
Debugger Application (DEBUGGER)

version 1.5

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 Debugger User’s Guide 1

1.1 The Debugger . 2

Introduction . 2

Starting the Debugger . 2

Preparation . 2

Interpreting . 3

Break Points . 4

Configuring Options . 6

Saving and Loading debugger states . 7

Debugging . 7

The Monitor Window (Main Window) . 7

The View Window . 11

The Attach Window . 12

The Interpret Module Dialog . 17

Save Settings Dialog . 19

Load Settings Dialog . 19

Line Break Dialog . 20

Conditional Break Dialog . 21

Function Break Dialog . 21

Debugging Scenarios . 22

2 Debugger Reference Manual 27

2.1 i (Module) . 31

2.2 int (Module) . 37

List of Figures 45

iDebugger Application (DEBUGGER)

ii Debugger Application (DEBUGGER)

Chapter 1

Debugger User's Guide

The Debugger application is a graphical tool which can be used for debugging and testing of Erlang
programs. Programs can be single stepped, variables can be displayed, breakpoints can be set and
removed etc.

1Debugger Application (DEBUGGER)

1.1 The Debugger

Introduction

The Erlang source code debugger (Debugger) provides mechanisms which make it possible to follow and
influence the execution of a program in specified modules, as well as examining the process state after
an exit.

A source code debugger is mainly used in order to locate errors in code (bugs), but it can also be used as
a tool in order to understand and learn about applications written by others.

Since Erlang is a distributed, concurrent language the Erlang Debugger provides mechanisms to attach
and interact with several processes at the same time. All processes running code in interpreted modules
are monitored and continuous status information can be displayed for these processes.

Processes can be stopped at certain points (break points) in the source code. There are different types of
break points, and different actions can be taken on them once they are triggered.

It must always be taken into consideration that stopping one process may influence another process. A
process waiting for some response from a stopped process may cause a time out and some other action
might be taken. Therefore, it may be necessary to set break points for influenced processes, or change
the specified time out period (perhaps to infinity) during interpretation.

After a process has been attached, the current point of the execution state can be examined and altered.
Variable bindings are displayed and updated, for inspection of the message queue.

Manipulating a process state by stepping will allow examination and alteration of a process one
expression at a time. It is also possible to manipulate the process state of execution during
interpretation. By evaluating user provided expressions (where new values can be bound to existing
variables), a bug can be bypassed and the execution of the process resumed in order to locate another
bug.

Starting the Debugger

The Debugger can either be started from the Toolbar by clicking on the Debugger icon, or by calling
the function debugger:start().

Preparation

The Erlang Debugger (also referred to as Debugger) is implemented by executing the debugged code in
an interpreter. This means that compiled Erlang code is not used when debugging. Instead a special
preparation of the source code must be made in order to debug it.

Note:
The term interpret is used in this documentation to indicate that the code has been prepared in the
following fashion.

2 Debugger Application (DEBUGGER)

1.1: The Debugger

The preparation consists of parsing and annotating the source code, and storing it in the Debugger’s
internal code database. The code server is also notified so that the module’s compiled code is unloaded,
and made unavailable.

When the code has been interpreted, the user may want to do some more specific preparation, such as
setting break points and configuring options before actually executing the program to be debugged.

Interpreting

Prior to all debugging, the modules to be debugged must be interpreted.

Note:
Not all modules in a running program need to be interpreted, but be aware that you will not receive
any debug information or be able to take control of programs when they are running code from an
uninterpreted module.

To interpret a module, select Module->Interpret in the Monitor Window, and use the dialog to navigate
in the file system. To interpret an Erlang file, or all Erlang files in a directory click either the Choose or
All button.

From the Options-menu, the user may set some options to control the behavior of the interpretation.
See below for details.

Messages and warnings from interpretation of code will be printed in the Erlang Shell.

Configuring Macros and Include Paths

After all the applications are compiled (using for instance UNIX make and erlc), various command line
options can be used to specify include paths and macro definitions. The Debugger user interface also
has functionality for specifying include paths and macro definitions.

To specify the include path for interpretation, select Options->Include Directories... in the Interpret
dialog. Then select one of the radio buttons current directory and all directories, depending on the scope
you wish your settings to have. Next you need to enter the directory you wish to add to the include
path in the Include directory field and press the Add button.

To specify macro definitions for interpretation, select Options->Macro Definitions... in the Interpret
dialog. Then select one of the radio buttons current directory and all directories, depending on the scope
you wish your settings to have. Next you need to enter the name and value of the macro you wish to
define in the Macro and Value fields and press the Add button.

3Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

Break Points

Once you have interpreted the source modules for debugging, set break points at relevant locations in
the source code. Break points can be specified either on a line basis, or on a function basis. Whichever
you decide to use, please note that the break points will always be stored on a line basis.

Note:
Break points only stops the execution of the affected process not the whole system.

Setting Break Points

The easiest way to set a break point is to view the source code and locate the line where you want to
have the break, and set it. You do this by selecting your module of choice, from the Module->View sub
menu in the Monitor Window.This will open a View Window for the selected module. Next you locate
the line where you want to have the break point, and double-click on that line.

