cosEvent Application

version 1.0

Typeset in IATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 cosEvent User’s Guide 1
1.1 ThecosEvent Application 2
Content OVErVIEW 2

Brief description of the User’'sGuide 2

1.2 IntroductiontocosEvent 3
OVEIVIEW e e e 3

1.3 EVentService e e e e 4
Overview of the CosEvent Service 4

Event Service COmMpoNeNntS e e e 4

Event Service Communication Models o o oo 5

Creating an EventChannel 6

Using the Event Service 6

14 cosEventRelease Notes. e 9
cosEvent 1.0.1.1, Release Notes 9

cosEvent 1.0.1, Release Notes 9

cosEvent 1.0, Release Notes 9

2 cosEvent Reference Manual 11
2.1 CoskEventChannelAdmin (Module) 14
2.2 CosEventChannelAdmin_ConsumerAdmin (Module) 17
2.3 CosEventChannelAdmin_EventChannel (Module) 18
2.4 CosEventChannelAdmin_ProxyPullConsumer (Module) 20
2.5 CosEventChannelAdmin_ProxyPullSupplier (Module) 21
2.6 CosEventChannelAdmin_ProxyPushConsumer (Module) 23
2.7 CosEventChannelAdmin_ProxyPushSupplier (Module) 25
2.8 CosEventChannelAdmin_SupplierAdmin (Module) 26
2.9 OrberEventChannel (Module) 27
2.10 OrberEventChannel_EventChannelFactory (Module) 28
List of Figures 29

cosEvent Application i

cosEvent Application

Chapter 1

coskEvent User's Guide

The cosEvent application is an Erlang implementation of a CORBA Service CosEvent.

cosEvent Application

1.1 The cosEvent Application

Content Overview

The cosEvent documentation is divided into three sections:

¢ PART ONE - The User’s Guide
Description of the cosEvent Application including services and a small tutorial demonstrating the

development of a simple service.

e PART TWO - Release Notes
A concise history of cosEvent.

e PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in cosEvent.

Brief description of the User's Guide

The User’s Guide contains the following parts:

e CosEvent overview
e CosEvent installation and examples

2 cosEvent Application

1.2 Introduction to cosEvent

Overview

The cosEvent application is a Event Service compliant with the OMG?* Event Service CosEvent.

Purpose and Dependencies

CosEvent is dependent on Orber, which provides CORBA functionality in an Erlang environment.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is
familiar with distributed programming and CORBA.

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom
Platform Documentation Set. It is also helpful to have read Concurrent Programming in Erlang.

1URL: http://www.omg.org

cosEvent Application 3

1.3 Event Service

Overview of the CosEvent Service

The Event service allows programmers to subscribe to information channels. Suppliers can generate
events without knowing the consumer identities and the consumer can receive events without knowing
the supplier identity. Both push and pull event delivery are supported. The Event service will queue
information and processes.

The CORBA Event service provides a flexible model for asynchronous, decoupled communication
between objects. This chapter outlines communication models and the roles and relationships of key
components in the CosEvent service. It shows a simple example on use of this service.

Event Service Components

There are five components in the OMG CosEvent service architecture. These are described below:

vents
Evenis w /

o

Figure 1.1: Figure 1: Event service Components

e Suppliers and consumers: Consumers are the ultimate targets of events generated by suppliers.
Consumers and suppliers can both play active and passive roles. There could be two types of
consumers and suppliers: push or pull. A PushSupplier object can actively push an event to a
passive PushConsumer object. Likewise, a PullSupplier object can passively wait for a
PullConsumer object to actively pull an event from it.

e EventChannel: The central abstraction in the CosEvent service is the EventChannel which plays
the role of a mediator between consumers and suppliers. Consumers and suppliers register their
interest with the EventChannel. It can provide many-to-many communication. The channel
consumes events from one or more suppliers, and supplies events to one or more consumers. An
EventChannel can support consumers and suppliers using different communication models.

e ProxySuppliers and ProxyConsumers: ProxySuppliers act as middlemen between consumers and
the EventChannel. A ProxySupplier is similar to a normal supplier, but includes an additional
method for connecting a consumer to the ProxySupplier. Likewise, ProxyConsumers act as

4 cosEvent Application

1.3: Event Service

middlemen between suppliers and the EventChannel. A ProxyConsumer is similar to a normal
consumer, but includes an additional method for connecting a supplier to the ProxyConsumer.

e Supplier and consumer administrations: Consumer administration acts as a factory for creating
ProxySuppliers. Supplier administration acts as a factory for creating ProxyConsumers.

