before any analysis can take place, the involved modules must be
cover-compiled. This means that some extra information is added to
the module before beging compiled into a binary and
loaded. The source file of the module is
not affected and no .beam file is created.
2> cover:compile_module(channel).
{ok,channel}
Each time a function in the cover-compiled module channel is called,
information about the call will be added to the Cover database. Run the test
case:
3> test:s().
ok
Cover analysis is performed by examining the contents of the Cover database. The
output is determined by two parameters, Level and Analysis. Analysis is
either coverage or calls and determines the type of the analysis. Level is
either module, function, clause, or line and determines the level of the
analysis.
Coverage Analysis
Analysis of type coverage is used to find out how much of the code has been
executed and how much has not been executed. Coverage is represented by a tuple
{Cov,NotCov}, where Cov is the number of executable lines that have been
executed at least once and NotCov is the number of executable lines that have
not been executed.
If the analysis is made on module level, the result is given for the entire
module as a tuple {Module,{Cov,NotCov}}:
4> cover:analyse(channel, coverage, module).
{ok,{channel,{14,1}}}
For channel, the result shows that 14 lines in the module are covered but one
line is not covered.
If the analysis is made on function level, the result is given as a list of
tuples {Function,{Cov,NotCov}}, one for each function in the module. A
function is specified by its module name, function name and arity:
5> cover:analyse(channel, coverage, function).
{ok,[{{channel,start_link,0},{1,0}},
 {{channel,stop,0},{1,0}},
 {{channel,alloc,0},{1,0}},
 {{channel,free,1},{1,0}},
 {{channel,init,1},{1,0}},
 {{channel,handle_call,3},{5,0}},
 {{channel,terminate,2},{1,0}},
 {{channel,channels,0},{1,0}},
 {{channel,alloc,1},{1,1}},
 {{channel,free,2},{1,0}}]}
For channel, the result shows that the uncovered line is in the function
channel:alloc/1.
If the analysis is made on clause level, the result is given as a list of tuples
{Clause,{Cov,NotCov}}, one for each function clause in the module. A clause is
specified by its module name, function name, arity and position within the
function definition:
6> cover:analyse(channel, coverage, clause).
{ok,[{{channel,start_link,0,1},{1,0}},
 {{channel,stop,0,1},{1,0}},
 {{channel,alloc,0,1},{1,0}},
 {{channel,free,1,1},{1,0}},
 {{channel,init,1,1},{1,0}},
 {{channel,handle_call,3,1},{1,0}},
 {{channel,handle_call,3,2},{2,0}},
 {{channel,handle_call,3,3},{2,0}},
 {{channel,terminate,2,1},{1,0}},
 {{channel,channels,0,1},{1,0}},
 {{channel,alloc,1,1},{1,0}},
 {{channel,alloc,1,2},{0,1}},
 {{channel,free,2,1},{1,0}}]}
For channel, the result shows that the uncovered line is in the second clause
of channel:alloc/1.
Finally, if the analysis is made on line level, the result is given as a list of
tuples {Line,{Cov,NotCov}}, one for each executable line in the source code. A
line is specified by its module name and line number.
7> cover:analyse(channel, coverage, line).
{ok,[{{channel,9},{1,0}},
 {{channel,12},{1,0}},
 {{channel,17},{1,0}},
 {{channel,20},{1,0}},
 {{channel,25},{1,0}},
 {{channel,28},{1,0}},
 {{channel,31},{1,0}},
 {{channel,32},{1,0}},
 {{channel,35},{1,0}},
 {{channel,36},{1,0}},
 {{channel,39},{1,0}},
 {{channel,44},{1,0}},
 {{channel,47},{1,0}},
 {{channel,49},{0,1}},
 {{channel,52},{1,0}}]}
For channel, the result shows that the uncovered line is line number 49.
Call Statistics
Analysis of type calls is used to find out how many times something has been
called and is represented by an integer Calls.
If the analysis is made on module level, the result is given as a tuple
{Module,Calls}. Here Calls is the total number of calls to functions in the
module:
8> cover:analyse(channel, calls, module).
{ok,{channel,12}}
For channel, the result shows that a total of twelve calls have been made to
functions in the module.
If the analysis is made on function level, the result is given as a list of
tuples {Function,Calls}. Here Calls is the number of calls to each function:
9> cover:analyse(channel, calls, function).
{ok,[{{channel,start_link,0},1},
 {{channel,stop,0},1},
 {{channel,alloc,0},1},
 {{channel,free,1},1},
 {{channel,init,1},1},
 {{channel,handle_call,3},3},
 {{channel,terminate,2},1},
 {{channel,channels,0},1},
 {{channel,alloc,1},1},
 {{channel,free,2},1}]}
For channel, the result shows that handle_call/3 is the most called function
in the module (three calls). All other functions have been called once.
If the analysis is made on clause level, the result is given as a list of tuples
{Clause,Calls}. Here Calls is the number of calls to each function clause:
10> cover:analyse(channel, calls, clause).
{ok,[{{channel,start_link,0,1},1},
 {{channel,stop,0,1},1},
 {{channel,alloc,0,1},1},
 {{channel,free,1,1},1},
 {{channel,init,1,1},1},
 {{channel,handle_call,3,1},1},
 {{channel,handle_call,3,2},1},
 {{channel,handle_call,3,3},1},
 {{channel,terminate,2,1},1},
 {{channel,channels,0,1},1},
 {{channel,alloc,1,1},1},
 {{channel,alloc,1,2},0},
 {{channel,free,2,1},1}]}
For channel, the result shows that all clauses have been called once, except
the second clause of channel:alloc/1 which has not been called at all.
Finally, if the analysis is made on line level, the result is given as a list of
tuples {Line,Calls}. Here Calls is the number of times each line has been
executed:
11> cover:analyse(channel, calls, line).
{ok,[{{channel,9},1},
 {{channel,12},1},
 {{channel,17},1},
 {{channel,20},1},
 {{channel,25},1},
 {{channel,28},1},
 {{channel,31},1},
 {{channel,32},1},
 {{channel,35},1},
 {{channel,36},1},
 {{channel,39},1},
 {{channel,44},1},
 {{channel,47},1},
 {{channel,49},0},
 {{channel,52},1}]}
For channel, the result shows that all lines have been executed once, except
line number 49 which has not been executed at all.
Analysis to File
A line level calls analysis of channel can be written to a file using
cover:analyse_to_file/1:
12> cover:analyse_to_file(channel).
{ok,"channel.COVER.out"}
The function creates a copy of channel.erl where it for each executable line
is specified how many times that line has been executed. The output file is
called channel.COVER.out.
File generated from /Users/bjorng/git/otp/channel.erl by COVER 2024-03-20 at 13:25:04

**

 | -module(channel).
 | -behaviour(gen_server).
 |
 | -export([start_link/0,stop/0]).
 | -export([alloc/0,free/1]). % client interface
 | -export([init/1,handle_call/3,terminate/2]). % callback functions
 |
 | start_link() ->
 1..| gen_server:start_link({local,channel}, channel, [], []).
 |
 | stop() ->
 1..| gen_server:call(channel, stop).
 |
 | %%%-Client interface functions---
 |
 | alloc() ->
 1..| gen_server:call(channel, alloc).
 |
 | free(Channel) ->
 1..| gen_server:call(channel, {free,Channel}).
 |
 | %%%-gen_server callback functions--
 |
 | init(_Arg) ->
 1..| {ok,channels()}.
 |
 | handle_call(stop, _Client, Channels) ->
 1..| {stop,normal,ok,Channels};
 |
 | handle_call(alloc, _Client, Channels) ->
 1..| {Ch,Channels2} = alloc(Channels),
 1..| {reply,{ok,Ch},Channels2};
 |
 | handle_call({free,Channel}, _Client, Channels) ->
 1..| Channels2 = free(Channel, Channels),
 1..| {reply,ok,Channels2}.
 |
 | terminate(_Reason, _Channels) ->
 1..| ok.
 |
 | %%%-Internal functions---
 |
 | channels() ->
 1..| [ch1,ch2,ch3].
 |
 | alloc([Channel|Channels]) ->
 1..| {Channel,Channels};
 | alloc([]) ->
 0..| false.
 |
 | free(Channel, Channels) ->
 1..| [Channel|Channels].
Conclusion
By looking at the results from the analyses, it can be deduced that
the test case does not cover the case when all channels are allocated
and test.erl should be extended accordingly. Incidentally, when the
test case is corrected a bug in channel will be discovered.
When the Cover analysis is ready, Cover is stopped and all cover-compiled
modules are unloaded. The code for channel is now
loaded as usual from a .beam file in the current path.
13> code:which(channel).
cover_compiled
14> cover:stop().
ok
15> code:which(channel).
"./channel.beam"
Miscellaneous
Performance
Execution of code in cover-compiled modules is slower and more memory consuming
than for regularly compiled modules. As the Cover database contains information
about each executable line in each cover-compiled module, performance decreases
proportionally to the size and number of the cover-compiled modules.
To improve performance when analysing cover results it is possible to do
multiple calls to analyse and
analyse_to_file at once. You can also use the
async_analyse_to_file convenience function.

Executable Lines
Cover uses the concept of executable lines, which is code lines containing
an executable expression such as a matching or a function call. A blank line or
a line containing a comment, function head or pattern in a case or receive
statement is not executable.
In the example below, lines number 2, 4, 6, 8, and 11 are executable lines:
1: is_loaded(Module, Compiled) ->
2: case get_file(Module, Compiled) of
3: {ok,File} ->
4: case code:which(Module) of
5: ?TAG ->
6: {loaded,File};
7: _ ->
8: unloaded
9: end;
10: false ->
11: false
12: end.

Code Loading Mechanism
When a module is cover-compiled, it is also loaded using the normal code loading
mechanism of Erlang. This means that if a cover-compiled module is re-loaded
during a Cover session, for example using c(Module), it will no longer be
cover-compiled.
Use cover:is_compiled/1 or code:which/1 to see whether or not a
module is cover-compiled (and still loaded).
When Cover is stopped, all cover-compiled modules are unloaded.

 cprof - The Call Count Profiler

cprof is a profiling tool that can be used to get a picture of how often
different functions in the system are called.
cprof uses breakpoints similar to local call trace, but containing counters,
to collect profiling data. Therefore there is no need for special compilation of
any module to be profiled.
cprof presents all profiled modules in descending total call count order, and
for each module presents all profiled functions also in descending call count
order. A call count limit can be specified to filter out all functions below the
limit.
Profiling is done in the following steps:
	cprof:start/* - Starts profiling with
zeroed call counters for specified functions by setting call count
breakpoints on them.

	Mod:Fun() - Runs the code to be profiled.

	cprof:pause/* - Pauses the call counters for
specified functions. This minimizes the impact of code running in
the background or in the shell. Call counters are automatically
paused when they "hit the ceiling" of the host machine word
size. For a 32 bit host the maximum counter value is 2,147,483,647.

	cprof:analyse/* - Collects call counters
and computes the result.

	cprof:restart/* - Restarts the call
counters from zero for specified functions. Can be used to collect a
new set of counters without having to stop and start call count
profiling.

	cprof:stop/0..3 - Stops profiling by
removing call count breakpoints from specified functions.

Functions can be specified as either all in the system, all in one module, all
arities of one function, one function, or all functions in all modules not yet
loaded. BIFs cannot be call-count traced.
The analysis result can either be for a single module or for all modules. In either
case a call count limit can be given to filter out the functions with a call
count below the limit. The all modules analysis does not contain the module
cprof itself; the only way to analyze cprof is by specifying it as a single
module to analyse.
Call count tracing is very lightweight compared to other forms of tracing since
no trace message has to be generated. Some measurements indicates performance
degradations in the vicinity of 10 percent.
The following sections show some examples of profiling with cprof.
Example: Background work
From the Erlang shell:
1> cprof:start(), cprof:pause(). % Stop counters just after start
8492
2> cprof:analyse().
{539,
 [{shell,155,
 [{{shell,prep_check,1},55},
 {{shell,used_records,4},45},
 {{shell,used_records,1},45},
 {{shell,used_record_defs,2},1},
 {{shell,record_defs,2},1},
 {{shell,record_bindings,2},1},
 {{shell,exprs,7},1},
 {{shell,expr,4},1},
 {{shell,expand_records,2},1},
 {{shell,check_command,2},1},
 {{shell,apply_fun,3},1},
 {{shell,'-exprs/7-lc$^0/1-0-',1},1},
 {{shell,'-eval_loop/3-fun-0-',3},1}]},
 %% Information about many modules omitted.
 .
 .
 .
 %% Here is the last part.
 {erts_internal,2,[{{erts_internal,trace_pattern,3},2}]},
 {otp_internal,1,[{{otp_internal,obsolete,3},1}]},
 {maps,1,[{{maps,from_list,1},1}]},
 {erl_internal,1,[{{erl_internal,bif,3},1}]}]}
3> cprof:analyse(cprof).
{cprof,3,[{{cprof,tr,2},2},{{cprof,pause,0},1}]}
4> cprof:stop().
8586
The example showed some of the background work that the shell performs just to
interpret the first command line.
What is captured in this example is the part of the work the shell does while
interpreting the command line that occurs between the actual calls to
cprof:start() and cprof:analyse().
Example: One module
From the Erlang shell:
1> cprof:start(),R=calendar:day_of_the_week(1896,4,27),cprof:pause(),R.
1
2> cprof:analyse(calendar).
{calendar,9,
 [{{calendar,last_day_of_the_month1,2},1},
 {{calendar,last_day_of_the_month,2},1},
 {{calendar,is_leap_year1,1},1},
 {{calendar,is_leap_year,1},1},
 {{calendar,dy,1},1},
 {{calendar,dm,1},1},
 {{calendar,df,2},1},
 {{calendar,day_of_the_week,3},1},
 {{calendar,date_to_gregorian_days,3},1}]}
3> cprof:stop().
8648
The example tells us that "Aktiebolaget LM Ericsson & Co" was registered on a
Monday (since the return value of the first command is 1), and that the
calendar module needed 9 function calls to calculate that.
Using cprof:analyse() in this example also shows approximately the same
background work as in the first example.
Example: In the code
Write a module:
-module(sort).
-export([do/1]).

do(N) ->
 cprof:stop(),
 cprof:start(),
 do(N, []).

do(0, L) ->
 R = lists:sort(L),
 cprof:pause(),
 R;
do(N, L) ->
 do(N-1, [rand:uniform(256)-1 | L]).
From the Erlang shell:
1> c(sort).
{ok,sort}
2> rand:seed(default, 42), ok.
ok.
3> sort:do(1000).
[0,0,0,1,1,1,1,2,2,3,3,4,4,4,4,5,5,5,6,6,6,6,7,7,7,7,7,8,8|...]
4> cprof:analyse().
{13180,
 [{lists,6173,
 [{{lists,rmerge3_1,6},1045},
 {{lists,rmerge3_2,6},977},
 {{lists,split_1,5},652},
 {{lists,merge3_1,6},579},
 {{lists,merge3_2,6},577},
 {{lists,rmerge3_12_3,6},511},
 {{lists,split_1_1,6},347},
 {{lists,merge3_12_3,6},310},
 {{lists,rmerge3_21_3,6},282},
 {{lists,merge3_21_3,6},221},
 {{lists,merge2_1,4},154},
 {{lists,merge2_2,5},138},
 {{lists,reverse,2},106},
 {{lists,rmerge2_2,5},87},
 {{lists,rmergel,2},81},
 {{lists,rmerge2_1,4},75},
 {{lists,mergel,2},28},
 {{lists,keyfind,3},2},
 {{lists,sort,1},1}]},
 {rand,5000,
 [{{rand,uniform_s,2},1000},
 {{rand,uniform,1},1000},
 {{rand,seed_put,1},1000},
 {{rand,seed_get,0},1000},
 {{rand,exsss_uniform,2},1000}]},
 {erlang,1004,
 [{{erlang,put,2},1000},
 {{erlang,trace_pattern,3},2},
 {{erlang,ensure_tracer_module_loaded,2},2}]},
 {sort,1001,[{{sort,do,2},1001}]},
 {erts_internal,2,[{{erts_internal,trace_pattern,3},2}]}]}
5> cprof:stop().
12625
The example shows some details of how lists:sort/1 works. It used 6173
function calls in module lists to complete the work.
This time, since the shell was not involved in starting and stopping cprof, no
other work was done in the system during the profiling.

 The Erlang mode for Emacs

Purpose
The purpose of this user guide is to introduce you to the Erlang mode
for Emacs and gives some relevant background information of the
functions and features. See also Erlang mode reference
manual The purpose of the Erlang mode
itself is to facilitate the developing process for the Erlang
programmer.
Pre-requisites
Basic knowledge of Emacs and Erlang/OTP.
Elisp
Two Elisp modules are included in this tool package for
Emacs. erlang.el defines the actual Erlang mode and
erlang-start.el makes some nice initializations.
Setup on UNIX
To set up the Erlang Emacs mode on a UNIX systems, edit or create the file .emacs
in the your home directory.
Below is a complete example of what should be added to a user's .emacs
provided that OTP is installed in the directory /usr/local/otp:
(setq load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"
load-path))
(setq erlang-root-dir "/usr/local/otp")
(setq exec-path (cons "/usr/local/otp/bin" exec-path))
(require 'erlang-start)
Setup on Windows
To set up the Erlang Emacs mode on a Windows systems, edit/create the file
.emacs, the location of the file depends on the configuration of the system.
If the HOME environment variable is set, Emacs will look for the .emacs file
in the directory indicated by the HOME variable. If HOME is not set, Emacs
will look for the .emacs file in C:\.
Below is a complete example of what should be added to a user's .emacs
provided that OTP is installed in the directory C:\Program Files\Erlang OTP:
(setq load-path (cons "C:/Program Files/Erlang OTP/lib/tools-<ToolsVer>/emacs"
load-path))
(setq erlang-root-dir "C:/Program Files/Erlang OTP")
(setq exec-path (cons "C:/Program Files/Erlang OTP/bin" exec-path))
(require 'erlang-start)
Note
In .emacs, the slash character (/) can be used as path separator. But if you
decide to use the backslash character (\), note that backslashes have to be
doubled, since they are treated as escape characters by Emacs.
Indentation
The "Oxford Advanced Learners Dictionary of Current English" says the following
about the word "indent":
"start (a line of print or writing) farther from the margin than the others".

The Erlang mode does, of course, provide this feature. The layout used is based
on the common use of the language.
It is strongly recommended to use this feature and avoid to indent lines in a
nonstandard way. Some motivations are:
	Code using the same layout is easy to read and maintain.
	Since several features of Erlang mode is based on the standard layout they
might not work correctly if a nonstandard layout is used.

The indentation features can be used to reindent large sections of a file. If
some lines use nonstandard indentation they will be reindented.
Editing
	M-x erlang-mode RET - This command activates the Erlang major mode for
the current buffer. When this mode is active the mode line contain the word
"Erlang".

When the Erlang mode is correctly installed, it is automatically activated when
a file ending in .erl or .hrl is opened in Emacs.
When a file is saved the name in the -module(). line is checked against the
file name. Should they mismatch Emacs can change the module specifier so that it
matches the file name. By default, the user is asked before the change is
performed.
An "electric" command is a character that in addition to just inserting the
character performs some type of action. For example the ; character is typed
in a situation where is ends a function clause a new function header is
generated. The electric commands are as follows:
	erlang-electric-comma - Insert a comma character and possibly a new
indented line.
	erlang-electric-semicolon - Insert a semicolon character and possibly a
prototype for the next line.
	erlang-electric-gt - Insert a > character and possible a new indented line.

To disable all electric commands set the variable erlang-electric-commands to
the empty list. In short, place the following line in your .emacs-file:
(setq erlang-electric-commands '())
Syntax highlighting
It is possible for Emacs to use colors when displaying a buffer. By "syntax
highlighting", we mean that syntactic components, for example keywords and
function names, will be colored.
The basic idea of syntax highlighting is to make the structure of a program
clearer. For example, the highlighting will make it easier to spot simple bugs.
Have not you ever written a variable in lower-case only? With syntax
highlighting a variable will colored while atoms will be shown with the normal
text color.
Tags
Tags is a standard Emacs package used to record information about source files
in large development projects. In addition to listing the files of a project, a
tags file normally contains information about all functions and variables that
are defined. By far, the most useful command of the tags system is its ability
to find the definition of functions in any file in the project. But the Tags
system is not limited to this feature, for example, it is possible to do a text
search in all files in a project, or to perform a project-wide search and
replace.
In order to use the Tags system a file named TAGS must be created. The file
can be seen as a database over all functions, records, and macros in all files
in the project. The TAGS file can be created using two different methods for
Erlang. The first is the standard Emacs utility "etags", the second is by using
the Erlang module tags.
Etags
etags is a program that is part of the Emacs distribution. It is normally
executed from a command line, like a Unix shell or a DOS box.
The etags program of fairly modern versions of Emacs and XEmacs has native
support for Erlang. To check if your version does include this support, issue
the command etags --help at a the command line prompt. At the end of the help
text there is a list of supported languages. Unless Erlang is a member of this
list I suggest that you should upgrade to a newer version of Emacs.
As seen in the help text — unless you have not upgraded your Emacs yet — etags
associate the file extensions .erl and .hrl with Erlang.
Basically, the etags utility is run using the following form:
etags file1.erl file2.erl

This will create a file named TAGS in the current directory.
The etags utility can also read a list of files from its standard input by
supplying a single dash in place of the file names. This feature is useful when
a project consists of a large number of files. The standard UNIX command find
can be used to generate the list of files, for example:
find . -name "*.[he]rl" -print | etags -

The above line will create a TAGS file covering all the Erlang source files in
the current directory, and in the subdirectories below.
See the GNU Emacs Manual and the etags man page for more info.
Shell
The look and feel on an Erlang shell inside Emacs should be the same as in a
normal Erlang shell. There is just one major difference, the cursor keys will
actually move the cursor around just like in any normal Emacs buffer. The
command line history can be accessed by the following commands:
	C-upor M-p(comint-previous-input) - Move to the previous line in
the input history.
	C-downor M-n(comint-next-input) - Move to the next line in the
input history.

If the Erlang shell buffer would be killed the command line history is saved to
a file. The command line history is automatically retrieved when a new Erlang
shell is started.
Compilation
The classic edit-compile-bugfix cycle for Erlang is to edit the source file in
an editor, save it to a file and switch to an Erlang shell. In the shell the
compilation command is given. Should the compilation fail you have to bring out
the editor and locate the correct line.
With the Erlang editing mode the entire edit-compile-bugfix cycle can be
performed without leaving Emacs. Emacs can order Erlang to compile a file and it
can parse the error messages to automatically place the point on the erroneous
lines.

 fprof - The File Trace Profiler

fprof is a profiling tool that can be used to get a picture of how much
processing time different functions consumes and in which processes.
fprof uses tracing with timestamps to collect profiling data. Therefore there
is no need for special compilation of any module to be profiled.
fprof presents wall clock times from the host machine OS, with the assumption
that OS scheduling will randomly load the profiled functions in a fair way. Both
own time, that is, the time used by a function for its own execution, and
accumulated time, that is, execution time including called functions.
Profiling is essentially done in 3 steps:
	Tracing to a file.

	Profiling: the trace file is read and raw profile data is collected
into an internal RAM storage on the node. During this step the trace data may
be dumped in text format to file or console.

	Analysing: the raw profile data is sorted and dumped in text format
either to file or console.

Since fprof stores trace data to a file, the runtime performance degradation is
minimized, but still far from negligible, especially for programs that themselves
use the filesystem heavily. Where the trace file is placed is also important;
on Unix systems /tmp is usually a good choice, while any
network-mounted disk is a bad choice.
fprof can also skip the file step and trace to a tracer process of its own that
does the profiling in runtime.
The following sections show some examples of how to profile with fprof.
Profiling from the source code
If you can edit and recompile the source code, it is convenient to
insert fprof:trace(start) and
fprof:trace(stop) before and after the code to be profiled.
All spawned processes are also traced. If you want some other filename than
the default, use fprof:trace(start, "my_fprof.trace").
When execution is finished, the raw profile can be processed using
fprof:profile(),
or fprof:profile(file, "my_fprof.trace")
for a non-default filename.
Finally create an informative table dumped on the console with
fprof:analyse(), or on file with
fprof:analyse(dest, []), or
fprof:analyse([{dest, "my_fprof.analysis"}, {cols, 120}])
for a wider listing of a non-default filename.
Profiling a function
If you have one function that does the task that you want to profile, and the
function returns when the profiling should stop, it is convenient to use
fprof:apply(Module, Function, Args) for the tracing step.
If the tracing should continue after the function has returned, for
example if it is a start function that spawns processes to be
profiled, use
fprof:apply(M, F, Args, [continue | OtherOpts]).
The tracing has to be stopped at a suitable later time using
fprof:trace(stop).
Immediate profiling
It is also possible to trace immediately into the profiling process that creates
the raw profile data, that is to short circuit the tracing and profiling steps
so that the filesystem is not used for tracing.
Do something like this:
{ok, Tracer} = fprof:profile(start),
fprof:trace([start, {tracer, Tracer}]),
%% Run code to profile
fprof:trace(stop);
This puts less load on the filesystem, but much more load on the Erlang runtime
system.

 lcnt - The Lock Profiler

Internally in the Erlang runtime system locks are used to protect resources from
being updated from multiple threads in a fatal way. Locks are necessary to
ensure that the runtime system works properly, but it also introduces
limitations, namely lock contention and locking overhead.
With lock contention we mean when one thread locks a resource, and another
thread (or threads) tries to acquire the same resource at the same time. The
lock will deny the other thread access to the resource and the thread will be
blocked from continuing its execution. The second thread has to wait until the
first thread has completed its access to the resource and unlocked it. The
lcnt tool measures these lock conflicts.
Locks have an inherent cost in execution time and memory space. It takes time to
initialize, destroy, acquire, or release locks. To decrease lock contention
it is sometimes necessary to use finer-grained locking strategies. This
usually also increases the locking overhead. Hence there is a tradeoff between
lock contention and overhead. In general, lock contention increases with the
number of threads running concurrently.
The lcnt tool does not measure locking overhead.
Enabling lock-counting
For investigation of locks in the emulator we use an internal tool called lcnt
(short for lock-count). The VM needs to be compiled with this option enabled. To
compile a lock-counting VM along with a normal VM, use:
cd $ERL_TOP
./configure --enable-lock-counter
make
Start the lock-counting VM like this:
$ERL_TOP/bin/erl -emu_type lcnt
To verify that lock counting is enabled check that [lock-counting] appears in
the status text when the VM is started.
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit] [lock-counting]
Getting started
Once you have a lock counting enabled VM the module lcnt can be used. The
module is intended to be used from the current running nodes shell. To access
remote nodes use lcnt:clear(Node) and
lcnt:collect(Node).
All locks are continuously monitored and its statistics updated. Use
lcnt:clear/0 to initially clear all counters
before running any specific tests. This command will also reset the
internal duration timer.
To retrieve lock statistics information, use
lcnt:collect/0,1. The collect operation will
start a lcnt server if it not already started. All collected data
will be stored in an Erlang term and uploaded to the server along with
the duration time. The duration time is the time between
lcnt:clear/0,1 and
lcnt:collect/0,1.
Once the data is collected to the server it can be filtered, sorted, and printed
in multiple ways.
Example of usage
Here is an example of running the Big Bang Benchmark:
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit] [lock-counting]

Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
1> lcnt:rt_opt({copy_save, true}).
false
2> lcnt:clear(), big:bang(1000), lcnt:collect().
ok
3> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 run_queue 10 590799 8875 1.5022 37906 2.2167
 proc_msgq 1048 2515180 4667 0.1856 20962 1.2258
 proc_main 1048 2195317 23775 1.0830 1664 0.0973
ok
Another way to to profile a specific function is to use lcnt:apply/3 or
lcnt:apply/1, which calls lcnt:clear/0 before calling the function and
lcnt:collect/0 after its invocation. This method should only be used in
micro-benchmarks since it sets copy_save to true for the duration of the
function call, which may cause the emulator to run out of memory if attempted
under load.
1> lcnt:apply(fun() -> big:bang(1000) end).
1845411
2> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 run_queue 10 582789 9237 1.5850 41929 2.2633
 proc_msgq 1047 2494483 4731 0.1897 11173 0.6031
 proc_main 1047 2192806 23283 1.0618 1500 0.0810
ok
The process locks are sorted after its class like all other locks. It is
convenient to look at specific processes and ports as classes. We can do this by
swapping class and class identifiers with lcnt:swap_pid_keys/0.
3> lcnt:swap_pid_keys().
ok
4> lcnt:conflicts([{print, [name, tries, ratio, time]}]).
 lock #tries collisions [%] time [us]
 ----- ------- --------------- ----------
 run_queue 582789 1.5850 41929
 <nonode@nohost.1042.0> 5692 0.5095 484
 <nonode@nohost.465.0> 4989 0.4410 393
 <nonode@nohost.347.0> 6319 2.1839 284
 <nonode@nohost.436.0> 6077 1.9747 198
 <nonode@nohost.307.0> 5071 1.3015 192
 <nonode@nohost.455.0> 5846 1.7106 186
 <nonode@nohost.565.0> 6305 1.2054 179
 <nonode@nohost.461.0> 5820 1.2715 176
 <nonode@nohost.173.0> 6329 1.4852 168
 <nonode@nohost.453.0> 5172 0.8701 167
 <nonode@nohost.741.0> 5306 0.4146 166
 <nonode@nohost.403.0> 5838 1.9870 160
 <nonode@nohost.463.0> 6346 1.5443 143
 <nonode@nohost.184.0> 5542 0.4331 141
 <nonode@nohost.289.0> 5260 0.2662 137
 <nonode@nohost.166.0> 5610 0.9447 127
 <nonode@nohost.189.0> 5354 0.5230 118
 <nonode@nohost.121.0> 5845 0.9239 115
 <nonode@nohost.104.0> 5140 0.7782 108
ok
Example with Mnesia Transaction Benchmark
From the Erlang shell:
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit] [lock-counting]

Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
1> Conf = [{db_nodes, [node()]}, {driver_nodes, [node()]}, {replica_nodes, [node()]},
 {n_drivers_per_node, 10}, {n_branches, 1000}, {n_accounts_per_branch, 10},
 {replica_type, ram_copies}, {stop_after, 60000}, {reuse_history_id, true}], ok.
ok
2> mnesia_tpcb:init([{use_running_mnesia, false}|Conf]).
 .
 .
 .
ignore
Initial configuring of the benchmark is done. It is time to profile the actual
Mnesia benchmark:
3> lcnt:apply(fun() -> {ok,{time, Tps,_,_,_,_}} = mnesia_tpcb:run([{use_running_mnesia,
 true}|Conf]), Tps/60 end).
 .
 .
 .
50204.666666666664
The benchmark runs for 60 seconds (followed by verification and
analysis), and then returns the number of transactions per seconds.
4> lcnt:swap_pid_keys().
ok
5> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 run_queue 10 89329288 3227515 3.6131 5018119 8.3606
 mnesia_locker 5 64793236 8231226 12.7038 98654 0.1644
 db_tab 3012324 416847817 140631 0.0337 75308 0.1255
 <nonode@nohost.1158.0> 5 14499900 36934 0.2547 4878 0.0081
 <nonode@nohost.1157.0> 5 14157504 35797 0.2528 4727 0.0079
 <nonode@nohost.1163.0> 5 14194934 34510 0.2431 4403 0.0073
 <nonode@nohost.1164.0> 5 14149447 35326 0.2497 4150 0.0069
 <nonode@nohost.1166.0> 5 14316525 35675 0.2492 4116 0.0069
 <nonode@nohost.1159.0> 5 14241146 35358 0.2483 4101 0.0068
 <nonode@nohost.1162.0> 5 14224491 35182 0.2473 4094 0.0068
 <nonode@nohost.1160.0> 5 14190075 35328 0.2490 4075 0.0068
 <nonode@nohost.1165.0> 5 14308906 35031 0.2448 3896 0.0065
 <nonode@nohost.1161.0> 5 14457330 36182 0.2503 3856 0.0064
 mnesia_tm 5 28149333 179294 0.6369 1057 0.0018
 pix_lock 1024 132 1 0.7576 549 0.0009
 <nonode@nohost.85.0> 5 17 2 11.7647 87 0.0001
 <nonode@nohost.1156.0> 5 1335 6 0.4494 1 0.0000
ok
The id header represents the number of unique identifiers under a
class when the option {combine, true} is used (which is enabled by
default). It will otherwise show the specific identifier. The db_tab
listing shows 3,012,324 unique locks, which is one for each ETS table
created. Mnesia creates one ETS table for each transaction.
The listing shows also shows that the mnesia_locker process has highly contended locks.
Using lcnt:inspect/1 more information can be displayed for that process:
6> lcnt:inspect(mnesia_locker).
 lock id #tries #collisions collisions [%] time [us] duration [%] histogram [log2(us)]
 ----- --- ------- ------------ --------------- ---------- ------------- ---------------------
 mnesia_locker proc_main 19853372 7591248 38.2366 80550 0.1342 |. ...X........ |
 mnesia_locker proc_msgq 30917225 639627 2.0688 17126 0.0285 |. .X......... |
 mnesia_locker proc_status 9348426 351 0.0038 978 0.0016 | .xxX. . |
 mnesia_locker proc_btm 0 0 0.0000 0 0.0000 | |
 mnesia_locker proc_trace 4674213 0 0.0000 0 0.0000 | |
ok
Listing the conflicts without class combiner:
7> lcnt:conflicts([{combine, false}, {print, [name, id, tries, ratio, time]}]).
 lock id #tries collisions [%] time [us]
 ----- --- ------- --------------- ----------
 run_queue 2 31075249 3.5676 1728233
 run_queue 1 29738521 3.6348 1683219
 run_queue 3 27912150 3.6429 1573593
 mnesia_locker proc_main 19853372 38.2366 80550
 db_tab mnesia_transient_decision 3012281 2.5675 55104
 run_queue 4 512077 3.7041 29486
 mnesia_locker proc_msgq 30917225 2.0688 17126
 db_tab account 6044562 0.3599 7909
 db_tab branch 6026659 0.3132 5654
 db_tab teller 6044659 0.2684 4727
 <nonode@nohost.1158.0> proc_main 3207155 0.7178 3726
 <nonode@nohost.1163.0> proc_main 3138532 0.7485 3593
 <nonode@nohost.1157.0> proc_main 3133180 0.7156 3547
 <nonode@nohost.1166.0> proc_main 3165128 0.7609 3517
 <nonode@nohost.1164.0> proc_main 3128838 0.7525 3477
 <nonode@nohost.1160.0> proc_main 3137627 0.7559 3433
 <nonode@nohost.1162.0> proc_main 3144886 0.7509 3425
 <nonode@nohost.1159.0> proc_main 3149315 0.7487 3372
 <nonode@nohost.1161.0> proc_main 3196546 0.7591 3310
 <nonode@nohost.1165.0> proc_main 3164333 0.7483 3309
ok
In this scenario the locks for the scheduler's run queues dominate the time waiting
for locks. The most contended lock for ETS tables is for the mnesia_transient_decision
ETS table.
Here is how to show the information for the ETS tables.
8> lcnt:inspect(db_tab, [{print, [name, id, tries, colls, ratio, duration]}]).
 lock id #tries #collisions collisions [%] duration [%]
 ----- --- ------- ------------ --------------- -------------
 db_tab mnesia_transient_decision 3012281 77341 2.5675 0.0918
 db_tab account 6044562 21753 0.3599 0.0132
 db_tab branch 6026659 18873 0.3132 0.0094
 db_tab teller 6044659 16221 0.2684 0.0079
 db_tab history 3012281 4005 0.1330 0.0022
 db_tab mnesia_stats 3071064 2437 0.0794 0.0010
 db_tab mnesia_trans_store 15 0 0.0000 0.0000
 db_tab mnesia_decision 3012281 0 0.0000 0.0000
 db_tab schema 0 0 0.0000 0.0000
 db_tab dets 0 0 0.0000 0.0000
 db_tab dets_owners 0 0 0.0000 0.0000
 db_tab dets_registry 0 0 0.0000 0.0000
 db_tab mnesia_lock_queue 36154974 0 0.0000 0.0000
 db_tab mnesia_sticky_locks 12108098 0 0.0000 0.0000
 db_tab mnesia_tid_locks 27176721 0 0.0000 0.0000
 db_tab mnesia_held_locks 48321870 0 0.0000 0.0000
 db_tab mnesia_subscr 0 0 0.0000 0.0000
 db_tab mnesia_gvar 102680683 1 0.0000 0.0000
 db_tab user_functions 0 0 0.0000 0.0000
 db_tab shell_records 0 0 0.0000 0.0000
ok
Deciphering the output
Typically high time values are bad and this is often the thing to look for.
However, one should also look for high lock acquisition frequencies (#tries)
since locks generate overhead and because high frequency could become
problematic if they begin to have conflicts even if it is not shown in a
particular test.
The Big Bang Benchmark
-module(big).
-export([bang/1]).

pinger([], [], true) ->
 receive
	{procs, Procs, ReportTo} ->
	 pinger(Procs, [], ReportTo)
 end;
pinger([], [], false) ->
 receive {ping, From} -> From ! {pong, self()} end,
 pinger([],[],false);
pinger([], [], ReportTo) ->
 ReportTo ! {done, self()},
 pinger([],[],false);
pinger([], [Po|Pos] = Pongers, ReportTo) ->
 receive
	{ping, From} ->
	 From ! {pong, self()},
	 pinger([], Pongers, ReportTo);
	{pong, Po} ->
	 pinger([], Pos, ReportTo)
 end;
pinger([Pi|Pis], Pongers, ReportTo) ->
 receive {ping, From} -> From ! {pong, self()}
 after 0 -> ok
 end,
 Pi ! {ping, self()},
 pinger(Pis, [Pi|Pongers], ReportTo).

spawn_procs(N) when N =< 0 ->
 [];
spawn_procs(N) ->
 [spawn_link(fun () -> pinger([],[],true) end) | spawn_procs(N-1)].

send_procs([], Msg) ->
 Msg;
send_procs([P|Ps], Msg) ->
 P ! Msg,
 send_procs(Ps, Msg).

receive_msgs([]) ->
 ok;
receive_msgs([M|Ms]) ->
 receive
	M ->
	 receive_msgs(Ms)
 end.

bang(N) when integer(N) ->
 Procs = spawn_procs(N),
 RMsgs = lists:map(fun (P) -> {done, P} end, Procs),
 Start = now(),
 send_procs(Procs, {procs, Procs, self()}),
 receive_msgs(RMsgs),
 Stop = now(),
 lists:foreach(fun (P) -> exit(P, normal) end, Procs),
 timer:now_diff(Stop, Start).
See Also
LCNT Reference Manual

 Xref - The Cross Reference Tool

Xref is a cross reference tool that can be used for finding dependencies between
functions, modules, applications and releases. It does so by analyzing the
defined functions and the function calls.
In order to make Xref easy to use, there are predefined analyses that perform
some common tasks. Typically, a module or a release can be checked for calls to
undefined functions. For the somewhat more advanced user there is a small but
flexible language that can be used for selecting parts of the analyzed
system and for doing some simple graph analyses on selected calls.
The following sections show some features of Xref, beginning with a module check
and a predefined analysis. Then follow examples that can be skipped on the first
reading; not all of the concepts used are explained, and it is assumed that the
reference manual has been at least skimmed.
Module Check
Assume we want to check the following module:
-module(my_module).

-export([t/1]).

t(A) ->
 my_module:t2(A).

t2(_) ->
 true.
Cross reference data are read from BEAM files, so the first step when checking
an edited module is to compile it:
1> c(my_module, debug_info).
./my_module.erl:10: Warning: function t2/1 is unused
{ok, my_module}
The debug_info option ensures that the BEAM file contains debug information,
which makes it possible to find unused local functions.
The module can now be checked for calls to
deprecated functions, calls to
undefined functions, and for unused local
functions:
2> xref:m(my_module)
[{deprecated,[]},
 {undefined,[{{my_module,t,1},{my_module,t2,1}}]},
 {unused,[{my_module,t2,1}]}]
m/1 is also suitable for checking that the BEAM file of a module that is about
to be loaded into a running a system does not call any undefined functions. In
either case, the code path of the code server (see the module code) is used
for finding modules that export externally called functions not exported by the
checked module itself, so called library modules.
Predefined Analysis
In the last example the module to analyze was given as an argument to m/1, and
the code path was (implicitly) used as library path. In
this example an xref server will be used, which makes it
possible to analyze applications and releases, and also to select the library
path explicitly.
Each Xref server is referred to by a unique name. The name is given when
creating the server:
1> xref:start(s).
{ok,<0.27.0>}
Next the system to be analyzed is added to the Xref server. Here the system will
be OTP, so no library path will be needed. Otherwise, when analyzing a system
that uses OTP, the OTP modules are typically made library modules by setting the
library path to the default OTP code path (or to code_path, see the
reference manual). By default, the names of read BEAM
files and warnings are output when adding analyzed modules, but these messages
can be avoided by setting default values of some options:
2> xref:set_default(s, [{verbose,false}, {warnings,false}]).
ok
3> xref:add_release(s, code:lib_dir(), {name, otp}).
{ok,otp}
add_release/3 assumes that all subdirectories of the library directory
returned by code:lib_dir() contain applications;
the effect is that of reading all BEAM files for the application.
It is now easy to check the release for calls to undefined functions:
4> xref:analyze(s, undefined_function_calls).
{ok, [...]}
We can now continue with further analyses, or we can delete the Xref server:
5> xref:stop(s).
The check for calls to undefined functions is an example of a predefined
analysis, probably the most useful one. Other examples are the analyses that
find unused local functions, or functions that call some given functions. See
the analyze/2,3 functions for a complete list of predefined
analyses.
Each predefined analysis is a shorthand for a query, a
sentence of a tiny language providing cross reference data as values of
predefined variables. The check for calls to
undefined functions can thus be stated as a query:
4> xref:q(s, "(XC - UC) || (XU - X - B)").
{ok,[...]}
The query asks for the restriction of external calls except the unresolved calls
to calls to functions that are externally used but neither exported nor built-in
functions (the || operator restricts the used functions while the | operator
restricts the calling functions). The - operator returns the difference of two
sets, and the + operator to be used below returns the union of two sets.
The relationships between the predefined variables XU, X, B and a few
others are worth elaborating upon. The reference manual mentions two ways of
expressing the set of all functions, one that focuses on how they are defined:
X + L + B + U, and one that focuses on how they are used: UU + LU + XU. The
reference also mentions some facts about the variables:
	F is equal to L + X (the defined functions are the local functions and the
external functions);
	U is a subset of XU (the unknown functions are a subset of the externally
used functions since the compiler ensures that locally used functions are
defined);
	B is a subset of XU (calls to built-in functions are always external by
definition, and unused built-in functions are ignored);
	LU is a subset of F (the locally used functions are either local functions
or exported functions, again ensured by the compiler);
	UU is equal to F - (XU + LU) (the unused functions are defined functions
that are neither used externally nor locally);
	UU is a subset of F (the unused functions are defined in analyzed
modules).

Using these facts, the two small circles in the picture below can be combined.
[image: Definition and use of functions]
It is often clarifying to mark the variables of a query in such a circle. This
is illustrated in the picture below for some of the predefined analyses. Note
that local functions used by local functions only are not marked in the
locals_not_used circle.
[image: Some predefined analyses as subsets of all functions]
Expressions
The module check and the predefined analyses are useful, but limited. Sometimes
more flexibility is needed, for instance one might not need to apply a graph
analysis on all calls, but some subset will do equally well. That flexibility is
provided with a simple language. Below are some expressions of the language with
comments, focusing on elements of the language rather than providing useful
examples. The analyzed system is assumed to be OTP, so in order to run the
queries, first evaluate these calls:
xref:start(s).
xref:add_release(s, code:root_dir()).
	xref:q(s, "(Fun) xref : Mod"). - All functions of the xref module.

	xref:q(s, "xref : Mod * X"). - All exported functions of the xref
module. The first operand of the intersection operator * is implicitly
converted to the more special type of the second operand.

	xref:q(s, "(Mod) tools"). - All modules of the Tools application.

	xref:q(s, '"xref_.*" : Mod'). - All modules with a name beginning with
xref_.

	xref:q(s, "# E | X "). - Number of calls from exported functions.

	xref:q(s, "XC || L "). - All external calls to local functions.

	xref:q(s, "XC * LC"). - All calls that have both an external and a local
version.

	xref:q(s, "(LLin) (LC * XC)"). - The lines where the local calls of the
last example are made.

	xref:q(s, "(XLin) (LC * XC)"). - The lines where the external calls of
the example before last are made.

	xref:q(s, "XC * (ME - strict ME)"). - External calls within some module.

	xref:q(s, "E ||| kernel"). - All calls within the Kernel application.

	xref:q(s, "closure E | kernel || kernel"). - All direct and indirect
calls within the Kernel application. Both the calling and the used functions
of indirect calls are defined in modules of the kernel application, but it is
possible that some functions outside the kernel application are used by
indirect calls.

	xref:q(s, "{toolbar,debugger}:Mod of ME"). - A chain of module calls
from toolbar to debugger, if there is such a chain, otherwise false. The
chain of calls is represented by a list of modules, toolbar being the first
element and debuggerthe last element.

	xref:q(s, "closure E | toolbar:Mod || debugger:Mod"). - All (in)direct
calls from functions in toolbar to functions in debugger.

	xref:q(s, "(Fun) xref -> xref_base"). - All function calls from xref
to xref_base.

	xref:q(s, "E * xref -> xref_base"). - Same interpretation as last
expression.

	xref:q(s, "E || xref_base | xref"). - Same interpretation as last
expression.

	xref:q(s, "E * [xref -> lists, xref_base -> digraph]"). - All function
calls from xref to lists, and all function calls from xref_base to
digraph.

	xref:q(s, "E | [xref, xref_base] || [lists, digraph]"). - All function
calls from xref and xref_base to lists and digraph.

	xref:q(s, "components EE"). - All strongly connected components of the
Inter Call Graph. Each component is a set of exported or unused local
functions that call each other (in)directly.

	xref:q(s, "X * digraph * range (closure (E | digraph) | (L * digraph))"). -
All exported functions of the digraph module used (in)directly by some
function in digraph.

	xref:q(s, "L * yeccparser:Mod - range (closure (E |

	yeccparser:Mod) | (X * yeccparser:Mod))"). - The interpretation is left
as an exercise.

Graph Analysis
The list representation of graphs is used analyzing
direct calls, while the digraph representation is suited for analyzing
indirect calls. The restriction operators (|, || and |||) are the only
operators that accept both representations. This means that in order to analyze
indirect calls using restriction, the closure operator (which creates the
digraph representation of graphs) has to be explicitly applied.
As an example of analyzing indirect calls, the following Erlang function tries
to answer the question: if we want to know which modules are used indirectly by
some module(s), is it worth while using the
function graph rather than the module graph? Recall that
a module M1 is said to call a module M2 if there is some function in M1 that
calls some function in M2. It would be nice if we could use the much smaller
module graph, since it is available also in the light weight
modulesmode of Xref servers.
t(S) ->
 {ok, _} = xref:q(S, "Eplus := closure E"),
 {ok, Ms} = xref:q(S, "AM"),
 Fun = fun(M, N) ->
 Q = io_lib:format("# (Mod) (Eplus | ~p : Mod)", [M]),
 {ok, N0} = xref:q(S, lists:flatten(Q)),
 N + N0
 end,
 Sum = lists:foldl(Fun, 0, Ms),
 ok = xref:forget(S, 'Eplus'),
 {ok, Tot} = xref:q(S, "# (closure ME | AM)"),
 100 * ((Tot - Sum) / Tot).
Comments on the code:
	We want to find the reduction of the closure of the function graph to modules.
The direct expression for doing that would be (Mod) (closure E | AM), but
then we would have to represent all of the transitive closure of E in memory.
Instead the number of indirectly used modules is found for each analyzed
module, and the sum over all modules is calculated.
	A user variable is employed for holding the digraph representation of the
function graph for use in many queries. The reason is efficiency. As opposed
to the = operator, the := operator saves a value for subsequent analyses.
Here might be the place to note that equal subexpressions within a query are
evaluated only once; = cannot be used for speeding things up.
	Eplus | ~p : Mod. The | operator converts the second operand to the type
of the first operand. In this case the module is converted to all functions of
the module. It is necessary to assign a type to the module (: Mod),
otherwise modules like kernel would be converted to all functions of the
application with the same name; the most general constant is used in cases of
ambiguity.

	Since we are only interested in a ratio, the unary operator # that counts
the elements of the operand is used. It cannot be applied to the digraph
representation of graphs.
	We could find the size of the closure of the module graph with a loop similar
to one used for the function graph, but since the module graph is so much
smaller, a more direct method is feasible.

When the Erlang function t/1 was applied to an Xref server loaded with the
current version of OTP, the returned value was close to 84 (percent). This means
that the number of indirectly used modules is approximately six times greater
when using the module graph. So the answer to the above stated question is that
it is definitely worth while using the function graph for this particular
analysis. Finally, note that in the presence of unresolved calls, the graphs may
be incomplete, which means that there may be indirectly used modules that do not
show up.

 Erlang mode for Emacs

Possibly the most important feature of an editor designed for programmers is the
ability to indent a line of code in accordance with the structure of the
programming language. The Erlang mode does, of course, provide this feature. The
layout used is based on the common use of the language. The mode also provides
things as syntax highlighting, electric commands, module name verification,
comment support including paragraph filling, skeletons, tags support etc.
In the following descriptions the use of the word Point means: "Point can be
seen as the position of the cursor. More precisely, the point is the position
between two characters while the cursor is drawn over the character following
the point".
Indent
The following command are directly available for indentation.
	 TAB (erlang-indent-command) - Indents the current line of code.
	 M-C-\ (indent-region) - Indents all lines in the region.
	 M-l (indent-for-comment) - Insert a comment character to the right of
the code on the line (if any).

Lines containing comment are indented differently depending on the number of
%-characters used:
	 Lines with one %-character is indented to the right of the code. The column
is specified by the variable comment-column, by default column 48 is used.
	 Lines with two %-characters will be indented to the same depth as code would
have been in the same situation.
	 Lines with three of more %-characters are indented to the left margin.
	 C-c C-q (erlang-indent-function) - Indents the current Erlang
function.
	 M-x erlang-indent-clause RET - Indent the current Erlang clause.
	 M-x erlang-indent-current-buffer RET - Indent the entire buffer.

Edit - Fill Comment
When editing normal text in text mode you can let Emacs reformat the text by the
fill-paragraph command. This command will not work for comments since it will
treat the comment characters as words. The Erlang editing mode provides a
command that knows about the Erlang comment structure and can be used to fill
text paragraphs in comments. Ex:
%% This is just a very simple test to show
%% how the Erlang fill
%% paragraph command works.
Clearly, the text is badly formatted. Instead of formatting this paragraph line
by line, let's try erlang-fill-paragraph by pressing M-q. The result is:
%% This is just a very simple test to show how the Erlang fill
%% paragraph command works.
Edit - Comment/Uncomment Region
C-c C-c will put comment characters at the beginning of all lines in a
marked region. If you want to have two comment characters instead of one you can
do C-u 2 C-c C-c
C-c C-u will undo a comment-region command.
Edit - Moving the point
	 M-C-a (erlang-beginning-of-function) - Move the point to the beginning
of the current or preceding Erlang function. With an numeric argument (ex
C-u 2 M-C-a) the function skips backwards over this many Erlang
functions. Should the argument be negative the point is moved to the
beginning of a function below the current function.
	 C-c M-a (erlang-beginning-of-clause) - As above but move point to the
beginning of the current or preceding Erlang clause.
	 M-C-e (erlang-end-of-function) - Move to the end of the current or
following Erlang function. With an numeric argument (ex C-u 2 M-C-e) the
function skips backwards over this many Erlang functions. Should the
argument be negative the point is moved to the end of a function below the
current function.
	 C-c M-e (erlang-end-of-clause) - As above but move point to the end of
the current or following Erlang clause.

Edit - Marking
	 M-C-h (erlang-mark-function) - Put the region around the current
Erlang function. The point is placed in the beginning and the mark at the
end of the function.
	 C-c M-h (erlang-mark-clause) Put the region around the current Erlang
clause. The point is placed in the beginning and the mark at the end of the
function.

Edit - Function Header Commands
	 C-c C-j (erlang-generate-new-clause) - Create a new clause in the
current Erlang function. The point is placed between the parentheses of the
argument list.
	 C-c C-y (erlang-clone-arguments) - Copy the function arguments of the
preceding Erlang clause. This command is useful when defining a new clause
with almost the same argument as the preceding.

Edit - Alignment
	 C-c C-a (align-current) - aligns comments, arrows, assignments,
and type annotations around the cursor.

Example:

sum(L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H); % recurse
sum([], Sum) -> Sum. % base case

-record { two :: int(), % hello
 three = hello :: string(), % there
 four = 42 :: int() }.

becomes:

sum(L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H); % recurse
sum([], Sum) -> Sum. % base case

-record { two :: int(), % hello
 three = hello :: string(), % there
 four = 42 :: int() }.
Syntax highlighting
The syntax highlighting can be activated from the Erlang menu. There are four
different alternatives:
	 Off: Normal black and white display.
	 Level 1: Function headers, reserved words, comments, strings, quoted atoms,
and character constants will be colored.
	 Level 2: The above, attributes, Erlang bif:s, guards, and words in comments
enclosed in single quotes will be colored.
	 Level 3: The above, variables, records, and macros will be colored. (This
level is also known as the Christmas tree level.)

Tags
For the tag commands to work it requires that you have generated a tag file. See
Erlang mode users guide
	 M-. (find-tag) - Find a function definition. The default value is the
function name under the point.
	 Find Tag (erlang-find-tag) - Like the Elisp-function
find-tag'. Capable of retrieving Erlang modules. Tags can be given of the formstag',
module:',module:tag'.
	 M-+ (erlang-find-next-tag) - Find the next occurrence of tag.
	 M-TAB (erlang-complete-tag) - Perform completion on the tag entered in
a tag search. Completes to the set of names listed in the current tags
table.
	 Tags aprops (tags-apropos) - Display list of all tags in tags table REGEXP
matches.
	 C-x t s (tags-search) - Search through all files listed in tags table
for match for REGEXP. Stops when a match is found.

Skeletons
A skeleton is a piece of pre-written code that can be inserted into the buffer.
Erlang mode comes with a set of predefined skeletons. The skeletons can be
accessed either from the Erlang menu of from commands named
tempo-template-erlang-*, as the skeletons is defined using the standard Emacs
package "tempo". Here follows a brief description of the available skeletons:
	 Simple skeletons: If, Case, Receive, Receive After, Receive Loop - Basic
code constructs.
	 Header elements: Module, Author - These commands insert lines on the form
-module('xxx'). and -author('my@home').. They can be used directly, but
are also used as part of the full headers described below.
	 Full Headers: Small (minimum requirement), Medium (with fields for basic
information about the module), and Large Header (medium header with some
extra layout structure).
	 Small Server - skeleton for a simple server not using OTP.
	 Application - skeletons for the OTP application behavior
	 Supervisor - skeleton for the OTP supervisor behavior
	 Supervisor Bridge - skeleton for the OTP supervisor bridge behavior
	 gen_server - skeleton for the OTP gen_server behavior
	 gen_event - skeleton for the OTP gen_event behavior
	 gen_fsm - skeleton for the OTP gen_fsm behavior
	 gen_statem (StateName/3) - skeleton for the OTP gen_statem behavior using
state name functions
	 gen_statem (handle_event/4) - skeleton for the OTP gen_statem behavior using
one state function
	 Library module - skeleton for a module that does not implement a process.
	 Corba callback - skeleton for a Corba callback module.
	 Erlang test suite - skeleton for a callback module for the erlang test
server.

Shell
	 New shell (erlang-shell) - Starts a new Erlang shell.
	 C-c C-z, (erlang-shell-display) - Displays an Erlang shell, or starts
a new one if there is no shell started.

Compile
	 C-c C-k, (erlang-compile) - Compiles the Erlang module in the current
buffer. You can also use C-u C-c C-k to debug compile the module with
the debug options debug_info and export_all.
	 C-c C-l, (erlang-compile-display) - Display compilation output.
	 C-u C-x` Start parsing the compiler output from the beginning. This
command will place the point on the line where the first error was found.
	 C-x` (erlang-next-error) - Move the point on to the next error.
The buffer displaying the compilation errors will be updated so that the
current error will be visible.

Man
On unix you can view the manual pages in emacs. In order to find the manual
pages, the variable erlang-root-dir should be bound to the name of the
directory containing the Erlang installation. The name should not include the
final slash. Practically, you should add a line on the following form to your
~/.emacs,
(setq erlang-root-dir "/the/erlang/root/dir/goes/here")
Starting IMenu
	 M-x imenu-add-to-menubar RET - This command will create the IMenu menu
containing all the functions in the current buffer.The command will ask you
for a suitable name for the menu. Not supported by Xemacs.

Version
	 M-x erlang-version RET - This command displays the version number of the
Erlang editing mode. Remember to always supply the version number when
asking questions about the Erlang mode.

cover

A Coverage Analysis Tool for Erlang
The module cover provides a set of functions for coverage analysis
of Erlang programs, counting how many times each executable line of
code is executed when a program is run. Executable lines are
lines in the body of a clause in a function, case,
receive, or try. Lines in clause heads, blank lines, and lines
containing only comments are not executable.
Coverage analysis can be used to verify that test cases covers all
relevant line in the code being test. It can also be helpful when
looking for bottlenecks in the code.
Before any analysis can take place, the involved modules has to be
cover-compiled. This means that some extra information is added to
the module before it is compiled into a binary which then is
loaded. The source file of the module is not affected and no .beam
file is created. If the runtime system supports coverage natively,
Cover will automatically use that functionality to lower the execution
overhead for cover-compiled code.
Change
Native coverage support was added in Erlang/OTP 27.
Each time a function in a cover-compiled module is called, information about the
call is added to an internal database of Cover. The coverage analysis is
performed by examining the contents of the Cover database. The output Answer
is determined by two parameters: Level and Analysis.
	Level = module
Answer = {Module,Value}, where Module is the module name.

	Level = function
Answer = [{Function,Value}], one tuple for each function in the module. A
function is specified by its module name M, function name F and arity A
as a tuple {M,F,A}.

	Level = clause
Answer = [{Clause,Value}], one tuple for each clause in the module. A clause
is specified by its module name M, function name F, arity A and position
in the function definition C as a tuple {M,F,A,C}.

	Level = line
Answer = [{Line,Value}], one tuple for each executable line in the module. A
line is specified by its module name M and line number in the source file
N as a tuple {M,N}.