You may also set break points for a specific function by selecting Breaks->Function Break... in the View
Window. This will open a Function Break dialog where you may specify a function name and arity.
This in turn will lead to a line break being set on the first line of each clause for the specified function.

Note:
Once an Attach Window is opened you can then set break points as you did in the View Window.

Deleting Break Points

Break points can be deleted either with the menu selection Breaks->Delete All, or by selecting the Delete
sub menu item for any of the dynamically added break point entries in the Breaks menu. A break point
can also be deleted (or added) by double clicking on a source code line.

Disabling is a slightly milder version of deleting a break point. A disabled break point will not stop
execution. Its entry will remain in the debugger menus, so that there will be an easy way to re-enable it.

Status and Action of Break Points

A break point can be in one of two states, either disabled or enabled. A disabled break point never
causes processes to stop the execution. However, it can become enabled, and thus set to trigger next
time it is reached.

It is possible to specify what status each break point is to have after it has been triggered. This is defined
as an action of the break point. The default action is to keep the break point active (enabled). The
action can make the break point inactive (disabled) or the break point can be removed (deleted).

4 Debugger Application (DEBUGGER)

1.1: The Debugger

Conditional Break Points

The usual way of setting a break point at a specific line can be cumbersome. For example, if you have
realized that your program fails only after the 1000:th iteration in a recursive loop, or only at the entry
of a function with a specific argument value, you would have use Step, Continue or Next many times
before you come to the point where you can study the behavior of the program. To make this task
easier, the programmer can set Conditional Break Points.

A Conditional Break Point evaluates a user-defined conditional function prior to stopping. If the
function evaluates to true, the Conditional Break Point will stop execution, otherwise the break point
will be silently ignored.

To set a Conditional Break Point, first you need to create a function that takes one argument. When the
Conditional Break Point is reached, this function will be called with a list of variable bindings as its
argument.

Next, to set the Conditional Break Point, select the Breaks->Conditional Break... menu item. Make sure
that the position of the break point is entered in the upper two boxes of the dialog. In the lower two
boxes, enter the module and function name of the user-defined function to be called.

The user defined function can only take one argument, which are the current variable bindings of the
current process. The function int:get binding/2 is provided in order to examine the binding of a
specified variable, which can be used in order to decide whether the Conditional Break Point should
trigger or not. int:get binding(Variable, Bindings) returns unbound or fvalue, Valueg.

In the example below a Conditional Break Point calling c test:c break/1 is added at line 8 in the
module fac. Each time the break point is reached, the function is called, and when N is equal to 3 it
returns true, and the execution halts at line 8 in module foo.

This is the code that is being debugged:

4. fac (0) ->
5. 1;
6.
7. fac (N) ->
8. N * fac (N - 1).

Figure 1.1: Conditional Break

This is the function called by the Conditional Break Point:

5Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

-module (c_test).
-export ([c_break/1]).
c_break (Bindings) ->

case int:get_binding (’N’, Bindings) of
{value, 3} ->

true;
_ ->

false
end.

Trigger actions

All break points have associated trigger actions, i.e. a specification of what should happen when a
process reaches a break point.

The trigger action is selected from among one of the following three:

Enable If an enabled break point with the trigger action Enable is reached, execution will stop at the
break point, and the break point will remain as it is.

Disable If an enabled break point with the trigger action Disable is reached execution will stop at the
break point, and the break point will become disabled.

Delete If an enabled break point with the trigger action Delete is reached, execution will stop at the
break point, and the break point will be deleted.

Note:
The trigger action has no function for relating to disabled break points.

Configuring Options

The major option to consider when preparing for a debugging session is the Attach option. The
following options can be chosen if the user wishes a Attach Window to be automatically opened on a
particular occasion:

First call in the process An Attach Window is opened at the first function call in the process. Execution
is stopped at the first line of the function, and the Debugger expects the user to give a command.

At break points An Attach Window is opened at the first reached break point in the process, unless it
has already been opened. Execution is stopped at the break point, and the user is expected to give
a command.

At process termination An Attach Window is opened when the process terminates.

6 Debugger Application (DEBUGGER)

1.1: The Debugger

Saving and Loading debugger states

When debugging a large application, the number of modules interpreted, and the number of set break
points may be quite large. To save the user from manually having to re-interpret and re-create break
points, all this information can be saved as a Debugger state [page 19]. This state may later be
retrieved, so one can easily set up the same debugging session again without having to go through the
entire preparation process.

Note:
Interpretation takes some time to perform, so loading the state where several modules are interpreted
may be slow, even when loading a saved Debugger State.

Debugging

See Debugging Scenarios [page 22] for more detailed instructions on different ways to debug your code.

In order to attach a process, double click the desired process line or select a process with a click and
select Attach in the Process menu.

The Monitor Window (Main Window)

The Monitor Window is the Main Window of the Debugger. Its contents and functionality is described
in following subsections.

The Monitor Window can be opened at a node running on a machine which supports the GS graphics
libraries, thereby, making it possible to attach processes at nodes where graphics are not available.

Debugger functions can be accessed from the Monitor Window.

7Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

Figure 1.2: The Monitor Window.