Event Service Communication Models

There are four general models of component collaboration in the OMG CosEvent service architecture.
The following describes these models: (Please note that proxies are not shown in the diagrams for
simplicity).

@x\ L.
E-rert Channel
otifie
g/ \

A: The Canonical Push M:udgi E: Tha Canonical Pull Modal
-— =l] -4 =Full(]

CEm L P G E R =

C: The Hpbrid Push/Pull Model D The Fpbrid Pull/Push Model

Figure 1.2: Figure 2: Event service Communication Models

e The Canonical Push Model: The Canonical push model shown in figure 2(A) allows the suppliers
of events to initiate the transfer of event data to consumers. In this model, suppliers are active
initiators and consumers are the passive targets of the requests. EventChannels play the role of
Notifier. Thus, active suppliers use EventChannels to push data to passive consumers that have
registered with the EventChannels.

e The Canonical Pull Model: The Canonical pull model shown in figure 2(B) allows consumers to
request events from suppliers. In this model, Consumers are active initiators and suppliers are the
passive targets of the pull requests. EventChannel plays the role of Procurer since it procures
events on behalf of consumers. Thus, active consumers can explicitly pull data from passive
suppliers via the EventChannels.

e The Hybrid Push/Pull Model: The push/pull model shown in figure 2(C) is a hybrid that allows
consumers to request events queued at an EventChannel by suppliers. In this model, both
suppliers and consumers are active initiators of the requests. EventChannels play the role of
Queue. Thus, active consumers can explicitly pull data deposited by active suppliers via the
EventChannels.

cosEvent Application 5

Chapter 1: cosEvent User's Guide

e The Hybrid Pull/Push Model: The pull/push model shown in figure 2(D) is another hybrid that
allows the channel to pull events from suppliers and push them to consumers. In this model,
suppliers are passive targets of pull requests and consumers are passive targets of pushes.
EventChannels play the role of Intelligent Agent. Thus, active EventChannels can pull data
from passive suppliers and push that data to passive consumers.

Creating an EventChannel

An EventChannel can be created by using the EventChannelFactory interface, which is implemented
by OrberEventChannel EventChannelFactory.

To start the factory server one needs to make a call to corba:create/2 which could look like this:

-module (event_channel_factory).

-include_1ib("orber/include/corba.hrl").
-include_lib("orber/C0SS/CosNaming/CosNaming.hrl") .
-include_lib("orber/C0SS/CosNaming/lname.hrl").

-export ([start/0]).

start() ->
ECFok = ’OrberEventChannel_EventChannelFactory’:oe_create(),
NS = corba:resolve_initial_references("Nameservice"),
NC = Iname_component:set_id(lname_component:create(),
"EventChannelFactory"),
N = lname:insert_component(lname:create(), 1, NC),
’CosNaming_NamingContext’:bind (NS, N, ECFok).

Now an EventChannelFactory is created and registered in the CosNaming service and could be found
by consumers and suppliers.

Using the Event Service

This section shows an example of usage of the Event service in order to decouple communication
between a measurements collector and a safety controller.

Using the Consumer interface for safety controller

The safety controller plays the role of a PushConsumer. It is interested in the data provided by the
measurements collector, which plays the role of a PushSupplier. Safety controller is responsible for the
action required in case some measurements exceed the safety limits.

First, the safety controller creates a PushConsumer itself, and then obtains an EventSupplier channel
object reference using the EventChannelFactory, as follows:

6 cosEvent Application

1.3: Event Service

// The safety controller creates a PushConsumer object
MyPushConsumer = my_push_consumer_srv:create(),

// EventChannel created through EventChannelFactory

// EventChannelFactory obtained from the CosNaming service (not shown)

// EventChannel registered in the CosNaming service (not shown)

EventChannel = ’OrberEventChannel_EventChannelFactory’:
create_event_channel (ECFactory),

This code assumes that the MyPushConsumer supports the PushConsumer interface and implements the
appropriate safety controller logic.

