
cosEventDomain
Copyright © 2001-2016 Ericsson AB. All Rights Reserved.

cosEventDomain 1.2
March 14, 2016

Copyright © 2001-2016 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2016

Ericsson AB. All Rights Reserved.: cosEventDomain | 1

1.1 The cosEventDomain Application

2 | Ericsson AB. All Rights Reserved.: cosEventDomain

1 cosEventDomain User's Guide

The cosEventDomain application is an Erlang implementation of a CORBA Service CosEventDomainAdmin.

1.1 The cosEventDomain Application
1.1.1 Content Overview
The cosEventDomain documentation is divided into three sections:

• PART ONE - The User's Guide
Description of the cosEventDomain Application including services and a small tutorial demonstrating the
development of a simple service.

• PART TWO - Release Notes
A concise history of cosEventDomain.

• PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in cosEventDomain.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

• CosEventDomain overview

• CosEventDomain installation and examples

1.2 Introduction to cosEventDomain
1.2.1 Overview
The cosEventDomain application is a Event Domain Service compliant with the OMG Service
CosEventDomainAdmin.

Purpose and Dependencies
CosEventDomain is dependent on Orber, which provides CORBA functionality in an Erlang environment.

Prerequisites
To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming and CORBA.

1.3 Quality Of Service and Admin Properties
1.3.1 Quality Of Service and Admin Properties
This chapter explains the allowed properties it is possible to set for this application.

Quality Of Service
The cosEventDomain application supports the following QoS settings:

href

1.3 Quality Of Service and Admin Properties

Ericsson AB. All Rights Reserved.: cosEventDomain | 3

QoS Range Default

CycleDetection AuthorizeCycles/ForbidCycles ForbidCycles

DiamondDetection
AuthorizeDiamonds/
ForbidDiamonds

ForbidDiamonds

Table 3.1: Supported QoS settings

Comments on the table 'Supported QoS Settings':

CycleDetection
If a cycle is created, the user must be aware of the fact that unless they set timeout on events, events that are not
filtered will loop endlessly through the topology.

DiamondDetection
A Diamond in this context, means that the same event may reach a point in the graph by more than one route
(i.e. transitive). Hence, it is possible that multiple copies are delivered.

Setting Quality Of Service
Assume we have a Consumer Admin object which we want to change the current Quality of Service. Typical usage:

QoS =
 [#'CosNotification_Property'
 {name='CosEventDomainAdmin':'DiamondDetection'(),
 value=any:create(orber_tc:short(),
 'CosEventDomainAdmin':'AuthorizeDiamonds'())},
 #'CosNotification_Property'
 {name='CosEventDomainAdmin':'CycleDetection'(),
 value=any:create(orber_tc:short(),
 'CosEventDomainAdmin':'ForbidCycles'())}],
'CosEventDomainAdmin_EventDomain':set_qos(ED, QoS),

If it is not possible to set the requested QoS the UnsupportedQoS exception is raised, which includes a sequence
of PropertyError's describing which QoS, possible range and why is not allowed. The error codes are:

• UNSUPPORTED_PROPERTY - QoS not supported for this type of target object.

• UNAVAILABLE_PROPERTY - due to current QoS settings the given property is not allowed.

• UNSUPPORTED_VALUE - property value out of range; valid range is returned.

• UNAVAILABLE_VALUE - due to current QoS settings the given value is not allowed; valid range is returned.

• BAD_PROPERTY - unrecognized property.

• BAD_TYPE - type of supplied property is incorrect.

• BAD_VALUE - illegal value.

The CosEventDomainAdmin_EventDomain interface also supports an operation called validate_qos/2. The
purpose of this operations is to check if a QoS setting is supported by the target object and if so, the operation returns
additional properties which could be optionally added as well.

Admin Properties
The OMG specification do not contain any definitions of Admin Properties. Hence, the cosEventDomain application
currently does not support any Admin Properties.

