

 reltool

 v1.0.2-rc0

 [image: Logo]

 Table of contents

 	Reltool Release Notes

 	User's Guides

 	Introduction

 	Usage

 	Examples

 	
 Modules

 	reltool

 Reltool Release Notes

This document describes the changes made to the Reltool system from version to
version. The intention of this document is to list all incompatibilities as well
as all enhancements and bugfixes for every release of Reltool. Each release of
Reltool thus constitutes one section in this document. The title of each section
is the version number of Reltool.
Reltool 1.0.2
Improvements and New Features
	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

Reltool 1.0.1
Fixed Bugs and Malfunctions
	The dependencies for this application are now listed in the app file.
Own Id: OTP-18831 Aux Id: PR-7441

Improvements and New Features
	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

Reltool 1.0
Improvements and New Features
	Add possibility to strip specific chunks from beam files included in a
release. Before this change it was only possible to strip all chunks from the
beam files.
Own Id: OTP-18230 Aux Id: PR-5936

	Runtime dependencies have been updated.
Own Id: OTP-18350

	Support for the experimental code archives feature has been removed from
reltool.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18488 Aux Id: PR-6836

	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

Reltool 0.9.1.1
Fixed Bugs and Malfunctions
	Fixed runtime dependencies.
Own Id: OTP-19064

Reltool 0.9.1
Fixed Bugs and Malfunctions
	Fixed a bug that would cause analysis to crash.
Own Id: OTP-18372 Aux Id: GH-6580

Reltool 0.9
Improvements and New Features
	Recognize new key 'optional_applications' in application resource files.
Own Id: OTP-17189 Aux Id: PR-2675

	Removed timestamps from files generated by sasl and reltool to enable
deterministic builds.
Own Id: OTP-17292 Aux Id: PR-4685, PR-4684

Reltool 0.8
Improvements and New Features
	A new element, Opts, can now be included in a rel tuple in the reltool
release specific configuration format: {rel, Name, Vsn, RelApps, Opts}.
This supports the use of
{rel, Name, Vsn, RelApps, [{load_dot_erlang, false}]} to prevent the boot
script from running the .erlang file.
The incompatibilities are as follows:
* The return from reltool:get_config/1 and reltool:get_config/3 includes
the new rel tuple for all releases where the load_dot_erlang option is set
to false.
* The return from reltool:get_config/3 includes the new rel tuple for ALL
releases if the InclDefs parameter is set to true.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15571

Reltool 0.7.8
Fixed Bugs and Malfunctions
	Reltool would earlier erroneously split paths like "c:\foo" into
["c","\foo"] when reading the $ERL_LIBS variable on windows. This is now
corrected.
Own Id: OTP-15454

Reltool 0.7.7
Fixed Bugs and Malfunctions
	Improved documentation.
Own Id: OTP-15190

Reltool 0.7.6
Improvements and New Features
	Calls to erlang:get_stacktrace() are removed.
Own Id: OTP-14861

Reltool 0.7.5
Improvements and New Features
	Files generated by release_handler and reltool, which might contain
Unicode characters, are now encoded as UTF-8 and written with format "~tp" or
"~ts". If the file is to be read by file:consult/1, an encoding comment is
added.
Own Id: OTP-14463

Reltool 0.7.4
Improvements and New Features
	The User's Guide examples are updated after removal of support for Dets files
created with Erlang/OTP R7 and earlier.
Own Id: OTP-14422 Aux Id: OTP-13830

Reltool 0.7.3
Fixed Bugs and Malfunctions
	Fixed xml issues in old release notes
Own Id: OTP-14269

Reltool 0.7.2
Fixed Bugs and Malfunctions
	Dependencies specified in .app files would earlier only be followed for
applications that are included in a 'rel' spec in the reltool config. For
other applications, only xref would decide the dependencies.
Some dependency chains would even be missed for applications that are included
in a 'rel' spec in the reltool config. E.g.
	Application x has y as included application, and y in turn has z as included
application. Then z is not included.
	Application x has y in its 'applications' tag in the .app file, and y in
turn has z as included application. Then z is not included.

These bugs are now corrected.
Own Id: OTP-11993

Reltool 0.7.1
Improvements and New Features
	Modify the code as motivated by a change of the Erlang Parser (undefined is
no longer automatically inserted to the type of record fields without an
initializer).
Own Id: OTP-13033 Aux Id: OTP-12719

Reltool 0.7
Improvements and New Features
	Change license text from Erlang Public License to Apache Public License v2
Own Id: OTP-12845

Reltool 0.6.6
Fixed Bugs and Malfunctions
	Fixed a minor typo in an error message from reltool_server.
Own Id: OTP-11977

Reltool 0.6.5
Fixed Bugs and Malfunctions
	When adding a regexp to a filter in reltool using {add,Regexp}, and the
existing regexp was undefined, reltool would crash since it got an improper
list. This has been corrected. (Thanks to Håkan Mattsson)
Own Id: OTP-11591

	Adapted reltool test server to common test usage of tc_status. (Note that this
code is not used by OTP daily test runs.) (Thanks to Håkan Mattsson)
Own Id: OTP-11592

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

Reltool 0.6.4.1
Improvements and New Features
	The encoding of the notes.xml file has been changed from latin1 to utf-8 to
avoid future merge problems.
Own Id: OTP-11310

Reltool 0.6.4
Fixed Bugs and Malfunctions
	Fix receive support in erl_eval with a BEAM module. Thanks to Anthony Ramine.
Own Id: OTP-11137

Improvements and New Features
	Reltool used to fail if an application was mentioned in the config file which
was not found in the file system, even if the application was explicitly
excluded in the config. This has been changed and will only produce a warning.
If the application is not explicitly excluded it will still cause reltool to
fail. Thanks to Håkan Mattsson!
Own Id: OTP-10988

	Fix possibly "not owner" error while file copy with reltool. Thanks to Alexey
Saltanov.
Own Id: OTP-11099

Reltool 0.6.3
Improvements and New Features
	Some updates are made to reltool for handling unicode.
Own Id: OTP-10781

Reltool 0.6.2
Fixed Bugs and Malfunctions
		If incl_cond was set to derived on module level, then reltool_server
would crash with a case_clause. This has been corrected. incl_cond on
module level now overwrites mod_cond on app or sys level as described in
the documentation.
	If a rel spec in the reltool config does not contain all applications that
are listed as {applications,Applications} in a .app file, then these
applications are automatically added when creating the .rel file. For
'included_applications', the behaviour was not the same. I.e. if a rel
spec in the reltool config did not contain all applications that are listed
as {included_applications,InclApplications} in a .app file, then reltool
would fail with reason "Undefined applications" when creating the .rel
file. This has been corrected, so both applications and
included_applications are now automatically added if not already in the
rel spec.
	The rel specification now dictates the order in which included and used
applications (specified in the .app file as included_applications and
applications respectively) are loaded/started by the boot file. If the
applications are not specified in the rel spec, then the order from the
.app file is used. This was a bug earlier reported on systools, and is now
also implemented in reltool.
	Instead of only looking at the directory name, reltool now first looks for a
.app file in order to figure out the name of an application.

Own Id: OTP-10012 Aux Id: kunagi-171 [82]

Improvements and New Features
	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

Reltool 0.6.1
Improvements and New Features
	A new sys level configuration parameter {excl_lib,otp_root} is added. When
this is set, the target system will not contain anything from $OTPROOT. It
will only contain a releases directory with rel, script and boot files, and a
lib directory with applications found outside of $OTPROOT (i.e. "your own"
applications).
Own Id: OTP-9743

Reltool 0.6
Fixed Bugs and Malfunctions
	Miscellaneous corrections:
	Start of reltool GUI would sometimes crash with a badmatch in
reltool_sys_win:do_init. This has been corrected.
	Minor corrections of documentation and type specifications of app() and
mod() are done.
	If a module name is duplicated in an app file reltool would return an error.
This is now changed to a warning.
	Reltool would earlier not necessarily keep the order of applications as
listed in the rel specification in the configuration. This has been
corrected.
	Reltool would earlier set the default for included applications to an empty
list if it was not set in the rel specification in the configuration. This
was correct according to sasl/systools documentation, but not according to
sasl/systools implementation. We decided to change the documentation and
reltool to use the value of included_applications from the .app file as
default instead of the empty list, since this seems more intuitive and since
systools always has done the same.
	The value of included applications in the rel specification in the
configuration did not overwrite included_applications in the .app file if it
was set to an empty list. This has been corrected.
	Reltool would earlier add load instructions in the script/boot files for ALL
modules in the ebin directory of an application even if mod_cond was set to
app (include only modules listed in the .app file). This has been corrected.
	Reltool would earlier add start instructions in the script/boot file for
included applications. This has been corrected - included applications shall
only be loaded since the including application is responsible for starting
them.
	Status bar now indicates that reltool is working (Processing libraries...)
for all configuration changes, and when generating target system.
	Title of dependencies column in app and mod window is changed from "Modules
used by others" to "Modules using this".