Note: If no support exists for the push consumer the process will crash.
Next, the safety controller connects itself to the EventChannel:

// first step: obtain ConsumerAdmin object reference
ConsumerAdmin = ’CosEventChannelAdmin_EventChannel’
:for_consumers (EventChannel),
// obtain ProxyPushSupplier from the ConsumerAdmin object
PPhS = ’CosEventChannelAdmin_ConsumerAdmin’
:obtain_push_supplier (ConsumerAdmin),

// second step: connect our PushConsumer to the ProxyPushSupplier
’CosEventChannelAdmin_ProxyPushSupplier’
:connect_push_consumer (PPhS, MyPushConsumer)

When an event arrives in the EventChannel, it will invoke the push operation on the registered
PushConsumer object reference.

Using the supplier interface for measurements collector

Measurements collector sends data containing information about current measurement of the system to
the EventChannel in order to keep safety controller informed of any changes.

As with the safety controller, the measurements collector needs an object reference to an EventChannel
and to a PushSupplier to connect to the channel. This is accomplished as follows:

// measurements collector creates a PushSupplier
MyPushSupplier = my_push_supplier_srv:create(),

// EventChannel obtained from the Naming service (not shown)
EventChannel = //...

// obtain SupplierAdmiin object reference
SupplierAdmin =
’CosEventChannelAdmin_EventChannel’ :for_suppliers(EventChannel),

// obtain ProxyPushConsumer from SupplierAdmin object
PPhC =
’CosEventChannelAdmin_SupplierAdmin’:obtain_push_consumer (SupplierAdmin),

// connect our PushSupplier to the ProxyPushConsumer

’CosEventChannelAdmin_ProxyPushConsumer’ : connect_push_supplier (PPhC,
MyPushSupplier),

cosEvent Application 7

Chapter 1: cosEvent User's Guide

Once the consumer and the supplier registration code get executed, both the safety controller and the
measurements collector are connected to the EventChannel. At this point, safety controller will
automatically receive measurements data that are pushed by the measurements collector.

Exchanging and processing event data

The events exchanged between supplier and consumer must always be specified in OMG IDL so that
they can be stored into an any type variable. Consider the following data example sent by the
measurements controller:

record(measurements, {temperature, pressure, water_level}).

In order to push an event, the measurements collector must create and initialize this record, put it into
CORBA': : any, and call push on the EventChannel PushConsumer interface:

// create some data

EventRecord = #measurements{temperature = 150, pressure = 100,
water_level = 200},

EventData = { measurements:tc(),EventRecord},

// push the event to consumer
’CosEventChannelAdmin_ProxyPushConsumer’ :push (PPhC, EventData),

Once the EventChannel receives an event from the measurements collector, it pushes the event data to
the consumer by invoking the push operation on registered PushConsumer object reference.

The implementation of the safety controller consumer push could look like this:

push(Data) ->
{
if
Data#measurements.temperature > 300 ->
// some logic to set alarm

Data#measurements.water_level < 50 ->
// some logic to get more water

8 cosEvent Application

1.4 cosEvent Release Notes

cosEvent 1.0.1.1, Release Notes

Improvements and new features

Updated internal documentation.

Fixed bugs and malfunctions

Incompatibilities

Known bugs and problems

cosEvent 1.0.1, Release Notes

Improvements and new features

Fixed bugs and malfunctions

Incompatibilities
e CosEvent is now able to handle upgrade properly.

Known bugs and problems

cosEvent 1.0, Release Notes

Improvements and new features

cosEvent Application

Fixed bugs and malfunctions

Incompatibilities

e CosEvent include paths have changed since it is now a separate application, called cosEvent, i.e.,
no longer a Orber sub-application.

Known bugs and problems

10 cosEvent Application

cosEvent Reference Manual

Short Summaries

¢ Erlang Module CosEventChannelAdmin [page 14] — The
CosEventChannelAdmin defines a set if event service interfaces that enables
decoupled asynchronous communication between objects and implements generic
(untyped) version of the OMG COSS standard event service.

e Erlang Module CosEventChannelAdmin_ConsumerAdmin [page 17] — This
module implements a ConsumerAdmin interface, which allows consumers to be
connected to the event channel.

e Erlang Module CosEventChannelAdmin_EventChannel [page 18] — This module
implements an Event Channel interface, which plays the role of a mediator
between consumers and suppliers.

e Erlang Module CosEventChannelAdmin_ProxyPullConsumer [page 20] — This
module implements a ProxyPullConsumer interface which acts as a middleman
between pull supplier and the event channel.