The Process Display

In the Monitor Window, status information is displayed for all debugged processes. There is one process
per line, where each line is divided into the following fields:

Pid The process identity of the process displayed in the line.

Initial Call The first call to an interpreted function by this process. (Module:Function/Arity)

Name If the process is registered, this field shows its registered name.

Status The current state of the displayed process, where the state can be one of the following:

idle The interpreted function call has returned a value, and is no longer running interpreted code.

running The process is running interpreted code or is waiting for a compiled function call to
return a value.

waiting The process is waiting for messages at a receive statement, or for a timeout at a receive
statement.

break The process has stopped execution. The Debugger will expect some user interaction, when
a break point is reached or code is single stepped, to continue execution. Additional
information shows the location of the current source code.

exit The process has terminated.

no conn The connection to the Erlang node holding the process has been broken.

Information Contains either information regarding the location (where the process stopped execution),
fModule, LineNumberg, or the reason why the process terminated.

The File menu

Load Settings Opens a dialog for restoring a previously saved debugger state. See the Load Settings
Dialog [page 19].

8 Debugger Application (DEBUGGER)

1.1: The Debugger

Save Settings Saves the current debugger state in a user specified file. This will save the set of
interpreted files, break points, and selected options for future restoration of the debugger state.
The default directory is .erlang tools/debugger/ created in the user’s home directory. See the
Save Settings Dialog [page 19]

Exit Terminates the Monitor Window, all current processes and the view and Attach Windows. The
user will be queried about whether the Debugger state should be saved. See above.

The Edit menu

Clear Removes all terminated processes. The Attach Windows of removed processes are also closed.

Kill All Terminates all processes with references to interpreted modules, using the BIF exit/2 with
kill as reason.

The Module menu

This menu contains functions for operating on modules.

Interpret... Opens the Interpret Module dialog [page 17] where new modules to be interpreted can be
specified.

Delete All De-interpret all modules. Processes with references to interpreted modules will be killed,
with the exception of Idle processes.

Delete De-interprets the selected module. Only processes with references to this module will be killed.

View Opens the View Module Window for the selected module. See the View Window [page 11]
section for details.

The Process menu

This menu has functions that apply to the process in focus.

Step Enables the user to view and execute the interpreted code step by step.
When the next expression contains a spawn function call, a new Attach Window will be
automatically opened to follow the interpreted code of the new process.

Next Evaluates the expression on the current line, and stop on the next line.

Continue Resumes the execution, continue until the next break point.

Finish Continues execution in the selected process until the current function call returns a value.

Attach Attaches the selected process. An Attach Window [page 12] is opened.

Kill Terminates the selected process, using exit/2 with reason kill. If the process is already
terminated this menu item is disabled.

The Breaks menu

The breaks menu contains functions for breaks, and lists the breaks as they are added or removed,
dynamically adding menu items to the breaks menu bar. When creating a break point, you may specify
the action to be taken when it is reached by selecting the following options from the menu:

Line Break... Set a break point at a line in a module source file. See also the Line Break Dialog [page
20].

9Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

Conditional Break Sets a conditional break point at a line in a module. The name of the module and
function which is the condition has to be provided as well. See also the Conditional Break Dialog
[page 21].

Function Break Sets a break point at a specified function. This will set a Line Break at the beginning of
each clause of the function. See also the Function Break Dialog [page 21].

Delete All Removes all break points.

The rest of the menu contains menu items for all breaks that have been set. Each menu item has the
following sub menu items for modifying that specific break point.

Disable Disables the break point. The break point will remain, but nothing will happen when it is
reached.

Delete This deletes the break point.

Trigger Action > Delete Specifies that the break point should be deleted when it is reached.

Trigger Action > Enable Specifies that the break point shall remain active when it is reached.

Trigger Action > Disable Specifies that the break point shall be disabled when it is reached.

A line break can also be inserted and removed by double clicking on the specific row in a View or
Attach Window.

The Options menu

The options menu in the Monitor Window displays functions available only to opened Attach Windows.

Reset Options Sets frame, attach and stack options to the default values.

Button Frame Hide/show the Button Area. See also the illustration of the Attach Window [page 12].

Evaluator Frame Hide/show the Evaluator Area. See also the illustration of the Attach Window [page
12].

Bindings Frame Hide/show the Bindings Area. See also the illustration of the Attach Window [page
12].

Trace Frame Hide/show the Trace Area. See also the illustration of the Attach Window.

Back Trace Size: 100... Opens a dialog for setting the number of stack frames to save during
evaluation. This determines how many stack frames can be retraced (by using the Up and Down
buttons to observe previous calls and variable bindings), after a break function has been triggered.

Attach This sub menu contains menu items for controlling the automatic opening of Attach Windows.

First Call When this check box is selected a new Attach Window will be opened for all new
processes running interpreted code.

On Exit When this check box is selected a new Attach Window will be opened for processes
running interpreted code terminates.

On Break When this check box is selected a new Attach Window will be opened when a break
point is reached.

All This menu item selects all check boxes described above.

Never This menu item clears all check boxes described above.

Stack Options Stack On, Tail Instructs the Debugger to collect information about the stack, i.e. the
call chain for the functions. This way you can move up and down the stack inspecting
variables in the calling environments as well as the current position in the code.