Own Id: OTP-9792

	Configuration changes via the GUI had a few bugs related to error handling,
rollback and undo. A major re-write of the reltool_server has been done in
order to align the way reltool_server updates and uses its state and tables
for all different kinds of configuration change.
All configuration changes (except undo) now cause a re-read of the file
system, meaning that if something has changed in the file system it will be
reflected in the result of the configuration change.
When loading a new configuration file via the GUI, the old configuration is
now completely scratched, and only the new is valid.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9794

	Some bug fixes related to the handling of escripts:
	Reltool could not handle escripts with inlined applications. This has been
corrected. Inlined applications will be visible in the GUI, but not possible
to include/exclude separately.
	Loading a config which contains an escript via the GUI menu did not produce
the same result as when using the same configuration at reltool start.
Paths, version and label could differ. This has been corrected.
	Loading config with same escript (source) twice caused reltool to add same
module twice. This has been corrected.
	Loading config with same escript (inlined beam) twice caused reltool to fail
saying module is included by two different applications. This has been
corrected.
	Loading config which in addition to an existing escript also adds another
escript, for which the name sorts before the existing one, would cause
reltool to fail saying "Application name clash". This has been corrected.

Own Id: OTP-9968

	Reltool would sometimes generate a .app file containing
{start_phases,undefined}, which would cause an exception in systools at
parse time. This has been corrected so reltool now omits the start_phases
entry if the value is undefined. (Thanks to Juan Jose Comellas)
In order to align with reltool, sasl will also omit start_phases entries
with value undefined in .script files.
Own Id: OTP-10003

Improvements and New Features
	A warning list is added to the sys window of the reltool GUI. This list will
continuously show all warnings produced by the current configuration.
Own Id: OTP-9967

	As a way of specifying one specific version of an application, the following
configuration parameter is added on application level:
{lib_dir,Dir}, Dir = string()
This can be useful if the parent directory of the application directory is not
suitable to use as a lib dir on system level.
Own Id: OTP-9977

Reltool 0.5.7.1
Improvements and New Features
	Added recommendation about RootDir parameter to
reltool:eval_target_spec/3.
Own Id: OTP-9742

Reltool 0.5.7
Fixed Bugs and Malfunctions
	If a module was duplicated in the library directories visible to reltool, and
the configuration did not point out which file to use, then reltool:start
would always fail. A pop-up is added which asks if you want to continue with a
safe and minimal configuration.
Own Id: OTP-9383

	wx would sometimes crash due to an empty radiobox on the 'releases' tab of the
system window. This radiobox is removed, and replaced by a listbox which will
always contain at least kernel and stdlib applications.
Own Id: OTP-9384

Reltool 0.5.6
Fixed Bugs and Malfunctions
	The system level option app_files is documented to allow the values
keep | strip | all, but it only allowed keep. This is corrected.
Own Id: OTP-9135

	Allow the same module name in multiple applications visible to reltool, as
long as all but one of the applications/modules are explicitly excluded.
(Thanks to Andrew Gopienko and Jay Nelson)
Own Id: OTP-9229

Reltool 0.5.5
Fixed Bugs and Malfunctions
	The reltool module contained two seriously erroneous specs which caused bogus
warnings when dialyzing reltool and some correct code of users. These were
fixed (specs for start_link/1 and eval_server/3)
- Code cleanups and simplifications - Fix a bug in the calculation of
circular dependencies - Eliminate two dialyzer warnings - Put files
alphabetically
Own Id: OTP-9120

Reltool 0.5.4
Improvements and New Features
	Added function zip:foldl/3 to iterate over zip archives.
Added functions to create and extract escripts. See escript:create/2 and
escript:extract/2.
The undocumented function escript:foldl/3 has been removed. The same
functionality can be achieved with the more flexible functions
escript:extract/2 and zip:foldl/3.
Record fields has been annotated with type info. Source files as been adapted
to fit within 80 chars and trailing whitespace has been removed.
Own Id: OTP-8521

	A new escript, called reltool, has been introduced in order to simplify the
usage of the reltool application from makefiles.
The handling of applications included in releases has been improved.
Applications that are required to be started before other applications in a
release are now automatically included in the release. The Kernel and STDLIB
applications are always included as they are mandatory.
Applications that are (explicitly or implicitly) included in a release are now
automatically included as if they were explicitly included with the incl_cond
flag.
A new embedded_app_type option has been introduced. It is intended to be
used for embedded systems where all included applications must be loaded from
the boot script, as these systems does not utilize dynamic code loading. If
embedded_app_typeis set to something else than undefined, all included
applications will be included in both the release as well as in the boot
script. If the profile is embedded the embedded_app_type option defaults
to load.
A new function called reltool:get_status/1 has been introduced. It returns
status about the configuration in the server.
The API functions that may take PidOrOptions as input and actually gets
Options does now print out warnings.
The internal error handling has been improved. For example {error,Reason} is
always returned in case of errors even when the server dies.
app and appup files has been added as well as a corresponding test suite.
Various cleanups has been made in the code and in the documentation.
Own Id: OTP-8590

Reltool 0.5.3
Improvements and New Features
	Removed spurious documentation files.
Own Id: OTP-8057

Reltool 0.5.2
Improvements and New Features
	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the HTML frames are
removed.
Own Id: OTP-8254

Reltool 0.5.1
Fixed Bugs and Malfunctions
	In the new release of Reltool (0.5) there is a severe bug that may cause your
source files to be deleted. The bug is triggered when you generate a target
system WITH archive files AND your library directories are given with absolute
paths. (Library directories are given with the ERL_LIBS environment variable
or with the lib_dirs configuration parameter.)
Own Id: OTP-8199

Reltool 0.5
Improvements and New Features
	The tool is still experimental. Feedback is appreciated.
Major improvements of the target system generation has been performed. Now it
is possible to generate a relocatable target system that does not need to be
re-installed if it is moved to a new location. Archive files are automatically
generated. A detailed specification of the target system can be generated
without actually creating the target system. Relocatable escripts are put in
the bin directory of the target system. etc. etc.
Some new functions has been introduced in the reltool module:
start/1, start_link/1, get_config/3, get_target_spec/1 and eval_target_spec/3.
Some new configuration parameters has been introduced:
profile, incl_sys_filters, excl_sys_filters, incl_app_filters, excl_app_filters, incl_archive_filters, excl_archive_filters, archive_opts, escript and relocatable.
Some parameters have been obsoleted and given new semantics:
incl_erts_dirs (incl_sys_filters), excl_erts_dirs (excl_sys_filters), incl_app_dirs (incl_app_filters), excl_app_dirs (excl_app_filters) and escripts (escript).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7949

Known Bugs and Problems
	The application is experimental. Feedback is appreciated.

Reltool 0.2.2
Fixed Bugs and Malfunctions
	The tool crashed when rel, script and boot files were generated via the GUI.
This has been fixed.
Own Id: OTP-7999

Reltool 0.2.1
Improvements and New Features
	Minor GUI fixes
Own Id: OTP-7840

Reltool 0.2
Improvements and new features
This is the first (experimental) release of Reltool.
Known Bugs and Problems
	The application is experimental.