¢ Erlang Module CosEventChannelAdmin_ProxyPullSupplier [page 21] — This
module implements a ProxyPullSupplier interface which acts as a middleman
between pull consumer and the event channel.

¢ Erlang Module CosEventChannelAdmin_ProxyPushConsumer [page 23] — This
module implements a ProxyPushConsumer interface which acts as a middleman
between push supplier and the event channel.

e Erlang Module CosEventChannelAdmin_ProxyPushSupplier [page 25] — This
module implements a ProxyPushSupplier interface which acts as a middleman
between push consumer and the event channel.

e Erlang Module CosEventChannelAdmin_SupplierAdmin [page 26] — This module
implements a SupplierAdmin interface, which allows suppliers to be connected to
the event channel.

e Erlang Module OrberEventChannel [page 27] — The OrberEventChannel defines
an interface that enables the user to create event channel objects.

e Erlang Module OrberEventChannel_EventChannelFactory [page 28] — This
module implements the EventChannelFactory interface that enables the user to
create event channel objects.

CosEventChannelAdmin

No functions are exported.

cosEvent Application 11

cosEvent Reference Manual

CosEventChannelAdmin_ConsumerAdmin

The following functions are exported:

e obtain push_supplier(Object) -> Return
[page 17] Creates a ProxyPushSupplier object

e obtain pull_supplier(Object) -> Return
[page 17] Creates a ProxyPullSupplier object

CosEventChannelAdmin_EventChannel

The following functions are exported:
e for_consumers(Object) -> Return
[page 18] Returns a ConsumerAdmin object

e for_suppliers(Object) -> Return
[page 18] Returns a SupplierAdmin object

e destroy(Object) -> Return
[page 18] Destroys the event channel

CosEventChannelAdmin_ProxyPullConsumer

The following functions are exported:

e connect_pull supplier(Object, PullSupplier) -> Return
[page 20] Connects pull supplier to the proxy pull consumer

e disconnect_pull_consumer(Object) -> Return
[page 20] Disconnects the ProxyPullConsumer object from the event channel.

CosEventChannelAdmin_ProxyPullSupplier

The following functions are exported:
e connect_pull_consumer(Object, PullConsumer) -> Return
[page 21] Connects pull consumer to the proxy pull supplier

e disconnect pull_supplier(Object) -> Return
[page 21] Disconnects the ProxyPullSupplier object from the event channel.

e pull(Object) -> Return
[page 22] Transmits data from suppliers to consumers.

e try_pull(Object) -> Return
[page 22] Transmits data from suppliers to consumers.

cosEvent Application

cosEvent Reference Manual

CosEventChannelAdmin_ProxyPushConsumer

The following functions are exported:

e connect_push supplier(Object, PushSupplier) -> Return
[page 23] Connects push supplier to the proxy push consumer

e disconnect_push consumer(Object) -> Return
[page 23] Disconnects the ProxyPushConsumer object from the event channel.

e push(Object, Data) -> Return
[page 24] Communicates event data to the consumers.

CosEventChannelAdmin_ProxyPushSupplier

The following functions are exported:

e connect_push consumer (Object, PushConsumer) -> Return
[page 25] Connects push consumer to the proxy push supplier

e disconnect_push supplier(Object) -> Return
[page 25] Disconnects the ProxyPushSupplier object from the event channel.

CosEventChannelAdmin_SupplierAdmin

The following functions are exported:

e obtain push_consumer (Object) -> Return
[page 26] Creates a ProxyPushConsumer object

e obtain pull_consumer(Object) -> Return
[page 26] Creates a ProxyPullConsumer object

OrberEventChannel

No functions are exported.