	Analysis = coverage
Value = {Cov,NotCov} where Cov is the number of executable lines in the
module, function, clause or line that have been executed at least once and
NotCov is the number of executable lines that have not been executed.

	Analysis = calls
Value = Calls which is the number of times the module, function, or clause
has been called. In the case of line level analysis, Calls is the number of
times the line has been executed.

Distribution
Cover can be used in a distributed Erlang system. One of the nodes in the system
has to be selected as the main node, and all Cover commands must be
executed from that node. The error reason not_main_node is returned if an
interface function is called on one of the remote nodes.
Use cover:start/1 and cover:stop/1 to add or remove nodes. The
same cover-compiled code will be loaded on each node, and analysis
will collect and sum up coverage data results from all nodes.
To only collect data from remote nodes without stopping cover on those nodes,
use cover:flush/1
If the connection to a remote node goes down, the main node will mark it as
lost. If the node comes back it will be added again. If the remote node was
alive during the disconnected period, cover data from before and during this
period will be included in the analysis.

 Summary

 Types

 analyse_answer()

 analyse_fail()

 analyse_file_fail()

 analyse_file_ok()

 analyse_item()

 analyse_ok()

 analyse_option()

 analyse_rsn()

 analyse_value()

 analysis()

 beam_mod_file()

 beam_mod_files()

 compile_beam_result()

 compile_beam_rsn()

 compile_result()

 export_reason()

 file_error()

 level()

 mod_file()

 mod_files()

 modules()

 one_result()

 option()

 Functions

 analyse()

 Equivalent to analyse('_', coverage, function).

 analyse(Arg)

 Analyzes one or more modules as specified by Arg.

 analyse(Arg1, Arg2)

 Analyzes one or more modules as specified by Arg1 and Arg2.

 analyse(Modules, Analysis, Level)

 Perform analysis of one or more cover-compiled modules, as specified by
Analysis and Level, by examining the contents of the internal
database.

 analyse_to_file()

 Equivalent to analyse_to_file('_', []).

 analyse_to_file(Arg)

 If Arg is a list of analyse_option()
options, this call is equivalent to analyse_to_file('_', Arg).

 analyse_to_file(Modules, Options)

 Outputs copies of the source code for the given modules annotated with
execution counts for each executable line.

 async_analyse_to_file(Module)

 Equivalent to async_analyse_to_file/3.

 async_analyse_to_file(Module, OutFileOrOpts)

 Equivalent to async_analyse_to_file/3.

 async_analyse_to_file(Module, OutFile, Options)

 This function works the same way as
analyse_to_file/2 except that it is asynchronous instead
of synchronous.

 compile(ModFiles)

 Equivalent to compile_module(ModFiles, []).

 compile(ModFiles, Options)

 Equivalent to compile_module(ModFile, Options).

 compile_beam(ModFiles)

 Cover-compiles one or more modules based .beam files containing
abstract code (option debug_info).

 compile_beam_directory()

 Equivalent to compile_beam_directory(".").

 compile_beam_directory(Dir)

 Cover-compiles all .beam files in directory Dir in the same way
as compile_beam/1.

 compile_directory()

 Equivalent to compile_directory(".", []).

 compile_directory(Dir)

 Equivalent to compile_directory(Dir, []).

 compile_directory(Dir, Options)

 Compiles all modules (.erl files) in a directory Dir for Cover analysis the
same way as compile_module/1,2 and returns a list of
Result.

 compile_module(ModFiles)

 Equivalent to compile_module(ModFile, []).

 compile_module(ModFiles, Options)

 Cover-compiles one or more modules.

 export(File)

 Equivalent to export(File, '_').

 export(File, Module)

 Exports the current coverage data for Module to the file ExportFile.

 flush(Nodes)

 Fetches data from the Cover database on the remote nodes and stores it on the main
node.

 import(ExportFile)

 Imports coverage data from the file ExportFile created with
export/1,2.

 imported()

 Returns a list of all imported files.

 imported_modules()

 Returns a list of all modules for which there are imported data.

 is_compiled(Module)

 Returns {file, File} if the module Module is cover-compiled, or false
otherwise.

 local_only()

 Only support running Cover on the local node.

 modules()

 Returns a list with all modules that are currently cover-compiled.

 reset()

 Resets all coverage data for all cover-compiled modules in the Cover
database on all nodes.

 reset(Module)

 Resets all coverage data for the cover-compiled module Module in the Cover
database on all nodes.

 start()

 Starts the Cover server which owns the Cover internal database. This function is
called automatically by the other functions in the module.

 start(Nodes)

 Starts a Cover server on the each of given nodes, and loads all cover compiled
modules.

 stop()

 Stops the Cover server and unloads all cover-compiled code.

 stop(Nodes)

 Stops the Cover server and unloads all cover-compiled code on the given nodes.

 which_nodes()

 Returns a list with all nodes that are part of the coverage analysis.

 Types

 analyse_answer()

 (not exported)

 -type analyse_answer() :: {ok, OutFile :: file:filename()} | {error, analyse_rsn()}.

 analyse_fail()

 (not exported)

 -type analyse_fail() :: [{not_cover_compiled, module()}].

 analyse_file_fail()

 (not exported)

 -type analyse_file_fail() :: [analyse_rsn()].

 analyse_file_ok()

 (not exported)

 -type analyse_file_ok() :: [OutFile :: file:filename()].

 analyse_item()

 (not exported)

 -type analyse_item() ::
 (Line :: {M :: module(), N :: non_neg_integer()}) |
 (Clause :: {M :: module(), F :: atom(), A :: arity(), C :: non_neg_integer()}) |
 (Function :: {M :: module(), F :: atom(), A :: arity()}).

 analyse_ok()

 (not exported)

 -type analyse_ok() ::
 [{Module :: module(), Value :: analyse_value()}] |
 [{Item :: analyse_item(), Value :: analyse_value()}].

 analyse_option()

 (not exported)

 -type analyse_option() ::
 html | {outfile, OutFile :: file:filename()} | {outdir, OutDir :: file:filename()}.

 analyse_rsn()

 (not exported)

 -type analyse_rsn() ::
 {not_cover_compiled, Module :: module()} |
 {file, File :: file:filename(), Reason :: term()} |
 {no_source_code_found, Module :: module()}.

 analyse_value()

 (not exported)

 -type analyse_value() ::
 {Cov :: non_neg_integer(), NotCov :: non_neg_integer()} | (Calls :: non_neg_integer()).

 analysis()

 (not exported)

 -type analysis() :: coverage | calls.

 beam_mod_file()

 (not exported)

 -type beam_mod_file() :: (Module :: module()) | (BeamFile :: file:filename()).

 beam_mod_files()

 (not exported)

 -type beam_mod_files() :: beam_mod_file() | [beam_mod_file()].

 compile_beam_result()

 (not exported)

 -type compile_beam_result() ::
 {ok, module()} | {error, BeamFile :: file:filename()} | {error, Reason :: compile_beam_rsn()}.

 compile_beam_rsn()

 (not exported)

 -type compile_beam_rsn() ::
 non_existing |
 {no_abstract_code, BeamFile :: file:filename()} |
 {encrypted_abstract_code, BeamFile :: file:filename()} |
 {already_cover_compiled, no_beam_found, module()} |
 {{missing_backend, module()}, BeamFile :: file:filename()} |
 {no_file_attribute, BeamFile :: file:filename()} |
 not_main_node.

 compile_result()

 (not exported)

 -type compile_result() :: {ok, Module :: module()} | {error, file:filename()} | {error, not_main_node}.

 export_reason()

 (not exported)

 -type export_reason() ::
 {not_cover_compiled, Module :: module()} |
 {cant_open_file, ExportFile :: file:filename(), FileReason :: term()} |
 not_main_node.

 file_error()

 (not exported)

 -type file_error() :: eacces | enoent.

 level()

 (not exported)

 -type level() :: line | clause | function | module.

 mod_file()

 (not exported)

 -type mod_file() :: (Module :: module()) | (File :: file:filename()).

 mod_files()

 (not exported)

 -type mod_files() :: mod_file() | [mod_file()].

 modules()

 (not exported)

 -type modules() :: module() | [module()].

 one_result()

 (not exported)

 -type one_result() ::
 {ok, {Module :: module(), Value :: analyse_value()}} |
 {ok, [{Item :: analyse_item(), Value :: analyse_value()}]} |
 {error, {not_cover_compiled, module()}}.

 option()

 (not exported)

 -type option() ::
 {i, Dir :: file:filename()} |
 {d, Macro :: atom()} |
 {d, Macro :: atom(), Value :: term()} |
 export_all.

 Functions

 analyse()

 (since OTP 18.0)

 -spec analyse() -> {result, analyse_ok(), analyse_fail()} | {error, not_main_node}.

Equivalent to analyse('_', coverage, function).

 analyse(Arg)

 -spec analyse(Analysis) -> {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Analysis :: analysis();
 (Level) -> {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Level :: level();
 (Modules) -> OneResult | {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Modules :: modules(), OneResult :: one_result().

Analyzes one or more modules as specified by Arg.
If Arg is one of the values in analysis(), this
call is equivalent to analyse('_', Arg, function).
If Arg is one of the values in level(), this
call is equivalent to analyse('_', coverage, Arg).
Otherwise Arg is assumed to be a module name, and this call is equivalent
to analyse(Arg, coverage, function).
Note
To analyze a module whose name overlaps with one the values in
analysis() or level(), the module
name has to be in a list. For example, to analyze a module named calls:
cover:analyse([calls]).

 analyse(Arg1, Arg2)

 -spec analyse(Analysis, Level) -> {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Analysis :: analysis(), Level :: level();
 (Modules, Analysis) ->
 OneResult | {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Analysis :: analysis(), Modules :: modules(), OneResult :: one_result();
 (Modules, Level) ->
 OneResult | {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when Level :: level(), Modules :: modules(), OneResult :: one_result().

Analyzes one or more modules as specified by Arg1 and Arg2.
If Arg1 is one of the values in analysis() and
Arg2 is one of the values in level(), this
call is equivalent to analyse('_', Arg1, Arg2).
If Arg2 is one of the values in analysis(),
Arg1 is assumed to be a module and this call is equivalent to
analyse(Arg1, Arg2, function).
If Arg2 is one of the values in level(), Arg1 is
assumed to be a module and this call is equivalent to analyse(Arg1, coverage, Arg2).
Note
To analyze a module whose name overlaps with one of the values in
analysis(), the module name needs to be in a
list. For example, to analyze a module named calls:
cover:analyse([calls], function).

 analyse(Modules, Analysis, Level)

 -spec analyse(Modules, Analysis, Level) ->
 OneResult | {result, analyse_ok(), analyse_fail()} | {error, not_main_node}
 when
 Analysis :: analysis(),
 Level :: level(),
 Modules :: modules(),
 OneResult :: one_result().

Perform analysis of one or more cover-compiled modules, as specified by
Analysis and Level, by examining the contents of the internal
database.
If Modules is an atom (a single module), the return is OneResult,
otherwise the return is {result, Ok, Fail}.
If Modules is atom '_', all modules that have data in the cover data table
are analysed. Note that this includes both cover-compiled modules and imported
modules.
If a given module is not cover-compiled, this is indicated by the error reason
{not_cover_compiled, Module}.

 analyse_to_file()

 (since OTP 18.0)

 -spec analyse_to_file() -> {result, analyse_file_ok(), analyse_file_fail()} | {error, not_main_node}.

Equivalent to analyse_to_file('_', []).

 analyse_to_file(Arg)

 -spec analyse_to_file(Modules) ->
 Answer |
 {result, analyse_file_ok(), analyse_file_fail()} |
 {error, not_main_node}
 when Modules :: modules(), Answer :: analyse_answer();
 (Options) ->
 {result, analyse_file_ok(), analyse_file_fail()} | {error, not_main_node}
 when Options :: [analyse_option()].

If Arg is a list of analyse_option()
options, this call is equivalent to analyse_to_file('_', Arg).
Otherwise Arg is assumed to be a module, and this call is equivalent to
analyse_to_file(Arg, []).
Note
To analyze a module of the name html (which overlaps with an option
in analyse_option()), it is necessary to
use cover:analyse_to_file/2:
cover:analyse_to_file([html], []).

 analyse_to_file(Modules, Options)

 -spec analyse_to_file(Modules, Options) ->
 Answer |
 {result, analyse_file_ok(), analyse_file_fail()} |
 {error, not_main_node}
 when
 Modules :: modules(),
 Options :: [analyse_option()],
 Answer :: analyse_answer().

Outputs copies of the source code for the given modules annotated with
execution counts for each executable line.
The output file OutFile defaults to Module.COVER.out, and to Module.COVER.html
if option html is used.
If Modules is an atom (one module), the return will be Answer, otherwise the
return will be a list, {result, Ok, Fail}.
If Modules is '_', all modules that have data in the Cover data table
are analysed. Note that this includes both cover-compiled modules and imported
modules.
If a module is not cover-compiled, this is indicated by the error reason
{not_cover_compiled, Module}.
If the source file and/or the output file cannot be opened using file:open/2,
the function returns {error, {file, File, Reason}}, where File is the file
name and Reason is the error reason.
If a module was cover compiled from the .beam file, that is, using
compile_beam/1 or
compile_beam_directory/0,1 , it is assumed that
the source code can be found in one of the following locations:
	the same directory as the .beam file
	../src relative to the directory with .beam file
	the source path in Module:module_info(compile), in which case two paths
are examined:	first the one constructed by joining ../src and the tail of the compiled path
below a trailing src component
	the compiled path itself

If no source code is found, this is indicated by the error reason
{no_source_code_found, Module}.

 async_analyse_to_file(Module)

 (since OTP R14B02)

 -spec async_analyse_to_file(Module) -> pid() when Module :: module().

Equivalent to async_analyse_to_file/3.

 async_analyse_to_file(Module, OutFileOrOpts)

 (since OTP R14B02)

 -spec async_analyse_to_file(Module, OutFile) -> pid()
 when Module :: module(), OutFile :: file:filename();
 (Module, Options) -> pid()
 when Module :: module(), Options :: [Option], Option :: html.

Equivalent to async_analyse_to_file/3.

 async_analyse_to_file(Module, OutFile, Options)

 (since OTP R14B02)

 -spec async_analyse_to_file(Module, OutFile, Options) -> pid()
 when
 Module :: module(),
 OutFile :: file:filename(),
 Options :: [Option],
 Option :: html.

This function works the same way as
analyse_to_file/2 except that it is asynchronous instead
of synchronous.
The spawned process will link with the caller when created. If an
error of type analyse_rsn() occurs while doing
the cover analysis the process will crash with the same error reason
as analyse_to_file would return.

 compile(ModFiles)

 -spec compile(ModFiles) -> Result | [Result] when ModFiles :: mod_files(), Result :: compile_result().

Equivalent to compile_module(ModFiles, []).

 compile(ModFiles, Options)

 -spec compile(ModFiles, Options) -> Result | [Result]
 when ModFiles :: mod_files(), Options :: [option()], Result :: compile_result().

Equivalent to compile_module(ModFile, Options).

 compile_beam(ModFiles)

 -spec compile_beam(ModFiles) -> Result | [Result]
 when ModFiles :: beam_mod_files(), Result :: compile_beam_result().

Cover-compiles one or more modules based .beam files containing
abstract code (option debug_info).
Cover-compiling from .beam files is faster than compiling from
source and less hassle, because there is no need to supply options for
include paths or macros. However, the existing .beam files must have
been compiled with option
debug_info so that they contain
abstract code.
If abstract code is missing, the error reason {no_abstract_code, BeamFile} is returned. If the abstract code is encrypted, and no key
is available for decrypting it, the error reason
{encrypted_abstract_code, BeamFile} is returned.
If only the module name (that is, not the full name of the .beam
file) is given to this function, the .beam file is found by calling
code:which(Module). If no .beam file is found,
the error reason non_existing is returned. If the module is already
cover compiled with compile_beam/1, the .beam
file will be picked from the same location as the first time it was
compiled. If the module is already cover-compiled with
compile_module/2, there is no way to find the correct .beam file,
so the error reason {already_cover_compiled, no_beam_found, Module}
is returned.
{error, BeamFile} is returned if the compiled code cannot be loaded on the
node.
If a list of ModFiles is given as input, a list of Result will be returned.
The order of the returned list is undefined.

 compile_beam_directory()

 -spec compile_beam_directory() -> [Result] | {error, Reason}
 when Reason :: file_error(), Result :: compile_beam_result().

Equivalent to compile_beam_directory(".").

 compile_beam_directory(Dir)

 -spec compile_beam_directory(Dir) -> [Result] | {error, Reason}
 when
 Dir :: file:filename(),
 Reason :: file_error(),
 Result :: compile_beam_result().

Cover-compiles all .beam files in directory Dir in the same way
as compile_beam/1.
This function returns a list of compile_beam_result()
if successful. Otherwise, it returns {error, eacces} if the directory is not
readable, and {error, enoent} if the directory does not exist.

 compile_directory()

 -spec compile_directory() -> [Result] | {error, Reason}
 when Reason :: file_error(), Result :: compile_result().

Equivalent to compile_directory(".", []).

 compile_directory(Dir)

 -spec compile_directory(Dir) -> [Result] | {error, Reason}
 when
 Dir :: file:filename(),
 Reason :: file_error(),
 Result :: compile_result().

Equivalent to compile_directory(Dir, []).

 compile_directory(Dir, Options)

 -spec compile_directory(Dir, Options) -> [Result] | {error, Reason}
 when
 Dir :: file:filename(),
 Options :: [option()],
 Reason :: file_error(),
 Result :: compile_result().

Compiles all modules (.erl files) in a directory Dir for Cover analysis the
same way as compile_module/1,2 and returns a list of
Result.
This function returns {error, eacces} if the directory is not readable or
{error, enoent} if the directory does not exist.

 compile_module(ModFiles)

 -spec compile_module(ModFiles) -> Result | [Result]
 when ModFiles :: mod_files(), Result :: compile_result().

Equivalent to compile_module(ModFile, []).

 compile_module(ModFiles, Options)

 -spec compile_module(ModFiles, Options) -> Result | [Result]
 when ModFiles :: mod_files(), Options :: [option()], Result :: compile_result().

Cover-compiles one or more modules.
The module is given by its module name Module or by its file name
File.
The .erl extension can be omitted. If the module is not located in
the current directory, the full path to it must be specified.
Options is a list of compiler options. Only options defining include
file directories and macros are passed to compile:file/2;
everything else is ignored.
If the module is successfully cover-compiled, the function returns
{ok, Module}. Otherwise the function returns {error, File}. Errors and
warnings are printed as they occur.
If a list of ModFiles is given as input, a list of Result
will be returned. The order of the returned results in the list is undefined.
Note that the internal database is initialized during the compilation,
which means that any previously collected coverage data for the module
is lost.

 export(File)

 -spec export(File) -> ok | {error, Reason} when File :: file:filename(), Reason :: export_reason().

Equivalent to export(File, '_').

 export(File, Module)

 -spec export(File, Module) -> ok | {error, Reason}
 when File :: file:filename(), Module :: module(), Reason :: export_reason().

Exports the current coverage data for Module to the file ExportFile.
It is recommended to name the ExportFile with the extension .coverdata.
If Module is '_', data for all cover-compiled or earlier imported
modules is exported.
This function is useful if coverage data from different systems is to be merged.
See also import/1.

 flush(Nodes)

 (since OTP R16B)

 -spec flush(Nodes) -> ok | {error, not_main_node} when Nodes :: node() | [node()].

Fetches data from the Cover database on the remote nodes and stores it on the main
node.

 import(ExportFile)

 -spec import(ExportFile) -> ok | {error, Reason}
 when
 ExportFile :: file:filename(),
 Reason :: {cant_open_file, ExportFile, FileReason :: term()} | not_main_node.

Imports coverage data from the file ExportFile created with
export/1,2.
Any analysis performed after this call will include the imported data.
Note that when compiling a module all existing coverage data is removed,
including imported data. If a module is already compiled when data is imported,
the imported data is added to the existing coverage data.
Coverage data from several export files can be imported into one system. The
coverage data is then added up when analysing.
Coverage data for a module cannot be imported from the same file twice unless
the module is first reset or compiled. The check is based on the filename, so
you can easily fool the system by renaming your export file.

 imported()

 -spec imported() -> [file:filename()] | {error, not_main_node}.

Returns a list of all imported files.

 imported_modules()

 -spec imported_modules() -> [module()] | {error, not_main_node}.

Returns a list of all modules for which there are imported data.

 is_compiled(Module)

 -spec is_compiled(Module) -> {file, File :: file:filename()} | false | {error, not_main_node}
 when Module :: module().

Returns {file, File} if the module Module is cover-compiled, or false
otherwise.
File is the .erl file used by compile_module/1,2
or the .beam file used by compile_beam/1.

 local_only()

 (since OTP 22.0)

 -spec local_only() -> ok | {error, too_late}.

Only support running Cover on the local node.
This function has to be called before any modules have been compiled or
any nodes added. When running in this mode, modules will be
cover-compiled in a more efficient way, but the resulting code will
only work on the same node they were compiled on.

 modules()

 -spec modules() -> [module()] | {error, not_main_node}.

Returns a list with all modules that are currently cover-compiled.

 reset()

 -spec reset() -> ok | {error, not_main_node}.

Resets all coverage data for all cover-compiled modules in the Cover
database on all nodes.

 reset(Module)

 -spec reset(Module) -> ok | {error, not_main_node} | {error, {not_cover_compiled, Module}}
 when Module :: module().

Resets all coverage data for the cover-compiled module Module in the Cover
database on all nodes.
If Module is not cover-compiled, the function returns
{error, {not_cover_compiled, Module}}.

 start()

 -spec start() -> {ok, pid()} | {error, Reason} when Reason :: {already_started, pid()} | term().

Starts the Cover server which owns the Cover internal database. This function is
called automatically by the other functions in the module.

 start(Nodes)

 -spec start(Nodes) -> {ok, StartedNodes} | {error, not_main_node} | {error, local_only}
 when Nodes :: node() | [node()], StartedNodes :: [node()].

Starts a Cover server on the each of given nodes, and loads all cover compiled
modules.
This call will fail if cover:local_only/0 has been called.

 stop()

 -spec stop() -> ok | {error, not_main_node}.

Stops the Cover server and unloads all cover-compiled code.

 stop(Nodes)

 -spec stop(Nodes) -> ok | {error, not_main_node} when Nodes :: node() | [node()].

Stops the Cover server and unloads all cover-compiled code on the given nodes.
Data stored in the Cover database on the remote nodes is fetched and stored on
the main node.

 which_nodes()

 -spec which_nodes() -> [node()].

Returns a list with all nodes that are part of the coverage analysis.
Note that the current node is not included, because it is always part
of the analysis.

cprof

A simple Call Count Profiling Tool using breakpoints for minimal runtime
performance impact.
The cprof module is used to profile a program to find out how many times
different functions are called. To minimize runtime performance impact,
breakpoints containing counters are used.
Since breakpoints are used there is no need for special compilation of the
modules to be profiled. These breakpoints can only be set on BEAM code, so
BIFs cannot be call-count traced.
The size of the call counters is the host machine word size. One bit is used
when pausing the counter, so the maximum counter value for a 32-bit host
is 2,147,483,647.
The profiling result is delivered as a term containing a sorted list of entries,
one per module. Each module entry contains a sorted list of functions. The
sorting order in both cases is of decreasing call count.
Call count tracing is lightweight compared to other forms of tracing,
such as eprof or fprof, since no trace messages have to be
generated. Some measurements indicates that the performance degradation is
about 10 percent.
For more information and some examples, see the
User's Guide for cprof.

 Summary

 Types

 func_analysis_list()

 mod_analysis()

 mod_analysis_list()

 Functions

 analyse()

 Equivalent to analyse(1).

 analyse(ModLimit)

 Collect call counters for one or more modules.

 analyse(Module, Limit)

 Collects and analyses all call counters for module Module.

 pause()

 Pause call count tracing for all functions in all modules and stop it for all
functions in modules to be loaded.

 pause(FuncSpec)

 If FuncSpec is an atom, it is assumed to be a module name, and
this call is equivalent to pause(FuncSpec, '_', '_').

 pause(Mod, Func)

 Equivalent to pause(Mod, Func, '_').

 pause(Mod, Func, Arity)

 Pause call counters for matching functions in matching modules.

 restart()

 Equivalent to restart('_', '_', '_').

 restart(FuncSpec)

 If FuncSpec is an atom, it is assumed to be a module name, and
this call is equivalent to restart(FuncSpec, '_', '_').

 restart(Mod, Func)

 Equivalent to restart(Mod, Func, '_').

 restart(Mod, Func, Arity)

 Restart call counters for the matching functions in matching modules that are
call-count traced.

 start()

 Start call count tracing for all functions in all modules, and also for all
functions in modules to be loaded.

 start(FuncSpec)

 If FuncSpec is an atom, it is assumed to be a module name, and
this call is equivalent to start(FuncSpec, '_', '_').

 start(Mod, Func)

 Equivalent to start(Mod, Func, '_').

 start(Mod, Func, Arity)

 Start call count tracing for matching functions in matching modules.

 stop()

 Stop call count tracing for all functions in all modules, and also for all
functions in modules to be loaded.

 stop(FuncSpec)

 If FuncSpec is an atom, it is assumed to be a module name, and
this call is equivalent to stop(FuncSpec, '_', '_').

 stop(Mod, Func)

 Equivalent to stop(Mod, Func, '_').

 stop(Mod, Func, Arity)

 Stop call count tracing for matching functions in matching modules.

 Types

 func_analysis_list()

 (not exported)

 -type func_analysis_list() :: [{mfa(), FuncCallCount :: non_neg_integer()}].

 mod_analysis()

 (not exported)

 -type mod_analysis() ::
 {Mod :: module(), ModCallCount :: non_neg_integer(), FuncAnalysisList :: func_analysis_list()}.

 mod_analysis_list()

 (not exported)

 -type mod_analysis_list() :: [mod_analysis()].

 Functions

 analyse()

 -spec analyse() -> {AllCallCount :: non_neg_integer(), ModAnalysisList :: mod_analysis_list()}.

Equivalent to analyse(1).

 analyse(ModLimit)

 -spec analyse(Limit) -> {AllCallCount :: non_neg_integer(), ModAnalysisList :: mod_analysis_list()}
 when Limit :: non_neg_integer();
 (Mod) -> ModAnalysis :: mod_analysis() when Mod :: module().

Collect call counters for one or more modules.
If ModLimit is a module name (an atom), this call is equivalent to
analyse(ModLimit, 1).
If ModLimit is an integer, this function calls
analyse(Module, ModLimit) for each Module that is
currently loaded (except the cprof module itself).
The result from those calls are returned in a list.

 analyse(Module, Limit)

 -spec analyse(Mod, Limit) -> ModAnalysis :: mod_analysis()
 when Mod :: module(), Limit :: non_neg_integer().

Collects and analyses all call counters for module Module.
This function returns:
{Module, ModuleCount, FuncAnalysisList}
where FuncAnalysisList is a list of tuples, one for each function:
{{Module, FunctionName, Arity}, FuncCallCount}
If call counters are still running while analyse/0,1,2 is executing, the result
could be inconsistent. This happens if the process executing analyse/0,1,2
is scheduled out so some other process can increment the counters that are
being analysed. Calling pause() before analysing takes care of
that problem.
All functions with a FuncCallCount lower than Limit are excluded from
FuncAnalysisList. They are still included in ModCallCount, though.

 pause()

 -spec pause() -> non_neg_integer().

Pause call count tracing for all functions in all modules and stop it for all
functions in modules to be loaded.
This call is equivalent to
pause('_', '_', '_') + stop({on_load}).

 pause(FuncSpec)

 -spec pause(FuncSpec) -> non_neg_integer() when FuncSpec :: (Mod :: module()) | mfa() | {FS :: term()}.

If FuncSpec is an atom, it is assumed to be a module name, and
this call is equivalent to pause(FuncSpec, '_', '_').
If FuncSpec is an MFA tuple, {Module, Name, Arity}, this call
is equivalent to pause(Module, Name, Arity).
If FuncSpec is tuple {FS}, FS is the first argument to
erlang:trace_pattern/3. For example, if FuncSpec is {on_load},
call counters will be paused for all functions in modules to be loaded.

 pause(Mod, Func)

 -spec pause(Mod, Func) -> non_neg_integer() when Mod :: module(), Func :: atom().

Equivalent to pause(Mod, Func, '_').

 pause(Mod, Func, Arity)

 -spec pause(Mod, Func, Arity) -> non_neg_integer()
 when Mod :: module(), Func :: atom(), Arity :: arity().

Pause call counters for matching functions in matching modules.
The call counters for all matching functions that have call count breakpoints
are paused at their current count.
Return the number of matching functions that can have call count breakpoints,
the same as start/* with the same arguments would have
returned.

 restart()

 -spec restart() -> non_neg_integer().

Equivalent to restart('_', '_', '_').

 restart(FuncSpec)

 -spec restart(FuncSpec) -> non_neg_integer() when FuncSpec :: (Mod :: module()) | mfa() | {FS :: term()}.

If FuncSpec is an atom, it is assumed to be a module name, and
this call is equivalent to restart(FuncSpec, '_', '_').
If FuncSpec is an MFA tuple, {Module, Name, Arity}, this call
is equivalent to restart(Module, Name, Arity).
If FuncSpec is tuple {FS}, FS is the first argument to
erlang:trace_pattern/3. For example, if FuncSpec is {on_load},
call counters will be set to zero and running for all functions in
modules to be loaded.

 restart(Mod, Func)

 -spec restart(Mod, Func) -> non_neg_integer() when Mod :: module(), Func :: atom().