10 Debugger Application (DEBUGGER)

1.1: The Debugger

Stack On, no Tail Almost the same as above, but does not keep information about the last
function call in the body of a function. If processes, which have very long lifetimes and many
tail recursive calls, are interpreted you may run out of memory unless this option selected.

Stack Off Keep no call frames in the stack at all.

The Windows menu

From this menu, all Debugger windows are easily reachable.

The Help menu

Help Provides help for the Debugger.

The View Window

The purpose of the View Window is to view source code and change break points.

Figure 1.3: The View Window

Code area

The source code is indented and each line is prefixed with its line number.

Clicking a line will highlight it and select it to be the target of the break point functions available from
the menu. Double clicking a line will set a break point on that line. Double clicking a line with an
existing break point will remove the break point.

11Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

Note:
Note: Breaks are marked with -@-.

The File menu

Close Closes the window.

The Edit menu

Go to line Go to that line in the code.

Search Text search.

The Breaks menu

This menu has the same functions as the Breaks menu in the Main Window. [page 9]

The Windows menu

This menu has the same function as the Windows menu in the Main Window. [page 11]

The Help menu

This menu has the same function as the Help menu in the Main Window. [page 11]

The Attach Window

In Attach Windows the user interacts with a debugged process. It is possible to single step the
execution of a process, inspect variable bindings, manipulate break points, etc.

A process is either attached manually from the Monitor Window, or automatically using the automatic
attach facility.

With the commands debugger:quick(Module, Function, [Arg1, Arg2, ...]) or
debugger:q(Module, Function, [Arg1, Arg2, ...]) an Attach Window can be opened quickly
without starting the Monitor Window.

Note:
One Attach Window is opened for each attached process.

12 Debugger Application (DEBUGGER)

1.1: The Debugger

Figure 1.4: The Attach Window (without the trace area)

The Attach Window is divided into five parts:

The Source File Area Shows the code being executed.

The Button Area Shows the code being executed and supplies the user with buttons for quick access to
frequently used functions. The full set of functions are available from the menus.

The Evaluator Area Allows the user to execute commands in the process environment, change
bindings, or evaluate expressions.

The Bindings Area Contains a grid with all the bindings.

The Trace Area Shows a trace output of the process.

13Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

Note:
These areas, with the exception of the Source File Area, can be hidden.

The Source File Area

The source code is displayed with an extra preceding column where the line numbers are shown. The
current line is marked –>. An existing break point at a line is marked -@-. In the example below, the
execution of the source code is currently at line 37 (before the execution of the spawn BIF). The same
example also contains a break point at line 35.

34: List = lists:append(L1, L2),
35:-@- case lists:member(1, List) of
36: true ->
37:--> spawn(ex, start,[]);

Active break points are shown in red, while the inactive ones are in blue.

The Button Area

The Button Area contains the most commonly used commands, corresponding to the different menu
items under the Process menu.

Note:
Note: The line indicator on the Break button changes as a new line is selected in the code area.

The Evaluator Area

You can enter any Erlang command into the entry box labeled Evaluator and the result will be displayed
in the view area below it. The commands will be executed in the environment of the attached process.

The Bindings Area

All bound variables are listed here, showing their names and values.

Long names or values are truncated or shortened, to get the entire value just click in a field in the
bindings area to get the name and value printed in the evaluator area.

Records will not be shown as records, but rather as their internal representation, i.e. as tuples.

By double-clicking on a variable in the Bindings Area the Record Editor will be opened. The Record
Editor is mainly used to re-bind records in a more easier way, but it also works for other Erlang terms.

14 Debugger Application (DEBUGGER)

1.1: The Debugger

Figure 1.5: The Record Editor

Note:
The Record Editor cannot be used to re-bind references, binaries or ports, because GS cannot handle
it.

The Trace Area

If the Trace Frame option has been selected, the Trace Frame will continuously show trace information
for the debugged process. Function call Information and function call return values will be written, for
each interpreted function call, sent and received messages and for each interpreted receive statement.
Each trace line is annotated with the following tags:

++(N) L Indicates a function call, where N is the level of recursion and L is the corresponding line of
the source code of the call.

--(N) Indicates a function return value. Note: Return values of calls with last call optimization are not
traced.

==> Pid : Msg Shows that the message Msg is sent to process Pid.

<== Msg Shows the reception of the message Msg.

++(N) receive Shows that the process is waiting at a receive statement.

++(N) receive with timeout Shows that the process is waiting at a receive statement with a
timeout.

15Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

The File menu

Close Close this window and detach from the process.

The Edit menu

Go to line Go to that line in the code.

Search Text search.

The Module menu

In the Module menu there is one View-item for each interpreted module. Select one of the items to
open a View Window for that module.

The Process menu

Step Executes next program line, step into any function calls within the line. If single step is used on a
spawn, the spawned process is automatically attached, and a new Attach Window is opened for
that process.

Next Executes the entire program line indicated by the arrow.

Continue Continues the execution of the process until a break point is reached

Finish Continues execution of the process until the current function call returns a value.

Time Out Simulates a timeout. This does only have effect if a receive expression containing an after
clause is being executed.