OrberEventChannel_EventChannelFactory

The following functions are exported:

e create_event_channel(Object) -> Return
[page 28] Creates a event channel object

cosEvent Application 13

CosEventChannelAdmin (Module) cosEvent Reference Manual

CosEventChannelAdmin (Module)

The event service defines two roles for objects: the supplier role and the consumer role.
Suppliers supply event data to the event channel and consumers receive event data from
the channel. Suppliers do not need to know the identity of the consumers, and vice
versa. Consumers and suppliers are connected to the event channel via proxies, which
are managed by ConsumerAdmin and SupplierAdmin objects.

There are four general models of communication. These are:

The canonical push model. It allows the suppliers of events to initiate the transfer
of event data to consumers. Event channels play the role of Notifier. Active
suppliers use event channel to push data to passive consumers registered with the
event channel.

The canonical pull model. It allows consumers to request events from suppliers.
Event channels play the role of Procure since they procure events on behalf of
consumers. Active consumers can explicitly pull data from passive suppliers via
the event channels.

The hybrid push/pull model. It allows consumers request events queued at a
channel by suppliers. Event channels play the role of Queue. Active consumers
explicitly pull data deposited by active suppliers via the event channels.

The hybrid pull/push model. It allows the channel to pull events from suppliers
and push them to consumers. Event channels play the role of Intelligent agent.
Active event channels can pull data from passive suppliers to push it to passive
consumers.

To get access to the record definitions for the structuress use:
-include_1ib("cosEvent/src/CosEventChannelAdmin.hrl") ..

There are seven different interfaces supported in the service:

ProxyPushConsumer
ProxyPullSupplier
ProxyPullConsumer
ProxyPushSupplier
ConsumerAdmin
SupplierAdmin
EventChannel

IDL specification for CosEventChannelAdmin:

14

cosEvent Application

cosEvent Reference Manual CosEventChannelAdmin (Module)

#ifndef _COSEVENTCHANELADMIN_IDL
#define _COSEVENTCHANELADMIN_IDL

#include "CosEventComm.idl"
#pragma prefix "omg.org"
module CosEventChannelAdmin
{

exception AlreadyConnected{};

exception TypeError{};

interface ProxyPushConsumer: CosEventComm: :PushConsumer

{
void connect_push_supplier(in CosEventComm: :
PushSupplier push_supplier)
raises (AlreadyConnected);
I
interface ProxyPullSupplier: CosEventComm: :PullSupplier
{
void connect_pull_consumer (in CosEventComm: :
PullConsumer pull_consumer)
raises (AlreadyConnected);
I
interface ProxyPullConsumer: CosEventComm: :PullConsumer
{
void connect_pull_supplier(in CosEventComm: :
PullSupplier pull_supplier)
raises (AlreadyConnected, TypeError);
s
interface ProxyPushSupplier: CosEventComm: :PushSupplier
{
void connect_push_consumer (in CosEventComm: :
PushConsumer push_consumer)
raises (AlreadyConnected, TypeError);
I
interface ConsumerAdmin
{
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();
I
interface SupplierAdmin
{
ProxyPushConsumer obtain_push_consumer() ;
ProxyPullConsumer obtain_pull_consumer();
I

interface EventChannel

cosEvent Application 15

CosEventChannelAdmin (Module) cosEvent Reference Manual

{
ConsumerAdmin for_consumers() ;
SupplierAdmin for_suppliers();
void destroy();

16 cosEvent Application

cosEvent Reference ManualConsumerAdmin (Module)

CosEventChannelAdmin_-

ConsumerAdmin
(Module)

The ConsumerAdmin interface defines the first step for connecting consumers to the
event channel. It acts as a factory for creating proxy suppliers. Both consumer
administration and supplier administration are defined as separate objects so that the
creator of the channel can control the addition of suppliers and consumers.

Any object that possesses an object reference that supports the EventChannelFactory
interface can perform the following operations:

Exports

obtain push supplier(Object) -> Return
Types:
e Object = #objref
e Return = #objref
This operation returns a ProxyPushSupplier object reference.

obtain pull_supplier(Object) -> Return
Types:
e Object = #objref
e Return = #objref
This operation returns a ProxyPullSupplier object reference.

cosEvent Application 17

....EventChannel (Module) cosEvent Reference Manual

CosEventChannelAdmin_-

EventChannel
(Module)

An event channel is an object that allows multiple suppliers to communicate with
multiple consumers in a highly decoupled, asynchronous manner. The event channel is
built up incrementally. An event channel factory could be used for creating an event
channel. This factory could be found in OrberEventChannel_EventChannelFactory
module. When an event channel is created no suppliers or consumers are connected to
it. Event Channel can implement group communication by serving as a replicator,
broadcaster, or multicaster that forward events from one or more suppliers to multiple
consumers.