 Introduction

Reltool is a release management tool. It analyses a given Erlang/OTP
installation and determines various dependencies between applications. The
graphical frontend depicts the dependencies and enables interactive
customization of a target system. The backend provides a batch interface for
generation of customized target systems.
Scope and Purpose
This manual describes the Reltool application, as a component of the Erlang/Open
Telecom Platform development environment. It is assumed that the reader is
familiar with the Erlang Development Environment, which is described in a
separate User's Guide.
Prerequisites
The following prerequisites are required for understanding the material in the
Reltool User's Guide:
	familiarity with Erlang/OTP system principles and Erlang/OTP design principles

The application requires Erlang/OTP release R13B02 or later.
About This Manual
In addition to this introductory chapter, the Reltool User's Guide contains the
following chapters:
	Chapter 2: "Usage" describes the architecture and typical usage of the
application.
	Chapter 3: "Examples" gives some usage examples

Where to Find More Information
Refer to the following documentation for more information about Reltool and
about the Erlang/OTP development system:
	the Reference Manual of Reltool
	the Erlang/OTP System Principles
	the Erlang/OTP Design Principles
	Programming Erlang: Software for a Concurrent World (2007), Pragmatic
Bookshelf, ISBN13: 9781934356005.

 Usage

Overview
This document focuses on the graphical parts of the tool. The concepts are
explained in the reference manual for the module reltool.
System window
The system window is started with the function reltool:start/1. At startup the
tool will process all beam files and app files in order to find out
dependencies between applications and their modules. Once all this information
has been derived, it will be possible to explore the tool.
The system window consists of four main pages (tabs):
	Libraries
	System settings
	Applications
	Releases

Click on a name tag to display its page.
Libraries
On the library page it is possible to control which sources the tool will use.
The page is organized as a tree which can be expanded and collapsed by clicking
on the little symbol in the beginning of the expandable/collapsible lines.
The Root directory can be edited by selecting the line where the path of the
root directory is displayed and clicking the right mouse button. Choose edit in
the menu that pops up.
Library directories can be added, edited or deleted. This is done by selecting
the line where the path to a library directory is displayed and clicking the
right mouse button. Choose add, edit or delete in the menu that pops up. New
library directories can also be added by selecting the line
Library directories and clicking the right mouse button. Choose add in the
menu that pops up.
Escript files can be added, edited or deleted. This is done by selecting the
line where the path to an escript file is displayed and clicking the right mouse
button. Choose add, edit or delete in the menu that pops up. New escripts can
also be added by selecting the line Escript files and clicking the right mouse
button. Choose add in the menu that pops up.
When libraries and escripts are expanded, the names of their contained
applications will be displayed. Double click on an application name to launch an
application window.
System settings
On the system settings page it is possible to control some global settings that
are used as defaults for all applications. Set the
Application inclusion policy to include to include all applications that are
not explicitly excluded. See incl_cond (application inclusion) and mod_cond
(module inclusion) in the reference manual for the module reltool for more
info.
The system settings page is rather incomplete.
Applications
There are four categories of applications on the applications page. Included
contains applications that are explicitly included. Excluded contains
applications that are explicitly excluded. Derived contains applications that
either are used directly by explicitly included applications or by other derived
applications. Available contains the remaining applications.
Select one or more applications and click on a button directly below the
application column to change application category. For example, select an
available application and click on its tick button to move the application to
the included category. Clicking on the tick symbol for included applications
will move the application back to the available category. The tick is undone.
The symbols in front of the application names are intended to describe the
status of the application. There are error and warning symbols to signalize that
there is something which needs attention. The tick symbol means that the
application is included or derived and no problem has been detected. The cross
symbol means that the application is excluded or available and no problem has
been detected. Applications with error symbols are listed first in each category
and are followed by the warnings and the normal ones (ticks and crosses) at the
end.
Double click on an application to launch its application window.
Releases
The releases page is incomplete and very experimental.
File menu
	Display application dependency graph - Launches an application force graph
window. All included and derived applications and their dependencies will be
shown in a graph.
	Display module dependency graph - Launch a module force graph window. All
included and derived modules and their dependencies will be shown in a graph.
	Reset configuration to default
	Undo configuration (toggle)
	Load configuration - Loads a new configuration from file.
	Save configuration - Saves the current configuration to file. Normally,
only the explicit configuration parameters with values that differ from their
defaults are saved. But the configuration with or without default values and
with or without derived values may also be saved.
	Generate rel, script and boot files
	Generate target system
	Close - Close the system window and all its subwindows.

Dependencies between applications or modules displayed as a graph
The dependency graph windows are launched from the file menu in the system
window. The graph depicts all included and derived applications/modules and
their dependencies.
It is possible to perform some limited manipulations of the graph. Nodes can be
moved, selected, locked or deleted. Move a single node or the entire graph by
moving the mouse while the left mouse button is pressed. A node can be locked
into a fix position by holding down the shift button when the left mouse button
is released. Select several nodes by moving the mouse while the control key and
the left mouse button are pressed. Selected nodes can be locked, unlocked or
deleted by clicking on a suitable button.
The algorithm that is used to draw a graph with as few crossed links as possible
is called force graph. A force graph consists of nodes and directed links
between nodes. Each node is associated with a repulsive force that pushes nodes
away from each other. This force can be adjusted with the left slider or with
the mouse wheel. Each link is associated with an attractive force that pulls the
nodes nearer to each other. This force can be adjusted with the right slider. If
this force becomes too strong, the graph will be unstable. The third parameter
that can be adjusted is the length of the links. It is adjusted with the middle
slider.
The Freeze button starts/stops the redrawing of the graph. Reset moves the
graph to the middle of the window and resets all graph settings to default, with
the exception of deleted nodes.
Application window
The application window is started by double clicking on an application name. The
application window consists of four pages (tabs):
	Application settings
	Modules
	Application dependencies
	Module dependencies

Click on a name tag to display its page.
Application settings
Select version of the application in the Source selection policy part of the
page. By default the latest version of the application is selected, but it is
possible to override this by explicitly selecting another version.
Note that in order for reltool to sort application versions and thereby be able
to select the latest, it is required that the version id for the application
consists of integers and dots only, for example 1, 2.0 or 3.17.1.
By default the Application inclusion policy on system level is used for all
applications. Set the value to include if you want to explicitly include one
particular application. Set it to exclude if you want to exclude the
application despite that it is used by another (explicitly or implicitly)
included application. derived means that the application automatically will be
included if some other (explicitly or implicitly) included application uses it.
By default the Module inclusion policy on system level is used for all
applications. Set it to derived if you only want actually used modules to be
included. Set it to app if you, besides derived modules, also want the modules
listed in the app file to be included. Set it to ebin if you, besides derived
modules, also want the modules that exist as beam files in the ebin directory to
be included. Set it to all if you want all modules to be included, that is the
union of modules found in the ebin directory and listed in the app file.
The application settings page is rather incomplete.
Modules
There are four categories of modules on the modules page. Included contains
modules that are explicitly included. Excluded contains modules that are
explicitly excluded. Derived contains modules that either are used directly by
explicitly included modules or by other derived modules. Available contains
the remaining modules.
Select one or more modules and click on a button directly below the module
column to change module category. For example, select an available module and
click on its tick button to move the module to the included category. Clicking
on the tick symbol for included modules will move the module back to the
available category. The tick is undone.
The symbols in front of the module names are intended to describe the status of
the module. There are error and and warning symbols to signalize that there is
something that needs attention. The tick symbol means that the module is
included or derived and no problem has been detected. The cross symbol means
that the module is excluded or available and no problem has been detected.
Modules with error symbols are listed first in each category and are followed by
warnings and the normal ones (ticks and crosses) at the end.
Double click on a module to launch its module window.
Application dependencies
There are four categories of applications on the Application dependencies
page. If the application is used by other applications, these are listed under
Used by. If the application requires other applications be started before it
can be started, these are listed under Required. These applications are listed
in the applications part of the app file. If the application includes other
applications, these are listed under Included. These applications are listed
in the included_applications part of the app file. If the application uses
other applications, these are listed under Uses.
Double click on an application name to launch an application window.
Module dependencies
There are two categories of modules on the Module dependencies page. If the
module is used by other modules, these are listed under Modules using this. If
the module uses other modules, these are listed under Used modules.
Double click on an module name to launch a module window.
Module window
The module window is started by double clicking on an module name. The module
window consists initially of two pages (tabs):
	Dependencies
	Code

Click on a name tag to display its page.
Dependencies
There are two categories of modules on the Dependencies page. If the module is
used by other modules, these are listed under Modules using this. If the
module uses other modules, these are listed under Used modules.
Double click on an module name to launch a module window.
Code
On the Code page the Erlang source code is displayed. It is possible to search
forwards and backwards for text in the module. Enter a regular expression in the
Find field and press enter. It is also possible to go to a certain line in the
module. The Back button can be used to go back to the previous position.
Put the marker on a function name and double click to go to the definition of
the function. If the function is defined in another module, that module will be
loaded and added to the page list.