1.4 Event Domain Service

4 | Ericsson AB. All Rights Reserved.: cosEventDomain

1.4 Event Domain Service
1.4.1 Overview of the CosEventDomain Service
The Event Domain service allows programmers to manage a cluster of information channels.

Event Domain Service Components
There are two components in the OMG CosEventDomainAdmin service architecture:

• EventDomainFactory: a factory for creating EventDomains.

• EventDomain: supplies a tool, which makes it easy to create topologies of interconnected channels (i.e. a
directed graph).

A Tutorial on How to Create a Simple Service
To be able to use the cosEventDomain application, the cosNotification and, possibly, the cosTime application must
be installed.

How to Run Everything
Below is a short transcript on how to run cosEventDomain.

%% Start Mnesia and Orber
mnesia:delete_schema([node()]),
mnesia:create_schema([node()]),
orber:install([node()]),
mnesia:start(),
orber:start(),

%% Install and start cosNotification.
cosNotificationApp:install(),
cosNotificationApp:start(),

%% Install and start cosEventDomain.
cosEventDomainApp:install(),
cosEventDomainApp:start(),

%% Start a CosEventDomainAdmin factory.
AdminFac = cosEventDomainApp:start_factory(),

%% Define the desired QoS settings:
QoS =
 [#'CosNotification_Property'
 {name='CosEventDomainAdmin':'DiamondDetection'(),
 value=any:create(orber_tc:short(),
 'CosEventDomainAdmin':'AuthorizeDiamonds'())},
 #'CosNotification_Property'
 {name='CosEventDomainAdmin':'CycleDetection'(),
 value=any:create(orber_tc:short(),
 'CosEventDomainAdmin':'ForbidCycles'())}],

%% Create a new EventDomain:
{ED, EDId} = 'CosEventDomainAdmin_EventDomainFactory':
 create_event_domain(Fac, QoS, []),

%% Now we can add Notification Channels to the Domain. How this
%% is done, see the cosNotification documentation. Let us assume
%% that we have gained access to two Channel Objects; add them to the
%% domain:

1.4 Event Domain Service

Ericsson AB. All Rights Reserved.: cosEventDomain | 5

ID1 = 'CosEventDomainAdmin_EventDomain':add_channel(ED, Ch1),
ID2 = 'CosEventDomainAdmin_EventDomain':add_channel(ED, Ch2),

%% To connect them, we must first define a connection struct:
C1 = #'CosEventDomainAdmin_Connection'{supplier_id=ID1,
 consumer_id=ID2,
 ctype='STRUCTURED_EVENT',
 notification_style='Pull'},

%% Connect them:
'CosEventDomainAdmin_EventDomain':add_connection(ED, C1),

1.4 Event Domain Service

6 | Ericsson AB. All Rights Reserved.: cosEventDomain

2 Reference Manual

The cosEventDomain application is an Erlang implementation of a CORBA Service CosEventDomainAdmin.

cosEventDomainApp

Ericsson AB. All Rights Reserved.: cosEventDomain | 7

cosEventDomainApp
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosEventDomain/include/*.hrl").

This module contains the functions for starting and stopping the application.

Exports

install() -> Return
Types:

Return = ok | {'EXCEPTION', E} | {'EXIT', R}

This operation installs the cosEventDomain application.

uninstall() -> Return
Types:

Return = ok | {'EXCEPTION', E} | {'EXIT', R}

This operation uninstalls the cosEventDomain application.

start() -> Return
Types:

Return = ok | {error, Reason}

This operation starts the cosEventDomain application.

stop() -> Return
Types:

Return = ok | {error, Reason}

This operation stops the cosEventDomain application.

start_factory() -> Factory
Types:

Factory = #objref

This operation creates a new instance of a Event Domain Factory using the default settings.

start_factory(Options) -> Factory
Types:

Options = [Option]

Option = currently no options defined.