Equivalent to restart(Mod, Func, '_').

 restart(Mod, Func, Arity)

 -spec restart(Mod, Func, Arity) -> non_neg_integer()
 when Mod :: module(), Func :: atom(), Arity :: arity().

Restart call counters for the matching functions in matching modules that are
call-count traced.
The call counters for all matching functions that has call count breakpoints
are set to zero and running.
Return the number of matching functions that can have call count breakpoints,
the same as start/* with the same arguments would have
returned.

 start()

 -spec start() -> non_neg_integer().

Start call count tracing for all functions in all modules, and also for all
functions in modules to be loaded.
This is equivalent to
start('_', '_', '_') + start({on_load}).

 start(FuncSpec)

 -spec start(FuncSpec) -> non_neg_integer() when FuncSpec :: (Mod :: module()) | mfa() | {FS :: term()}.

If FuncSpec is an atom, it is assumed to be a module name, and
this call is equivalent to start(FuncSpec, '_', '_').
If FuncSpec is an MFA tuple, {Module, Name, Arity}, this call
is equivalent to start(Module, Name, Arity).
If FuncSpec is tuple {FS}, FS is the first argument to
erlang:trace_pattern/3. For example, if FuncSpec is {on_load},
call counters will be set to zero and running for all functions in
modules to be loaded.

 start(Mod, Func)

 -spec start(Mod, Func) -> non_neg_integer() when Mod :: module(), Func :: atom().

Equivalent to start(Mod, Func, '_').

 start(Mod, Func, Arity)

 -spec start(Mod, Func, Arity) -> non_neg_integer()
 when Mod :: module(), Func :: atom(), Arity :: arity().

Start call count tracing for matching functions in matching modules.
Set call count breakpoints on the matching functions that has no call count
breakpoints. Call counters are set to zero and running for all matching
functions.
Return the number of matching functions that has call count breakpoints.

 stop()

 -spec stop() -> non_neg_integer().

Stop call count tracing for all functions in all modules, and also for all
functions in modules to be loaded.
This is equivalent to
stop('_', '_', '_') + stop({on_load}).

 stop(FuncSpec)

 -spec stop(FuncSpec) -> non_neg_integer() when FuncSpec :: (Mod :: module()) | mfa() | {FS :: term()}.

If FuncSpec is an atom, it is assumed to be a module name, and
this call is equivalent to stop(FuncSpec, '_', '_').
If FuncSpec is an MFA tuple, {Module, Name, Arity}, this call
is equivalent to stop(Module, Name, Arity).
If FuncSpec is tuple {FS}, FS is the first argument to
erlang:trace_pattern/3. For example, if FuncSpec is {on_load},
call counters be disabled for all functions in modules to be loaded.

 stop(Mod, Func)

 -spec stop(Mod, Func) -> non_neg_integer() when Mod :: module(), Func :: atom().

Equivalent to stop(Mod, Func, '_').

 stop(Mod, Func, Arity)

 -spec stop(Mod, Func, Arity) -> non_neg_integer() when Mod :: module(), Func :: atom(), Arity :: arity().

Stop call count tracing for matching functions in matching modules.
Remove call count breakpoints from the matching functions that has call count
breakpoints.
Return the number of matching functions that can have call count breakpoints,
which is the same as start/* with the same arguments would have
returned.

eprof

A Time Profiling Tool for Erlang
The module eprof provides a set of functions for time profiling of Erlang
programs to find out how the execution time is used. The profiling is done using
the Erlang trace BIFs. Tracing of local function calls for a specified set of
processes is enabled when profiling is begun, and disabled when profiling is
stopped.
When using Eprof, expect a slowdown in program execution.

 Summary

 Types

 analyze_type()

 trace_pattern_mfa()

 Functions

 analyze()

 Equivalent to analyze(procs, []).

 analyze(TypeOpts)

 If TypeOpts is an atom, it is assumed to be a module name, and this
call is equivalent to analyze(TypeOpts, []).

 analyze(Type, Options)

 Call this function when profiling has been stopped to display the results.

 log(File)

 Call this function to ensure that the results displayed by
analyze/0,1,2 are printed to the file File as well as to the
screen.

 profile(FunRootset)

 If FunRootset is a fun, this call is equivalent to
profile([], FunRootset).

 profile(Arg1, Arg2)

 If Arg1 is a fun and Arg2 is list, this call is equivalent to
profile([], Arg1, {'_','_','_'}, Arg2).

 profile(Rootset, Fun, Pattern)

 Equivalent to profile(Rootset, Fun, Pattern, [{set_on_spawn, true}]).

 profile(Rootset, Arg1, Arg2, Arg3)

 This function spawns a process that applies a fun or an an function,
and then starts profiling for the spawned proceses as well as the
processes in Rootset (and any new processes spawned from them).

 profile(Rootset, Module, Function, Args, Pattern)

 Equivalent to profile(Rootset, Module, Function, Args, Pattern, [{set_on_spawn, true}]).

 profile(Rootset, Module, Function, Args, Pattern, Options)

 This function spawns a process P that apply(Module, Function, Args), and then starts profiling for P and the
processes in Rootset (and any new processes spawned from them).

 start()

 Starts the Eprof server which holds the internal state of the collected data.

 start_profiling(Rootset)

 Equivalent to start_profiling(Rootset, {'_', '_', '_'}).

 start_profiling(Rootset, Pattern)

 Equivalent to start_profiling(Rootset, Pattern, {'_', '_', '_'}).

 start_profiling(Rootset, Pattern, Options)

 Starts profiling for the processes in Rootset (and any new processes spawned
from them).

 stop()

 Stops the Eprof server.

 stop_profiling()

 Stops profiling started with start_profiling/1 or profile/1.

 Types

 analyze_type()

 (not exported)

 -type analyze_type() :: procs | total.

 trace_pattern_mfa()

 (not exported)

 -type trace_pattern_mfa() :: {atom(), atom(), arity() | '_'}.

 Functions

 analyze()

 (since OTP R14B)

 -spec analyze() -> ok | nothing_to_analyze.

Equivalent to analyze(procs, []).

 analyze(TypeOpts)

 (since OTP R14B)

 -spec analyze(TypeOpts) -> ok | nothing_to_analyze when TypeOpts :: analyze_type().

If TypeOpts is an atom, it is assumed to be a module name, and this
call is equivalent to analyze(TypeOpts, []).
Otherwise, if TypeOpts is a list, it assumed to be a list of options, and this
call is equivalent to analyze(procs, TypeOpts).

 analyze(Type, Options)

 (since OTP R14B)

 -spec analyze(Type, Options) -> ok | nothing_to_analyze
 when
 Type :: analyze_type(),
 Options :: [Option],
 Option :: {filter, Filter} | {sort, Sort},
 Filter :: [{calls, non_neg_integer()} | {time, float()}],
 Sort :: time | calls | mfa.

Call this function when profiling has been stopped to display the results.
If Type is procs, the time spent in each function is shown separately
for each profiled process.
If Type is total, the time spent in each function is shown combined
for each profiled process.
Time is shown as percentage of total time and as absolute time in micro seconds.

 log(File)

 -spec log(File) -> ok when File :: atom() | file:filename().

Call this function to ensure that the results displayed by
analyze/0,1,2 are printed to the file File as well as to the
screen.

 profile(FunRootset)

 -spec profile(Fun) -> {ok, Value} | {error, Reason}
 when Fun :: fun(() -> term()), Value :: term(), Reason :: term();
 (Rootset) -> profiling | {error, Reason} when Rootset :: [atom() | pid()], Reason :: term().

If FunRootset is a fun, this call is equivalent to
profile([], FunRootset).
If FunRootset is a list, it is assumed to be a Rootset, and this
call is equivalent to start_profiling(Rootset).

 profile(Arg1, Arg2)

 -spec profile(Fun, Options) -> {ok, Value} | {error, Reason}
 when
 Fun :: fun(() -> term()),
 Options :: [set_on_spawn | {set_on_spawn, boolean()}],
 Value :: term(),
 Reason :: term();
 (Rootset, Fun) -> {ok, Value} | {error, Reason}
 when
 Rootset :: [atom() | pid()],
 Fun :: fun(() -> term()),
 Value :: term(),
 Reason :: term().

If Arg1 is a fun and Arg2 is list, this call is equivalent to
profile([], Arg1, {'_','_','_'}, Arg2).
If Arg1 is a list and Arg2 is a fun, this call is equivalent to
profile(Arg1, Arg2, {'_','_','_'}, Arg1).

 profile(Rootset, Fun, Pattern)

 (since OTP R14B)

 -spec profile(Rootset, Fun, Pattern) -> {ok, Value} | {error, Reason}
 when
 Rootset :: [atom() | pid()],
 Fun :: fun(() -> term()),
 Pattern :: trace_pattern_mfa(),
 Value :: term(),
 Reason :: term().

Equivalent to profile(Rootset, Fun, Pattern, [{set_on_spawn, true}]).

 profile(Rootset, Arg1, Arg2, Arg3)

 -spec profile(Rootset, Module, Function, Args) -> {ok, Value} | {error, Reason}
 when
 Rootset :: [atom() | pid()],
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Value :: term(),
 Reason :: term();
 (Rootset, Fun, Pattern, Options) -> {ok, Value} | {error, Reason}
 when
 Rootset :: [atom() | pid()],
 Fun :: fun(() -> term()),
 Pattern :: trace_pattern_mfa(),
 Options :: [set_on_spawn | {set_on_spawn, boolean()}],
 Value :: term(),
 Reason :: term().

This function spawns a process that applies a fun or an an function,
and then starts profiling for the spawned proceses as well as the
processes in Rootset (and any new processes spawned from them).
If Arg1 is a fun, Arg2 is expected to be a trace pattern, and
Arg3 a list of options. In that case, this call is equivalent to:
profile(Rootset, erlang, apply, [Arg1, []], Arg2, Arg3)
If Arg1 is an atom, Arg1 is assumed to be a module name, Arg2 the
name of the function in that module, and Arg3 a list of arguments to
be used when calling that function. In that case, this call is equivalent
to:
profile(Rootset, Arg1, Arg2, Arg3, {'_','_','_'}, [{set_on_spawn, true}])

 profile(Rootset, Module, Function, Args, Pattern)

 (since OTP R14B)

 -spec profile(Rootset, Module, Function, Args, Pattern) -> {ok, Value} | {error, Reason}
 when
 Rootset :: [atom() | pid()],
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Pattern :: trace_pattern_mfa(),
 Value :: term(),
 Reason :: term().

Equivalent to profile(Rootset, Module, Function, Args, Pattern, [{set_on_spawn, true}]).

 profile(Rootset, Module, Function, Args, Pattern, Options)

 (since OTP R16B01)

 -spec profile(Rootset, Module, Function, Args, Pattern, Options) -> {ok, Value} | {error, Reason}
 when
 Rootset :: [atom() | pid()],
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Pattern :: trace_pattern_mfa(),
 Options :: [set_on_spawn | {set_on_spawn, boolean()}],
 Value :: term(),
 Reason :: term().

This function spawns a process P that apply(Module, Function, Args), and then starts profiling for P and the
processes in Rootset (and any new processes spawned from them).
Rootset is a list of pids and registered names.
Information about activity in any profiled process is stored in the Eprof
database.
If tracing could be enabled for P and all processes in Rootset, the function
returns {ok,Value} when Fun()/apply returns with the value Value, or
{error,Reason} if Fun()/apply fails with exit reason Reason. Otherwise
it returns {error, Reason} immediately.
The set_on_spawn option will active call time tracing for all processes
spawned by processes in the rootset. This is the default behaviour.
The programmer must ensure that the function given as argument is truly
synchronous and that no work continues after the function has returned a value.

 start()

 -spec start() -> {ok, Pid} | {error, Reason} when Pid :: pid(), Reason :: {already_started, Pid}.

Starts the Eprof server which holds the internal state of the collected data.

 start_profiling(Rootset)

 -spec start_profiling(Rootset) -> profiling | {error, Reason}
 when Rootset :: [atom() | pid()], Reason :: term().

Equivalent to start_profiling(Rootset, {'_', '_', '_'}).

 start_profiling(Rootset, Pattern)

 (since OTP R14B)

 -spec start_profiling(Rootset, Pattern) -> profiling | {error, Reason}
 when
 Rootset :: [atom() | pid()],
 Pattern :: trace_pattern_mfa(),
 Reason :: term().

Equivalent to start_profiling(Rootset, Pattern, {'_', '_', '_'}).

 start_profiling(Rootset, Pattern, Options)

 (since OTP R16B01)

 -spec start_profiling(Rootset, Pattern, Options) -> profiling | {error, Reason}
 when
 Rootset :: [atom() | pid()],
 Pattern :: trace_pattern_mfa(),
 Options :: [set_on_spawn | {set_on_spawn, boolean()}],
 Reason :: term().

Starts profiling for the processes in Rootset (and any new processes spawned
from them).
Information about activity in any profiled process is stored in the
Eprof database.
Rootset is a list of pids and registered names.
The function returns profiling if tracing could be enabled for all processes
in Rootset, or error otherwise.
A pattern can be selected to narrow the profiling. For instance a specific
module can be selected, and only the code executed in that module will be
profiled.
The set_on_spawn option will active call time tracing for all processes
spawned by processes in the rootset. This is the default behaviour.

 stop()

 -spec stop() -> stopped.

Stops the Eprof server.

 stop_profiling()

 -spec stop_profiling() -> profiling_stopped | profiling_already_stopped.

Stops profiling started with start_profiling/1 or profile/1.

fprof

A Time Profiling Tool using trace to file for minimal runtime performance
impact.
This module is used to profile a program to find out how the execution time is
used. Tracing to file is used to minimize the runtime performance degradation.
The fprof module uses tracing to collect profiling data, hence there is no
need for special compilation of any module to be profiled. When it starts
tracing, fprof will erase all previous tracing in the node and set the
necessary trace flags on the profiling target processes as well as local call
trace on all functions in all loaded modules and all modules to be loaded.
fprof disable all tracing in the node when it stops tracing.
fprof presents both own time that is, how much time a function has
used for its own execution, and accumulated time that is, including
called functions. All presented times are collected using trace
timestamps. fprof tries to collect CPU time timestamps, if the host
machine OS supports it. Therefore, the times can be wallclock times and
OS scheduling will randomly strike all called functions in a
presumably fair way.
However, if the profiling time is short, and the host machine OS does
not support high resolution CPU time measurements, a few OS
schedulings can show up as ridiculously long execution times for
functions doing practically nothing. As an example, it has been
observed that a function that more or less just composing a tuple, was
running 100 times slower than normal. When tracing was repeated, the
execution time was normal.
Profiling is essentially done in 3 steps:
	Tracing: to a file. The trace data contains entries for function
calls, returns to function, process scheduling, other process
related events (for example spawn), and garbage collection. All trace
entries are timestamped.

	Profiling: the trace file is read, the execution call stack is
simulated, and raw profile data is calculated from the simulated call stack
and the trace timestamps. The profile data is stored in the fprof server
state. During this step the trace data may be dumped in text format to file or
console.

	Analysing: the raw profile data is sorted, filtered and dumped in
text format either to file or console. The text format intended to be both
readable for a human reader, as well as parsable with the standard erlang
parsing tools.

Since fprof sends trace data to afile, the runtime performance
degradation is minimized, but still far from negligible, especially
for programs that themselves use the filesystem heavily. Where the
trace file is placed is also important, for example, on Unix systems
/tmp is usually a good choice since it is essentially a RAM disk,
while any network-mounted disk is a bad idea.
fprof can also skip the file step and trace to a tracer process that does the
profiling in runtime.

Analysis format
This section describes the output format of the analyse/1 function.
The format is parsable with the standard Erlang parsing tools
erl_scan and erl_parse, file:consult/1, or io:read/2. The
parse format is not described here — it should be easy enough for the
interested reader to try it out. Note that some flags to
analyse/1 will affect the format.
The following example was run on Erlang/OTP R8 on Solaris 8; all OTP
internals in this example are version dependent.
As an example, we will use the following function, which is a
slightly modified benchmark function from module file:
-module(foo).
-export([create_file_slow/2]).

create_file_slow(Name, N) when is_integer(N), N >= 0 ->
 {ok, FD} =
 file:open(Name, [raw, write, delayed_write, binary]),
 if N > 256 ->
 ok = file:write(FD,
 lists:map(fun (X) -> <<X:32/unsigned>> end,
 lists:seq(0, 255))),
 ok = create_file_slow(FD, 256, N);
 true ->
 ok = create_file_slow(FD, 0, N)
 end,
 ok = file:close(FD).

create_file_slow(FD, M, M) ->
 ok;
create_file_slow(FD, M, N) ->
 ok = file:write(FD, <<M:32/unsigned>>),
 create_file_slow(FD, M+1, N).
Let us have a look at the printout after running:
1> fprof:apply(foo, create_file_slow, [junk, 1024]).
2> fprof:profile().
3> fprof:analyse().
The printout starts with:
%% Analysis results:
{ analysis_options,
 [{callers, true},
 {sort, acc},
 {totals, false},
 {details, true}]}.

% CNT ACC OWN
[{ totals, 9627, 1691.119, 1659.074}]. %%%
The CNT column shows the total number of function calls that was found in the
trace. In the ACC column is the total time of the trace from first timestamp to
last. And in the OWN column is the sum of the execution time in functions found
in the trace, not including called functions. In this case it is very close to
the ACC time since the emulator had practically nothing to do except
executing our test program.
All time values in the printout are in milliseconds.
The printout continues:
% CNT ACC OWN
[{ "<0.28.0>", 9627,undefined, 1659.074}]. %%
This is the printout header of one process. The printout contains only this one
process since we called fprof:apply/3 that traces only the current process.
Therefore the CNT and OWN columns perfectly matches the totals above. The ACC
column is undefined since summing the ACC times of all calls in the process
makes no sense — one would get something like the ACC value from totals above
multiplied by the average depth of the call stack.
All paragraphs up to the next process header only concerns function calls within
this process.
Now we come to something more interesting:
{[{undefined, 0, 1691.076, 0.030}],
 { {fprof,apply_start_stop,4}, 0, 1691.076, 0.030}, %
 [{{foo,create_file_slow,2}, 1, 1691.046, 0.103},
 {suspend, 1, 0.000, 0.000}]}.

{[{{fprof,apply_start_stop,4}, 1, 1691.046, 0.103}],
 { {foo,create_file_slow,2}, 1, 1691.046, 0.103}, %
 [{{file,close,1}, 1, 1398.873, 0.019},
 {{foo,create_file_slow,3}, 1, 249.678, 0.029},
 {{file,open,2}, 1, 20.778, 0.055},
 {{lists,map,2}, 1, 16.590, 0.043},
 {{lists,seq,2}, 1, 4.708, 0.017},
 {{file,write,2}, 1, 0.316, 0.021}]}.
The printout consists of one paragraph per called function. The function
marked with % is the one the paragraph concerns — foo:create_file_slow/2.
Above the marked function are the calling functions — those that has called
the marked, and below are those called by the marked function.
The paragraphs are per default sorted in descending order of the ACC column for
the marked function. The calling list and called list within one paragraph are
also per default sorted in descending order of their ACC column.
The columns are:
	CNT - the number of times the function has been called
	ACC - the time spent in the function including called functions
	OWN - the time spent in the function not including called functions

The rows for the calling functions contain statistics for the marked
function with the constraint that only the occasions when a call was made from
the row's function to the marked function are accounted for.
The row for the marked function simply contains the sum of all calling rows.
The rows for the called functions contains statistics for the row's function
with the constraint that only the occasions when a call was made from the
marked to the row's function are accounted for.
So, we see that foo:create_file_slow/2 used very little time for its own
execution. It spent most of its time in file:close/1. The function
foo:create_file_slow/3 that writes 3/4 of the file contents is the second
biggest time thief.
We also see that the call to file:write/2 that writes 1/4 of the file contents
takes very little time in itself. What takes time is to build the data
(lists:seq/2 and lists:map/2).
The function undefined that has called fprof:apply_start_stop/4 is an
unknown function because that call was not recorded in the trace. It was only
recorded that the execution returned from fprof:apply_start_stop/4 to some
other function above in the call stack, or that the process exited from there.
Let us continue down the printout to find:
{[{{foo,create_file_slow,2}, 1, 249.678, 0.029},
 {{foo,create_file_slow,3}, 768, 0.000, 23.294}],
 { {foo,create_file_slow,3}, 769, 249.678, 23.323}, %
 [{{file,write,2}, 768, 220.314, 14.539},
 {suspend, 57, 6.041, 0.000},
 {{foo,create_file_slow,3}, 768, 0.000, 23.294}]}.
If you compare with the code you will see there also that
foo:create_file_slow/3 was called only from foo:create_file_slow/2 and
itself, and called only file:write/2, note the number of calls to
file:write/2. But here we see that suspend was called a few times. This is a
pseudo function that indicates that the process was suspended while executing in
foo:create_file_slow/3, and since there is no receive or erlang:yield/0 in
the code, it must be Erlang scheduling suspensions, or the trace file driver
compensating for large file write operations (these are regarded as a schedule
out followed by a schedule in to the same process).
Let us find the suspend entry:
{[{{file,write,2}, 53, 6.281, 0.000},
 {{foo,create_file_slow,3}, 57, 6.041, 0.000},
 {{prim_file,drv_command,4}, 50, 4.582, 0.000},
 {{prim_file,drv_get_response,1}, 34, 2.986, 0.000},
 {{lists,map,2}, 10, 2.104, 0.000},
 {{prim_file,write,2}, 17, 1.852, 0.000},
 {{erlang,port_command,2}, 15, 1.713, 0.000},
 {{prim_file,drv_command,2}, 22, 1.482, 0.000},
 {{prim_file,translate_response,2}, 11, 1.441, 0.000},
 {{prim_file,'-drv_command/2-fun-0-',1}, 15, 1.340, 0.000},
 {{lists,seq,4}, 3, 0.880, 0.000},
 {{foo,'-create_file_slow/2-fun-0-',1}, 5, 0.523, 0.000},
 {{erlang,bump_reductions,1}, 4, 0.503, 0.000},
 {{prim_file,open_int_setopts,3}, 1, 0.165, 0.000},
 {{prim_file,i32,4}, 1, 0.109, 0.000},
 {{fprof,apply_start_stop,4}, 1, 0.000, 0.000}],
 { suspend, 299, 32.002, 0.000}, %
 []}.
We find no particularly long suspend times, so no function seems to have waited
in a receive statement. Actually, prim_file:drv_command/4 contains a receive
statement, but in this test program, the message lies in the process receive
buffer when the receive statement is entered. We also see that the total suspend
time for the test run is small.
The suspend pseudo function has an OWN time of zero. This is to prevent
the process total OWN time from including time in suspension. Whether suspend
time is really ACC or OWN time is more of a philosophical question.
Now we look at another interesting pseudo function, garbage_collect:
{[{{prim_file,drv_command,4}, 25, 0.873, 0.873},
 {{prim_file,write,2}, 16, 0.692, 0.692},
 {{lists,map,2}, 2, 0.195, 0.195}],
 { garbage_collect, 43, 1.760, 1.760}, %
 []}.
Here we see that no function stands out, which is very normal.
The garbage_collect pseudo function has not an OWN time of zero like
suspend, instead it is equal to the ACC time.
Garbage collection often occurs while a process is suspended, but fprof hides
this fact by pretending that the suspended function was first unsuspended and
then garbage collected. Otherwise the printout would show garbage_collect
being called from suspend, but not which function that might have caused the
garbage collection.
Let us now get back to the test code:
{[{{foo,create_file_slow,3}, 768, 220.314, 14.539},
 {{foo,create_file_slow,2}, 1, 0.316, 0.021}],
 { {file,write,2}, 769, 220.630, 14.560}, %
 [{{prim_file,write,2}, 769, 199.789, 22.573},
 {suspend, 53, 6.281, 0.000}]}.
Not unexpectedly, we see that file:write/2 was called from
foo:create_file_slow/3 and foo:create_file_slow/2. The number of calls in
each case as well as the used time are also confirms the previous results.
We see that file:write/2 only calls prim_file:write/2, but let us refrain
from digging into the internals of the kernel application.
If we nevertheless do dig down we find the call to the linked-in driver
that does the file operations towards the host operating system:
{[{{prim_file,drv_command,4}, 772, 1458.356, 1456.643}],
 { {erlang,port_command,2}, 772, 1458.356, 1456.643}, %
 [{suspend, 15, 1.713, 0.000}]}.
This is 86 % of the total run time, and as we saw before it is the close
operation the absolutely biggest contributor. We find a comparison ratio a
little bit up in the call stack:
{[{{prim_file,close,1}, 1, 1398.748, 0.024},
 {{prim_file,write,2}, 769, 174.672, 12.810},
 {{prim_file,open_int,4}, 1, 19.755, 0.017},
 {{prim_file,open_int_setopts,3}, 1, 0.147, 0.016}],
 { {prim_file,drv_command,2}, 772, 1593.322, 12.867}, %
 [{{prim_file,drv_command,4}, 772, 1578.973, 27.265},
 {suspend, 22, 1.482, 0.000}]}.
The time for file operations in the linked in driver distributes itself as 1 %
for open, 11 % for write, and 87 % for close. All data is probably buffered in
the operating system until the close.
The observant reader may notice that the ACC times for
prim_file:drv_command/2 and prim_file:drv_command/4 is not equal between the
paragraphs above, even though it is easy to believe that
prim_file:drv_command/2 is just a passthrough function.
The missing time can be found in the paragraph for prim_file:drv_command/4
where it is evident that not only prim_file:drv_command/2 is called but also a
fun:
{[{{prim_file,drv_command,2}, 772, 1578.973, 27.265}],
 { {prim_file,drv_command,4}, 772, 1578.973, 27.265}, %
 [{{erlang,port_command,2}, 772, 1458.356, 1456.643},
 {{prim_file,'-drv_command/2-fun-0-',1}, 772, 87.897, 12.736},
 {suspend, 50, 4.582, 0.000},
 {garbage_collect, 25, 0.873, 0.873}]}.
And some more missing time can be explained by the fact that
prim_file:open_int/4 both calls prim_file:drv_command/2 directly as well as
through prim_file:open_int_setopts/3, which complicates the picture.
{[{{prim_file,open,2}, 1, 20.309, 0.029},
 {{prim_file,open_int,4}, 1, 0.000, 0.057}],
 { {prim_file,open_int,4}, 2, 20.309, 0.086}, %
 [{{prim_file,drv_command,2}, 1, 19.755, 0.017},
 {{prim_file,open_int_setopts,3}, 1, 0.360, 0.032},
 {{prim_file,drv_open,2}, 1, 0.071, 0.030},
 {{erlang,list_to_binary,1}, 1, 0.020, 0.020},
 {{prim_file,i32,1}, 1, 0.017, 0.017},
 {{prim_file,open_int,4}, 1, 0.000, 0.057}]}.
.
.
.
{[{{prim_file,open_int,4}, 1, 0.360, 0.032},
 {{prim_file,open_int_setopts,3}, 1, 0.000, 0.016}],
 { {prim_file,open_int_setopts,3}, 2, 0.360, 0.048}, %
 [{suspend, 1, 0.165, 0.000},
 {{prim_file,drv_command,2}, 1, 0.147, 0.016},
 {{prim_file,open_int_setopts,3}, 1, 0.000, 0.016}]}.
Notes
The actual supervision of execution times is in itself a CPU-intensive activity.
A message is written on the trace file for every function call that is made by
the profiled code.
The ACC time calculation is sometimes difficult to make correct, since it is
difficult to define. This happens especially when a function occurs in several
instances in the call stack, for example by calling itself perhaps through other
functions and perhaps even non-tail recursively.
To produce sensible results, fprof tries not to charge any function more than
once for ACC time. The instance highest up (with longest duration) in the call
stack is chosen.
Sometimes a function can unexpectedly waste a lot (some 10 ms or more depending
on host machine OS) of OWN (and ACC) time, even functions that do practically
nothing at all. The problem may be that the OS has chosen to schedule out the
Erlang runtime system process for a while, and if the OS does not support high
resolution CPU time measurements fprof will use wallclock time for its
calculations, and it will appear as if functions are randomly burning virtual
machine time.
See Also
fprof - The File Trace Profiler, dbg, eprof

 Summary

 Types

 analyse_option()

 apply_option()

 pid_spec()

 profile_option()

 trace_option()

 Functions

 analyse()

 Equivalent to analyse([]).

 analyse(Arg)

 Analyses raw profile data in the fprof server.

 analyse(OptionName, OptionValue)

 Equivalent to analyse([{OptionName, OptionValue}]).

 apply(Func, Args)

 Equivalent to apply(Func, Args, []).

 apply(Arg1, Arg2, Arg3)

 Calls the given function surrounded by
trace([start, ...]) and
trace(stop).

 apply(Module, Function, Args, OptionList)

 Equivalent to apply({Module, Function}, Args, OptionList).

 profile()

 Equivalent to profile([]).

 profile(Arg)

 Compiles a trace into raw profile data held by the fprof server.

 profile(OptionName, OptionValue)

 Equivalent to profile([{OptionName, OptionValue}]).

 start()

 Starts the fprof server.

 stop()

 Equivalent to stop(normal).

 stop(Reason)

 Stops the fprof server.

 trace(Arg)

 Starts or stops tracing.

 trace(What, Value)

 Starts or stop tracing.