It is up to the user to decide when an event channel is created and how references to the
event channel are obtained. By representing the event channel as an object, it has all of
the properties that apply to objects. One way to manage an event channel is to register
it in a naming context, or export it through an operation on an object.

Any object that possesses an object reference that supports the ProxyPullConsumer
interface can perform the following operations:

Exports

for_consumers(Object) -> Return
Types:
e Object = #objref
¢ Return = #objref

This operation returns a ConsumerAdmin object reference. If ConsumerAdmin object
does not exist already it creates one.

for_suppliers(Object) -> Return
Types:
e Object = #objref
e Return = #objref

This operation returns a SupplierAdmin object reference. If SupplierAdmin object does
not exist already it creates one.

destroy(Object) -> Return

18 cosEvent Application

cosEvent Reference ManualEventChannel (Module)

Types:
e Object = #objref
e Return = #objref

cosEvent Application 19

....ProxyPullConsumer (Module) cosEvent Reference Manual

CosEventChannelAdmin_-
ProxyPullConsumer
(Module)

The ProxyPullConsumer interface defines the second step for connecting pull suppliers
to the event channel. A proxy consumer is similar to a normal consumer, but includes
an additional method for connecting a supplier to the proxy consumer.

There are a number of exceptions that can be returned from functions in this interface.

e AlreadyConnected is defined as -record(’AlreadyConnected’, {}).

e CORBA standard BAD_PARAM is defined as -record (’BAD_PARAM’, {’0E_ID’,
minor, completion_status}).

The first exception is defined in the file event_service.hrl and the second one in the
file corba.hrl.

Any object that possesses an object reference that supports the ProxyPullConsumer
interface can perform the following operations:

Exports

connect_pull _supplier(Object, PullSupplier) -> Return

Types:

e Object = #objref

e PullSupplier = #objref of PullSupplier type

e Return = void

This operation connects PullSupplier object to the ProxyPullConsumer object. If a nil
object reference is passed CORBA standard BAD_PARAM exception is raised. If the
ProxyPullConsumer is already connected to a PullSupplier, then the AlreadyConnected
exception is raised.

disconnect_pull_consumer (Object) -> Return

20

Types:
e Object = #objref
e Return = void

This operation disconnects proxy pull consumer from the event channel and sends a
notification about the loss of the connection to the pull supplier attached to it.

cosEvent Application

cosEvent Reference ManualProxyPullSupplier (Module)

CosEventChannelAdmin_-
ProxyPullSupplier
(Module)

The ProxyPullSupplier interface defines the second step for connecting pull consumers
to the event channel. A proxy supplier is similar to a normal supplier, but includes an
additional method for connecting a consumer to the proxy supplier.

There are a number of exceptions that can be returned from functions in this interface.

e AlreadyConnected is defined as -record (’ AlreadyConnected’, {}).
¢ Disconnected is defined as -record(’Disconnected’, {}).

These exceptions are defined in the file event_service.hrl.

Any object that possesses an object reference that supports the ProxyPullSupplier
interface can perform the following operations:

Exports

connect_pull _consumer(Object, PullConsumer) -> Return

Types:

e Object = #objref

e PullConsumer = #objref of PullConsumer type
e Return = void

This operation connects PullConsumer object to the ProxyPullSupplier object. A nil
object reference can be passed to this operation. If so a channel cannot invoke the
disconnect_pull_consumer operation on the consumer; the consumer may be
disconnected from the channel without being informed. If the ProxyPullSupplier is
already connected to a PullConsumer, then the AlreadyConnected exception is raised.

disconnect_pull_supplier(Object) -> Return

Types:
e Object = #objref
e Return = void

cosEvent Application 21

....ProxyPullSupplier (Module) cosEvent Reference Manual

pull(Object)

This operation disconnects proxy pull supplier from the event channel. It sends a
notification about the loss of the connection to the pull consumer attached to it, unless
nil object reference was passed at the connection time.