Factory = #objref

This operation creates a new instance of a Event Domain Factory

cosEventDomainApp

8 | Ericsson AB. All Rights Reserved.: cosEventDomain

start_factory_link() -> Factory
Types:

Factory = #objref

This operation creates a new instance of a Event Domain Factory, which is linked to the invoking process, using the
default settings.

start_factory_link(Options) -> Factory
Types:

Options = [Option]

Option = currently no options defined.

Factory = #objref

This operation creates a new instance of a Event Domain Factory, which is linked to the invoking process, with settings
defined by the given options. Allowed options are the same as for cosEventDomainApp:start_factory/1.

stop_factory(Factory) -> Reply
Types:

Factory = #objref

Reply = ok | {'EXCEPTION', E}

This operation stop the target factory.

CosEventDomainAdmin

Ericsson AB. All Rights Reserved.: cosEventDomain | 9

CosEventDomainAdmin
Erlang module

To get access to all definitions include necessary hrl files by using:
-include_lib("cosEventDomain/include/*.hrl").

Exports

'CycleDetection'() -> string()
This function returns the CycleDetection identifier; required when defining QoS Properties.

'AuthorizeCycles'() -> short()
This function returns the AuthorizeCycles value; required when defining QoS Properties.

'ForbidCycles'() -> short()
This function returns the ForbidCycles value; required when defining QoS Properties.

'DiamondDetection'() -> string()
This function returns the DiamondDetection identifier; required when defining QoS Properties.

'AuthorizeDiamonds'() -> short()
This function returns the AuthorizeDiamonds value; required when defining QoS Properties.

'ForbidDiamonds'() -> short()
This function returns the ForbidDiamonds value; required when defining QoS Properties.

CosEventDomainAdmin_EventDomainFactory

10 | Ericsson AB. All Rights Reserved.: cosEventDomain

CosEventDomainAdmin_EventDomainFactory
Erlang module

To get access to all definitions include necessary hrl files by using:
-include_lib("cosEventDomain/include/*.hrl").

Exports

create_event_domain(Factory, QoS, Admin) -> Reply
Types:

Factory = #objref

QoS = CosNotification::QoSProperties

Admin = CosNotification::AdminProperties

Reply = {EventDomain, DomainID} | {'EXCEPTION',
#'CosNotification_UnsupportedQoS'{}} | {'EXCEPTION',
#'CosNotification_UnsupportedAdmin'{}}

EventDomain = #objref

To create a new EventDomain this operation is used. If it is not possible to support the given QoSProperties or
AdminProperties an exception is raised, which list the properties not supported. For more information see the
cosNotification user's guide.

get_all_domains(Factory) -> DomainIDSeq
Types:

Factory = #objref

DomainIDSeq = [long()]

This function returns a DomainID sequence of all domains associated with the target object.

get_event_domain(Factory, DomainID) -> Reply
Types:

Factory = #objref

DomainID = long()

Reply = EventDomain | {'EXCEPTION',
#'CosEventDomainAdmin_DomainNotFound'{}}

EventDomain = #objref

This operation returns the EventDomain object associated with the given DomainID. If no such binding exists an
exception is raised.

CosEventDomainAdmin_EventDomain

Ericsson AB. All Rights Reserved.: cosEventDomain | 11

CosEventDomainAdmin_EventDomain
Erlang module

To get access to all definitions include necessary hrl files by using:
-include_lib("cosEventDomain/include/*.hrl").

This module also exports the functions described in:

• CosNotification_QoSAdmin

• CosNotification_AdminPropertiesAdmin

Exports

add_channel(EventDomain, Channel) -> MemberID
Types:

EventDomain = Channel = #objref

MemberID = long()

Adds the given channel to the target domain. The channel must be a
CosNotifyChannelAdmin::EventChannel.

get_all_channels(EventDomain) -> MemberIDSeq
Types:

EventDomain = #objref

MemberIDSeq = [long()]

Returns a a sequence of all channels associated with the target object.

get_channel(EventDomain, MemberID) -> Reply
Types:

EventDomain = #objref

MemberID = long()

Reply = Channel | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

Channel = #objref

If the target domain have a CosNotifyChannelAdmin::EventChannel represented by the given id this
channel is returned. Otherwise, an exception is raised.

remove_channel(EventDomain, MemberID) -> Reply
Types:

EventDomain = #objref

MemberID = long()

Reply = ok | {'EXCEPTION', #'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a CosNotifyChannelAdmin::EventChannel with the MemberID exists it will removed and all its
Connections terminated. Otherwise an exception is raised.