 Types

 analyse_option()

 (not exported)

 -type analyse_option() ::
 append | callers |
 {callers, boolean()} |
 {cols, Cols :: non_neg_integer()} |
 dest |
 {dest, Dest :: pid() | (Destfile :: file:filename())} |
 details |
 {details, boolean()} |
 no_callers | no_details |
 {sort, SortSpec :: acc | own} |
 totals |
 {totals, boolean()}.

 apply_option()

 (not exported)

 -type apply_option() ::
 continue | {procs, PidList :: [pid()]} | start | (TraceStartOption :: trace_option()).

 pid_spec()

 (not exported)

 -type pid_spec() :: pid() | atom().

 profile_option()

 (not exported)

 -type profile_option() ::
 append | dump |
 {dump, pid() | (Dump :: (Dumpfile :: file:filename() | []))} |
 file |
 {file, Filename :: file:filename()} |
 start | stop.

 trace_option()

 (not exported)

 -type trace_option() ::
 cpu_time |
 {cpu_time, boolean()} |
 file |
 {file, Filename :: file:filename()} |
 {procs, PidSpec :: pid_spec()} |
 {procs, [PidSpec :: pid_spec()]} |
 start | stop |
 {tracer, Tracer :: pid() | port()} |
 verbose |
 {verbose, boolean()}.

 Functions

 analyse()

 -spec analyse() -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when ServerPid :: pid(), Reason :: term().

Equivalent to analyse([]).

 analyse(Arg)

 -spec analyse(OptionName) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when OptionName :: atom(), ServerPid :: pid(), Reason :: term();
 ({OptionName, OptionValue}) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when OptionName :: atom(), OptionValue :: term(), ServerPid :: pid(), Reason :: term();
 (OptionList) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when
 OptionList :: [Option],
 Option :: analyse_option(),
 ServerPid :: pid(),
 Reason :: term().

Analyses raw profile data in the fprof server.
If Arg is an atom, this call is equivalent to analyse([Arg]).
If Arg is a a tuple {Option, _}, this call is equivalent to
analyse([Option]).
Otherwise Arg must be a list of valid options.
If called when no raw profile data is available, {error, no_profile}
is returned.
Destfile is used to call file:open/2.
Option description:
	dest | {dest, Dest} - Specifies the destination for the analysis. If
this option is not given or it is dest, the destination will be the caller's
group leader, otherwise the destination Dest is either the pid/0 of an
I/O device or a filename. If the filename is [], "fprof.analysis" is used
instead.

	append - Causes the analysis to be appended to the destination file.
This option is only allowed with the {dest, Destfile} option.

	{cols, Cols} - Specifies the number of columns in the analysis text. If
this option is not given the number of columns is set to 80.

	callers | {callers, true} - Prints callers and called information in
the analysis. This is the default.

	{callers, false} | no_callers - Suppresses the printing of callers and
called information in the analysis.

	{sort, SortSpec} - Specifies if the analysis should be sorted according
to the ACC column, which is the default, or the OWN column. See
Analysis Format below.

	totals | {totals, true} - Includes a section containing call
statistics for all calls regardless of process, in the analysis.

	{totals, false} - Suppresses the totals section in the analysis, which
is the default.

	details | {details, true} - Prints call statistics for each process in
the analysis. This is the default.

	{details, false} | no_details - Suppresses the call statistics for
each process from the analysis.

 analyse(OptionName, OptionValue)

 -spec analyse(OptionName, OptionValue) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when OptionName :: atom(), OptionValue :: term(), ServerPid :: pid(), Reason :: term().

Equivalent to analyse([{OptionName, OptionValue}]).

 apply(Func, Args)

 -spec apply(Func, Args) -> term()
 when Func :: fun() | {Module :: module(), Function :: atom()}, Args :: [term()].

Equivalent to apply(Func, Args, []).

 apply(Arg1, Arg2, Arg3)

 -spec apply(Module, Function, Args) -> term()
 when Module :: module(), Function :: atom(), Args :: [term()];
 (Func, Args, OptionList) -> term()
 when
 Func :: fun() | {Module :: module(), Function :: atom()},
 Args :: [term()],
 OptionList :: [Option],
 Option :: apply_option().

Calls the given function surrounded by
trace([start, ...]) and
trace(stop).
If the function arguments (Arg1, Arg2, and Arg3) are Module
(an atom), Function (an atom), and Args (a list), the function
will be called using
erlang:apply(Module, Function, Args).
If the function arguments are Func (a fun), Args (a list), and
OptionList (a list of options), the fun will be called using
erlang:apply(Func, Args).
Some effort is made to keep the trace clean from unnecessary trace messages;
tracing is started and stopped from a spawned process while erlang:apply/2
is called in the current process only surrounded by receive and send
statements towards the trace starting process. The trace starting process exits
when it is not needed any more.
The TraceStartOption is any option allowed for trace/1. The
options [start, {procs, [self() | PidList]} | OptList] are given to
trace/1, where OptList is OptionList with the
continue, start and {procs, _} options removed.
The continue option inhibits the call to trace(stop) and leaves
it up to the caller to stop tracing at a suitable time.

 apply(Module, Function, Args, OptionList)

 -spec apply(Module, Function, Args, OptionList) -> term()
 when
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 OptionList :: [Option],
 Option :: apply_option().

Equivalent to apply({Module, Function}, Args, OptionList).

 profile()

 -spec profile() -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when ServerPid :: pid(), Reason :: term().

Equivalent to profile([]).

 profile(Arg)

 -spec profile(OptionName) -> ok | {ok, Tracer} | {error, Reason} | {'EXIT', ServerPid, Reason}
 when OptionName :: atom(), Tracer :: pid(), ServerPid :: pid(), Reason :: term();
 ({OptionName, OptionValue}) ->
 ok | {ok, Tracer} | {error, Reason} | {'EXIT', ServerPid, Reason}
 when
 OptionName :: atom(),
 OptionValue :: term(),
 Tracer :: pid(),
 ServerPid :: pid(),
 Reason :: term();
 (OptionList) -> ok | {ok, Tracer} | {error, Reason} | {'EXIT', ServerPid, Reason}
 when
 OptionList :: [Option],
 Option :: profile_option(),
 Tracer :: pid(),
 ServerPid :: pid(),
 Reason :: term().

Compiles a trace into raw profile data held by the fprof server.
If Arg is an atom, this call is equivalent to profile([Arg]).
If Arg is a tuple {OptionName, OptionValue},
this call is equivalent to profile([Arg]).
Otherwise, Arg must be a list of options.
Dumpfile is used to call file:open/2, and Filename is used to call
dbg:trace_port(file, Filename).
The following options are supported:
	file | {file, Filename} - Reads the file Filename and creates raw
profile data that is stored in RAM by the fprof server. If the option file
is given, or none of these options are given, the file fprof.trace is
read. The call will return when the whole trace has been read with the return
value ok if successful. This option is not allowed with the start or
stop options.

	dump | {dump, Dump} - Specifies the destination for the trace text
dump. If this option is not given, no dump is generated, if it is dump the
destination will be the caller's group leader, otherwise the destination
Dump is either the pid of an I/O device or a filename. If the
filename is [], "fprof.dump" is used instead. This option cannot be
combined with the stop option.

	append - Causes the trace text dump to be appended to the destination
file. This option is only allowed with the {dump, Dumpfile} option.

	start - Starts a tracer process that profiles trace data in runtime. The
call will return immediately with the return value {ok, Tracer} if
successful. This option is not allowed with the stop, file, or
{file, Filename} options.

	stop - Stops the tracer process that profiles trace data in runtime. The
return value will be value ok if successful. This option cannot be combined
with the start, file, or {file, Filename} options.

 profile(OptionName, OptionValue)

 -spec profile(OptionName, OptionValue) ->
 ok | {ok, Tracer} | {error, Reason} | {'EXIT', ServerPid, Reason}
 when
 OptionName :: atom(),
 OptionValue :: term(),
 Tracer :: pid(),
 ServerPid :: pid(),
 Reason :: term().

Equivalent to profile([{OptionName, OptionValue}]).

 start()

 -spec start() -> {ok, Pid} | {error, {already_started, Pid}} when Pid :: pid().

Starts the fprof server.
Note that there is seldom any need to call this function directly, since
the server will be automatically started by any function that will need it.

 stop()

 -spec stop() -> ok.

Equivalent to stop(normal).

 stop(Reason)

 -spec stop(Reason) -> ok when Reason :: term().

Stops the fprof server.
The supplied Reason becomes the exit reason for the server process. By default,
any Reason other than kill sends a request to the server and waits for it to
clean up, reply, and exit. If Reason is kill, the server is bluntly killed.
If the fprof server is not running, this function returns immediately.
Note
When the fprof server is stopped the collected raw profile data is lost.

 trace(Arg)

 -spec trace(verbose) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when ServerPid :: pid(), Reason :: term();
 (OptionName) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when OptionName :: atom(), ServerPid :: pid(), Reason :: term();
 ({OptionName, OptionValue}) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when OptionName :: atom(), OptionValue :: term(), ServerPid :: pid(), Reason :: term();
 (OptionList) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when
 OptionList :: [Option],
 Option :: trace_option(),
 ServerPid :: pid(),
 Reason :: term().

Starts or stops tracing.
If Arg is atom verbose, this call is equivalent to
trace([start, verbose]).
If Arg is an atom, this call is equivalent to
trace([Arg]).
If Arg is a tuple {OptionName, OptionValue}, this call is equivalent to
trace([Arg]).
Otherwise, Arg has to be a list of trace options.
PidSpec and Tracer are used in calls to
erlang:trace(PidSpec, true, [{tracer, Tracer} | Flags]),
and Filename is used to call
dbg:trace_port(file, Filename).
Option description:
	stop - Stops a running fprof trace and clears all tracing from the
node. Either option stop or start must be specified, but not both.

	start - Clears all tracing from the node and starts a new fprof trace.
Either option start or stop must be specified, but not both.

	verbose | {verbose, boolean()} - The verbose or
{verbose, true} options add some trace flags that fprof does not need, but that
can be interesting for general debugging purposes. These options are only allowed
with the start option.

	cpu_time | {cpu_time, boolean()} - The cpu_time or
{cpu_time, true} options make the timestamps in the trace be in CPU time instead of
the default wallclock time. These options are only allowed with the
start option.
Note
Getting correct values out of cpu_time can be difficult. The best way to get
correct values is to run using a single scheduler and bind that scheduler to
a specific CPU. For example:
erl +S 1 +sbt db`

	{procs, PidSpec} | {procs, [PidSpec]} - Specifies which processes that
should be traced. If this option is not given, the calling process is traced.
All processes spawned by the traced processes are also traced. This option is
only allowed with the start option.

	file | {file, Filename} - Specifies the filename of the trace. If the
option file is given, or none of these options are given, the file
fprof.trace is used. This option is only allowed with the start option,
but not with the {tracer, Tracer} option.

	{tracer, Tracer} - Specifies that trace to process or port shall be done
instead of trace to file. This option is only allowed with the start option,
but not with the {file, Filename} option.

 trace(What, Value)

 -spec trace(start, Filename) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when Filename :: file:filename(), ServerPid :: pid(), Reason :: term();
 (verbose, Filename) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when Filename :: file:filename(), ServerPid :: pid(), Reason :: term();
 (OptionName, OptionValue) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
 when OptionName :: atom(), OptionValue :: term(), ServerPid :: pid(), Reason :: term().

Starts or stop tracing.
If What is atom start, this call is equivalent to
trace([start, {file, Value}]).
If What is atom verbose, this call is equivalent to
trace([start, verbose, {file, Value}]).
If What is a tuple {OptionName, OptionValue},
this call is equivalent to
trace([What]).

lcnt

A runtime system Lock Profiling tool.
The lcnt module is used to profile the internal ethread locks in the Erlang
Runtime System. With lcnt enabled, internal counters in the runtime system are
updated each time a lock is taken. The counters stores information about the
number of acquisition tries and the number of collisions that has occurred
during the acquisition tries. The counters also record the waiting time a lock
has caused for a blocked thread when a collision has occurred.
The data produced by the lock counters will give an estimate on how well the
runtime system will behave from a parallelizable view point for the scenarios
tested. This tool was mainly developed to help Erlang runtime developers iron
out potential and generic bottlenecks.
Locks in the emulator are named after what type of resource they protect and
where in the emulator they are initialized, those are lock 'classes'. Most of
those locks are also instantiated several times, and given unique identifiers,
to increase locking granularity. Typically an instantiated lock protects a
disjunct set of the resource, for example ets tables, processes or ports. In
other cases it protects a specific range of a resource, for example pix_lock
which protects index to process mappings, and is given a unique number within
the class. A unique lock in lcnt is referenced by a name (class) and an
identifier: {Name, Id}.
Some locks in the system are static and protects global resources, for example
bif_timers and the run_queue locks. Other locks are dynamic and not
necessarily long lived, for example process locks and ets-table locks. The
statistics data from short lived locks can be stored separately when the locks
are deleted. This behavior is by default turned off to save memory but can be
turned on via lcnt:rt_opt({copy_save, true}). The lcnt:apply/1,2,3 functions
enables this behavior during profiling.
See Also
LCNT User's Guide

 Summary

 Types

 category_atom()

 lock_counter_data()

 option()

 print()

 sort()

 threshold()

 Convenience functions

 apply(Fun)

 Equivalent to apply(Fun, []).

 apply(Fun, Args)

 Sets up lock counters, applies Fun with Args, and cleans up.

 apply(Module, Function, Args)

 Equivalent to apply(fun() -> apply(Module, Function, Args) end).

 pid(Id, Serial)

 Equivalent to pid(node(), Id, Serial).

 pid(Node, Id, Serial)

 Creates a process id with creation 0.

 port(Id)

 Equivalent to port(node(), Id).

 port(Node, Id)

 Creates a port id with creation 0.

 Internal runtime lock counter controllers

 rt_clear()

 Equivalent to rt_clear(node()).

 rt_clear(Node)

 Clear the internal counters.

 rt_collect()

 Equivalent to rt_collect(node()).

 rt_collect(Node)

 Returns a list of raw lock counter data.

 rt_mask()

 Return the current category mask for the current node.

 rt_mask(Arg)

 Sets the current lock category mask for the current node or
retrieves the current mask for a remote node.

 rt_mask(Node, Categories)

 Sets the lock category mask according to Categories on node Node.

 rt_opt(Option)

 Equivalent to rt_opt(node(), {Type, Value}).

 rt_opt(Node, Option)

 Sets a single option on node Node.

 Functions

 clear()

 Equivalent to clear(node()).

 clear(Node)

 Clears the internal lock statistics from the runtime system.

 collect()

 Equivalent to collect(node()).

 collect(Node)

 Collects lock statistics from the runtime system.

 conflicts()

 Equivalent to conflicts([]).

 conflicts(Options)

 Prints a list of internal locks and its statistics.

 information()

 Prints lcnt server state and generic information about collected lock
statistics.

 inspect(Lock)

 Equivalent to inspect(Lock, []).

 inspect(Lock, Options)

 Prints a list of internal lock counters for a specific lock.

 load(Filename)

 Restores previously saved data to the server.

 locations()

 Equivalent to locations([]).

 locations(Options)

 Prints a list of internal lock counters by source code locations.

 save(Filename)

 Saves the collected data to file.

 start()

 Starts the lock profiler server.

 stop()

 Stops the lock profiler server.

 swap_pid_keys()

 Swaps places on Name and Id space for ports and processes.

 Types

 category_atom()

 (not exported)

 (since OTP R13B04)

 -type category_atom() :: atom().

 lock_counter_data()

 (not exported)

 (since OTP R13B04)

 -type lock_counter_data() :: term().

 option()

 (not exported)

 (since OTP R13B04)

 -type option() ::
 {sort, Sort :: sort()} |
 {reverse, boolean()} |
 {locations, boolean()} |
 {thresholds, Thresholds :: [threshold()]} |
 {print, PrintOptions :: [print() | {print(), non_neg_integer()}]} |
 {max_locks, MaxLocks :: non_neg_integer() | none} |
 {combine, boolean()}.

 print()

 (not exported)

 (since OTP R13B04)

 -type print() :: colls | duration | entry | id | name | ratio | time | tries | type.

 sort()

 (not exported)

 (since OTP R13B04)

 -type sort() :: colls | entry | id | name | ratio | time | tries | type.

 threshold()

 (not exported)

 (since OTP R13B04)

 -type threshold() :: {colls, non_neg_integer()} | {time, non_neg_integer()} | {tries, non_neg_integer()}.

 Convenience functions

 apply(Fun)

 (since OTP R13B04)

 -spec apply(Fun) -> term() when Fun :: fun().

Equivalent to apply(Fun, []).

 apply(Fun, Args)

 (since OTP R13B04)

 -spec apply(Fun, Args) -> term() when Fun :: fun(), Args :: [term()].

Sets up lock counters, applies Fun with Args, and cleans up.
Clears the lock counters and then setups the instrumentation to save all
destroyed locks. After setup the function is called, passing the elements in
Args as arguments. When the function returns the statistics are immediately
collected to the server. After the collection the instrumentation is returned to
its previous behavior. The result of the applied function is returned.
Warning
This function should only be used for micro-benchmarks; it sets copy_save to
true for the duration of the call, which can quickly lead to running out of
memory.

 apply(Module, Function, Args)

 (since OTP R13B04)

 -spec apply(Module, Function, Args) -> term()
 when Module :: module(), Function :: atom(), Args :: [term()].

Equivalent to apply(fun() -> apply(Module, Function, Args) end).

 pid(Id, Serial)

 (since OTP R13B04)

 -spec pid(Id, Serial) -> pid() when Id :: integer(), Serial :: integer().

Equivalent to pid(node(), Id, Serial).

 pid(Node, Id, Serial)

 (since OTP R13B04)

 -spec pid(Node, Id, Serial) -> pid() when Node :: node(), Id :: integer(), Serial :: integer().

Creates a process id with creation 0.

 port(Id)

 (since OTP R13B04)

 -spec port(Id) -> port() when Id :: integer().

Equivalent to port(node(), Id).

 port(Node, Id)

 (since OTP R13B04)

 -spec port(Node, Id) -> port() when Node :: node(), Id :: integer().

Creates a port id with creation 0.

 Internal runtime lock counter controllers

 rt_clear()

 (since OTP R13B04)

 -spec rt_clear() -> ok.

Equivalent to rt_clear(node()).

 rt_clear(Node)

 (since OTP R13B04)

 -spec rt_clear(Node) -> ok when Node :: node().

Clear the internal counters.
Equivalent to lcnt:clear(Node).

 rt_collect()

 (since OTP R13B04)

 -spec rt_collect() -> [lock_counter_data()].

Equivalent to rt_collect(node()).

 rt_collect(Node)

 (since OTP R13B04)

 -spec rt_collect(Node) -> [lock_counter_data()] when Node :: node().

Returns a list of raw lock counter data.

 rt_mask()

 (since OTP 20.1)

 -spec rt_mask() -> [category_atom()].

Return the current category mask for the current node.

 rt_mask(Arg)

 (since OTP 20.1)

 -spec rt_mask(Node) -> [category_atom()] when Node :: node();
 (Categories) -> ok | {error, copy_save_enabled} when Categories :: [category_atom()].

Sets the current lock category mask for the current node or
retrieves the current mask for a remote node.
If Arg is an atom, it is assumed to be a node, and this
call returns the current lock category mask for node Arg.
If Arg is a list, this call is equivalent to
rt_mask(node(), Arg).

 rt_mask(Node, Categories)

 (since OTP 20.1)

 -spec rt_mask(Node, Categories) -> ok | {error, copy_save_enabled}
 when Node :: node(), Categories :: [category_atom()].

Sets the lock category mask according to Categories on node Node.
This call will fail if the copy_save option is enabled; see
lcnt:rt_opt/2.
Valid categories are:
	allocator
	db (ETS tables)
	debug
	distribution
	generic
	io
	process
	scheduler

This list is subject to change at any time, as is the category any given lock
belongs to.

 rt_opt(Option)

 (since OTP R13B04)

 -spec rt_opt(Option) -> boolean()
 when Option :: {Type, Value :: boolean()}, Type :: copy_save | process_locks.

Equivalent to rt_opt(node(), {Type, Value}).

 rt_opt(Node, Option)

 (since OTP R13B04)

 -spec rt_opt(Node, Option) -> boolean()
 when
 Node :: node(),
 Option :: {Type, Value :: boolean()},
 Type :: copy_save | process_locks.

Sets a single option on node Node.
Option description:
	{copy_save, boolean()} - Retains the statistics of destroyed locks.
Default: false
Warning
This option will use a lot of memory when enabled, which must be reclaimed
with lcnt:rt_clear/0,1. Note that it makes no
distinction between locks that were destroyed and locks for which counting
was disabled, so enabling this option will disable changes to the lock
category mask.

	{process_locks, boolean()} - Profile process locks, equal to adding
process to the lock category mask; see lcnt:rt_mask/2.
Default: true

 Functions

 clear()

 (since OTP R13B04)

 -spec clear() -> ok.

Equivalent to clear(node()).

 clear(Node)

 (since OTP R13B04)

 -spec clear(Node) -> ok when Node :: node().

Clears the internal lock statistics from the runtime system.
This clears the data in the runtime system but not in server. All
counters for static locks are zeroed, all dynamic locks currently
alive are zeroed and all saved locks now destroyed are removed. It
also resets the duration timer.

 collect()

 (since OTP R13B04)

 -spec collect() -> ok.

Equivalent to collect(node()).

 collect(Node)

 (since OTP R13B04)

 -spec collect(Node) -> ok when Node :: node().

Collects lock statistics from the runtime system.
The function starts a server if it is not already started. It then
populates the server with lock statistics. If the server held any
lock statistics data before the collect then that data is lost.

 conflicts()

 (since OTP R13B04)

 -spec conflicts() -> ok.

Equivalent to conflicts([]).

 conflicts(Options)

 (since OTP R13B04)

 -spec conflicts(Options) -> ok when Options :: [option()].

Prints a list of internal locks and its statistics.
For option description, see lcnt:inspect/2.

 information()

 (since OTP R13B04)

 -spec information() -> ok.

Prints lcnt server state and generic information about collected lock
statistics.

 inspect(Lock)

 (since OTP R13B04)

 -spec inspect(Lock) -> ok
 when
 Lock :: Name | {Name, Id | [Id]},
 Name :: atom() | pid() | port(),
 Id :: atom() | integer() | pid() | port().

Equivalent to inspect(Lock, []).

 inspect(Lock, Options)

 (since OTP R13B04)

 -spec inspect(Lock, Options) -> ok
 when
 Lock :: Name | {Name, Id | [Id]},
 Name :: atom() | pid() | port(),
 Id :: atom() | integer() | pid() | port(),
 Options :: [option()].

Prints a list of internal lock counters for a specific lock.
Lock Name and Id for ports and processes are interchangeable with the use of
lcnt:swap_pid_keys/0 and is the reason why pid/0 and
port/0 options can be used in both Name and Id space. Both pids and
ports are special identifiers with stripped creation and can be recreated with
lcnt:pid/2,3 and lcnt:port/1,2.
Option description:
	{combine, boolean()} - Combine the statistics from different instances
of a lock class.
Default: true

	{locations, boolean()} - Print the statistics by source file and line
numbers.
Default: false

	{max_locks, MaxLocks} - Maximum number of locks printed or no limit with
none.
Default: 20

	{print, PrintOptions} - Printing options:
	name - Named lock or named set of locks (classes). The same name used
for initializing the lock in the VM.

	id - Internal id for set of locks, not always unique. This could be
table name for ets tables (db_tab), port id for ports, integer identifiers
for allocators, etc.

	type - Type of lock: rw_mutex, mutex, spinlock, rw_spinlock or
proclock.

	entry - In combination with {locations, true} this option prints the
lock operations source file and line number entry-points along with
statistics for each entry.

	tries - Number of acquisitions of this lock.

	colls - Number of collisions when a thread tried to acquire this lock.
This is when a trylock is EBUSY, a write try on read held rw_lock, a try
read on write held rw_lock, a thread tries to lock an already locked lock.
(Internal states supervises this.)

	ratio - The ratio between the number of collisions and the number of
tries (acquisitions) in percentage.

	time - Accumulated waiting time for this lock. This could be greater
than actual wall clock time, it is accumulated for all threads. Trylock
conflicts does not accumulate time.

	duration - Percentage of accumulated waiting time of wall clock time.
This percentage can be higher than 100% since accumulated time is from all
threads.

Default: [name,id,tries,colls,ratio,time,duration]

	{reverse, boolean()} - Reverses the order of sorting.
Default: false

	{sort, Sort} - Column sorting orders.
Default: time

	{thresholds, Thresholds} - Filtering thresholds. Anything values above
the threshold value are passed through.
Default: [{tries, 0}, {colls, 0}, {time, 0}]

 load(Filename)

 (since OTP R13B04)

 -spec load(Filename) -> ok when Filename :: file:filename().

Restores previously saved data to the server.

 locations()

 (since OTP R13B04)

 -spec locations() -> ok.

Equivalent to locations([]).

 locations(Options)

 (since OTP R13B04)

 -spec locations(Options) -> ok when Options :: [option()].

Prints a list of internal lock counters by source code locations.
For option description, see lcnt:inspect/2.

 save(Filename)

 (since OTP R13B04)

 -spec save(Filename) -> ok when Filename :: file:filename().

Saves the collected data to file.

 start()

 (since OTP R13B04)

 -spec start() -> {ok, Pid} | {error, {already_started, Pid}} when Pid :: pid().

Starts the lock profiler server.
The server only act as a medium for the user and performs filtering
and printing of data collected by lcnt:collect/1.

 stop()

 (since OTP R13B04)

 -spec stop() -> ok.

Stops the lock profiler server.

 swap_pid_keys()

 (since OTP R13B04)

 -spec swap_pid_keys() -> ok.

Swaps places on Name and Id space for ports and processes.

make

A Make Utility for Erlang
The module make provides a set of functions similar to the UNIX type Make
functions.
Emakefile
make:all/0,1 and make:files/1,2 first looks for
{emake, Emake} in options, then in the current working directory for a file
named Emakefile. If present Emake should contain elements like this:
Modules.
{Modules,Options}.
Modules is an atom or a list of atoms. It can be
	a module name, for exmaple, file1
	a module name in another directory, for exmaple, '../foo/file3'
	a set of modules specified with a wildcards, for exmaple, 'file*'
	a wildcard indicating all modules in current directory, that is: '*'
	a list of any of the above, for exmaple, ['file*','../foo/file3','File4']

Options is a list of compiler options.
Emakefile is read from top to bottom. If a module matches more than one entry,
the first match is used. For example, the following Emakefile means that
file1 should be compiled with the options [debug_info,{i,"../foo"}], while
all other files in the current directory should be compiled with only the
debug_info flag.
{'file1',[debug_info,{i,"../foo"}]}.
{'*',[debug_info]}.
See Also
The Compiler Application

 Summary

 Functions

 all()

 Equivalent to all([]).

 all(Options)

 This function determines the set of modules to compile and the compile options
to use, by first looking for the emake make option, if not present reads the
configuration from a file named Emakefile (see below). If no such file is
found, the set of modules to compile defaults to all modules in the current
working directory.

 files(ModFiles)

 Equivalent to files(ModFiles, []).

 files(ModFiles, Options)

 This function does exactly the same thing as all/0,1, but for the
specified ModFiles, which is a list of module or file names.

 Functions

 all()

 -spec all() -> up_to_date | error.

Equivalent to all([]).

 all(Options)

 -spec all(Options) -> up_to_date | error
 when
 Options :: [Option],
 Option :: noexec | load | netload | {emake, Emake} | compile:option(),
 Emake :: [EmakeElement],
 EmakeElement :: Modules | {Modules, [compile:option()]},
 Modules :: atom() | [atom()].

This function determines the set of modules to compile and the compile options
to use, by first looking for the emake make option, if not present reads the
configuration from a file named Emakefile (see below). If no such file is
found, the set of modules to compile defaults to all modules in the current
working directory.
Traversing the set of modules, it then recompiles every module for which at
least one of the following conditions apply:
	there is no object file, or
	the source file has been modified since it was last compiled, or,
	an include file has been modified since the source file was last compiled.

As a side effect, the function prints the name of each module it tries to
compile. If compilation fails for a module, the make procedure stops and error
is returned.
Options is a list of options for make and the Erlang compiler. The following
make options exist:
	noexec
No execution mode. Just prints the name of each module that needs to be
compiled.
	load
Load mode. Loads all recompiled modules.
	netload
Net load mode. Loads all recompiled modules on all known nodes.
	{emake, Emake}
Rather than reading the Emakefile specify configuration explicitly.

All items in Options that are not make options are assumed to be compiler
options and are passed as-is to compile:file/2.

 files(ModFiles)

 -spec files(ModFiles) -> up_to_date | error
 when ModFiles :: [(Module :: module()) | (File :: file:filename())].

Equivalent to files(ModFiles, []).

 files(ModFiles, Options)

 -spec files(ModFiles, Options) -> up_to_date | error
 when
 ModFiles :: [(Module :: module()) | (File :: file:filename())],
 Options :: [Option],
 Option :: noexec | load | netload | compile:option().