Skip Goes to the next line without executing the current line. This function is useful when a bug has
been located but evaluation will commence after a correct expression has been evaluated (in the
evaluator area), or a variable binding changed. If the last expression of a function is skipped, the
atom skipped is returned by that function.
Note: By using Skip you will modify the normal behavior of the code, and that variables (expected
by future calls) to be bound, may be unbound, and cause the process to exit.

Stop Stops the execution.

Up Inspects the previous stack frame. The code area will show the location and the bindings area will
show the bindings for that stack frame.

Down Inspects the next stack frame. The code area will show the location and the bindings area will
show the bindings for that stack frame.

Where Changes the code area to show the current location of the execution.

Messages Inspects the message queue of the process. The queue is printed in the evaluator.

Kill Kills this process, using exit/2 with reason kill.

The Breaks menu

Line Break Sets a break point at a line in a module source file.

Conditional Break Sets a conditional break point at a line in a module. The name of the module and
function (which is the condition) have to be provided as well.

Function Break Sets a break point at a specified function. This will set a Line Break at the beginning of
each clause of the function.

Delete All Removes all break points.

16 Debugger Application (DEBUGGER)

1.1: The Debugger

The rest of the menu contains menu items for all breaks that have been set. Each menu item has the
following sub-menu items for modifying specific break points.

The Options menu

This menu controls the appearance and behavior of the Attach Window.

See also the Options menu in the Main Window [page 10] that holds functions for setting the default
options.

Show Buttons Hide/show the Button Area.

Show Evaluator Hide/show the Evaluator Area.

Show Bindings Hide/show the Bindings Area.

Show Trace Hide/show the Trace Area.

The Windows menu

Windows The Monitor Window and the View and Attach Windows are managed through a windows
manager. The Monitor Window is always on the top followed by the other windows, sorted by
their process number.
Note: The windows manager is not stable during distribution.

The Help menu

Help Provides help for the Source Code Debugger.

The Interpret Module Dialog

The Interpret Module Dialog is used for selecting which files to interpret, and to configure macro
definitions and include paths. In the file selection list, only directories and files ending with an .erl
suffix are displayed. When a file is already interpreted, it is marked with a “*” in front of the name.

Figure 1.6: The Interpret dialog

17Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

To interpret a single file, select it in the list and click Done.

To interpret all files in the directory, click All.

Compilation/interpretation output is shown in the shell. If a module cannot be interpreted a dialog will
pop up.

Note:
In a distributed environment modules added (or deleted) for interpretation will be added (or deleted)
on all known Erlang nodes.

Macro definitions

To define macros to be used during interpretation, select the menu item Options->Macro Definitions....

This will open a dialog which allows the user to add macro definitions for interpretation.

Macro definitions can be specific to a directory, or valid for any and all directories. If the current
directory radio button is selected, all definitions added apply only to interpretations made in the current
directory in the Interpret Dialog Window. Note that the settings shown in the Macro Definitions
change as the user changes directory in the Interpret Dialog.

If the all directories radio button is selected, the definitions added apply to interpretations made in all
directories.

Include Directories

To specify which include directories are to be used during interpretation, select the menu item
Options->Include Directories....

This will open a dialog which allows the user to add include directories for interpretation.

A set of include directories can be specific to a directory, or valid for any and all directories. If the
current directory radio button is selected, all include directories added apply only to interpretations made
in the current directory in the Interpret Dialog Window. Note that the settings shown in the Include
Directories change as the user changes directory in the Interpret Dialog.

If the all directories radio button is selected, the include directories added apply to interpretations made
in all directories.

18 Debugger Application (DEBUGGER)

1.1: The Debugger

Save Settings Dialog

The Save Settings Dialog is used to save the current state of the Debugger in a file. By doing this, the
state can easily be restored at a future time, using the File->Load Settings function in the Monitor
Window.

Figure 1.7: The Save Settings Dialog

The saved state contains the set of files that have been interpreted, the break points and the debugging
options. When the state is restored later on, the set of files will be interpreted again, therefore, a large
set of interpreted files will take some time to restore.

The file dialog will automatically be positioned at a configuration directory in the user’s home directory.
Enter the name of the file where you want the state to be saved. Make sure that the file has .state as
its extension.

If you wish, you may use the dialog to navigate within the directory structure and place your state file in
another directory.

Load Settings Dialog

The Load Settings Dialog is opened when the user wants to restore a previously saved debugger state.
The data that is restored is the set of files that was interpreted, the break points and the debugging
options. The files will be interpreted again, so the operation may take some time.

19Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

Figure 1.8: The Load Settings Dialog

When opened, the dialog box will show the user’s default debugger state directory. Simply select one of
the files with a .state extension to restore that state.

Line Break Dialog

This dialog will open when the user requests a break point on a code line to be set.

Figure 1.9: The Line Break Dialog

If the dialog is opened from an Attach Window or a View Window, and a line has been selected, the
fields will already be filled in with a module and a line number. If the dialog is opened from the
Monitor Window, or if a line is not selected, some of the fields may not be filled in.

Make sure that all fields are properly filled in, then select one of the radio buttons and click the OK
button to set the break point.