-> Return

Types:

e Object = #objref
e Return = any

This operation blocks until the event data is available or the Disconnected exception is
raised. It returns the event data to the consumer.

try_pull(Object) -> Return

22

Types:

e Object = #objref

e Return = {any, bool()}

This operation does not block: if the event data is available, it returns the event data
and sets the data availability flag to true; otherwise it returns a long with a value of O

and sets the data availability to false. If the event communication has already been
disconnected, the Disconnected exception is raised.

cosEvent Application

cosEvent Reference ManualProxyPushConsumer (Module)

CosEventChannelAdmin_-
ProxyPushConsumer
(Module)

The ProxyPushConsumer interface defines the second step for connecting push
suppliers to the event channel. A proxy consumer is similar to a normal consumer, but
includes an additional method for connecting a supplier to the proxy consumer.

There are a number of exceptions that can be returned from functions in this interface.

e AlreadyConnected is defined as -record (’ AlreadyConnected’, {}).
¢ Disconnected is defined as -record(’Disconnected’, {}).

These exceptions are defined in the file event_service.hrl.

Any object that possesses an object reference that supports the ProxyPushConsumer
interface can perform the following operations:

Exports

connect_push _supplier(Object, PushSupplier) -> Return

Types:

e Object = #objref

e PushSupplier = #objref of PushSupplier type
e Return = void

This operation connects PushSupplier object to the ProxyPushConsumer object. A nil
object reference can be passed to this operation. If so a channel cannot invoke the
disconnect_push_supplier operation on the supplier; the supplier may be disconnected
from the channel without being informed. If the ProxyPushConsumer is already
connected to a PushSupplier, then the AlreadyConnected exception is raised.

disconnect_push_consumer (Object) -> Return

Types:
e Object = #objref
e Return = void

cosEvent Application 23

....ProxyPushConsumer (Module)

cosEvent Reference Manual

push(Object,

24

This operation disconnects proxy push consumer from the event channel. Sends a
notification about the loss of the connection to the push supplier attached to it, unless
nil object reference was passed at the connection time.

Data) -> Return

Types:
e Object = #objref
e Data = any

e Return = void

This operation sends event data to all connected consumers via the event channel. If the
event communication has already been disconnected, the Disconnected is raised.

cosEvent Application

cosEvent Reference ManualProxyPushSupplier (Module)

CosEventChannelAdmin_-
ProxyPushSupplier
(Module)

The ProxyPushSupplier interface defines the second step for connecting push
consumers to the event channel. A proxy supplier is similar to a normal supplier, but
includes an additional method for connecting a consumer to the proxy supplier.

There are a number of exceptions that can be returned from functions in this interface.

e AlreadyConnected is defined as -record (’ AlreadyConnected’, {}).

e CORBA standard BAD_PARAM is defined as -record (’BAD_PARAM’, {’0E_ID’,
minor, completion status}).

The first exception is defined in the file event_service.hrl and the second one in the
file corba.hrl.

Any object that possesses an object reference that supports the ProxyPushSupplier
interface can perform the following operations:

Exports

connect_push_consumer (0Object, PushConsumer) -> Return

Types:

e Object = #objref

e PushConsumer = #objref of PushConsumer type
e Return = void

This operation connects PushConsumer object to the ProxyPushSupplier object. If a nil
object reference is passed CORBA standard BAD_PARAM exception is raised. If the
ProxyPushSupplier is already connected to a PushConsumer, then the
AlreadyConnected exception is raised.

disconnect_push_supplier(Object) -> Return

Types:
e Object = #objref
e Return = void

This operation disconnects proxy push supplier from the event channel and sends a
notification about the loss of the connection to the push consumer attached to it.

cosEvent Application 25

....SupplierAdmin (Module)

cosEvent Reference Manual

CosEventChannelAdmin._-
SupplierAdmin
(Module)

The SupplierAdmin interface defines the first step for connecting suppliers to the event
channel. It acts as a factory for creating proxy consumers. Both consumer
administration and supplier administration are defined as separate objects so that the
creator of the channel can control the addition of suppliers and consumers.