CosEventDomainAdmin_EventDomain

12 | Ericsson AB. All Rights Reserved.: cosEventDomain

add_connection(EventDomain, Connection) -> Reply
Types:

EventDomain = #objref

Connection = 'CosEventDomainAdmin_Connection'{supplier_id=MemberID,
consumer_id=MemberID, ctype=Type, notification_style=Style}

MemberID = long()

Type = 'ANY_EVENT' | 'STRUCTURED_EVENT' | 'SEQUENCE_EVENT'

Style = 'Pull' | 'Push'

Reply = ConnectionID | {'EXCEPTION', Exc}

ConnectionID = long()

Exc = #'CosNotifyChannelAdmin_ChannelNotFound'{} |
#'CosNotifyChannelAdmin_TypeError'{} |
#'CosEventDomainAdmin_AlreadyExists'{} |
#'CosEventDomainAdmin_DiamondCreationForbidden'{diam=RouteSeq} |
#'CosEventDomainAdmin_CycleCreationForbidden'{cyc=MemberIDSeq}

RouteSeq = [MemberIDSeq]

MemberIDSeq = [long()]

The Connection parameter must contain valid data to enable the target domain to setup a connection between two
channels. The struct members supplier_id and consumer_id determines which channel should produce and
consume events. which type of events and if the supplier should push or the consumer pull events is determined by
ctype and notification_style respectively.

If the target domain is not able to setup the connection the appropriate exception is raised.

get_all_connections(EventDomain) -> ConnectionIDSeq
Types:

EventDomain = #objref

ConnectionIDSeq = [long()]

This operation returns a sequence of all connections within the target domain.

get_connection(EventDomain, ConnectionID) -> Reply
Types:

EventDomain = #objref

ConnectionID = long()

Reply = Connection | {'EXCEPTION',
#'CosEventDomainAdmin_ConnectionNotFound'{}}

Connection = 'CosEventDomainAdmin_Connection'{supplier_id=MemberID,
consumer_id=MemberID, ctype=Type, notification_style=Style}

MemberID = long()

Type = 'ANY_EVENT' | 'STRUCTURED_EVENT' | 'SEQUENCE_EVENT'

Style = 'Pull' | 'Push'

If a connection identified by the given id exists within the target domain, a
#'CosEventDomainAdmin_Connection'{} which describe the connection is returned. Otherwise, an
exception is raised.

CosEventDomainAdmin_EventDomain

Ericsson AB. All Rights Reserved.: cosEventDomain | 13

remove_connection(EventDomain, ConnectionID) -> Reply
Types:

EventDomain = #objref

ConnectionID = long()

Reply = ok | {'EXCEPTION', #'CosEventDomainAdmin_ConnectionNotFound'{}}

If the supplied connection id exists, the connection the id represents is terminated. Otherwise, an exception is raised.

get_offer_channels(EventDomain, MemberID) -> Reply
Types:

EventDomain = #objref

MemberID = long()

Reply = MemberIDSeq | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

This operation returns a sequence, containing the member id's of all channels within the target domain which will
supply events to the channel identified by the given id. But, if no such id exists in this domain, an exception is raised.

get_subscription_channels(EventDomain, MemberID) -> Reply
Types:

EventDomain = #objref

Reply = MemberIDSeq | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

This operations behaves like get_subscription_channels; the difference is that the id's returned identifies
channels which will consume events supplied by the channel associated with the given id.