For a description of the trigger actions, see the section on Trigger Actions [page 6].

20 Debugger Application (DEBUGGER)

1.1: The Debugger

Conditional Break Dialog

This dialog is opened when the user wants to set a conditional break point at a particular line of source
code.

As with the Line Break dialog, if it is opened from an Attach Window or a View Window, and a line has
been selected, some of the fields will already be filled in with a module and a line number. If the dialog
is opened from the Monitor Window, or if a line is not selected, some of the fields may not be filled in.

For detailed information about how to create and set up conditional break points, please refer to the
section Conditional Break Points [page 5].

Figure 1.10: The Conditional Break Dialog

For a description of the trigger actions, see the section on Trigger Actions [page 6].

Function Break Dialog

This dialog is opened when the user sets a functional break point.

If the dialog is opened from an Attach Window or a View Window, the Module field will already be
filled in. If the dialog is opened from the Monitor Window, no fields will be filled.

Enter the module, name and arity of an existing function in the fields. A Line Break Point will be
created for the first line of each clause of the specified function.

Note:
Line Break Points are not associated with the function name once they have been created and
therefore must be removed/changed individually .

21Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

Figure 1.11: The Function Break Dialog

For a description of the trigger actions, see the section on Trigger Actions [page 6].

Debugging Scenarios

When one is faced with a particular problem, there are many ways of finding a solution. However,
there is often a particularly suitable way of proceeding that makes problem solving easier.

Some the more common problems faced are:

� Where did it crash/stop? See the Trap the exit [page 22] section.

� Why did it not start? See the Step from start [page 25] section.

� Automating with Conditional Break Points. See the Break When Needed [page 25] section.

� Debugging remote nodes. See the Debugging remote nodes [page 25] section.

� Debugging non-graphical nodes. See the Debugging non-graphical nodes [page 26] section.

In this section we describe some typical problem scenarios, and some ways of using the Debugger in a
way that has proven very useful.

Scenario 1: Trap the exit

Problem Sometimes a program consisting of several processes crashes or blocks. No matter how
simple the reason for this may be, it may still be difficult to find.

Often the cause is that some process in the program fails to start up properly. To see if this is the case,
simply set the debugger to display a window for all exited processes by following the instructions below.

Solution Interpret all modules of the program, and then select the menu item Options->Attach->On
Exit. This will cause a window to be opened for all processes that terminate. In this way you will find if
any of your processes have terminated unexpectedly. An Attach Window will open showing the exact
location.

Here you may also use the Up and Down buttons to trace back (or forward) through the execution to
previous stack frames to observe prior calls and variable bindings.

22 Debugger Application (DEBUGGER)

1.1: The Debugger

Example In the program below, there are two minor errors. This example shows how to use the
Debugger to find them.

-module(scenario1).
-author(’olin@smaug’).

%%-compile(export_all).
-export([test/0, ping/1, quit/1]).
%% After first failure, uncomment this:
-export([init/0]).

test() ->
Pid = spawn(?MODULE, init,[]),
io:format("The Pid is: ~p~n",[Pid]),
Pid.

ping(Pid) ->
Pid ! {self(), ping},
receive

pong ->
ok

after
2000 ->

dead
end.

quit(Pid) ->
Pid ! quit.

init() ->
io:format("Initializing...~n"),
loop().

loop() ->
receive

{Pid, ping} ->
Pid ! pong
%% After 2nd failure, uncomment this:
%%,loop()

;
quit ->

ok
after

10000 ->
io:format("Timeout!~n"),
loop()

end.

23Debugger Application (DEBUGGER)

Chapter 1: Debugger User's Guide

The purpose of the program is to start a server process (using test/0) that can be tested with the
ping/1 function.

If no errors existed the program would give the following result:

Eshell V4.7.1 (abort with ^G)
1> Pid = scenario1:test().
The Pid is: <0.30.0>
Initializing...
<0.30.0>
2> scenario1:ping(Pid).
ok
3> scenario1:ping(Pid).
ok
4> scenario1:ping(Pid).
ok
5> scenario1:quit(Pid).
quit

If we compile and try to start the program from an Erlang Shell, and then call the ping/1 function, we
will not get any response from the server. See the following transcript from the Erlang Shell:

Eshell V4.7.1 (abort with ^G)
1> c(scenario1).
./scenario1.erl:54: Warning: function init/0 not called
{ok,scenario1}
2> Pid = scenario1:test().
The Pid is: <0.34.0>
<0.34.0>
3> scenario1:ping(Pid).
dead
4>

Apparently the server is not responding. Obviously, the compilation warning gives some clue to what
the problem is, but for this example we will disregard this.

Instead we use the Debugger to try to locate the problem. Interpret the module scenario1 and set the
options so that an Attach Window is opened when a process exits.

Again attempt to start the server. This time we will get an error report in the Erlang Shell, and in
addition to this an Attach Window will be opened.

5> Pid2 = scenario1:test().
The Pid is: <0.54.0>
<0.54.0>
6>
=ERROR REPORT==== 15-Jun-1998::15:58:20 ===
** undefined function: scenario1:init[] **

From both the Attach Window and the error report in the Erlang Shell one can immediately see that the
function scenario1:init/0 is not defined. The -export() directive for it has simply been forgotten.