This function does exactly the same thing as all/0,1, but for the
specified ModFiles, which is a list of module or file names.
The file extension .erl can be omitted.
The Emakefile (if it exists) in the current directory is searched for compiler
options for each module. If a given module does not exist in Emakefile or if
Emakefile does not exist, the module is still compiled.

tags

Generate Emacs TAGS file from Erlang source files
A TAGS file is used by Emacs to find function and variable definitions in any
source file in large projects. This module can generate a TAGS file from
Erlang source files. It recognises functions, records, and macro definitions.
Options
The functions in this module have an optional argument Options. It
is a list which can contain the following elements:
	{outfile, NameOfTAGSFile} Create a TAGS file named NameOfTAGSFile.
	{outdir, NameOfDirectory} Create a file named TAGS in the directory
NameOfDirectory.

The default behaviour is to create a file named TAGS in the current directory.
Examples
	tags:root([{outfile, "root.TAGS"}]).
This command will create a file named root.TAGS in the current directory.
The file will contain references to all Erlang source files in the Erlang
distribution.

	tags:files(["foo.erl", "bar.erl", "baz.erl"], [{outdir, "../projectdir"}]).
This command will create a file named TAGS placed it in the
directory ../projectdir. The file contains information about the
functions, records, and macro definitions of the three files.

See Also
	Richard M. Stallman. GNU Emacs Manual, chapter "Editing Programs", section
"Tag Tables". Free Software Foundation, 1995.
	Anders Lindgren. The Erlang editing mode for Emacs. Ericsson, 1998.

 Summary

 Types

 option()

 Functions

 dir(Dir)

 Equivalent to dir(Dir, []).

 dir(Dir, Options)

 Create a TAGS file for all files in directory Dir.

 dirs(DirList)

 Equivalent to dirs(Dirs, []).

 dirs(DirList, Options)

 Create a TAGS file for all files in any directory in DirList.

 file(File)

 Equivalent to file(Name, []).

 file(File, Options)

 Create a TAGS file for the file File.

 files(FileList)

 Equivalent to files(Files, []).

 files(FileList, Options)

 Create a TAGS file for the files in the list FileList.

 root()

 Equivalent to root([]).

 root(Options)

 Create a TAGS file covering all files in the Erlang distribution.

 subdir(Dir)

 Equivalent to subdir(Dir, []).

 subdir(Dir, Options)

 Descend recursively into the directory Dir and create a TAGS file based on
all files found.

 subdirs(DirList)

 Equivalent to subdirs(Dirs, []).

 subdirs(DirList, Options)

 Descend recursively into the directories in DirList and create a TAGS
file based on all files found.

 Types

 option()

 (not exported)

 -type option() ::
 {outfile, NameOfTAGSFile :: file:filename()} | {outdir, NameOfDirectory :: file:filename()}.

 Functions

 dir(Dir)

 -spec dir(Dir) -> ok | error when Dir :: file:filename().

Equivalent to dir(Dir, []).

 dir(Dir, Options)

 -spec dir(Dir, Options) -> ok | error when Dir :: file:filename(), Options :: [option()].

Create a TAGS file for all files in directory Dir.

 dirs(DirList)

 -spec dirs(DirList) -> ok | error when DirList :: [file:filename()].

Equivalent to dirs(Dirs, []).

 dirs(DirList, Options)

 -spec dirs(DirList, Options) -> ok | error when DirList :: [file:filename()], Options :: [option()].

Create a TAGS file for all files in any directory in DirList.

 file(File)

 -spec file(File) -> ok | error when File :: file:filename().

Equivalent to file(Name, []).

 file(File, Options)

 -spec file(File, Options) -> ok | error when File :: file:filename(), Options :: [option()].

Create a TAGS file for the file File.

 files(FileList)

 -spec files(FileList) -> ok | error when FileList :: [file:filename()].

Equivalent to files(Files, []).

 files(FileList, Options)

 -spec files(FileList, Options) -> ok | error when FileList :: [file:filename()], Options :: [option()].

Create a TAGS file for the files in the list FileList.

 root()

 -spec root() -> ok | error.

Equivalent to root([]).

 root(Options)

 -spec root(Options) -> ok | error when Options :: [option()].

Create a TAGS file covering all files in the Erlang distribution.

 subdir(Dir)

 -spec subdir(Dir) -> ok | error when Dir :: file:filename().

Equivalent to subdir(Dir, []).

 subdir(Dir, Options)

 -spec subdir(Dir, Options) -> ok | error when Dir :: file:filename(), Options :: [option()].

Descend recursively into the directory Dir and create a TAGS file based on
all files found.

 subdirs(DirList)

 -spec subdirs(DirList) -> ok | error when DirList :: [file:filename()].

Equivalent to subdirs(Dirs, []).

 subdirs(DirList, Options)

 -spec subdirs(DirList, Options) -> ok | error when DirList :: [file:filename()], Options :: [option()].

Descend recursively into the directories in DirList and create a TAGS
file based on all files found.

tprof

Process Tracing Profiling Tool
tprof provides convenience helpers for Erlang process profiling using
the trace BIFs.
Warning
This module aims to replace eprof and cprof into a unified API for
measuring call count, time, and allocation. It is experimental in Erlang/OTP
27.0.
It is possible to analyze the number of calls, the time spent by function, and
heap allocations by function. Profiling can be done ad-hoc
 or run in a server-aided mode for deeper
introspection of the code running in production. The server-aided mode can be
run using the default tprof server or an isolated server/0 started through
start(#{ session => atom() }).
There are three kinds of profiling supported by this module:
	call_count
	call_time
	call_memory

The default is call_count, which has the smallest performance impact
and memory footprint, but it does not support per-process
profiling. For this reason, all of the examples below uses
call_memory, which measures heap allocation, and provide a more complex
feature set to demonstrate.
Erlang terms that do not fit in a single machine word are allocated on
the process heap. For example, a function returning a tuple of two
elements needs to allocate the tuple on the process heap. The actual
consumption is three words, because the runtime systems also need an
extra word to store the tuple size.
Note
Expect a slowdown in the program execution when profiling is enabled.
For profiling convenience, measurements are accumulated for functions that are
not enabled in some trace pattern. Consider this call stack example:
top_traced_function(...)
not_traced_function()
bottom_traced_function()
Allocations that happened within not_traced_function will be added to
the allocations for top_traced_function. However, allocations that occurred
within bottom_traced_function are not included in the top_traced_function.
To only keep track of each function own allocations, it is necessary to
trace all functions.
Warning
Avoid hot code reloading for modules participating in the tracing.
Reloading a module disables tracing and discards the accumulated statistics.
The tprof results will probably be incorrect when the profiled code was
reloading during a profiling session.
Ad-hoc profiling
Ad-hoc profiling is convenient for profiling a single function call.
For example:
1> tprof:profile(lists, seq, [1, 16], #{type => call_memory}).

****** Process <0.92.0> -- 100.00% of total ***
FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 5 32 6.40 [100.00]
 32 [100.0]
ok
By default tracing is enabled for all functions in all modules. When funs
are created in the interactive shell, parts of shell code are also traced:
1> tprof:profile(fun() -> lists:seq(1, 16) end, #{type => call_memory}).

****** Process <0.95.0> -- 100.00% of total ***
FUNCTION CALLS WORDS PER CALL [%]
erl_eval:do_apply/7 1 3 3.00 [3.61]
erl_eval:match_list/6 1 3 3.00 [3.61]
lists:reverse/1 1 4 4.00 [4.82]
erl_eval:expr_list/7 3 7 2.33 [8.43]
erl_eval:ret_expr/3 4 16 4.00 [19.28]
erl_eval:merge_bindings/4 3 18 6.00 [21.69]
lists:seq_loop/3 5 32 6.40 [38.55]
 83 [100.0]
ok
However, it is possible to limit the trace to specific functions or modules:
2> tprof:profile(fun() -> lists:seq(1, 16) end,
 #{type => call_memory, pattern => [{lists, seq_loop, '_'}]}).
****** Process <0.98.0> -- 100.00% of total ***
FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 5 32 6.40 [100.00]
 32 [100.0]

ok
Ad-hoc profiling results can be printed in a few different ways. The following
examples use the test module defined like this:
-module(test).
-export([test_spawn/0]).
test_spawn() ->
 {Pid, MRef} = spawn_monitor(fun () -> lists:seq(1, 32) end),
 receive
 {'DOWN', MRef, process, Pid, normal} ->
 done
 end.
By default per-process statistics is shown:
1> tprof:profile(test, test_spawn, [], #{type => call_memory}).

****** Process <0.176.0> -- 23.66 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
erlang:spawn_monitor/1 1 2 2 [9.09]
erlang:spawn_opt/4 1 6 6 [27.27]
test:test_spawn/0 1 14 14 [63.64]
 22 [100.0]

****** Process <0.177.0> -- 76.34 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
erlang:apply/2 1 7 7 [9.86]
lists:seq_loop/3 9 64 7 [90.14]
 71 [100.0]
The following example prints the combined memory allocation of all
processes, sorted by the total number of allocated words in descending
order:
2> tprof:profile(test, test_spawn, [],
 #{type => call_memory, report => {total, {measurement, descending}}}).

FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 9 64 7 [68.82]
test:test_spawn/0 1 14 14 [15.05]
erlang:apply/2 1 7 7 [7.53]
erlang:spawn_opt/4 1 6 6 [6.45]
erlang:spawn_monitor/1 1 2 2 [2.15]
 93 [100.0]
The profiling data can also be collected for further inspection:
3> {done, ProfileData} = tprof:profile(fun test:test_spawn/0,
 #{type => call_memory, report => return}).
<...>
4> tprof:format(tprof:inspect(ProfileData, process, {percent, descending})).

****** Process <0.223.0> -- 23.66 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
test:test_spawn/0 1 14 14 [63.64]
erlang:spawn_opt/4 1 6 6 [27.27]
erlang:spawn_monitor/1 1 2 2 [9.09]
 22 [100.0]

****** Process <0.224.0> -- 76.34 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 9 64 7 [90.14]
erlang:apply/2 1 7 7 [9.86]
 71 [100.0]
Which processes that are profiled depends on the profiling type.
	call_count (default) counts calls in all processes.

	call_time and call_memory limits the profiling to the processes
spawned from the user-provided function (using the set_on_spawn
option for trace:process/4).

call_time and call_memory can be restricted to profile a single process:
2> tprof:profile(test, test_spawn, [],
 #{type => call_memory, set_on_spawn => false}).

****** Process <0.183.0> -- 100.00 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
erlang:spawn_monitor/1 1 2 2 [9.09]
erlang:spawn_opt/4 1 6 6 [27.27]
test:test_spawn/0 1 14 14 [63.64]

Erlang programs can perform expensive operations in other processes
than the original one. You can include multiple, new, or even all
processes in the trace when measuring time or memory:
7> pg:start_link().
{ok,<0.252.0>}
8> tprof:profile(fun() -> pg:join(group, self()) end,
 #{type => call_memory, rootset => [pg]}).
****** Process <0.252.0> -- 52.86 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
pg:leave_local_update_ets/5 1 2 2 [1.80]
gen:reply/2 1 3 3 [2.70]
erlang:monitor/2 1 3 3 [2.70]
gen_server:try_handle_call/4 1 3 3 [2.70]
gen_server:try_dispatch/4 1 3 3 [2.70]
maps:iterator/1 2 4 2 [3.60]
maps:take/2 1 6 6 [5.41]
pg:join_local_update_ets/5 1 8 8 [7.21]
pg:handle_info/2 1 8 8 [7.21]
pg:handle_call/3 1 9 9 [8.11]
gen_server:loop/7 2 9 4 [8.11]
ets:lookup/2 2 10 5 [9.01]
pg:join_local/3 1 11 11 [9.91]
pg:notify_group/5 2 16 8 [14.41]
erlang:setelement/3 2 16 8 [14.41]
 111 [100.0]

****** Process <0.255.0> -- 47.14 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
erl_eval:match_list/6 1 3 3 [3.03]
erlang:monitor/2 1 3 3 [3.03]
lists:reverse/1 2 4 2 [4.04]
pg:join/3 1 4 4 [4.04]
erl_eval:add_bindings/2 1 5 5 [5.05]
erl_eval:do_apply/7 2 6 3 [6.06]
gen:call/4 1 8 8 [8.08]
erl_eval:expr_list/7 4 10 2 [10.10]
gen:do_call/4 1 16 16 [16.16]
erl_eval:ret_expr/3 4 16 4 [16.16]
erl_eval:merge_bindings/4 3 24 8 [24.24]
 99 [100.0]
By default, there is no limit for the profiling time. For ad-hoc
profiling, it is possible to configure a time limit. If the profiled
function does not return before that time expires, the process is
terminated with reason kill. Any unlinked children processes started
by the user-supplied function are kept; it is the responsibility of
the developer to take care of such processes.
9> tprof:profile(timer, sleep, [100000], #{timeout => 1000}).
By default, only one ad-hoc or server-aided profiling session is
allowed at any point in time. It is possible to force multiple ad-hoc
sessions concurrently, but it is the responsibility of the developer
to ensure that trace patterns do not overlap:
1> tprof:profile(fun() -> lists:seq(1, 32) end,
 #{registered => false, pattern => [{lists, '_', '_'}]}).
Server-aided profiling
Server-aided profiling can be done on a system that is up and
running. To do that, start the tprof server, and then add trace
patterns and processes to trace while the system handles actual
traffic. Data can extracted, inspected, and printed at any time. The
following example traces activity of all processes supervised by
the Kernel supervisor:
1> tprof:start(#{type => call_memory}).
{ok,<0.200.0>}
2> tprof:enable_trace({all_children, kernel_sup}).
34
3> tprof:set_pattern('_', '_' , '_').
16728
4> Sample = tprof:collect().
{call_memory,
 [{gen_server,try_dispatch,4,[{<0.154.0>,2,6}]},
 {erlang,iolist_to_iovec,1,[{<0.161.0>,1,8}]},
<...>
5 > tprof:format(tprof:inspect(Sample)).

****** Process <0.154.0> -- 14.21 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
maps:iterator/1 2 4 2 [15.38]
gen_server:try_dispatch/4 2 6 3 [23.08]
net_kernel:handle_info/2 2 16 8 [61.54]
 26 [100.0]

****** Process <0.161.0> -- 85.79 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
disk_log:handle/2 2 2 1 [1.27]
disk_log_1:maybe_start_timer/1 1 3 3 [1.91]
disk_log_1:mf_write_cache/1 1 3 3 [1.91]
<...>

It is possible to profile the entire running system, and then examine individual
processes:
1> tprof:start(#{type => call_memory}).
2> tprof:enable_trace(all), tprof:set_pattern('_', '_' , '_').
9041
3> timer:sleep(10000), tprof:disable_trace(all), Sample = tprof:collect().
{call_memory,
 [{user_drv,server,3,[{<0.64.0>,12,136}]},
 {user_drv,contains_ctrl_g_or_ctrl_c,1,[{<0.64.0>,80,10}]},
<...>
4> Inspected = tprof:inspect(Sample, process, measurement), Shell = maps:get(self(), Inspected).
{call_memory, 2743,
 [{shell,{enc,0},1,2,2,0.07291286912139992},
<...>
5> tprof:format(Shell).

FUNCTION CALLS WORDS PER CALL [%]
<...>
erl_lint:start/2 2 300 150 [10.94]
shell:used_records/1 114 342 3 [12.47]

 Summary

 Types

 column()

 Column to sort by inspect/3 or profile/4.

 process()

 A process identifier (pid) or a registered process name.

 profile_line()

 Inspected data for a single function of the specified Module.

 profile_options()

 Ad-hoc profiler options; see profile/4.

 profile_result()

 Profile of a single process, or combined profile of multiple processes, sorted
by a selected column.

 rootset()

 server()

 A tprof server.

 sort_by()

 start_options()

 trace_info()

 Raw data extracted from tracing BIFs.

 trace_map()

 Traced functions (with their arities) grouped by module name,
or all if all code is traced.

 trace_options()

 Options for enabling profiling of the selected processes; see enable_trace/2.

 trace_pattern()

 trace_type()

 The type of profiling that the tprof server will do.

 Functions

 clear_pattern(Mod, Fun, Arity)

 Disables tracing functions matching the supplied pattern.

 clear_pattern(Server, Mod, Fun, Arity)

 Equivalent to clear_pattern(Mod, Fun, Arity) but uses the provided Server.

 collect()

 Returns statistics for current trace map.

 collect(Server)

 Equivalent to collect/0 but uses the provided Server.

 continue()

 Resumes previously paused profiling.

 continue(Server)

 Equivalent to continue/0 but uses the provided Server.

 disable_trace(Rootset)

 Equivalent to disable_trace(Spec, #{set_on_spawn => true}).

 disable_trace(Spec, Options)

 Stops accumulating traces for specified processes.

 disable_trace(Server, Spec, Options)

 enable_trace(Rootset)

 Equivalent to enable_trace(Spec, #{set_on_spawn => true}).

 enable_trace(Spec, Options)

 Similar to trace:process/4, but supports a few more options for tracing
convenience.

 enable_trace(Server, Spec, Options)

 Equivalent to enable_trace/2 but uses the provided Server.

 format(Inspected)

 Formats profile data transformed with inspect/3, outputting to
the default output device.

 format(IoDevice, Inspected)

 Formats profile transformed with inspect/3,
outputting to device IoDevice.

 get_trace_map()

 Returns a map of module names to functions with their arities.

 get_trace_map(Server)

 Equivalent to get_trace_map/0 but uses the provided Server.

 inspect(Profile)

 Equivalent to inspect(Profile, process, percent).

 inspect(Profile, Type, SortBy)

 Transforms raw data returned by tracing BIFs into a form convenient for
subsequent analysis and formatting.

 pause()

 Pauses trace collection for all currently traced functions, retaining existing traces.

 pause(Server)

 Equivalent to pause/0 but uses the provided Server.

 profile(Fun)

 Equivalent to profile(Fun, #{}).

 profile(Fun, Options)

 Does ad-hoc profiling of the call Fun().

 profile(Module, Function, Args)

 Equivalent to profile(Module, Function, Args, #{}).

 profile(Module, Function, Args, Options)

 Does ad-hoc profiling for the call apply(Module, Function, Args).

 restart()

 Clears accumulated profiles and starts profiling if it was paused.

 restart(Server)

 Equivalent to restart/0 but uses the provided Server.

 set_pattern(Mod, Fun, Arity)

 Enables tracing for all functions matching the supplied pattern.

 set_pattern(Server, Mod, Fun, Arity)

 Equivalent to set_pattern/3 but uses the provided Server.

 start()

 Equivalent to start(#{}).

 start(Config)

 Starts the server, not supervised.

 start_link()

 Equivalent to start_link(#{}).

 start_link(Config)

 Equivalent to start/1 but also links the profiling server to the caller.

 stop()

 Stops the default tprof server and disable tracing enabled by the server.

 stop(Server)

 Equivalent to stop/0 but uses the provided Server.

 Types

 column()

 (not exported)

 (since OTP 27.0)

 -type column() :: module | function | calls | measurement | measurement_per_call | percent.

Column to sort by inspect/3 or profile/4.
	module - Module name.

	function - Function name.

	calls - Number of calls to the function.

	measurement - Total measurement (call count, time, or heap allocation)
throughout all calls to the function.

	measurement_per_call - Measurement (call count, time, or heap
allocation) on average per function call.

	percent - Percentage of measurement to total amount during the entire
profile collection.

 process()

 (not exported)

 (since OTP 27.0)

 -type process() :: pid() | atom().

A process identifier (pid) or a registered process name.

 profile_line()

 (not exported)

 (since OTP 27.0)

 -type profile_line() ::
 {module(),
 Function :: {atom(), arity()},
 Count :: pos_integer(),
 Measurement :: pos_integer(),
 MeasurementPerCall :: non_neg_integer(),
 Percent :: float()}.

Inspected data for a single function of the specified Module.

 profile_options()

 (not exported)

 (since OTP 27.0)

 -type profile_options() ::
 #{type => trace_type(),
 timeout => timeout(),
 pattern => trace_pattern() | [trace_pattern()],
 set_on_spawn => boolean(),
 rootset => rootset(),
 report => return | process | total | {process, sort_by()} | {total, sort_by()},
 device => io:device()}.

Ad-hoc profiler options; see profile/4.

 profile_result()

 (not exported)

 (since OTP 27.0)

 -type profile_result() :: {trace_type(), TotalMeasurement :: non_neg_integer(), [profile_line()]}.

Profile of a single process, or combined profile of multiple processes, sorted
by a selected column.

 rootset()

 (not exported)

 (since OTP 27.0)

 -type rootset() :: [process()] | all | existing | new.

 server()

 (not exported)

 (since OTP 27.0)

 -type server() :: pid() | tprof.

A tprof server.
Each server uses a separate trace:session/0 in order to
keep profiling isolated.

 sort_by()

 (not exported)

 (since OTP 27.0)

 -type sort_by() :: column() | {column(), ascending} | {column(), descending}.

 start_options()

 (not exported)

 (since OTP 27.0)

 -type start_options() :: #{type => trace_type(), session => atom()}.

 trace_info()

 (not exported)

 (since OTP 27.0)

 -type trace_info() ::
 {module(),
 Fun :: atom(),
 Arity :: non_neg_integer(),
 [{pid(), Count :: pos_integer(), Measurement :: pos_integer()}]}.

Raw data extracted from tracing BIFs.

 trace_map()

 (not exported)

 (since OTP 27.0)

 -type trace_map() :: #{module() => [{Fun :: atom(), arity()}]} | all.

Traced functions (with their arities) grouped by module name,
or all if all code is traced.

 trace_options()

 (not exported)

 (since OTP 27.0)

 -type trace_options() :: #{set_on_spawn => boolean()}.

Options for enabling profiling of the selected processes; see enable_trace/2.

 trace_pattern()

 (not exported)

 (since OTP 27.0)

 -type trace_pattern() :: {module(), Fun :: atom(), arity() | '_'}.

 trace_type()

 (not exported)

 (since OTP 27.0)

 -type trace_type() :: call_count | call_time | call_memory.

The type of profiling that the tprof server will do.
	call_count - Counts the number of calls made to functions. This
is a global profiling event that cannot be limited to specific processes.
See call_count in trace:function/4 for more details.
	call_time - Counts the accumulated time spent in functions.
See call_time in trace:function/4 for more details.
	call_memory - Counts the accumulated memory allocated in functions.
See call_memory in trace:function/4 for more details.

 Functions

 clear_pattern(Mod, Fun, Arity)

 (since OTP 27.0)

 -spec clear_pattern(module(), atom(), arity() | '_') -> ok.

Disables tracing functions matching the supplied pattern.
1> tprof:set_pattern(lists, seq, '_').
2
2> tprof:clear_pattern(lists, seq, 3).
1
3> tprof:get_trace_map().
#{lists => [{seq,2}]}
Requires that the default tprof server has been started.

 clear_pattern(Server, Mod, Fun, Arity)

 (since OTP 27.0)

 -spec clear_pattern(server(), module(), atom(), arity() | '_') -> ok.

Equivalent to clear_pattern(Mod, Fun, Arity) but uses the provided Server.

 collect()

 (since OTP 27.0)

 -spec collect() -> {trace_type(), [trace_info()]}.

Returns statistics for current trace map.

 collect(Server)

 (since OTP 27.0)

 -spec collect(server()) -> {trace_type(), [trace_info()]}.

Equivalent to collect/0 but uses the provided Server.

 continue()

 (since OTP 27.0)

 -spec continue() -> ok | not_paused.

Resumes previously paused profiling.

 continue(Server)

 (since OTP 27.0)

 -spec continue(server()) -> ok | not_paused.

Equivalent to continue/0 but uses the provided Server.

 disable_trace(Rootset)

 (since OTP 27.0)

 -spec disable_trace(Spec) -> non_neg_integer()
 when Spec :: pid() | all | new | existing | {children | all_children, process()};
 ([process()]) -> non_neg_integer() | {non_neg_integer(), [process()]}.

Equivalent to disable_trace(Spec, #{set_on_spawn => true}).

 disable_trace(Spec, Options)

 (since OTP 27.0)

 -spec disable_trace(Spec, trace_options()) -> non_neg_integer()
 when Spec :: pid() | all | new | existing | {children | all_children, process()};
 ([process()], trace_options()) ->
 non_neg_integer() | {non_neg_integer(), [process()]}.

Stops accumulating traces for specified processes.
See enable_trace/2 for a description of the options.
The profile data accumulated before the process is removed from the
traced list is retained. This makes it possible to enable tracing for
many or all processes in the system, sleep for a short period of
time, then disable tracing for all processes (to avoid system
overload), but keeping profile data.

 disable_trace(Server, Spec, Options)

 (since OTP 27.0)

 -spec disable_trace(server(), Spec, trace_options()) -> non_neg_integer()
 when Spec :: pid() | all | new | existing | {children | all_children, process()};
 (server(), [process()], trace_options()) ->
 non_neg_integer() | {non_neg_integer(), [process()]}.

 enable_trace(Rootset)

 (since OTP 27.0)

 -spec enable_trace(Spec) -> non_neg_integer()
 when Spec :: pid() | all | new | existing | {children | all_children, process()};
 ([process()]) -> non_neg_integer() | {non_neg_integer(), [process()]}.

Equivalent to enable_trace(Spec, #{set_on_spawn => true}).

 enable_trace(Spec, Options)

 (since OTP 27.0)

 -spec enable_trace(Spec, trace_options()) -> Traced :: non_neg_integer()
 when Spec :: pid() | all | new | existing;
 (Spec, trace_options()) ->
 Traced :: non_neg_integer() | {Traced :: non_neg_integer(), Failed :: [process()]}
 when Spec :: [process()] | {children | all_children, process()}.

Similar to trace:process/4, but supports a few more options for tracing
convenience.
Tracing per process is not supported by call_count profilers.
Spec is either a process identifier (pid) for a local process, one of the
following atoms, or a list of local process identifiers or their registered
names:
	all - All currently existing processes and all that will be
created in the future.

	existing - All currently existing processes.

	new - All processes that will be created in the future.

	children - All currently running processes that were directly spawned by
the specified process. This mode is helpful for tracing workers of a single
supervisor.

	all_children - All currently running processes that were spawned by the
specified process, or any recursive descendant of it. This mode is designed to
facilitate tracing of supervision trees.

Returns the number of processes for which tracing was enabled.
When a list of pids, children or all_children is used, the processes that
tracing failed to be enabled on will also be returned. Tracing can fail to be
enabled if the process has terminated before tracing could be enabled.
Note
The profiling server does not keep track of processes that were added to the
tracing set. It is permitted to stop the profiling server (wiping out any
accumulated data), restart the server, set entirely different tracing pattern
keeping the list of traced processes for future use. Use
disable_trace(Processes) to clear the list of traced
processes.
Specify Options to modify tracing behavior:
	set_on_spawn - Automatically start tracing for processes spawned by the
traced process. On by default.

 enable_trace(Server, Spec, Options)

 (since OTP 27.0)

 -spec enable_trace(server(), Spec, trace_options()) -> non_neg_integer()
 when Spec :: pid() | all | new | existing | {children | all_children, process()};
 (server(), [process()], trace_options()) ->
 non_neg_integer() | {non_neg_integer(), [process()]}.

Equivalent to enable_trace/2 but uses the provided Server.

 format(Inspected)

 (since OTP 27.0)

 -spec format(profile_result() | #{pid() | all => profile_result()}) -> ok.

Formats profile data transformed with inspect/3, outputting to
the default output device.

 format(IoDevice, Inspected)

 (since OTP 27.0)

 -spec format(io:device(), profile_result() | #{pid() | all => profile_result()}) -> ok.

Formats profile transformed with inspect/3,
outputting to device IoDevice.

 get_trace_map()

 (since OTP 27.0)

 -spec get_trace_map() -> trace_map().

Returns a map of module names to functions with their arities.

 get_trace_map(Server)

 (since OTP 27.0)

 -spec get_trace_map(server()) -> trace_map().

Equivalent to get_trace_map/0 but uses the provided Server.

 inspect(Profile)

 (since OTP 27.0)

 -spec inspect({trace_type(), [trace_info()]}) -> #{all => profile_result()}.

Equivalent to inspect(Profile, process, percent).
Transforms raw profile into a map of process identifiers to a tuple containing total count
of words allocated, and a list of all traced functions sorted in the ascending
order by the allocation percentage.

 inspect(Profile, Type, SortBy)

 (since OTP 27.0)

 -spec inspect(Profile :: {trace_type(), [trace_info()]}, Type :: process | total, SortBy :: sort_by()) ->
 #{pid() | all => profile_result()}.

Transforms raw data returned by tracing BIFs into a form convenient for
subsequent analysis and formatting.
	When the Type argument is process, this function returns a map of process
identifiers with corresponding profiling results sorted by the selected column.

	When Type argument is total or when profiling by call_count, this function
returns a map with a single all key with profiling results from all processes.

The inspected profile data can be leveraged to
print profiling results.

 pause()

 (since OTP 27.0)

 -spec pause() -> ok | not_running.

Pauses trace collection for all currently traced functions, retaining existing traces.
Use continue/0 to resume trace collection.

 pause(Server)

 (since OTP 27.0)

 -spec pause(server()) -> ok | not_running.

Equivalent to pause/0 but uses the provided Server.

 profile(Fun)

 (since OTP 27.0)

 -spec profile(fun(() -> term())) -> ok | {term(), [trace_info()]}.

Equivalent to profile(Fun, #{}).

 profile(Fun, Options)

 (since OTP 27.0)

 -spec profile(fun(() -> term()), profile_options()) -> ok | {term(), {trace_type(), [trace_info()]}}.