destroy(EventDomain) -> ok
Types:

EventDomain = #objref

Calling this operation will terminate all connections within the target domain. The domain will terminate but all
channels will not be affected.

get_cycles(EventDomain) -> RouteSeq
Types:

EventDomain = #objref

RouteSeq = [MemberIDSeq]

MemberIDSeq = [long()]

Returns a list of all cycles within the target domain.

get_diamonds(EventDomain) -> DiamondSeq
Types:

EventDomain = #objref

DiamondSeq = [RouteSeq]

RouteSeq = [MemberIDSeq]

MemberIDSeq = [long()]

Returns a list of all diamonds within the target domain

CosEventDomainAdmin_EventDomain

14 | Ericsson AB. All Rights Reserved.: cosEventDomain

set_default_consumer_channel(EventDomain, MemberID) -> Reply
Types:

EventDomain = #objref

Reply = MemberID | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

MemberID = long()

If the given id represents a channel within the target domain, this channel will be used when connection a supplier
client without specifying a certain channel. If no such channel exists an exceptions is raised.

set_default_supplier_channel(EventDomain, MemberID) -> Reply
Types:

EventDomain = #objref

Reply = MemberID | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

MemberID = long()

If the given id represents a channel within the target domain, this channel will be used when connection a consumer
client without specifying a certain channel. If no such channel exists an exceptions is raised.

connect_push_consumer(EventDomain, Consumer) -> Reply
Types:

EventDomain = #objref

Consumer = CosEventComm::PushConsumer

Reply = CosNotifyChannelAdmin::ProxyPushSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given PushConsumer to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_pull_consumer(EventDomain, Consumer) -> Reply
Types:

EventDomain = #objref

Consumer = CosEventComm::PullConsumer

Reply = CosNotifyChannelAdmin::ProxyPullSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given PullConsumer to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_push_supplier(EventDomain, Supplier) -> Reply
Types:

EventDomain = #objref

Supplier = CosEventComm::PushSupplier

Reply = CosNotifyChannelAdmin::ProxyPushConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given PushSupplier to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

CosEventDomainAdmin_EventDomain

Ericsson AB. All Rights Reserved.: cosEventDomain | 15

connect_pull_supplier(EventDomain, Supplier) -> Reply
Types:

EventDomain = #objref

Supplier = CosEventComm::PullSupplier

Reply = CosNotifyChannelAdmin::ProxyPushConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given PullSupplier to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_structured_push_consumer(EventDomain, Consumer) -> Reply
Types:

EventDomain = #objref

Consumer = CosNotifyComm::StructuredPushConsumer

Reply = CosNotifyChannelAdmin::StructuredProxyPushSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given StructuredPushConsumer to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_structured_pull_consumer(EventDomain, Consumer) -> Reply
Types:

EventDomain = #objref

Consumer = CosNotifyComm::StructuredPullConsumer

Reply = CosNotifyChannelAdmin::StructuredProxyPullSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given StructuredPullConsumer to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_structured_push_supplier(EventDomain, Supplier) -> Reply
Types:

EventDomain = #objref

Supplier = CosNotifyComm::StructuredPushSupplier

Reply = CosNotifyChannelAdmin::StructuredProxyPushConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given StructuredPushSupplier to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_structured_pull_supplier(EventDomain, Supplier) -> Reply
Types:

EventDomain = #objref

Supplier = CosNotifyComm::StructuredPullSupplier

Reply = CosNotifyChannelAdmin::StructuredProxyPullConsume | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given StructuredPullSupplier to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

CosEventDomainAdmin_EventDomain

16 | Ericsson AB. All Rights Reserved.: cosEventDomain

connect_sequence_push_consumer(EventDomain, Consumer) -> Reply
Types:

EventDomain = #objref

Consumer = CosNotifyComm::SequencePushConsumer

Reply = CosNotifyChannelAdmin::SequenceProxyPushSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given SequencePushConsumer to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_sequence_pull_consumer(EventDomain, Consumer) -> Reply
Types:

EventDomain = #objref

Consumer = CosNotifyComm::SequencePullConsumer

Reply = CosNotifyChannelAdmin::SequenceProxyPullSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given SequencePullConsumer to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_sequence_push_supplier(EventDomain, Supplier) -> Reply
Types:

EventDomain = #objref

Supplier = CosNotifyComm::SequencePushSupplier

Reply = CosNotifyChannelAdmin::SequenceProxyPushConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given SequencePushSupplier to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_sequence_pull_supplier(EventDomain, Supplier) -> Reply
Types:

EventDomain = #objref

Supplier = CosNotifyComm::SequencePullSupplier

Reply = CosNotifyChannelAdmin::SequenceProxyPullConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a default Channel have been set, this operation connects the given SequencePullSupplier to it. Otherwise, the
#'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_push_consumer_with_id(EventDomain, Consumer, MemberID) -> Reply
Types:

EventDomain = #objref

Consumer = CosEventComm::PushConsumer

MemberID = long()

Reply = CosNotifyChannelAdmin::ProxyPushSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

CosEventDomainAdmin_EventDomain

Ericsson AB. All Rights Reserved.: cosEventDomain | 17

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given PushConsumer to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{} exception
is raised.

connect_pull_consumer_with_id(EventDomain, Consumer, MemberID) -> Reply
Types:

EventDomain = #objref

Consumer = CosEventComm::PullConsumer

MemberID = long()

Reply = CosNotifyChannelAdmin::ProxyPullSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
PullConsumer to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_push_supplier_with_id(EventDomain, Supplier, MemberID) -> Reply
Types:

EventDomain = #objref

Supplier = CosEventComm::PushSupplier

MemberID = long()

Reply = CosNotifyChannelAdmin::ProxyPushConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
PushSupplier to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_pull_supplier_with_id(EventDomain, Supplier, MemberID) -> Reply
Types:

EventDomain = #objref

Supplier = CosEventComm::PullSupplier

MemberID = long()

Reply = CosNotifyChannelAdmin::ProxyPushConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
PullSupplier to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{} exception is raised.

connect_structured_push_consumer_with_id(EventDomain, Consumer, MemberID) ->
Reply
Types:

EventDomain = #objref

Consumer = CosNotifyComm::StructuredPushConsumer

MemberID = long()

Reply = CosNotifyChannelAdmin::StructuredProxyPushSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given StructuredPushConsumer to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{}
exception is raised.

CosEventDomainAdmin_EventDomain

18 | Ericsson AB. All Rights Reserved.: cosEventDomain

connect_structured_pull_consumer_with_id(EventDomain, Consumer, MemberID) ->
Reply
Types:

EventDomain = #objref

Consumer = CosNotifyComm::StructuredPullConsumer

MemberID = long()

Reply = CosNotifyChannelAdmin::StructuredProxyPullSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given StructuredPullConsumer to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{}
exception is raised.

connect_structured_push_supplier_with_id(EventDomain, Supplier, MemberID) ->
Reply
Types:

EventDomain = #objref

Supplier = CosNotifyComm::StructuredPushSupplier

MemberID = long()

Reply = CosNotifyChannelAdmin::StructuredProxyPushConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
StructuredPushSupplier to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{} exception
is raised.

connect_structured_pull_supplier_with_id(EventDomain, Supplier, MemberID) ->
Reply
Types:

EventDomain = #objref

Supplier = CosNotifyComm::StructuredPullSupplier

MemberID = long()

Reply = CosNotifyChannelAdmin::StructuredProxyPullConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
StructuredPullSupplier to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{} exception
is raised.

connect_sequence_push_consumer_with_id(EventDomain, Consumer, MemberID) ->
Reply
Types:

EventDomain = #objref

Consumer = CosNotifyComm::SequencePushConsumer

MemberID = long()