To remedy this, uncomment the line...

%%-export([init/0]).

24 Debugger Application (DEBUGGER)

1.1: The Debugger

...at the beginning of the file scenario1.erl.

Compile or interpret the module scenario1.erl again, and try it.

This time, if we start the program, the server will be started and respond to the first ping/1 call. But at
the second call to ping/1 it will not respond. (See the transcript below).

2> scenario1:test().
The Pid is: <0.34.0>
Initializing...
<0.34.0>
3> scenario1:ping(pid(0,34,0)).
ok
4> scenario1:ping(pid(0,34,0)).
dead

If we are still using the Debugger, an Attach Window will automatically be opened in connection with
the first call to ping/1. In that window we will see that the process has exited with the reason normal.

After some inspection of the source code we find that the case of the receive statement that handles the
ping message did not call the loop function recursively. Therefore, it runs out of code to execute, which
results in termination with the reason normal.

Scenario 2: Step from start

Problem Sometimes your program does not seem to start up properly, and you have no clue where
the problem lies.

Solution Go through the program step-by-step. To do this, interpret all modules, then select the
menu item Options->Attach->First Call. Then use the Step and Next buttons to go through the
execution step-by-step.

Scenario 3: Break when needed

See the Conditional Break Points [page 5] section for details on setting a conditional break point that
postpones activation till a specified limit has been reached.

Scenario 4: Debugging Remote Nodes

Problem There are few problems with debugging remote nodes, since the Debugger automatically
supports debugging of distributed programs.

Solution When the debugger is running on a distributed Erlang system, any modules that are
interpreted become interpreted on all known Erlang nodes in the network. Thus any processes running
interpreted code on any node will be debugged, and depending on the attach options, an Attach
Window will be opened.

Any break points set are set on all nodes, making it impossible to have different break points on
different nodes.

Essentially, there is no difference between debugging processes on the local node where the Debugger is
running, and debugging processes on remote nodes.

25Debugger Application (DEBUGGER)

Scenario 5: Debugging non-graphical nodes

Problem Using the graphical Debugger on a system that has no graphical display possibilities.

Solution To debug for instance an embedded system that has no graphical display possibilities, make
sure that the system is running as a node in a distributed Erlang system. The node be started using the
-name or -sname options to the erl program. We will refer to the system without graphical capabilities
as the embedded node.

Start an Erlang node on a system that has graphical capabilities (using the -name or -sname options),
and make sure that the two nodes are aware of each other (for instance by using net adm:ping/1). We
will refer to the node with graphical capabilities as the Debugger node.

Locate the source code of the embedded system and Interpret the code. The interpretation will be
propagated to the embedded node (and any other known nodes).

After this set up, you can continue debugging using any of the other methods described in this
document. See the section Debugging Remote Nodes [page 25].

26 Debugger Application (DEBUGGER)

Debugger Reference Manual

Short Summaries

� Erlang Module i [page 31] – Interpreter (debugger) Interface.

� Erlang Module int [page 37] – Interpreter (Debugger) Interface.

i

The following functions are exported:

� im() -> pid()
[page 31]

� ii(AbsModule) -> fmodule, Moduleg | error
[page 31] Interprets a module

� iq(Module) -> ok
[page 32] Do not interpret a module

� ini(Module) -> fmodule,Moduleg | error | ok
[page 32]

� inq(Module) -> ok
[page 32]

� il() -> ok
[page 32]

� ip() -> ok
[page 32]

� ic() -> ok
[page 32]

� iaa(Flag) -> true
[page 32] Automatically attaches to a process

� iaa(Flag,Function) -> true
[page 32] Automatically attach to a process using Function as the attachment
method.

� ist(Flag) -> true
[page 33] Sets the usage of call frame inspections

� ia(Pid) -> ok | no proc
[page 33] Attaches to a process

27Debugger Application (DEBUGGER)

Debugger Reference Manual

� ia(X,Y,Z) -> ok | no proc
[page 33] Attaches to a process

� ia(Pid,Function) -> ok | no proc
[page 33] Attaches to a process

� ia(X,Y,Z,Function) -> ok | no proc
[page 33] Attaches to a process

� ib(Module,Line) -> ok | ferror, Whatg
[page 34] Sets a break point

� ib(Module,Function,Arity) -> ok | ferror, Whatg
[page 34] Sets a break point in a function

� ir(Module,Line) -> ok | ferror, Whatg
[page 34] Deletes a break point

� ir() -> ok
[page 34]

� ir(Module) -> ok
[page 34] Deletes all break points in a module

� ir(Module,Function,Arity) -> ok | ferror, Whatg
[page 34] Deletes a break point in a function

� ibd(Module,Line) -> ok | ferror, Whatg
[page 35] Disables a break point

� ibe(Module,Line) -> ok | ferror, Whatg
[page 35] Enables a break point

� iba(Module,Line,Action) -> ok | ferror, Whatg
[page 35] Sets a break point trigger

� ibc(Module,Line,Function) -> ok | ferror, Whatg
[page 35] Sets a conditional test at a break point

� ipb() -> ok
[page 35]