Does ad-hoc profiling of the call Fun().
By default, the result is formatted to the output device; use the report
option to change this behavior.
Ad-hoc profiling starts a new instance of tprof server, runs the
profiling routine, extracts results, and shuts down the server.
See profile/4 for a list of the supported options.

 profile(Module, Function, Args)

 (since OTP 27.0)

 -spec profile(module(), Fun :: atom(), Args :: [term()]) ->
 ok | {term(), {trace_type(), [trace_info()]}}.

Equivalent to profile(Module, Function, Args, #{}).

 profile(Module, Function, Args, Options)

 (since OTP 27.0)

 -spec profile(module(), Fun :: atom(), Args :: [term()], profile_options()) ->
 ok | {term(), {trace_type(), [trace_info()]}}.

Does ad-hoc profiling for the call apply(Module, Function, Args).
By default, the result is formatted to the output device; use option report
to change this behavior.
Ad-hoc profiling starts a new instance of tprof server, runs the
profiling routine, extracts results, and shuts down the server.
The ad-hoc profiler supports the following Options:
	type - The type of profiling to perform.

	device - Specifies I/O devices to print the profile to. Useful to
redirect text output to console or standard_error.

	pattern - Specifies a trace pattern, or a list of trace patterns to
enable. By default, all functions ({'_', '_', '_'}) are traced.

	report - Controls output format. The default is process; printing
per-process profiling data sorted by percentage of the total allocation.
Specify report => return to suppress printing and get the raw data for
further evaluation with inspect/3 and formatting with format/2.

	rootset - Includes extra processes in the trace list. Useful for
profiling allocations for gen_server, calls, or other allocations caused
by inter-process communications. See this example.

	set_on_spawn - Automatically start tracing for processes spawned by the
traced process. Enabled by default.

	timeout - Terminate profiling after the specified amount of time
(milliseconds).

 restart()

 (since OTP 27.0)

 -spec restart() -> ok.

Clears accumulated profiles and starts profiling if it was paused.

 restart(Server)

 (since OTP 27.0)

 -spec restart(server()) -> ok.

Equivalent to restart/0 but uses the provided Server.

 set_pattern(Mod, Fun, Arity)

 (since OTP 27.0)

 -spec set_pattern(module(), atom(), arity() | '_') -> ok | {error, {trace_pattern, trace_pattern()}}.

Enables tracing for all functions matching the supplied pattern.
Patterns are additive, following the same rules as trace:function/4.
Returns the number of functions matching the supplied pattern.
1> tprof:set_pattern(lists, seq, '_').
2
2> tprof:set_pattern(lists, keyfind, 3).
1
3> tprof:get_trace_map().
#{lists => [{keyfind,3},{seq,2},{seq,3}]}
If no functions match the pattern, an error tuple is returned:
> tprof:set_pattern(no_module, func, '_').
{error,{trace_pattern,no_module,func,'_'}}
Requires that the default tprof server has been started.

 set_pattern(Server, Mod, Fun, Arity)

 (since OTP 27.0)

 -spec set_pattern(server(), module(), atom(), arity() | '_') ->
 ok | {error, {trace_pattern, trace_pattern()}}.

Equivalent to set_pattern/3 but uses the provided Server.

 start()

 (since OTP 27.0)

 -spec start() -> {ok, Server} | {error, Reason}
 when Server :: server(), Reason :: {already_started, pid()}.

Equivalent to start(#{}).

 start(Config)

 (since OTP 27.0)

 -spec start(Config :: start_options()) -> {ok, Server} | {error, Reason}
 when Server :: server(), Reason :: {already_started, pid()}.

Starts the server, not supervised.
Profiling server stores current trace patterns and owns the trace session
used for profiling.
If no session is provided in Config, then a default session called tprof is
used and the profiling server is registered as tprof.
If session is provided in Config, then a session with that name is created
and all profiling is done within that session. The profiling server is not registered
in this case. When using tprof like this the pid/0 returned from this
function needs to be provided to the functions in this module.

 start_link()

 (since OTP 27.0)

 -spec start_link() -> {ok, Server} | {error, Reason}
 when Server :: server(), Reason :: {already_started, pid()}.

Equivalent to start_link(#{}).

 start_link(Config)

 (since OTP 27.0)

 -spec start_link(Config :: start_options()) -> {ok, Server} | {error, Reason}
 when Server :: server(), Reason :: {already_started, pid()}.

Equivalent to start/1 but also links the profiling server to the caller.

 stop()

 (since OTP 27.0)

 -spec stop() -> ok.

Stops the default tprof server and disable tracing enabled by the server.

 stop(Server)

 (since OTP 27.0)

 -spec stop(server()) -> ok.

Equivalent to stop/0 but uses the provided Server.

xref

A Cross Reference Tool for analyzing dependencies between functions, modules,
applications, and releases.
Calls between functions are either local calls such as f(),
or external calls such as mod:f().
Module data, which are extracted from BEAM files,
include local functions, exported functions, local calls, and external
calls. By default, calls to built-in functions (BIF) are ignored, but
if the option builtins, accepted by some of this module's functions,
is set to true, calls to BIFs are included as well. It is the
analyzing OTP version that decides what functions are BIFs.
Functional objects are assumed to be called where they are created
(and nowhere else).
Unresolved calls are calls to apply or
spawn with variable module, variable function, or variable
arguments. Examples are M:F(a), apply(M, f, [a]), and
spawn(m, f(), Args). Unresolved calls are represented
by calls where variable modules have been replaced with the atom
'$M_EXPR', variable functions have been replaced with the atom
'$F_EXPR', and variable number of arguments have been replaced with
the number -1. The above mentioned examples are represented by calls
to '$M_EXPR':'$F_EXPR'/1, '$M_EXPR':f/1, and m:'$F_EXPR'/-1. The
unresolved calls are a subset of the external calls.
Warning
Unresolved calls make module data incomplete, which implies that the results
of analyses may be invalid.
Applications are collections of modules. The BEAM files for the
modules are located in the ebin subdirectory of the application
directory. The name of the application directory determines the name
and version of the application.
Releases are collections of applications located in the lib subdirectory of
the release directory. There is more to read about applications and releases in
the Design Principles book.
Xref servers are identified by names, supplied when
creating new servers. Each Xref server holds a set of releases, a set
of applications, and a set of modules with module data. Xref servers
are independent of each other, and all analyses are evaluated in the
context of one single Xref server (exceptions are the functions
m/1 and d/1 which do not use servers at
all).
The mode of an Xref server determines what module data are
extracted from BEAM files as modules are added to the server. BEAM
files compiled with the option debug_info contain "debug information", which is an abstract representation of the
code.
	In functions mode, which is the default mode, function calls
and line numbers are extracted from debug information.

	In modules mode, debug information is ignored if present, but
dependencies between modules are extracted from other parts of the
BEAM files. The modules mode is significantly less time and space
consuming than the functions mode, but the analyses that can be
done are limited.

An analyzed module is a module that has been added to an
Xref server together with its module data. A library module is a module located in some directory mentioned in the library path. A library module is said to be used if some of its exported
functions are used by some analyzed module. An unknown module is a module that is neither an analyzed module nor a library
module, but whose exported functions are used by some analyzed module.
An unknown function is a used function that is
neither local or exported by any analyzed module nor exported by any
library module. An undefined function is an
externally used function that is not exported by any analyzed module
or library module. With this notion, a local function can be an
undefined function, namely if it is externally used from some
module. All unknown functions are also undefined functions; there is a
figure in the User's Guide that illustrates
this relationship.
The module attribute tag deprecated can be used to inform
Xref about deprecated functions and optionally when
functions are planned to be removed. A few examples show the idea:
	-deprecated({f,1}). - The exported function f/1 is deprecated.
Nothing is said whether f/1 will be removed or not.

	-deprecated({f,1,"Use g/1 instead"}). - As above but with a descriptive
string. The string is currently unused by xref but other tools can make use
of it.

	-deprecated({f,'_'}). - All exported functions f/0, f/1, and so on
are deprecated.

	-deprecated(module). - All exported functions in the module are
deprecated. Equivalent to -deprecated({'_','_'})..

	-deprecated([{g,1,next_version}]). - The function g/1 is deprecated
and will be removed in next version.

	-deprecated([{g,2,next_major_release}]). - The function g/2 is
deprecated and will be removed in next major release.

	-deprecated([{g,3,eventually}]). - The function g/3 is deprecated
and will eventually be removed.

	-deprecated({'_','_',eventually}). - All exported functions in the
module are deprecated and will eventually be removed.

Before any analysis can take place, module data must be set up. For instance,
the cross reference and the unknown functions are computed when all module data
are known. The functions that need complete data
(analyze/2,3, q/2,3, variables/1,2
take care of setting up data automatically. Module data need to be set up
(again) after calls to any of the add, replace, remove,
set_library_path/2,3, or
update/1,2 functions.
The result of setting up module data is the Call Graph. A
(directed) graph consists of a set of vertices and a set of (directed) edges.
The edges represent calls (From, To) between functions, modules,
applications, or releases. From is said to call To, and To is said to be used by
From. The vertices of the Call Graph are the functions of all module data: local
and exported functions of analyzed modules; used BIFs; used exported functions
of library modules; and unknown functions. The functions module_info/0,1 added
by the compiler are included among the exported functions, but only when called
from some module. The edges are the function calls of all module data. A
consequence of the edges being a set is that there is only one edge if a
function is locally or externally used several times on one and the same line of
code.
The Call Graph is represented by Erlang terms (the sets
are lists), which is suitable for many analyses. But for analyses that look at
chains of calls, a list representation is much too slow. Instead the
representation offered by the digraph module is used. The translation of the
list representation of the Call Graph - or a subgraph thereof - to the digraph
representation does not come for free, so the language used for expressing
queries to be described below has a special operator for this task and a
possibility to save the digraph representation for subsequent analyses.
In addition to the Call Graph there is a graph called the Inter Call Graph. This is a graph of calls (From, To) such that there is a
chain of calls from From to To in the Call Graph, and every From and To is an
exported function or an unused local function. The vertices are the same as for
the Call Graph.
Calls between modules, applications and releases are also directed graphs. The
types of the vertices and edges of these graphs are (ranging from
the most special to the most general): Fun for functions; Mod for modules;
App for applications; and Rel for releases. The following paragraphs will
describe the different constructs of the language used for selecting and
analyzing parts of the graphs, beginning with the constants:
	Expression ::= Constants
	Constants ::= Consts | Consts : Type | RegExpr

	Consts ::= Constant | [Constant, ...] | {Constant, ...}

	Constant ::= Call | Const

	Call ::= FunSpec -> FunSpec | {MFA, MFA} | AtomConst -> AtomConst |
{AtomConst, AtomConst}

	Const ::= AtomConst | FunSpec | MFA

	AtomConst ::= Application | Module | Release

	FunSpec ::= Module : Function / Arity
	MFA ::= {Module, Function, Arity}
	RegExpr ::= RegString : Type | RegFunc | RegFunc : Type

	RegFunc ::= RegModule : RegFunction / RegArity
	RegModule ::= RegAtom
	RegFunction ::= RegAtom
	RegArity ::= RegString | Number | _ | -1

	RegAtom ::= RegString | Atom | _

	RegString ::= - a regular expression, as described in the re module,
enclosed in double quotes -
	Type ::= Fun | Mod | App | Rel

	Function ::= Atom
	Application ::= Atom
	Module ::= Atom
	Release ::= Atom
	Arity ::= Number | -1

	Atom ::= - same as Erlang atoms -
	Number ::= - same as non-negative Erlang integers -

Examples of constants are: kernel, kernel->stdlib, [kernel, sasl],
[pg -> mnesia, {tv, mnesia}] : Mod. It is an error if an instance of Const
does not match any vertex of any graph. If there are more than one vertex
matching an untyped instance of AtomConst, then the one of the most general
type is chosen. A list of constants is interpreted as a set of constants, all of
the same type. A tuple of constants constitute a chain of calls (which may, but
does not have to, correspond to an actual chain of calls of some graph).
Assigning a type to a list or tuple of Constant is equivalent to assigning the
type to each Constant.
Regular expressions are used as a means to select some of the
vertices of a graph. A RegExpr consisting of a RegString and a type - an
example is "xref_.*" : Mod - is interpreted as those modules (or applications
or releases, depending on the type) that match the expression. Similarly, a
RegFunc is interpreted as those vertices of the Call Graph that match the
expression. An example is "xref_.*":"add_.*"/"(2|3)", which matches all add
functions of arity two or three of any of the xref modules. Another example, one
that matches all functions of arity 10 or more: _:_/"[1-9].+". Here _ is an
abbreviation for ".*", that is, the regular expression that matches anything.
The syntax of variables is simple:
	Expression ::= Variable
	Variable ::= - same as Erlang variables -

There are two kinds of variables:
	Predefined variables - hold module data, and
cannot be assigned to but only used in queries.

	User variables - can be assigned to, and are
typically used for temporary results while evaluating a query, and
for keeping results of queries for use in subsequent queries.

The predefined variables are (variables marked with (*) are available
in functions mode only):
	E - Call Graph Edges (*).

	V - Call Graph Vertices (*).

	M - Modules. All modules: analyzed modules, used library modules, and
unknown modules.

	A - Applications.

	R - Releases.

	ME - Module Edges. All module calls.

	AE - Application Edges. All application calls.

	RE - Release Edges. All release calls.

	L - Local Functions (*). All local functions of analyzed modules.

	X - Exported Functions. All exported functions of analyzed modules and
all used exported functions of library modules.

	F - Functions (*).

	B - Used BIFs. B is empty if builtins is false for all analyzed
modules.

	U - Unknown Functions.

	UU - Unused Functions (*). All local and exported functions of analyzed
modules that have not been used.

	XU - Externally Used Functions. Functions of all modules - including
local functions - that have been used in some external call.

	LU - Locally Used Functions (*). Functions of all modules that have
been used in some local call.

	OL - Functions with an attribute tag on_load (*).

	LC - Local Calls (*).

	XC - External Calls (*).

	AM - Analyzed Modules.

	UM - Unknown Modules.

	LM - Used Library Modules.

	UC - Unresolved Calls. Empty in modules mode.

	EE - Inter Call Graph Edges (*).

	DF - Deprecated Functions. All deprecated exported functions and all
used deprecated BIFs.

	DF_1 - Deprecated Functions. All deprecated functions to be removed in
next version.

	DF_2 - Deprecated Functions. All deprecated functions to be removed in
next version or next major release.

	DF_3 - Deprecated Functions. All deprecated functions to be removed in
next version, next major release, or later.

These are a few facts about the predefined variables (the
set operators + (union) and - (difference) as well as the cast operator
(Type) are described below):
	F is equal to L + X.
	V is equal to X + L + B + U, where X, L, B and U are pairwise
disjoint (that is, have no elements in common).
	UU is equal to V - (XU + LU), where LU and XU may have elements in
common. Put in another way:
	V is equal to UU + XU + LU.
	OL is a subset of F.
	E is equal to LC + XC. Note that LC and XC may have elements in
common, namely if some function is locally and externally used from one and
the same function.
	U is a subset of XU.
	B is a subset of XU.
	LU is equal to range LC.
	XU is equal to range XC.
	LU is a subset of F.
	UU is a subset of F.
	range UC is a subset of U.
	M is equal to AM + LM + UM, where AM, LM and UM are pairwise
disjoint.
	ME is equal to (Mod) E.
	AE is equal to (App) E.
	RE is equal to (Rel) E.
	(Mod) V is a subset of M. Equality holds if all analyzed modules have some
local, exported, or unknown function.
	(App) M is a subset of A. Equality holds if all applications have some
module.
	(Rel) A is a subset of R. Equality holds if all releases have some
application.
	DF_1 is a subset of DF_2.
	DF_2 is a subset of DF_3.
	DF_3 is a subset of DF.
	DF is a subset of X + B.

An important notion is that of conversion of expressions. The
syntax of a cast expression is:
	Expression ::= (Type) Expression

The interpretation of the cast operator depends on the named type Type, the
type of Expression, and the structure of the elements of the interpretation of
Expression. If the named type is equal to the expression type, no conversion
is done. Otherwise, the conversion is done one step at a time; (Fun) (App) RE,
for instance, is equivalent to (Fun) (Mod) (App) RE. Now assume that the
interpretation of Expression is a set of constants (functions, modules,
applications or releases). If the named type is more general than the expression
type, say Mod and Fun respectively, then the interpretation of the cast
expression is the set of modules that have at least one of their functions
mentioned in the interpretation of the expression. If the named type is more
special than the expression type, say Fun and Mod, then the interpretation
is the set of all the functions of the modules (in modules mode, the
conversion is partial since the local functions are not known). The conversions
to and from applications and releases work analogously. For instance,
(App) "xref_.*" : Mod returns all applications containing at least one module
such that xref_ is a prefix of the module name.
Now assume that the interpretation of Expression is a set of calls. If the
named type is more general than the expression type, say Mod and Fun
respectively, then the interpretation of the cast expression is the set of calls
(M1, M2) such that the interpretation of the expression contains a call from
some function of M1 to some function of M2. If the named type is more special
than the expression type, say Fun and Mod, then the interpretation is the
set of all function calls (F1, F2) such that the interpretation of the
expression contains a call (M1, M2) and F1 is a function of M1 and F2 is a
function of M2 (in modules mode, there are no functions calls, so a cast to
Fun always yields an empty set). Again, the conversions to and from
applications and releases work analogously.
The interpretation of constants and variables are sets, and those sets can be
used as the basis for forming new sets by the application of set operators. The syntax:
	Expression ::= Expression BinarySetOp Expression
	BinarySetOp ::= + | * | -

+, * and - are interpreted as union, intersection and difference
respectively: the union of two sets contains the elements of both sets; the
intersection of two sets contains the elements common to both sets; and the
difference of two sets contains the elements of the first set that are not
members of the second set. The elements of the two sets must be of the same
structure; for instance, a function call cannot be combined with a function. But
if a cast operator can make the elements compatible, then the more general
elements are converted to the less general element type. For instance, M + F
is equivalent to (Fun) M + F, and E - AE is equivalent to E - (Fun) AE.
One more example: X * xref : Mod is interpreted as the set of functions
exported by the module xref; xref : Mod is converted to the more special
type of X (Fun, that is) yielding all functions of xref, and the
intersection with X (all functions exported by analyzed modules and library
modules) is interpreted as those functions that are exported by some module
and functions of xref.
There are also unary set operators:
	Expression ::= UnarySetOp Expression
	UnarySetOp ::= domain | range | strict

Recall that a call is a pair (From, To). domain applied to a set of calls is
interpreted as the set of all vertices From, and range as the set of all
vertices To. The interpretation of the strict operator is the operand with all
calls of the form (A, A) removed.
The interpretation of the restriction operators is a subset
of the first operand, a set of calls. The second operand, a set of vertices, is
converted to the type of the first operand. The syntax of the restriction
operators:
	Expression ::= Expression RestrOp Expression
	RestrOp ::= |
	RestrOp ::= ||
	RestrOp ::= |||

The interpretation in some detail for the three operators:
	| - The subset of calls from any of the vertices.

	|| - The subset of calls to any of the vertices.

	||| - The subset of calls to and from any of the vertices. For all sets
of calls CS and all sets of vertices VS, CS ||| VS is equivalent to
CS | VS * CS || VS.

 Two functions (modules, applications, releases) belong
to the same strongly connected component if they call each other (in)directly.
The interpretation of the components operator is the set of strongly connected
components of a set of calls. The condensation of a set of calls is a new set
of calls between the strongly connected components such that there is an edge
between two components if there is some constant of the first component that
calls some constant of the second component.
The interpretation of the of operator is a chain of calls of the second
operand (a set of calls) that passes throw all of the vertices of the first
operand (a tuple of constants), in the given order. The second operand is
converted to the type of the first operand. For instance, the of operator can
be used for finding out whether a function calls another function indirectly,
and the chain of calls demonstrates how. The syntax of the graph analyzing
operators:
	Expression ::= Expression BinaryGraphOp Expression
	Expression ::= UnaryGraphOp Expression
	UnaryGraphOp ::= components | condensation

	BinaryGraphOp ::= of

As was mentioned before, the graph analyses operate on the digraph
representation of graphs. By default, the digraph representation is created
when needed (and deleted when no longer used), but it can also be created
explicitly by use of the closure operator:
	Expression ::= ClosureOp Expression
	ClosureOp ::= closure

The interpretation of the closure operator is the transitive closure of the
operand.
The restriction operators are defined for closures as well;
closure E | xref : Mod is interpreted as the direct or indirect function calls
from the xref module, while the interpretation of E | xref : Mod is the set
of direct calls from xref. If some graph is to be used in several graph
analyses, it saves time to assign the digraph representation of the graph to a
user variable, and then make sure that every graph analysis operates on that
variable instead of the list representation of the graph.
The lines where functions are defined (more precisely: where the first clause
begins) and the lines where functions are used are available in functions
mode. The line numbers refer to the files where the functions are defined. This
holds also for files included with the -include and -include_lib directives,
which may result in functions defined apparently in the same line. The line
operators are used for assigning line numbers to functions and for assigning
sets of line numbers to function calls. The syntax is similar to the one of the
cast operator:
	Expression ::= (LineOp) Expression
	Expression ::= (XLineOp) Expression
	LineOp ::= Lin | ELin | LLin | XLin

	XLineOp ::= XXL

The interpretation of the Lin operator applied to a set of functions assigns
to each function the line number where the function is defined. Unknown
functions and functions of library modules are assigned the number 0.
The interpretation of some LineOp operator applied to a set of function calls
assigns to each call the set of line numbers where the first function calls the
second function. Not all calls are assigned line numbers by all operators:
	the Lin operator is defined for Call Graph Edges;
	the LLin operator is defined for Local Calls.
	the XLin operator is defined for External Calls.
	the ELin operator is defined for Inter Call Graph Edges.

The Lin (LLin, XLin) operator assigns the lines where calls (local calls,
external calls) are made. The ELin operator assigns to each call (From, To),
for which it is defined, every line L such that there is a chain of calls from
From to To beginning with a call on line L.
The XXL operator is defined for the interpretation of any of the LineOp
operators applied to a set of function calls. The result is that of replacing
the function call with a line numbered function call, that is, each of the two
functions of the call is replaced by a pair of the function and the line where
the function is defined. The effect of the XXL operator can be undone by the
LineOp operators. For instance, (Lin) (XXL) (Lin) E is equivalent to
(Lin) E.
The +, -, *, and # operators are defined for line number expressions,
provided the operands are compatible. The LineOp operators are also defined for
modules, applications, and releases; the operand is implicitly converted to
functions. Similarly, the cast operator is defined for the interpretation of the
LineOp operators.
The interpretation of the counting operator is the number of
elements of a set. The operator is undefined for closures. The +, - and *
operators are interpreted as the obvious arithmetical operators when applied to
numbers. The syntax of the counting operator:
	Expression ::= CountOp Expression
	CountOp ::= #

All binary operators are left associative; for instance, A | B || C is
equivalent to (A | B) || C. The following is a list of all operators, in
increasing order of precedence:
	+, -
	*
	#
	|, ||, |||
	of
	(Type)
	closure, components, condensation, domain, range, strict

Parentheses are used for grouping, either to make an expression more readable or
to override the default precedence of operators:
	Expression ::= (Expression)

A query is a non-empty sequence of statements. A statement is
either an assignment of a user variable or an expression. The value of an
assignment is the value of the right hand side expression. It makes no sense to
put a plain expression anywhere else but last in queries. The syntax of queries
is summarized by these productions:
	Query ::= Statement, ...
	Statement ::= Assignment | Expression

	Assignment ::= Variable := Expression | Variable = Expression

A variable cannot be assigned a new value unless first removed. Variables
assigned to by the = operator are removed at the end of the query, while
variables assigned to by the := operator can only be removed by calls to
forget. There are no user variables when module data need to be set up again;
if any of the functions that make it necessary to set up module data again is
called, all user variables are forgotten.
See Also
beam_lib, digraph, digraph_utils, re,
User's Guide for Xref

 Summary

 Types

 add_dir_rsn()

 add_mod_rsn()

 analysis()

 analyze_rsn()

 answer()

 app_spec()

 application()

 call()

 component()

 constant()

 define_at()

 depr_flag()

 directory()

 file()

 file_error()

 func_spec()

 funcall()

 function_name()

 info()

 library()

 library_path()

 mod_spec()

 mode()

 path()

 q_rsn()

 rel_spec()

 release()

 string_position()

 variable()

 xarity()

 xmfa()

 xref()

 Functions

 add_application(XrefServer, Directory)

 Equivalent to add_application(XrefServer, Directory, []).

 add_application(XrefServer, Directory, Options)

 Adds an application, the modules of the application, and
module data of the modules to an
Xref server.

 add_directory(XrefServer, Directory)

 Equivalent to add_directory(Name, Directory, []).

 add_directory(XrefServer, Directory, Options)

 Adds the modules found in the given directory and the
modules' data to an Xref server.

 add_module(XrefServer, File)

 Equivalent to add_module(Name, File, []).

 add_module(XrefServer, File, Options)

 Adds a module and its module data to an
Xref server.

 add_release(XrefServer, Directory)

 Equivalent to add_release(Name, Directory, []).

 add_release(XrefServer, Directory, Options)

 Adds a release, the applications of the release, the modules of the
applications, and module data of the modules to an
Xref server.

 analyze(XrefServer, Analysis)

 Equivalent to analyze(XrefServer, Analysis, []).

 analyze(XrefServer, Analysis, Options)

 Evaluates a predefined analysis.

 d(Directory)

 The modules found in the given directory are checked for calls to
deprecated functions, calls to
undefined functions, and for unused local
functions.

 forget(XrefServer)

 Removes all user variables of an
Xref server.

 forget(XrefServer, Variables)

 Removes the user variables given by Variables from
an Xref server.

 format_error(Error)

 Given the error returned by any function of this module, the function
format_error returns a descriptive string of the error in English.

 get_default(XrefServer)

 Returns a list of all options and their default values.

 get_default(XrefServer, Option)

 Returns the default value for option Option.

 get_library_path(XrefServer)

 Returns the library path.

 info(XrefServer)

 The info/1 function returns information as a list of pairs {Tag, term() in
some order about the state and the module data of an
Xref server.

 info(XrefServer, Category)

 Returns information about all items belonging to category Category.
See info/3 for details.

 info(XrefServer, Category, Items)

 The info functions return information as a list of pairs {Tag, term()} in
some order about the state and the module data of an
Xref server.

 m(FileOrModule)

 The given BEAM file (with or without the .beam extension) or the file found by
calling code:which(Module) is checked for calls to
deprecated functions, calls to
undefined functions, and for unused local
functions.

 q(XrefServer, Query)

 Equivalent to q(XrefServer, Query, []).

 q(XrefServer, Query, Options)

 Evaluates a query in the context of an
Xref server, and returns the value of the last
statement.

 remove_application(XrefServer, Applications)

 Removes applications and their modules and module data
from an Xref server.

 remove_module(XrefServer, Modules)

 Removes analyzed modules and
module data from an Xref server.

 remove_release(XrefServer, Releases)

 Removes releases and their applications, modules, and
module data from an Xref server.

 replace_application(XrefServer, Application, Directory)

 Equivalent to replace_application(XrefServer, Application, Directory, []).

 replace_application(XrefServer, Application, Directory, Options)

 Replaces the modules of an application with other modules read from an
application directory.

 replace_module(XrefServer, Module, File)

 Equivalent to replace_module(XrefServer, Module, File, []).

 replace_module(XrefServer, Module, File, Options)

 Replaces module data of an
analyzed module with data read from a BEAM file.

 set_default(XrefServer, OptionValues)

 Sets default values for multiple options given by OptionValues.

 set_default(XrefServer, Option, Value)

 Sets the default value of one or more options.

 set_library_path(XrefServer, LibraryPath)

 Equivalent to set_library_path(XrefServer, LibraryPath, []).

 set_library_path(XrefServer, LibraryPath, Options)

 Sets the library path.

 start(NameOrOptions)

 Creates an Xref server.

 start(Name, Options)

 Creates an Xref server with a given name.

 stop(XrefServer)

 Stops an Xref server.

 update(XrefServer)

 Equivalent to update(XrefServer, []).

 update(XrefServer, Options)

 Replaces the module data of all
analyzed modules the BEAM files of which have been
modified since last read by an add function or update.

 variables(XrefServer)

 Equivalent to variables(XrefServer, []).

 variables(XrefServer, Options)

 Returns a sorted lists of the names of the variables of an
Xref server.