 Examples

Start and stop windows and servers
The main process in Reltool is the server. It can be used as it is or be used
via the GUI frontend process. When the GUI is started, a server process will
automatically be started. The GUI process is started with reltool:start/0,
reltool:start/1 or reltool:start_link/1. The pid of its server can be
obtained with reltool:get_server/1
Erlang/OTP 20 [erts-9.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:false]
Eshell V9.0 (abort with ^G)
1>
1> {ok, Win} = reltool:start([]).
{ok,<0.36.01>}
2> {ok, Server} = reltool:get_server(Win).
{ok,<0.37.01>}
3> reltool:get_config(Server).
{ok,{sys,[]}}
4>
4> {ok, Server2} = reltool:start_server([]).
{ok,<0.6535.01>}
5> reltool:get_config(Server2).
{ok,{sys,[]}}
6> reltool:stop(Server2).
ok
Inspecting the configuration
Erlang/OTP 20 [erts-9.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:false]
Eshell V9.0 (abort with ^G)
1>
1> Config = {sys, [{escript, "examples/display_args", [{incl_cond, include}]},
		 {app, inets, [{incl_cond, include}]},
		 {app, mnesia, [{incl_cond, exclude}]},
		 {app, ssl, [{incl_cond, exclude}]},
		 {app, runtime_tools, [{incl_cond, exclude}]},
		 {app, syntax_tools, [{incl_cond, exclude}]}]}.
{sys,[{escript,"examples/display_args",[{incl_cond,include}]},
 {app,inets,[{incl_cond,include}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]}]}
2>
2> {ok, Server} = reltool:start_server([Config]).
{ok,<0.66.0>}
3>
3> reltool:get_config(Server).
{ok,{sys,[{escript,"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args",
 [{incl_cond,include}]},
 {app,inets,[{incl_cond,include}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]}]}}
4>
4> reltool:get_config(Server, false, false).
{ok,{sys,[{escript,"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args",
 [{incl_cond,include}]},
 {app,inets,[{incl_cond,include}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]}]}}
5>
5> reltool:get_config(Server, true, false).
{ok,{sys,[{root_dir,"/usr/local/lib/erlang"},
 {lib_dirs,[]},
 {escript,"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args",
 [{incl_cond,include}]},
 {mod_cond,all},
 {incl_cond,derived},
 {app,inets,
 [{incl_cond,include},{vsn,undefined},{lib_dir,undefined}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]},
 {boot_rel,"start_clean"},
 {rel,"start_clean","1.0",[]},
 {rel,"start_sasl","1.0",[sasl]},
 {emu_name,"beam"},
 {relocatable,true},
 {profile,development},
 {incl_sys_filters,[".*"]},
 {excl_sys_filters,[]},
 {incl_app_filters,[".*"]},
 {excl_app_filters,[]},
 {rel_app_type,...},
 {...}|...]}}
6>
6> reltool:get_config(Server, true, true).
{ok,{sys,[{root_dir,"/usr/local/lib/erlang"},
 {lib_dirs,[]},
 {escript,"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args",
 [{incl_cond,include}]},
 {mod_cond,all},
 {incl_cond,derived},
 {erts,[{app,erts,
 [{vsn,"10.0"},
 {lib_dir,"/usr/local/lib/erlang/lib/erts-10.0"},
 {mod,erl_prim_loader,[]},
 {mod,erl_tracer,[]},
 {mod,erlang,[]},
 {mod,erts_code_purger,[]},
 {mod,erts_dirty_process_signal_handler,[]},
 {mod,erts_internal,[]},
 {mod,erts_literal_area_collector,[]},
 {mod,init,[]},
 {mod,erl_init,...},
 {mod,...},
 {...}|...]}]},
 {app,compiler,
 [{vsn,"7.0.4"},
 {lib_dir,"/usr/local/lib/erlang/lib/compiler-7.0.4"},
 {mod,beam_a,[]},
 {mod,beam_asm,[]},
 {mod,beam_block,[]},
 {mod,beam_bs,[]},
 {mod,beam_bsm,[]},
 {mod,beam_clean,[]},
 {mod,beam_dead,[]},
 {mod,beam_dict,[]},
 {mod,beam_disasm,[]},
 {mod,beam_except,[]},
 {mod,beam_flatten,...},
 {mod,...},
 {...}|...]},
 {app,crypto,
 [{vsn,"3.7.4"},
 {lib_dir,"/usr/local/lib/erlang/lib/crypto-3.7.4"},
 {mod,crypto,[]},
 {mod,crypto_ec_curves,[]}]},
 {app,hipe,
 [{vsn,"3.15.4"},
 {lib_dir,"/usr/local/lib/erlang/lib/hipe-3.15.4"},
 {mod,cerl_cconv,[]},
 {mod,cerl_closurean,[]},
 {mod,cerl_hipeify,[]},
 {mod,cerl_lib,[]},
 {mod,cerl_messagean,[]},
 {mod,cerl_pmatch,[]},
 {mod,cerl_prettypr,[]},
 {mod,cerl_to_icode,[]},
 {mod,cerl_typean,...},
 {mod,...},
 {...}|...]},
 {app,inets,
 [{incl_cond,include},
 {vsn,"6.3.9"},
 {lib_dir,"/usr/local/lib/erlang/lib/inets-6.3.9"},
 {mod,ftp,[]},
 {mod,ftp_progress,[]},
 {mod,ftp_response,[]},
 {mod,ftp_sup,[]},
 {mod,http_chunk,[]},
 {mod,http_request,[]},
 {mod,http_response,...},
 {mod,...},
 {...}|...]},
 {app,kernel,
 [{vsn,"5.2"},
 {lib_dir,"/usr/local/lib/erlang/lib/kernel-5.2"},
 {mod,application,[]},
 {mod,application_controller,[]},
 {mod,application_master,[]},
 {mod,application_starter,[]},
 {mod,auth,[]},
 {mod,code,[]},
 {mod,code_server,...},
 {mod,...},
 {...}|...]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,sasl,
 [{vsn,"3.0.3"},
 {lib_dir,"/usr/local/lib/erlang/lib/sasl-3.0.3"},
 {mod,alarm_handler,[]},
 {mod,erlsrv,[]},
 {mod,format_lib_supp,[]},
 {mod,misc_supp,...},
 {mod,...},
 {...}|...]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,stdlib,
 [{vsn,"3.3"},
 {lib_dir,"/usr/local/lib/erlang/lib/stdlib-3.3"},
 {mod,array,[]},
 {mod,base64,...},
 {mod,...},
 {...}|...]},
 {app,syntax_tools,[{incl_cond,exclude}]},
 {app,tools,
 [{vsn,"2.9.1"},{lib_dir,[...]},{mod,...},{...}|...]},
 {boot_rel,"start_clean"},
 {rel,"start_clean","1.0",[]},
 {rel,"start_sasl","1.0",[...]},
 {emu_name,"beam"},
 {relocatable,true},
 {profile,...},
 {...}|...]}}
7>
7> reltool:get_config([{sys, [{profile, embedded}]}], true, false).
{ok,{sys,[{root_dir,"/usr/local/lib/erlang"},
 {lib_dirs,[]},
 {mod_cond,all},
 {incl_cond,derived},
 {boot_rel,"start_clean"},
 {rel,"start_clean","1.0",[]},
 {rel,"start_sasl","1.0",[sasl]},
 {emu_name,"beam"},
 {relocatable,true},
 {profile,embedded},
 {incl_sys_filters,["^bin","^erts","^lib","^releases"]},
 {excl_sys_filters,["^bin/(erlc|dialyzer|typer)(|\\.exe)$",
 "^erts.*/bin/(erlc|dialyzer|typer)(|\\.exe)$",
 "^erts.*/bin/.*(debug|pdb)"]},
 {incl_app_filters,["^ebin","^include","^priv"]},
 {excl_app_filters,[]},
 {rel_app_type,permanent},
 {embedded_app_type,load},
 {app_file,keep},
 {debug_info,keep}]}}
8>
8> reltool:get_config([{sys, [{profile, standalone}]}], true, false).
{ok,{sys,[{root_dir,"/usr/local/lib/erlang"},
 {lib_dirs,[]},
 {mod_cond,all},
 {incl_cond,derived},
 {boot_rel,"start_clean"},
 {rel,"start_clean","1.0",[]},
 {rel,"start_sasl","1.0",[sasl]},
 {emu_name,"beam"},
 {relocatable,true},
 {profile,standalone},
 {incl_sys_filters,["^bin/(erl|epmd)(|\\.exe|\\.ini)$",
 "^bin/start(|_clean).boot$","^erts.*/bin","^lib$"]},
 {excl_sys_filters,["^erts.*/bin/(erlc|dialyzer|typer)(|\\.exe)$",
 "^erts.*/bin/(start|escript|to_erl|run_erl)(|\\.exe)$",
 "^erts.*/bin/.*(debug|pdb)"]},
 {incl_app_filters,["^ebin","^priv"]},
 {excl_app_filters,["^ebin/.*\\.appup$"]},
 {rel_app_type,permanent},
 {app_file,keep},
 {debug_info,keep}]}}
Generate release and script files
Erlang/OTP 20 [erts-10.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:false]
Eshell V10.0 (abort with ^G)
1>
1> {ok, Server} = reltool:start_server([{config,
 {sys,
 [{boot_rel, "NAME"},
 {rel, "NAME", "VSN",
 [sasl],
 [{load_dot_erlang, false}]}]}}]).
{ok,<0.1288.0>}
2>
2> reltool:get_config(Server).
{ok,{sys,[{boot_rel,"NAME"},
 {rel,"NAME","VSN",[sasl]}]}}
3>
3> reltool:get_rel(Server, "NAME").
{ok,{release,{"NAME","VSN"},
 {erts,"10.0"},
 [{kernel,"5.2"},{stdlib,"3.3"},{sasl,"3.0.3"}]}}
4>