Reply = CosNotifyChannelAdmin::SequenceProxyPushSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

CosEventDomainAdmin_EventDomain

Ericsson AB. All Rights Reserved.: cosEventDomain | 19

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given SequencePushConsumer to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{}
exception is raised.

connect_sequence_pull_consumer_with_id(EventDomain, Consumer, MemberID) ->
Reply
Types:

EventDomain = #objref

Consumer = CosNotifyComm::SequencePullConsumer

MemberID = long()

Reply = CosNotifyChannelAdmin::SequenceProxyPullSupplier | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given SequencePullConsumer to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{}
exception is raised.

connect_sequence_push_supplier_with_id(EventDomain, Supplier, MemberID) ->
Reply
Types:

EventDomain = #objref

Supplier = CosNotifyComm::SequencePushSupplier

MemberID = long()

Reply = CosNotifyChannelAdmin::SequenceProxyPushConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
SequencePushSupplier to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{} exception
is raised.

connect_sequence_pull_supplier_with_id(EventDomain, Supplier, MemberID) ->
Reply
Types:

EventDomain = #objref

Supplier = CosNotifyComm::SequencePullSupplier

MemberID = long()

Reply = CosNotifyChannelAdmin::SequenceProxyPullConsumer | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
SequencePullSupplier to it. Otherwise, the #'CosNotifyChannelAdmin_ChannelNotFound'{} exception
is raised.

	cosEventDomain
	cosEventDomain User's Guide
	The cosEventDomain Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosEventDomain
	Overview
	Purpose and Dependencies
	Prerequisites

	Quality Of Service and Admin Properties
	Quality Of Service and Admin Properties
	Quality Of Service
	Setting Quality Of Service
	Admin Properties

	Event Domain Service
	Overview of the CosEventDomain Service
	Event Domain Service Components
	A Tutorial on How to Create a Simple Service
	How to Run Everything

	Reference Manual
	cosEventDomainApp
	install/0
	uninstall/0
	start/0
	stop/0
	start_factory/0
	start_factory/1
	start_factory_link/0
	start_factory_link/1
	stop_factory/1

	CosEventDomainAdmin
	'CycleDetection'/0
	'AuthorizeCycles'/0
	'ForbidCycles'/0
	'DiamondDetection'/0
	'AuthorizeDiamonds'/0
	'ForbidDiamonds'/0

	CosEventDomainAdmin_EventDomainFactory
	create_event_domain/3
	get_all_domains/1
	get_event_domain/2

	CosEventDomainAdmin_EventDomain
	add_channel/2
	get_all_channels/1
	get_channel/2
	remove_channel/2
	add_connection/2
	get_all_connections/1
	get_connection/2
	remove_connection/2
	get_offer_channels/2
	get_subscription_channels/2
	destroy/1
	get_cycles/1
	get_diamonds/1
	set_default_consumer_channel/2
	set_default_supplier_channel/2
	connect_push_consumer/2
	connect_pull_consumer/2
	connect_push_supplier/2
	connect_pull_supplier/2
	connect_structured_push_consumer/2
	connect_structured_pull_consumer/2
	connect_structured_push_supplier/2
	connect_structured_pull_supplier/2
	connect_sequence_push_consumer/2
	connect_sequence_pull_consumer/2
	connect_sequence_push_supplier/2
	connect_sequence_pull_supplier/2
	connect_push_consumer_with_id/3
	connect_pull_consumer_with_id/3
	connect_push_supplier_with_id/3
	connect_pull_supplier_with_id/3
	connect_structured_push_consumer_with_id/3
	connect_structured_pull_consumer_with_id/3
	connect_structured_push_supplier_with_id/3
	connect_structured_pull_supplier_with_id/3
	connect_sequence_push_consumer_with_id/3
	connect_sequence_pull_consumer_with_id/3
	connect_sequence_push_supplier_with_id/3
	connect_sequence_pull_supplier_with_id/3