 Types

 add_dir_rsn()

 (not exported)

 -type add_dir_rsn() ::
 {file_error, file(), file_error()} |
 {invalid_filename, term()} |
 {invalid_options, term()} |
 {unrecognized_file, file()} |
 beam_lib:chnk_rsn().

 add_mod_rsn()

 (not exported)

 -type add_mod_rsn() ::
 {file_error, file(), file_error()} |
 {invalid_filename, term()} |
 {invalid_options, term()} |
 {module_clash, {module(), file(), file()}} |
 {no_debug_info, file()} |
 beam_lib:chnk_rsn().

 analysis()

 (not exported)

 -type analysis() ::
 undefined_function_calls | undefined_functions | locals_not_used | exports_not_used |
 deprecated_function_calls |
 {deprecated_function_calls, DeprFlag :: depr_flag()} |
 deprecated_functions |
 {deprecated_functions, DeprFlag :: depr_flag()} |
 {call, FuncSpec :: func_spec()} |
 {use, FuncSpec :: func_spec()} |
 {module_call, ModSpec :: mod_spec()} |
 {module_use, ModSpec :: mod_spec()} |
 {application_call, AppSpec :: app_spec()} |
 {application_use, AppSpec :: app_spec()} |
 {release_call, RelSpec :: rel_spec()} |
 {release_use, RelSpec :: rel_spec()}.

 analyze_rsn()

 (not exported)

 -type analyze_rsn() ::
 {invalid_options, term()} |
 {parse_error, string_position(), term()} |
 {unavailable_analysis, term()} |
 {unknown_analysis, term()} |
 {unknown_constant, string()} |
 {unknown_variable, variable()}.

 answer()

 (not exported)

 -type answer() ::
 false |
 [constant()] |
 [(Call :: call()) | (ComponentCall :: {component(), component()})] |
 [Component :: component()] |
 non_neg_integer() |
 [DefineAt :: define_at()] |
 [CallAt :: {funcall(), LineNumbers :: [non_neg_integer()]}] |
 [AllLines :: {{define_at(), define_at()}, LineNumbers :: [non_neg_integer()]}].

 app_spec()

 (not exported)

 -type app_spec() :: application() | [application()].

 application()

 (not exported)

 -type application() :: atom().

 call()

 (not exported)

 -type call() :: {atom(), atom()} | funcall().

 component()

 (not exported)

 -type component() :: [constant()].

 constant()

 (not exported)

 -type constant() :: xmfa() | module() | application() | release().

 define_at()

 (not exported)

 -type define_at() :: {xmfa(), LineNumber :: non_neg_integer()}.

 depr_flag()

 (not exported)

 -type depr_flag() :: next_version | next_major_release | eventually.

 directory()

 (not exported)

 -type directory() :: atom() | file:filename().

 file()

 (not exported)

 -type file() :: file:filename().

 file_error()

 (not exported)

 -type file_error() :: atom().

 func_spec()

 (not exported)

 -type func_spec() :: xmfa() | [xmfa()].

 funcall()

 (not exported)

 -type funcall() :: {xmfa(), xmfa()}.

 function_name()

 (not exported)

 -type function_name() :: atom().

 info()

 (not exported)

 -type info() ::
 {application, Application :: [application()]} |
 {builtins, boolean()} |
 {directory, directory()} |
 {library_path, library_path()} |
 {mode, mode()} |
 {no_analyzed_modules, non_neg_integer()} |
 {no_applications, non_neg_integer()} |
 {no_calls, {NoResolved :: non_neg_integer(), NoUnresolved :: non_neg_integer()}} |
 {no_function_calls,
 {NoLocal :: non_neg_integer(),
 NoResolvedExternal :: non_neg_integer(),
 NoUnresolved :: non_neg_integer()}} |
 {no_functions, {NoLocal :: non_neg_integer(), NoExternal :: non_neg_integer()}} |
 {no_inter_function_calls, non_neg_integer()} |
 {no_releases, non_neg_integer()} |
 {release, Release :: [release()]} |
 {version, Version :: [non_neg_integer()]}.

 library()

 (not exported)

 -type library() :: atom().

 library_path()

 (not exported)

 -type library_path() :: path() | code_path.

 mod_spec()

 (not exported)

 -type mod_spec() :: module() | [module()].

 mode()

 (not exported)

 -type mode() :: functions | modules.

 path()

 (not exported)

 -type path() :: [file()].

 q_rsn()

 (not exported)

 -type q_rsn() ::
 {invalid_options, term()} |
 {parse_error, string_position(), term()} |
 {type_error, string()} |
 {type_mismatch, string(), string()} |
 {unknown_analysis, term()} |
 {unknown_constant, string()} |
 {unknown_variable, variable()} |
 {variable_reassigned, string()}.

 rel_spec()

 (not exported)

 -type rel_spec() :: release() | [release()].

 release()

 (not exported)

 -type release() :: atom().

 string_position()

 (not exported)

 -type string_position() :: pos_integer().

 variable()

 (not exported)

 -type variable() :: atom().

 xarity()

 (not exported)

 -type xarity() :: arity() | -1.

 xmfa()

 (not exported)

 -type xmfa() :: {module(), function_name(), xarity()}.

 xref()

 (not exported)

 -type xref() :: atom() | pid().

 Functions

 add_application(XrefServer, Directory)

 -spec add_application(XrefServer, Directory) -> {ok, application()} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Directory :: directory(),
 Reason ::
 {application_clash, {application(), directory(), directory()}} |
 add_dir_rsn().

Equivalent to add_application(XrefServer, Directory, []).

 add_application(XrefServer, Directory, Options)

 -spec add_application(XrefServer, Directory, Options) -> {ok, application()} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Directory :: directory(),
 Options :: Option | [Option],
 Option ::
 {builtins, boolean()} |
 {name, application()} |
 {verbose, boolean()} |
 {warnings, boolean()} |
 builtins | verbose | warnings,
 Reason ::
 {application_clash, {application(), directory(), directory()}} |
 add_dir_rsn().

Adds an application, the modules of the application, and
module data of the modules to an
Xref server.
The modules will be members of the application. The default is to use
the base name of the directory with the version removed as application
name, but this can be overridden by the name option. Returns the
name of the application.
If the given directory has a subdirectory named ebin, modules (BEAM files) are
searched for in that directory, otherwise modules are searched for in the given
directory.
If the mode of the Xref server is functions, BEAM files that
contain no debug information are ignored.

 add_directory(XrefServer, Directory)

 -spec add_directory(XrefServer, Directory) -> {ok, Modules} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Directory :: directory(),
 Modules :: [module()],
 Reason ::
 {application_clash, {application(), directory(), directory()}} |
 add_dir_rsn().

Equivalent to add_directory(Name, Directory, []).

 add_directory(XrefServer, Directory, Options)

 -spec add_directory(XrefServer, Directory, Options) -> {ok, Modules} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Directory :: directory(),
 Options :: Option | [Option],
 Option ::
 {builtins, boolean()} |
 {recurse, boolean()} |
 {verbose, boolean()} |
 {warnings, boolean()} |
 builtins | recurse | verbose | warnings,
 Modules :: [module()],
 Reason :: add_dir_rsn().

Adds the modules found in the given directory and the
modules' data to an Xref server.
The default is not to examine subdirectories, but if the option recurse has
the value true, modules are searched for in subdirectories on all levels as
well as in the given directory. Returns a sorted list of the names of the added
modules.
The modules added will not be members of any applications.
If the mode of the Xref server is functions, BEAM files that
contain no debug information are ignored.

 add_module(XrefServer, File)

 -spec add_module(XrefServer, File) -> {ok, module()} | {error, module(), Reason}
 when XrefServer :: xref(), File :: file:filename(), Reason :: add_mod_rsn().

Equivalent to add_module(Name, File, []).

 add_module(XrefServer, File, Options)

 -spec add_module(XrefServer, File, Options) -> {ok, module()} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 File :: file:filename(),
 Options :: Option | [Option],
 Option ::
 {builtins, boolean()} |
 {verbose, boolean()} |
 {warnings, boolean()} |
 builtins | verbose | warnings,
 Reason :: add_mod_rsn().

Adds a module and its module data to an
Xref server.
The module will not be member of any application. Returns the name of the module.
If the mode of the Xref server is functions, and the BEAM
file contains no debug information, the error message
no_debug_info is returned.

 add_release(XrefServer, Directory)

 -spec add_release(XrefServer, Directory) -> {ok, release()} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Directory :: directory(),
 Reason ::
 {application_clash, {application(), directory(), directory()}} |
 {release_clash, {release(), directory(), directory()}} |
 add_dir_rsn().

Equivalent to add_release(Name, Directory, []).

 add_release(XrefServer, Directory, Options)

 -spec add_release(XrefServer, Directory, Options) -> {ok, release()} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Directory :: directory(),
 Options :: Option | [Option],
 Option ::
 {builtins, boolean()} |
 {name, release()} |
 {verbose, boolean()} |
 {warnings, boolean()} |
 builtins | verbose | warnings,
 Reason ::
 {application_clash, {application(), directory(), directory()}} |
 {release_clash, {release(), directory(), directory()}} |
 add_dir_rsn().

Adds a release, the applications of the release, the modules of the
applications, and module data of the modules to an
Xref server.
The applications will be members of the release, and the modules will
be members of the applications. The default is to use the base name of
the directory as release name, but this can be overridden by the
name option. Returns the name of the release.
If the given directory has a subdirectory named lib, the directories in that
directory are assumed to be application directories, otherwise all
subdirectories of the given directory are assumed to be application directories.
If there are several versions of some application, the one with the highest
version is chosen.
If the mode of the Xref server is functions, BEAM files that
contain no debug information are ignored.

 analyze(XrefServer, Analysis)

 -spec analyze(XrefServer, Analysis) -> {ok, Answer} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Analysis :: analysis(),
 Answer :: [term()],
 Reason :: analyze_rsn().

Equivalent to analyze(XrefServer, Analysis, []).

 analyze(XrefServer, Analysis, Options)

 -spec analyze(XrefServer, Analysis, Options) -> {ok, Answer} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Analysis :: analysis(),
 Options :: Option | [Option],
 Option :: {verbose, boolean()} | verbose,
 Answer :: [term()],
 Reason :: analyze_rsn().

Evaluates a predefined analysis.
Returns a sorted list without duplicates of call/0 or
constant/0, depending on the chosen analysis. The predefined
analyses, which operate on all analyzed
modules, are (analyses marked with (*) are
available only in mode functions):
	undefined_function_calls(*) - Returns a list of calls to
undefined functions.

	undefined_functions - Returns a list of
undefined functions.

	locals_not_used(*) - Returns a list of local functions that have not
been locally used.

	exports_not_used - Returns a list of exported functions that have not
been externally used. Note that in modules mode, M:behaviour_info/1 is
never reported as unused.

	deprecated_function_calls(*) - Returns a list of external calls to
deprecated functions.

	{deprecated_function_calls, DeprFlag}(*) - Returns a list of external
calls to deprecated functions. If DeprFlag is equal to next_version, calls
to functions to be removed in next version are returned. If DeprFlag is
equal to next_major_release, calls to functions to be removed in next major
release are returned as well as calls to functions to be removed in next
version. Finally, if DeprFlag is equal to eventually, all calls to
functions to be removed are returned, including calls to functions to be
removed in next version or next major release.

	deprecated_functions - Returns a list of externally used deprecated
functions.

	{deprecated_functions, DeprFlag} - Returns a list of externally used
deprecated functions. If DeprFlag is equal to next_version, functions to
be removed in next version are returned. If DeprFlag is equal to
next_major_release, functions to be removed in next major release are
returned as well as functions to be removed in next version. Finally, if
DeprFlag is equal to eventually, all functions to be removed are returned,
including functions to be removed in next version or next major release.

	{call, FuncSpec}(*) - Returns a list of functions called by some of the
given functions.

	{use, FuncSpec}(*) - Returns a list of functions that use some of the
given functions.

	{module_call, ModSpec} - Returns a list of modules called by some of the
given modules.

	{module_use, ModSpec} - Returns a list of modules that use some of the
given modules.

	{application_call, AppSpec} - Returns a list of applications called by
some of the given applications.

	{application_use, AppSpec} - Returns a list of applications that use
some of the given applications.

	{release_call, RelSpec} - Returns a list of releases called by some of
the given releases.

	{release_use, RelSpec} - Returns a list of releases that use some of the
given releases.

 d(Directory)

 -spec d(Directory) -> [DebugInfoResult] | [NoDebugInfoResult] | {error, module(), Reason}
 when
 Directory :: directory(),
 DebugInfoResult ::
 {deprecated, [funcall()]} | {undefined, [funcall()]} | {unused, [mfa()]},
 NoDebugInfoResult :: {deprecated, [xmfa()]} | {undefined, [xmfa()]},
 Reason ::
 {file_error, file(), file_error()} |
 {invalid_filename, term()} |
 {unrecognized_file, file()} |
 beam_lib:chnk_rsn().

The modules found in the given directory are checked for calls to
deprecated functions, calls to
undefined functions, and for unused local
functions.
The code path is used as library path.
If some of the found BEAM files contain
debug information, then those modules are checked and a
list of tuples is returned. The first element of each tuple is one of:
	deprecated, the second element is a sorted list of calls to deprecated
functions;
	undefined, the second element is a sorted list of calls to undefined
functions;
	unused, the second element is a sorted list of unused local functions.

If no BEAM file contains debug information, then a list of tuples is returned.
The first element of each tuple is one of:
	deprecated, the second element is a sorted list of externally used
deprecated functions;
	undefined, the second element is a sorted list of undefined functions.

 forget(XrefServer)

 -spec forget(XrefServer) -> ok when XrefServer :: xref().

Removes all user variables of an
Xref server.

 forget(XrefServer, Variables)

 -spec forget(XrefServer, Variables) -> ok | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Variables :: variable() | [variable()],
 Reason :: {not_user_variable, term()}.

Removes the user variables given by Variables from
an Xref server.

 format_error(Error)

 -spec format_error(Error) -> io_lib:chars() when Error :: {error, module(), Reason :: term()}.

Given the error returned by any function of this module, the function
format_error returns a descriptive string of the error in English.
For file errors, the function file:format_error/1 is called.

 get_default(XrefServer)

 -spec get_default(XrefServer) -> [{Option, Value}]
 when
 XrefServer :: xref(),
 Option :: builtins | recurse | verbose | warnings,
 Value :: boolean().

Returns a list of all options and their default values.

 get_default(XrefServer, Option)

 -spec get_default(XrefServer, Option) -> {ok, Value} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Option :: builtins | recurse | verbose | warnings,
 Value :: boolean(),
 Reason :: {invalid_options, term()}.

Returns the default value for option Option.

 get_library_path(XrefServer)

 -spec get_library_path(XrefServer) -> {ok, LibraryPath}
 when XrefServer :: xref(), LibraryPath :: library_path().

Returns the library path.

 info(XrefServer)

 -spec info(XrefServer) -> [Info] when XrefServer :: xref(), Info :: info().

The info/1 function returns information as a list of pairs {Tag, term() in
some order about the state and the module data of an
Xref server.
info/1 returns information with the following tags (tags marked
with (*) are only available in functions mode):
	library_path, the library path;
	mode, the mode;
	no_releases, number of releases;
	no_applications, total number of applications (of all releases);
	no_analyzed_modules, total number of
analyzed modules;
	no_calls (*), total number of calls (in all modules), regarding instances
of one function call in different lines as separate calls;
	no_function_calls (*), total number of local calls,
resolved external calls and
unresolved calls;
	no_functions (*), total number of local and exported functions;
	no_inter_function_calls (*), total number of calls of the
Inter Call Graph.

 info(XrefServer, Category)

 -spec info(XrefServer, Category) -> [{Item, [Info]}] | {error, module(), {no_such_info, Category}}
 when
 XrefServer :: xref(),
 Category :: modules | applications | releases | libraries,
 Item :: module() | application() | release() | library(),
 Info :: info().

Returns information about all items belonging to category Category.
See info/3 for details.

 info(XrefServer, Category, Items)

 -spec info(XrefServer, Category, Items) -> [{Item, [Info]}] | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Category :: modules | applications | releases | libraries,
 Items :: Item | [Item],
 Item :: module() | application() | release() | library(),
 Info :: info(),
 Reason ::
 {no_such_application, Item} |
 {no_such_info, Category} |
 {no_such_library, Item} |
 {no_such_module, Item} |
 {no_such_release, Item}.

The info functions return information as a list of pairs {Tag, term()} in
some order about the state and the module data of an
Xref server.
info/2 and info/3 return information about all or
some of the analyzed modules, applications, releases, or library modules of an
Xref server. The following information is returned for every analyzed module:
	application, an empty list if the module does not belong to any application,
otherwise a list of the application name;
	builtins, whether calls to BIFs are included in the module's data;
	directory, the directory where the module's BEAM file is located;
	no_calls (*), number of calls, regarding instances of one function call in
different lines as separate calls;
	no_function_calls (*), number of local calls, resolved external calls and
unresolved calls;
	no_functions (*), number of local and exported functions;
	no_inter_function_calls (*), number of calls of the Inter Call Graph;

The following information is returned for every application:
	directory, the directory where the modules' BEAM files are located;
	no_analyzed_modules, number of analyzed modules;
	no_calls (*), number of calls of the application's modules, regarding
instances of one function call in different lines as separate calls;
	no_function_calls (*), number of local calls, resolved external calls and
unresolved calls of the application's modules;
	no_functions (*), number of local and exported functions of the
application's modules;
	no_inter_function_calls (*), number of calls of the Inter Call Graph of the
application's modules;
	release, an empty list if the application does not belong to any release,
otherwise a list of the release name;
	version, the application's version as a list of numbers. For instance, the
directory "kernel-2.6" results in the application name kernel and the
application version [2,6]; "kernel" yields the name kernel and the version
[].

The following information is returned for every release:
	directory, the release directory;
	no_analyzed_modules, number of analyzed modules;
	no_applications, number of applications;
	no_calls (*), number of calls of the release's modules, regarding instances
of one function call in different lines as separate calls;
	no_function_calls (*), number of local calls, resolved external calls and
unresolved calls of the release's modules;
	no_functions (*), number of local and exported functions of the release's
modules;
	no_inter_function_calls (*), number of calls of the Inter Call Graph of the
release's modules.

The following information is returned for every library module:
	directory, the directory where the
library module's BEAM file is located.

For every number of calls, functions, and so on returned by the no_ tags, there is a
query returning the same number. Listed below are examples of such queries. Some
of the queries return the sum of a two or more of the no_ tags numbers. mod
(app, rel) refers to any module (application, release).
	no_analyzed_modules
	"# AM" (info/1)
	"# (Mod) app:App" (application)
	"# (Mod) rel:Rel" (release)

	no_applications
	"# A" (info/1)

	no_calls. The sum of the number of resolved and unresolved calls:
	"# (XLin) E + # (LLin) E" (info/1)
	"T = E | mod:Mod, # (LLin) T + # (XLin) T" (module)

	"T = E | app:App, # (LLin) T + # (XLin) T" (application)

	"T = E | rel:Rel, # (LLin) T + # (XLin) T" (release)

	no_functions. Functions in library modules and the functions
module_info/0,1 are not counted by info. Assuming that
"Extra := _:module_info/\"(0|1)\" + LM" has been evaluated, the sum of the
number of local and exported functions are:
	"# (F - Extra)" (info/1)
	"# (F * mod:Mod - Extra)" (module)
	"# (F * app:App - Extra)" (application)
	"# (F * rel:Rel - Extra)" (release)

	no_function_calls. The sum of the number of local calls, resolved external
calls and unresolved calls:
	"# LC + # XC" (info/1)
	"# LC | mod:Mod + # XC | mod:Mod" (module)

	"# LC | app:App + # XC | app:App" (application)

	"# LC | rel:Rel + # XC | mod:Rel" (release)

	no_inter_function_calls
	"# EE" (info/1)
	"# EE | mod:Mod" (module)

	"# EE | app:App" (application)

	"# EE | rel:Rel" (release)

	no_releases
	"# R" (info/1)

 m(FileOrModule)

 -spec m(FileOrModule) -> [DebugInfoResult] | [NoDebugInfoResult] | {error, module(), Reason}
 when
 FileOrModule :: file:filename() | module(),
 DebugInfoResult ::
 {deprecated, [funcall()]} | {undefined, [funcall()]} | {unused, [mfa()]},
 NoDebugInfoResult :: {deprecated, [xmfa()]} | {undefined, [xmfa()]},
 Reason ::
 {cover_compiled, Module :: module()} |
 {file_error, file(), file_error()} |
 {interpreted, Module :: module()} |
 {invalid_filename, term()} |
 {no_such_module, Module :: module()} |
 beam_lib:chnk_rsn().

The given BEAM file (with or without the .beam extension) or the file found by
calling code:which(Module) is checked for calls to
deprecated functions, calls to
undefined functions, and for unused local
functions.
The code path is used as library path.
If the BEAM file contains debug information, a list
of tuples is returned. The first element of each tuple is one of:
	deprecated, the second element is a sorted list of calls to deprecated
functions;
	undefined, the second element is a sorted list of calls to undefined
functions;
	unused, the second element is a sorted list of unused local functions.

If the BEAM file does not contain debug information, a list of tuples is
returned. The first element of each tuple is one of:
	deprecated, the second element is a sorted list of externally used
deprecated functions;
	undefined, the second element is a sorted list of undefined functions.

 q(XrefServer, Query)

 -spec q(XrefServer, Query) -> {ok, Answer} | {error, module(), Reason}
 when XrefServer :: xref(), Query :: string() | atom(), Answer :: answer(), Reason :: q_rsn().

Equivalent to q(XrefServer, Query, []).

 q(XrefServer, Query, Options)

 -spec q(XrefServer, Query, Options) -> {ok, Answer} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Query :: string() | atom(),
 Options :: Option | [Option],
 Option :: {verbose, boolean()} | verbose,
 Answer :: answer(),
 Reason :: q_rsn().

Evaluates a query in the context of an
Xref server, and returns the value of the last
statement.
The syntax of the value depends on the expression:
	A set of calls is represented by a sorted list without duplicates of
call/0.
	A set of constants is represented by a sorted list without duplicates of
constant/0.
	A set of strongly connected components is a sorted list without duplicates of
Component.
	A set of calls between strongly connected components is a sorted list without
duplicates of ComponentCall.
	A chain of calls is represented by a list of constant/0. The list contains
the From vertex of every call and the To vertex of the last call.
	The of operator returns false if no chain of calls between the given
constants can be found.
	The value of the closure operator (the digraph representation) is
represented by the atom 'closure()'.
	A set of line numbered functions is represented by a sorted list without
duplicates of DefineAt.
	A set of line numbered function calls is represented by a sorted list without
duplicates of CallAt.
	A set of line numbered functions and function calls is represented by a sorted
list without duplicates of AllLines.

For both CallAt and AllLines it holds that for no list element is
LineNumbers an empty list; such elements have been removed. The constants of
component and the integers of LineNumbers are sorted and without duplicates.

 remove_application(XrefServer, Applications)

 -spec remove_application(XrefServer, Applications) -> ok | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Applications :: application() | [application()],
 Reason :: {no_such_application, application()}.

Removes applications and their modules and module data
from an Xref server.

 remove_module(XrefServer, Modules)

 -spec remove_module(XrefServer, Modules) -> ok | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Modules :: module() | [module()],
 Reason :: {no_such_module, module()}.

Removes analyzed modules and
module data from an Xref server.

 remove_release(XrefServer, Releases)

 -spec remove_release(XrefServer, Releases) -> ok | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Releases :: release() | [release()],
 Reason :: {no_such_release, release()}.

Removes releases and their applications, modules, and
module data from an Xref server.

 replace_application(XrefServer, Application, Directory)

 -spec replace_application(XrefServer, Application, Directory) ->
 {ok, Application} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Application :: application(),
 Directory :: directory(),
 Reason :: {no_such_application, Application} | add_dir_rsn().

Equivalent to replace_application(XrefServer, Application, Directory, []).

 replace_application(XrefServer, Application, Directory, Options)

 -spec replace_application(XrefServer, Application, Directory, Options) ->
 {ok, Application} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Application :: application(),
 Directory :: directory(),
 Options :: Option | [Option],
 Option ::
 {builtins, boolean()} |
 {verbose, boolean()} |
 {warnings, boolean()} |
 builtins | verbose | warnings,
 Reason ::
 {application_clash, {application(), directory(), directory()}} |
 {no_such_application, Application} |
 add_dir_rsn().

Replaces the modules of an application with other modules read from an
application directory.
Release membership of the application is retained. Note that the name
of the application is kept; the name of the given directory is not
used.

 replace_module(XrefServer, Module, File)

 -spec replace_module(XrefServer, Module, File) -> {ok, Module} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Module :: module(),
 File :: file(),
 Reason ::
 {module_mismatch, Module, ReadModule :: module()} |
 {no_such_module, Module} |
 add_mod_rsn().

Equivalent to replace_module(XrefServer, Module, File, []).

 replace_module(XrefServer, Module, File, Options)

 -spec replace_module(XrefServer, Module, File, Options) -> {ok, Module} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Module :: module(),
 File :: file(),
 Options :: Option | [Option],
 Option :: {verbose, boolean()} | {warnings, boolean()} | verbose | warnings,
 Reason ::
 {module_mismatch, Module, ReadModule :: module()} |
 {no_such_module, Module} |
 add_mod_rsn().

Replaces module data of an
analyzed module with data read from a BEAM file.
Application membership of the module is retained, and so is the value of the
builtins option of the module. An error is returned if the name of the read
module differs from the given module.
The update function is an alternative for updating module data of recompiled
modules.

 set_default(XrefServer, OptionValues)

 -spec set_default(XrefServer, OptionValues) -> ok | {error, module(), Reason}
 when
 XrefServer :: xref(),
 OptionValues :: OptionValue | [OptionValue],
 OptionValue :: {Option, Value},
 Option :: builtins | recurse | verbose | warnings,
 Value :: boolean(),
 Reason :: {invalid_options, term()}.

Sets default values for multiple options given by OptionValues.
See set_default/3 for the name of options and their allowed values.

 set_default(XrefServer, Option, Value)

 -spec set_default(XrefServer, Option, Value) -> {ok, OldValue} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Option :: builtins | recurse | verbose | warnings,
 Value :: boolean(),
 OldValue :: boolean(),
 Reason :: {invalid_options, term()}.

Sets the default value of one or more options.
The options that can be set this way are:
	builtins, with initial default value false;
	recurse, with initial default value false;
	verbose, with initial default value false;
	warnings, with initial default value true.

The initial default values are set when creating an
Xref server.

 set_library_path(XrefServer, LibraryPath)

 -spec set_library_path(XrefServer, LibraryPath) -> ok | {error, module(), Reason}
 when
 XrefServer :: xref(),
 LibraryPath :: library_path(),
 Reason ::
 {file_error, file(), file_error()} |
 {invalid_options, term()} |
 {invalid_path, term()}.

Equivalent to set_library_path(XrefServer, LibraryPath, []).

 set_library_path(XrefServer, LibraryPath, Options)

 -spec set_library_path(XrefServer, LibraryPath, Options) -> ok | {error, module(), Reason}
 when
 XrefServer :: xref(),
 LibraryPath :: library_path(),
 Options :: Option | [Option],
 Option :: {verbose, boolean()} | verbose,
 Reason :: {invalid_options, term()} | {invalid_path, term()}.

Sets the library path.
If the given path is a list of directories, the set of library
modules is determined by choosing the first
module encountered while traversing the directories in the given
order, for those modules that occur in more than one directory. By
default, the library path is an empty list.
The library path code_path is used by the functions
m/1 and d/1, but can also be set explicitly. However,
note that the code path will be traversed once for each used
library module while setting up module data. On the
other hand, if there are only a few modules that are used but not analyzed,
using code_path may be faster than setting the library path to
code:get_path/0.
If the library path is set to code_path, the set of library modules is not
determined, and the info functions will return empty lists of library modules.

 start(NameOrOptions)

 -spec start(NameOrOptions) -> {ok, pid()} | {error, {already_started, pid()}}
 when
 NameOrOptions :: Name | Options,
 Name :: atom(),
 Options :: Option | [Option],
 Option :: {xref_mode, mode()} | term().

Creates an Xref server.
The process can optionally be given a name. The default
mode is functions. Options that are
not recognized by Xref are passed on to gen_server:start/4.

 start(Name, Options)

 -spec start(Name, Options) -> {ok, pid()} | {error, {already_started, pid()}}
 when Name :: atom(), Options :: Option | [Option], Option :: {xref_mode, mode()} | term().

Creates an Xref server with a given name.
The default mode is functions. Options that are
not recognized by Xref are passed on to gen_server:start/4.

 stop(XrefServer)

 -spec stop(XrefServer) -> stopped when XrefServer :: xref().

Stops an Xref server.

 update(XrefServer)

 -spec update(XrefServer) -> {ok, Modules} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Modules :: [module()],
 Reason :: {module_mismatch, module(), ReadModule :: module()} | add_mod_rsn().

Equivalent to update(XrefServer, []).

 update(XrefServer, Options)

 -spec update(XrefServer, Options) -> {ok, Modules} | {error, module(), Reason}
 when
 XrefServer :: xref(),
 Options :: Option | [Option],
 Option :: {verbose, boolean()} | {warnings, boolean()} | verbose | warnings,
 Modules :: [module()],
 Reason :: {module_mismatch, module(), ReadModule :: module()} | add_mod_rsn().

Replaces the module data of all
analyzed modules the BEAM files of which have been
modified since last read by an add function or update.
Application membership of the modules is retained, and so is the value
of the builtinsoption. Returns a sorted list of the names of
the replaced modules.

 variables(XrefServer)

 -spec variables(XrefServer) -> {ok, [VariableInfo]}
 when
 XrefServer :: xref(),
 VariableInfo :: {predefined, [variable()]} | {user, [variable()]}.

Equivalent to variables(XrefServer, []).

 variables(XrefServer, Options)

 -spec variables(XrefServer, Options) -> {ok, [VariableInfo]}
 when
 XrefServer :: xref(),
 Options :: Option | [Option],
 Option :: predefined | user | {verbose, boolean()} | verbose,
 VariableInfo :: {predefined, [variable()]} | {user, [variable()]}.

Returns a sorted lists of the names of the variables of an
Xref server.
The default is to return only the
user variables.

 OEBPS/assets/venn2.gif
XU-X-B X - XU (L-OL) * (UU + (XU-LU))

undefined_functions exports_not_used locals_not_used (simplified)
(modules mode)

OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/venn1.gif
Definition

Use

u

Definition and Use

OEBPS/assets/logo.png
EEEEEE