4> reltool:get_script(Server, "NAME").
{ok,{script,{"NAME","VSN"},
 [{preLoaded,[erl_prim_loader,erl_tracer,erlang,
 erts_code_purger,erts_dirty_process_signal_handler,
 erts_internal,erts_literal_area_collector,init,erl_init,
 prim_eval,prim_file,prim_inet,prim_zip,zlib]},
 {progress,preloaded},
 {path,["$ROOT/lib/kernel-5.2/ebin",
 "$ROOT/lib/stdlib-3.3/ebin"]},
 {primLoad,[error_handler]},
 {kernel_load_completed},
 {progress,kernel_load_completed},
 {path,["$ROOT/lib/kernel-5.2/ebin"]},
 {primLoad,[application,application_controller,
 application_master,application_starter,auth,code,
 code_server,disk_log,disk_log_1,disk_log_server,
 disk_log_sup,dist_ac,dist_util,erl_boot_server|...]},
 {path,["$ROOT/lib/stdlib-3.3/ebin"]},
 {primLoad,[array,base64,beam_lib,binary,c,calendar,dets,
 dets_server,dets_sup,dets_utils,dets_v9,dict|...]},
 {path,["$ROOT/lib/sasl-3.0.3/ebin"]},
 {primLoad,[alarm_handler,erlsrv,format_lib_supp,misc_supp,
 rb,rb_format_supp,release_handler,release_handler_1,sasl,
 sasl_report|...]},
 {progress,modules_loaded},
 {path,["$ROOT/lib/kernel-5.2/ebin",
 "$ROOT/lib/stdlib-3.3/ebin","$ROOT/lib/sasl-3.0.3/ebin"]},
 {kernelProcess,heart,{heart,start,[]}},
 {kernelProcess,error_logger,{error_logger,start_link,[]}},
 {kernelProcess,application_controller,
 {application_controller,start,[{...}]}},
 {progress,init_kernel_started},
 {apply,{application,load,[...]}},
 {apply,{application,load,...}},
 {progress,applications_loaded},
 {apply,{...}},
 {apply,...},
 {...}|...]}}
5>
5> reltool:stop(Server).
ok
Create a target system
Erlang/OTP 20 [erts-10.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:false]
Eshell V10.0 (abort with ^G)
1>
1> Config = {sys, [{escript, "examples/display_args", [{incl_cond, include}]},
		 {app, inets, [{incl_cond, include}]},
		 {app, mnesia, [{incl_cond, exclude}]},
		 {app, ssl, [{incl_cond, exclude}]},
		 {app, runtime_tools, [{incl_cond, exclude}]},
		 {app, syntax_tools, [{incl_cond, exclude}]}]}.
{sys,[{escript,"examples/display_args",[{incl_cond,include}]},
 {app,inets,[{incl_cond,include}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]}]}
2>
2> {ok, Spec} = reltool:get_target_spec([Config]).
{ok,[{create_dir,"releases",
 [{write_file,"start_erl.data","10.0 1.0\n"},
 {create_dir,"1.0",
 [{write_file,"start_clean.rel",
 [37,37,32,114,101,108,32,103,101,110,101,114,97,116|...]},
 {write_file,"start_clean.script",
 [37,37,32,115,99,114,105,112,116,32,103,101,110|...]},
 {write_file,"start_clean.boot",
 <<131,104,3,119,6,115,99,114,105,112,116,104,...>>},
 {write_file,"start_sasl.rel",
 [37,37,32,114,101,108,32,103,101,110,101|...]},
 {write_file,"start_sasl.script",
 [37,37,32,115,99,114,105,112,116,32|...]},
 {write_file,"start_sasl.boot",
 <<131,104,3,119,6,115,99,114,105,...>>}]}]},
 {create_dir,"bin",
 [{copy_file,"display_args.escript",
 "/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args"},
 {copy_file,"display_args","erts-10.0/bin/escript"},
 {copy_file,"start","erts-10.0/bin/start"},
 {copy_file,"ct_run","erts-10.0/bin/ct_run"},
 {copy_file,"dialyzer","erts-10.0/bin/dialyzer"},
 {copy_file,"run_erl","erts-10.0/bin/run_erl"},
 {copy_file,"erl","erts-10.0/bin/dyn_erl"},
 {copy_file,"to_erl","erts-10.0/bin/to_erl"},
 {copy_file,"epmd","erts-10.0/bin/epmd"},
 {copy_file,"erlc","erts-10.0/bin/erlc"},
 {copy_file,"typer","erts-10.0/bin/typer"},
 {copy_file,"escript","erts-10.0/bin/escript"},
 {write_file,"start_clean.boot",<<131,104,3,119,6,115,...>>},
 {write_file,"start_sasl.boot",<<131,104,3,119,6,...>>},
 {write_file,"start.boot",<<131,104,3,119,...>>}]},
 {copy_file,"Install"},
 {create_dir,"misc",
 [{copy_file,"format_man_pages"}]},
 {create_dir,"usr",
 [{create_dir,"lib",
 [{copy_file,"liberl_interface_st.a"},
 {copy_file,"libic.a"},
 {copy_file,"liberl_interface.a"},
 {copy_file,"libei_st.a"},
 {copy_file,"libei.a"}]},
 {create_dir,"include",
 [{copy_file,"driver_int.h"},
 {copy_file,"ei_connect.h"},
 {copy_file,"ei.h"},
 {copy_file,"erl_nif_api_funcs.h"},
 {copy_file,"erl_fixed_size_int_types.h"},
 {copy_file,"erl_int_sizes_config.h"},
 {copy_file,"erl_interface.h"},
 {copy_file,"eicode.h"},
 {copy_file,"erl_driver.h"},
 {copy_file,"erlang.idl"},
 {copy_file,[...]},
 {copy_file,...},
 {...}]}]},
 {create_dir,"erts-10.0",
 [{create_dir,"bin",
 [{copy_file,"start"},
 {copy_file,"ct_run"},
 {copy_file,"erlexec"},
 {copy_file,"dialyzer"},
 {copy_file,"beam.smp"},
 {copy_file,"run_erl"},
 {copy_file,"erl","erts-10.0/bin/dyn_erl"},
 {copy_file,"to_erl"},
 {copy_file,"epmd"},
 {copy_file,"erl_child_setup"},
 {copy_file,"heart"},
 {copy_file,[...]},
 {copy_file,...},
 {...}|...]},
 {create_dir,"lib",
 [{create_dir,"internal",
 [{copy_file,"liberts_internal.a"},
 {copy_file,"liberts_internal_r.a"},
 {copy_file,"libethread.a"},
 {copy_file,"README"}]},
]},
 {create_dir,"src",[{copy_file,"setuid_socket_wrap.c"}]},
 {create_dir,"doc",[]},
 {create_dir,"man",[]},
 {create_dir,"include",
 [{create_dir,"internal",
 [{create_dir,"i386",[{...}|...]},
 {copy_file,"erl_errno.h"},
 {copy_file,[...]},
 {copy_file,...},
 {...}|...]},
 {copy_file,"driver_int.h"},
 {copy_file,"erl_nif_api_funcs.h"},
 {copy_file,"erl_fixed_size_int_types.h"},
 {copy_file,"erl_int_sizes_config.h"},
 {copy_file,[...]},
 {copy_file,...},
 {...}]}]},
 {create_dir,"lib",
 [{create_dir,"compiler-7.0.4",
 [{create_dir,"src",
 [{copy_file,"beam_flatten.erl"},
 {copy_file,[...]},
 {copy_file,...},
 {...}|...]},
 {create_dir,"ebin",
 [{copy_file,[...]},{copy_file,...},{...}|...]}]},
 {create_dir,"crypto-3.7.4",
 [{create_dir,"src",[{copy_file,[...]},{copy_file,...}]},
 {create_dir,"ebin",[{copy_file,...},{...}|...]}]},
 {create_dir,"crypto-3.7.4",
 [{create_dir,"priv",
 [{create_dir,"lib",[{copy_file,[...]},{copy_file,...}]},
 {create_dir,"obj",[{copy_file,...},{...}|...]}]}]},
 {create_dir,"erts-10.0",
 [{create_dir,"src",[{...}|...]},
 {create_dir,"ebin",[...]}]},
 {create_dir,"hipe-3.15.4",
 [{create_dir,"flow",[...]},
 {copy_file,[...]},
 {create_dir,...},
 {...}|...]},
 {create_dir,"inets-6.3.9",
 [{create_dir,[...],...},{create_dir,...},{...}]},
 {create_dir,"inets-6.3.9",
 [{create_dir,"priv",[{create_dir,[...],...}]},
 {create_dir,"include",[{copy_file,...},{...}]}]},
 {create_dir,"kernel-5.2",[{...}|...]},
 {create_dir,"kernel-5.2",
 [{create_dir,"include",[{...}|...]}]},
 {create_dir,[...],...},
 {create_dir,...},
 {create_dir,"stdlib-3.3",[{create_dir,...}]},
 ...]}]}
3>
3> TargetDir = "/tmp/my_target_dir".
"/tmp/my_target_dir"
4>
4> reltool:eval_target_spec(Spec, code:root_dir(), TargetDir).
{error,"/tmp/my_target_dir: no such file or directory"}
5>
5> file:make_dir(TargetDir).
ok
6>
6> reltool:eval_target_spec(Spec, code:root_dir(), TargetDir).
ok
7>
7> file:list_dir(TargetDir).
{ok,["bin","Install","lib","misc","usr","erts-10.0",
 "releases"]}
8>
8> file:list_dir(filename:join([TargetDir,"lib"])).
{ok,["tools-2.9.1","inets-6.3.9",
 "kernel-5.2","sasl-3.0.3",
 "crypto-3.7.4","erts-10.0",
 "stdlib-3.3","compiler-7.0.4"]}
9>
9> file:make_dir("/tmp/yet_another_target_dir").
ok
10>
10> reltool:create_target([Config], "/tmp/yet_another_target_dir").
ok
11>
11> file:list_dir("/tmp/yet_another_target_dir").
{ok,["bin","Install","lib","misc","usr","erts-10.0",
 "releases"]}