Any object that possesses an object reference that supports the EventChannelFactory
interface can perform the following operations:

Exports

obtain push_consumer (Object) -> Return

Types:
e Object = #objref
e Return = #objref

This operation returns a ProxyPushConsumer object reference.

obtain pull_consumer(Object) -> Return

26

Types:
e Object = #objref
e Return = #objref

This operation returns a ProxyPullConsumer object reference.

cosEvent Application

cosEvent Reference Manual OrberEventChannel (Module)

OrberEventChannel (Module)

There is only one interface supported in the service:
e EventChannelFactory

IDL specification for OrberEventChannel:
#ifndef _EVENT_CHANNEL_FACTORY_IDL
#define _EVENT_CHANNEL_FACTORY_IDL
#include "OrberEventChannelAdmin.idl"

#pragma prefix "omg.org"

module OrberEventChannel

{

interface EventChannelFactory

{

OrberEventChannelAdmin: :EventChannel create_event_channel();

cosEvent Application

27

OrberEventChannel -
EventChannelFactory
(Module)

Any object that possesses an object reference that supports the EventChannelFactory
interface can perform the following operations:

Exports

create_event_channel(Object) -> Return

28

Types:

e Object = #objref

e Return = #objref

This operation returns an EventChannel object reference.

cosEvent Application

List of Figures

Chapter 1: cosEvent User’s Guide

11
1.2

Figure 1: Event service COmMpoNents i
Figure 2: Event service Communication Models

cosEvent Application

29

List of Figures

30 cosEvent Application

Index

Modules are typed in this way.
Functions are typed in this way.

connect_pull_consumer/2
CosEventChannelAdmin_-
ProxyPullSupplier ,
21

connect_pull_supplier/2
CosEventChannelAdmin_-
ProxyPullConsumer ,
20

connect_push_consumer/2
CosEventChannelAdmin_-
ProxyPushSupplier ,
25

connect_push_supplier/2
CosEventChannel Admin_-
ProxyPushConsumer ,
23

CosEventChannel Admin_ConsumerAdmin
obtain_pull_supplier/1,17
obtain_push_supplier/1,17

CosEventChannelAdmin_EventChannel
destroy/1,18
for_consumers/1, 18
for_suppliers/1,18

CosEventChannel Admin_ProxyPullConsumer
connect_pull_supplier/2, 20
disconnect_pull_consumer/1, 20

CosEventChannelAdmin_ProxyPullSupplier
connect_pull_consumer/2, 21
disconnect_pull_supplier/1,21
pull/1, 22
try_pull/1, 22

CosEventChannel Admin_ProxyPushConsumer
connect_push_supplier/2, 23
disconnect_push_consumer/1, 23
push/2, 24

CosEventChannel Admin_ProxyPushSupplier
connect_push_consumer/2, 25

disconnect_push_supplier/1, 25

CosEventChannelAdmin_SupplierAdmin
obtain_pull_consumer/1, 26
obtain_push_consumer/1, 26

create_event_channel/1
OrberEventChannel_EventChannelFactory
, 28

destroy/1
CosEventChannelAdmin_EventChannel ,
18

disconnect_pull_consumer/1
CosEventChannelAdmin_-
ProxyPullConsumer
20

disconnect_pull_supplier/1
CosEventChannelAdmin._-
ProxyPullSupplier ,
21

disconnect_push_consumer/1
CosEventChannelAdmin_-
ProxyPushConsumer ,

23

disconnect_push_supplier/1
CosEventChannelAdmin_-
ProxyPushSupplier ,
25

for_consumers/1
CosEventChannelAdmin_EventChannel ,
18

for_suppliers/1
CosEventChannelAdmin_EventChannel ,
18

obtain_pull_consumer/1

cosEvent Application 31

Index

CosEventChannel Admin_SupplierAdmin ,
26

obtain_pull_supplier/1
CosEventChannelAdmin._-
ConsumerAdmin ,
17

obtain_push_consumer/1
CosEventChannel Admin_SupplierAdmin ,
26

obtain_push_supplier/1
CosEventChannelAdmin._-
ConsumerAdmin ,
17

OrberEventChannel_EventChannelFactory
create_event_channel/1, 28

pull/1
CosEventChannelAdmin_-
ProxyPullSupplier ,
22

push/2
CosEventChannelAdmin_-
ProxyPushConsumer ,
24

try_pull/1
CosEventChannelAdmin_-
ProxyPullSupplier ,
22

32 cosEvent Application