reltool

Main API of the Reltool application
This is an interface module for the Reltool application.
Reltool is a release management tool. It analyses a given Erlang/OTP
installation and determines various dependencies between applications. The
graphical frontend depicts the dependencies and enables interactive
customization of a target system. The backend provides a batch interface for
generation of customized target systems.
The tool uses an installed Erlang/OTP system as input. root_dir is the root
directory of the analysed system and it defaults to the system executing
Reltool. Applications may also be located outside root_dir. lib_dirs defines
library directories where additional applications may reside and it defaults to
the directories listed by the operating system environment variable ERL_LIBS.
See the module code for more info.
An application directory AppDir under a library directory is recognized by the
existence of an AppDir/ebin directory. If this does not exist, Reltool will
not consider AppDir at all when looking for applications.
It is recommended that application directories are named as the application,
possibly followed by a dash and the version number. For example myapp or
myapp-1.1.
Finally single modules and entire applications may be read from Escripts.
Some configuration parameters control the behavior of Reltool on system (sys)
level. Others provide control on application (app) level and yet others are on
module (mod) level. Module level parameters override application level
parameters and application level parameters override system level parameters.
Escript escript level parameters override system level parameters.
The following top level options are supported:
	config - This is the main option and it controls the configuration of
Reltool. It can either be a sys tuple or a name of a file containing a sys
tuple.

	trap_exit - This option controls the error handling behavior of Reltool.
By default the window processes traps exit, but this behavior can altered by
setting trap_exit to false.

	wx_debug - This option controls the debug level of wx. As its name
indicates it is only useful for debugging. See wx:debug/1 for more info.

Besides the already mentioned source parameters root_dir and lib_dirs, the
following system (sys) level options are supported:
	erts - Erts specific configuration. See application level options below.

	escript - Escript specific configuration. An escript has a mandatory
file name and escript level options that are described below.

	app - Application specific configuration. An application has a mandatory
name and application level options that are described below.

	mod_cond - This parameter controls the module inclusion policy. It
defaults to all which means that if an application is included (either
explicitly or implicitly) all modules in that application will be included.
This implies that both modules that exist in the ebin directory of the
application, as well as modules that are named in the app file will be
included. If the parameter is set to ebin, both modules in the ebin
directory and derived modules are included. If the parameter is set to app,
both modules in the app file and derived modules are included. derived
means that only modules that are used by other included modules are included.
The mod_cond setting on system level is used as default for all
applications.

	incl_cond - This parameter controls the application and escript
inclusion policy. It defaults to derived which means that the applications
that do not have any explicit incl_cond setting, will only be included if
any other (explicitly or implicitly included) application uses it. The value
include implies that all applications and escripts that do not have any
explicit incl_cond setting will be included. exclude implies that all
applications and escripts that do not have any explicit incl_cond setting
will be excluded.

	boot_rel - A target system may have several releases but the one given
as boot_rel will be used as default when the system is booting up.

	rel - Release specific configuration. Each release maps to a rel,
script and boot file. See the module systools for more info about the
details. Each release has a name, a version and a set of applications with a
few release specific parameters such as type and included applications.

	relocatable - This parameter controls whether the erl executable in
the target system should automatically determine where it is installed or if
it should use a hardcoded path to the installation. In the latter case the
target system must be installed with reltool:install/2 before it can be
used. If the system is relocatable, the file tree containing the target system
can be moved to another location without re-installation. The default is
true.

	profile - The creation of the specification for a target system is
performed in two steps. In the first step a complete specification is
generated. It will likely contain much more files than you are interested in
in your customized target system. In the second step the specification will be
filtered according to your filters. There you have the ability to specify
filters per application as well as system wide filters. You can also select a
profile for your system. Depending on the profile, different default
filters will be used. There are three different profiles to choose from:
development, embedded and standalone. development is default. The
parameters that are affected by the profile are: incl_sys_filters,
excl_sys_filters, incl_app_filters and excl_app_filters.

	app_file - This parameter controls the default handling of the app
files when a target system is generated. It defaults to keep which means
that app files are copied to the target system and their contents are kept
as they are. strip means that a new app file is generated from the
contents of the original app file where the non included modules are removed
from the file. all does also imply that a new app file is generated from
the contents of the original app file, with the difference that all included
modules are added to the file. If the application does not have any app file
a file will be created for all but not for keep and strip.

	debug_info - The debug_info parameter controls what debug information
in the beam file should be kept or stripped. keep keeps all debug info,
strip strips all debug info, and a list of chunkids keeps only those chunks.

	excl_lib
Warning
This option is experimental.
If the excl_lib option is set to otp_root then reltool will not copy
anything from the Erlang/OTP installation ($OTPROOT) into the target
structure. The goal is to create a "slim" release which can be used together
with an existing Erlang/OTP installation. The target structure will therefore
only contain a lib directory with the applications that were found outside
of $OTPROOT (typically your own applications), and a releases directory with
the generated .rel, .script and .boot files.
When starting this release, three things must be specified:
	Which releases directory to use - Tell the release handler to use
the releases directory in our target structure instead of
$OTPROOT/releases. This is done by setting the SASL environment variable
releases_dir, either from the command line
(-sasl releases_dir <target-dir>/releases) or in sys.config.

	Which boot file to use - The default boot file is
$OTPROOT/bin/start, but in this case we need to specify a boot file from
our target structure, typically <target-dir>/releases/<vsn>/<RelName>.
This is done with the -boot command line option to erl

	The location of our applications - The generated .script (and .boot)
file uses the environment variable $RELTOOL_EXT_LIB as prefix for the
paths to all applications. The -boot_var option to erl can be used for
specifying the value of this variable, typically
-boot_var RELTOOL_EXT_LIB <target-dir>/lib.

Example:
erl -sasl releases_dir \"mytarget/releases\" -boot mytarget/releases/1.0/myrel\
 -boot_var RELTOOL_EXT_LIB mytarget/lib

	incl_sys_filters - This parameter normally contains a list of regular
expressions that controls which files in the system should be included. Each
file in the target system must match at least one of the listed regular
expressions in order to be included. Further the files may not match any
filter in excl_sys_filters in order to be included. Which application files
should be included is controlled with the parameters incl_app_filters and
excl_app_filters. This parameter defaults to [".*"].

	excl_sys_filters - This parameter normally contains a list of regular
expressions that controls which files in the system should not be included in
the target system. In order to be included, a file must match some filter in
incl_sys_filters but not any filter in excl_sys_filters. This parameter
defaults to [].

	incl_app_filters - This parameter normally contains a list of regular
expressions that controls which application specific files that should be
included. Each file in the application must match at least one of the listed
regular expressions in order to be included. Further the files may not match
any filter in excl_app_filters in order to be included. This parameter
defaults to [".*"].

	excl_app_filters - This parameter normally contains a list of regular
expressions that controls which application specific files should not be
included in the target system. In order to be included, a file must match some
filter in incl_app_filters but not any filter in excl_app_filters. This
parameter defaults to [].

On application (escript) level, the following options are supported:
	incl_cond - The value of this parameter overrides the parameter with the
same name on system level.

On application (app) level, the following options are supported:
	vsn - The version of the application. In an installed system there may
exist several versions of an application. The vsn parameter controls which
version of the application will be chosen.
This parameter is mutual exclusive with lib_dir. If vsn and lib_dir are
both omitted, the latest version will be chosen.
Note that in order for reltool to sort application versions and thereby be
able to select the latest, it is required that the version id for the
application consists of integers and dots only, for example 1, 2.0 or
3.17.1.

	lib_dir - The directory to read the application from. This parameter can
be used to point out a specific location to fetch the application from. This
is useful for instance if the parent directory for some reason is no good as a
library directory on system level.
This parameter is mutual exclusive with vsn. If vsn and lib_dir are both
omitted, the latest version will be chosen.
Note that in order for reltool to sort application versions and thereby be
able to select the latest, it is required that the version id for the
application consists of integers and dots only, for example 1, 2.0 or
3.17.1.

	mod - Module specific configuration. A module has a mandatory name and
module level options that are described below.

	mod_cond - The value of this parameter overrides the parameter with the
same name on system level.

	incl_cond - The value of this parameter overrides the parameter with the
same name on system level.

	app_file - The value of this parameter overrides the parameter with the
same name on system level.

	debug_info - The value of this parameter overrides the parameter with
the same name on system level.

	incl_app_filters - The value of this parameter overrides the parameter
with the same name on system level.

	excl_app_filters - The value of this parameter overrides the parameter
with the same name on system level.

On module (mod) level, the following options are supported:
	incl_cond - This parameter controls whether the module is included or
not. By default the mod_cond parameter on application and system level will
be used to control whether the module is included or not. The value of
incl_cond overrides the module inclusion policy. include implies that the
module is included, while exclude implies that the module is not included.
derived implies that the module is included if it is used by any other
included module.

	debug_info - The value of this parameter overrides the parameter with
the same name on application level.

 Summary

 Types

 app()

 app_file()

 app_name()

 app_type()

 app_vsn()

 base_dir()

 base_file()

 boot_rel()

 config()

 debug_info()

 dir()

 escript()

 escript_file()

 excl_app_filters()

 excl_lib()

 excl_sys_filters()

 file()

 incl_app()

 incl_app_filters()

 incl_cond()

 incl_defaults()

 incl_derived()

 incl_sys_filters()

 lib_dir()

 mod()

 mod_cond()

 mod_name()

 option()

 options()

 profile()

 re_regexp()

 reason()

 regexps()

 rel_app()

 rel_file()

 rel_name()

 rel_opt()

 rel_vsn()

 relocatable()

 root_dir()

 script_file()

 server()

 server_pid()

 sys()

 target_dir()

 target_spec()

 top_dir()

 top_file()

 warning()

 window_pid()

 Functions

 create_target(PidOrOptions, TargetDir)

 Create a target system.

 eval_target_spec(Spec, SourceDir, TargetDir)

 Create the actual target system from a specification generated by
reltool:get_target_spec/1.

 get_config(PidOrOption)

 Equivalent to get_config(Server, false, false).

 get_config(PidOrOptions, InclDef, InclDeriv)

 Get reltool configuration.

 get_rel(PidOrOptions, RelName)

 Get contents of a release file. See rel for more details.

 get_script(PidOrOptions, RelName)

 Get contents of a boot script file. See script for more details.

 get_server(WinPid)

 Return the process identifier of the server process.

 get_status(PidOrOptions)

 Get status about the configuration

 get_target_spec(PidOrOptions)

 Return a specification of the target system. The actual target system can be
created with reltool:eval_target_spec/3.

 install(RelName, TargetDir)

 Install a created target system

 start()

 Start a main window process with default options

 start(Options)

 Start a main window process with options

 start_link(Options)

 Start a main window process with options. The process is linked.

 start_server(Options)

 Start a server process with options. The server process identity can be given as
an argument to several other functions in the API.

 stop(Pid)

 Stop a server or window process

 Types

 app()

 (not exported)

 -type app() ::
 {vsn, app_vsn()} |
 {lib_dir, lib_dir()} |
 {mod, mod_name(), [mod()]} |
 {mod_cond, mod_cond()} |
 {incl_cond, incl_cond()} |
 {app_file, app_file()} |
 {debug_info, debug_info()} |
 {incl_app_filters, incl_app_filters()} |
 {excl_app_filters, excl_app_filters()}.

 app_file()

 (not exported)

 -type app_file() :: keep | strip | all.

 app_name()

 (not exported)

 -type app_name() :: atom().

 app_type()

 (not exported)

 -type app_type() :: permanent | transient | temporary | load | none.

 app_vsn()

 (not exported)

 -type app_vsn() :: string().

 base_dir()

 (not exported)

 -type base_dir() :: dir().

 base_file()

 (not exported)

 -type base_file() :: file().

 boot_rel()

 (not exported)

 -type boot_rel() :: rel_name().

 config()

 (not exported)

 -type config() :: {sys, [sys()]}.

 debug_info()

 (not exported)

 -type debug_info() :: keep | strip | [beam_lib:chunkid()].

 dir()

 (not exported)

 -type dir() :: file:filename().

 escript()

 (not exported)

 -type escript() :: {incl_cond, incl_cond()}.

 escript_file()

 (not exported)

 -type escript_file() :: file().

 excl_app_filters()

 (not exported)

 -type excl_app_filters() :: regexps().

 excl_lib()

 (not exported)

 -type excl_lib() :: otp_root.

 excl_sys_filters()

 (not exported)

 -type excl_sys_filters() :: regexps().

 file()

 (not exported)

 -type file() :: file:filename().

 incl_app()

 (not exported)

 -type incl_app() :: app_name().

 incl_app_filters()

 (not exported)

 -type incl_app_filters() :: regexps().

 incl_cond()

 (not exported)

 -type incl_cond() :: include | exclude | derived.

 incl_defaults()

 (not exported)

 -type incl_defaults() :: boolean().

 incl_derived()

 (not exported)

 -type incl_derived() :: boolean().

 incl_sys_filters()

 (not exported)

 -type incl_sys_filters() :: regexps().

 lib_dir()

 (not exported)

 -type lib_dir() :: dir().

 mod()

 (not exported)

 -type mod() :: {incl_cond, incl_cond()} | {debug_info, debug_info()}.

 mod_cond()

 (not exported)

 -type mod_cond() :: all | app | ebin | derived | none.

 mod_name()

 (not exported)

 -type mod_name() :: atom().

 option()

 (not exported)

 -type option() :: {wx_debug, term()} | {trap_exit, boolean()} | config() | {config, config() | file()}.

 options()

 (not exported)

 -type options() :: [option()].

 profile()

 (not exported)

 -type profile() :: development | embedded | standalone.

 re_regexp()

 (not exported)

 -type re_regexp() :: string().

 reason()

 (not exported)

 -type reason() :: string().

 regexps()

 (not exported)

 -type regexps() :: [re_regexp()] | {add, [re_regexp()]} | {del, [re_regexp()]}.

 rel_app()

 (not exported)

 -type rel_app() ::
 app_name() |
 {app_name(), app_type()} |
 {app_name(), [incl_app()]} |
 {app_name(), app_type(), [incl_app()]}.

 rel_file()

 (not exported)

 -type rel_file() :: term().

 rel_name()

 (not exported)

 -type rel_name() :: string().

 rel_opt()

 (not exported)

 -type rel_opt() :: {load_dot_erlang, boolean()}.

 rel_vsn()

 (not exported)

 -type rel_vsn() :: string().

 relocatable()

 (not exported)

 -type relocatable() :: boolean().

 root_dir()

 (not exported)

 -type root_dir() :: dir().

 script_file()

 (not exported)

 -type script_file() :: term().

 server()

 (not exported)

 -type server() :: server_pid() | options().

 server_pid()

 (not exported)

 -type server_pid() :: pid().

 sys()

 (not exported)

 -type sys() ::
 {mod_cond, mod_cond()} |
 {incl_cond, incl_cond()} |
 {debug_info, debug_info()} |
 {app_file, app_file()} |
 {profile, profile()} |
 {excl_lib, excl_lib()} |
 {incl_sys_filters, incl_sys_filters()} |
 {excl_sys_filters, excl_sys_filters()} |
 {incl_app_filters, incl_app_filters()} |
 {excl_app_filters, excl_app_filters()} |
 {root_dir, root_dir()} |
 {lib_dirs, [lib_dir()]} |
 {boot_rel, boot_rel()} |
 {rel, rel_name(), rel_vsn(), [rel_app()]} |
 {rel, rel_name(), rel_vsn(), [rel_app()], [rel_opt()]} |
 {relocatable, relocatable()} |
 {erts, app()} |
 {escript, escript_file(), [escript()]} |
 {app, app_name(), [app()]}.

 target_dir()

 (not exported)

 -type target_dir() :: dir().

 target_spec()

 (not exported)

 -type target_spec() ::
 [target_spec()] |
 {create_dir, base_dir(), [target_spec()]} |
 {create_dir, base_dir(), top_dir(), [target_spec()]} |
 {copy_file, base_file()} |
 {copy_file, base_file(), top_file()} |
 {write_file, base_file(), binary()} |
 {strip_beam_file, base_file()}.

 top_dir()

 (not exported)

 -type top_dir() :: file().

 top_file()

 (not exported)

 -type top_file() :: file().

 warning()

 (not exported)

 -type warning() :: string().

 window_pid()

 (not exported)

 -type window_pid() :: pid().

 Functions

 create_target(PidOrOptions, TargetDir)

 -spec create_target(server(), target_dir()) -> ok | {error, reason()}.

Create a target system.
Gives the same result as {ok,TargetSpec}=reltool:get_target_spec(Server) and
reltool:eval_target_spec(TargetSpec,RootDir,TargetDir).

 eval_target_spec(Spec, SourceDir, TargetDir)

 -spec eval_target_spec(target_spec(), root_dir(), target_dir()) -> ok | {error, reason()}.

Create the actual target system from a specification generated by
reltool:get_target_spec/1.
The creation of the specification for a target system is performed in two steps.
In the first step a complete specification will be generated. It will likely contain
much more files than you are interested in your target system. In the second
step the specification will be filtered according to your filters. There you have the
ability to specify filters per application as well as system wide filters. You can
also select a profile for your system. Depending on the profile, different
default filters will be used.
The top directories bin, releases and lib are treated differently from
other files. All other files are by default copied to the target system. The
releases directory contains generated rel, script, and boot files. The
lib directory contains the applications. Which applications are included and
if they should be customized (stripped from debug info etc.) is specified with
various configuration parameters. The files in the bin directory are copied
from the erts-vsn/bin directory, but only those files that were originally
included in the bin directory of the source system.
If the configuration parameter relocatable was set to true there is no need
to install the target system with reltool:install/2 before it can be started.
In that case the file tree containing the target system can be moved without
re-installation.
In most cases, the RootDir parameter should be set to the same as the
root_dir configuration parameter used in the call to
reltool:get_target_spec/1 (or code:root_dir/0 if the configuration parameter
is not set). In some cases it might be useful to evaluate the same target
specification towards different root directories. This should, however, be used
with great care as it requires equivalent file structures under all roots.

 get_config(PidOrOption)

 -spec get_config(server()) -> {ok, config()} | {error, reason()}.

Equivalent to get_config(Server, false, false).

 get_config(PidOrOptions, InclDef, InclDeriv)

 -spec get_config(server(), incl_defaults(), incl_derived()) -> {ok, config()} | {error, reason()}.

Get reltool configuration.
Normally, only the explicit configuration parameters with values that differ from
their defaults are interesting. But the builtin default values can be returned by
setting InclDefaults to true. The derived configuration can be returned by
setting InclDerived to true.

 get_rel(PidOrOptions, RelName)

 -spec get_rel(server(), rel_name()) -> {ok, rel_file()} | {error, reason()}.

Get contents of a release file. See rel for more details.

 get_script(PidOrOptions, RelName)

 -spec get_script(server(), rel_name()) -> {ok, script_file()} | {error, reason()}.

Get contents of a boot script file. See script for more details.

 get_server(WinPid)

 -spec get_server(window_pid()) -> {ok, server_pid()} | {error, reason()}.

Return the process identifier of the server process.

 get_status(PidOrOptions)

 (since OTP R14B)

 -spec get_status(server()) -> {ok, [warning()]} | {error, reason()}.

Get status about the configuration

 get_target_spec(PidOrOptions)

 -spec get_target_spec(server()) -> {ok, target_spec()} | {error, reason()}.

Return a specification of the target system. The actual target system can be
created with reltool:eval_target_spec/3.

 install(RelName, TargetDir)

 -spec install(rel_name(), dir()) -> ok | {error, reason()}.

Install a created target system

 start()

 -spec start() -> {ok, window_pid()} | {error, reason()}.

Start a main window process with default options

 start(Options)

 -spec start(options()) -> {ok, window_pid()} | {error, reason()}.

Start a main window process with options

 start_link(Options)

 -spec start_link(options()) -> {ok, window_pid()} | {error, reason()}.

Start a main window process with options. The process is linked.

 start_server(Options)

 -spec start_server(options()) -> {ok, server_pid()} | {error, reason()}.

Start a server process with options. The server process identity can be given as
an argument to several other functions in the API.

 stop(Pid)

 -spec stop(server_pid() | window_pid()) -> ok | {error, reason()}.

Stop a server or window process

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png
EEEEEE