� ipb(Module) -> ok
[page 36] Makes a printout of all break points in module

� iv() -> atom()
[page 36]

� help() -> ok
[page 36]

int

The following functions are exported:

� m() -> pid()
[page 37]

� i(AbsModule) -> fmodule, Moduleg | error
[page 37] Interprets a module

� i(AbsModule,Options) -> fmodule, Moduleg | error
[page 38] Interprets a module

28 Debugger Application (DEBUGGER)

Debugger Reference Manual

� a(AbsModule) -> fmodule, Moduleg | error
[page 38] Interprets a module

� a(AbsModule,Options) -> fmodule, Moduleg | error
[page 38] Interprets a module

� n(Module) -> ok
[page 39] Do not interpret a module

� ni(AbsModule) -> fmodule,Moduleg | error | ok
[page 39]

� ni(AbsModule,Options) -> fmodule,Moduleg | error | ok
[page 39]

� na(AbsModule) -> fmodule,Moduleg | error | ok
[page 39]

� na(AbsModule,Options) -> fmodule,Moduleg | error | ok
[page 39]

� nn(Module) -> ok
[page 39]

� interpreted() -> [Module]
[page 39] Returns a list of which modules are interpreted

� version() -> atom()
[page 39]

� auto attach(Flag) -> true
[page 39] Automatically attaches to a process

� auto attach(Flag,Function) -> true
[page 40] Automatically attach to a process using Function as the attachment
method

� stack trace(Flag) -> true
[page 40] Sets the usage of call frame inspections

� snapshot() -> [Snap]
[page 40] Gets the current status of all interpreted processes

� continue(Pid) -> ok | ferror, not interpretedg
[page 41]

� continue(X,Y,Z) -> ok | ferror, not interpretedg
[page 41]

� clear() -> ok
[page 41]

� file(Module) -> FileName | ferror, not loadedg
[page 41] Gets the name of the loaded source code

� break(Module,Line) -> ok | ferror, Whatg
[page 41] Sets a break point

� delete break(Module,Line) -> ok | ferror, Whatg
[page 41] Deletes a break point

� no break() -> ok
[page 41]

� no break(Module) -> ok
[page 41] Deletes all break points in a module

� break in(Module,Function,Arity) -> ok | ferror, Whatg
[page 41] Sets a break point in a function

29Debugger Application (DEBUGGER)

Debugger Reference Manual

� del break in(Module,Function,Arity) -> ok | ferror, Whatg
[page 42] Deletes a break point in a function

� disable break(Module,Line) -> ok | ferror, Whatg
[page 42] Disables a break point

� enable break(Module,Line) -> ok | ferror, Whatg
[page 42] Enables a break point

� action at break(Module,Line,Action) -> ok | ferror, Whatg
[page 42] Sets a break point trigger

� test at break(Module,Line,Function) -> ok | ferror, Whatg
[page 42] Sets a conditional test at a break point

� get binding(Variable,Bs) -> fvalue, Valueg | unbound
[page 43] Gets a variable binding

� all breaks() -> [fBreak, Optionsg]
[page 43] Gets all break points

� all breaks(Module) -> [fBreak, Optionsg]
[page 43] Gets all existing break points in a module

30 Debugger Application (DEBUGGER)

Debugger Reference Manual i (Module)

i (Module)

The module i provides short forms for some of the functions in the int module.

This module also provides facilities for displaying status information about interpreted
processes and break points.

It is possible to attach interpreted processes by giving the corresponding process identity
only. By default, an attachment window pops up. Processes at other Erlang nodes can
be attached manually or automatically .

By preference, these functions can be included in the module shell default. By
default, they are.

Exports

im() -> pid()

Starts a new graphical monitor. This is the main window of the interpreter. All of the
interpreter functionality is accessed from the monitor window. The monitor window
displays the status of all processes that are running interpreted modules.

ii(AbsModule) -> fmodule, Moduleg | error

Types:

� AbsModule = atom() | string() | [atom() | string()]
� Module = atom()

Marks Module as being interpreted. The Module parameter can either be a single
module name, or a list of module names. Module is compiled into an abstract form
which is loaded into the interpreter. The actual paths are searched for the
corresponding source file(s) (Module.erl). Module can be given with an absolute path.

Note:
If Module is a list of modules, the result of the last module is returned.

Note:
If an interpreted module is compiled using the c:c function, this module is reloaded
into the interpreter.

31Debugger Application (DEBUGGER)

i (Module) Debugger Reference Manual

iq(Module) -> ok

Types:

� Module = atom() | string() | [atom() | string()]

Does not interpret Module. The Module parameter can either be a single module name,
or a list of module names. Module is removed from the set of modules currently being
interpreted.

ini(Module) -> fmodule,Moduleg | error | ok

inq(Module) -> ok

Behaves as the corresponding ii/1 and iq/1 functions described above, but on all nodes
in the network. It returns ok if we are alive, otherwise as above.

il() -> ok

Makes a printout of all interpreted modules. Modules are printed together with the full
path name of the corresponding source code file.

ip() -> ok

Makes a printout of the current status of all interpreted processes. Processes on all
known nodes are printed.

ic() -> ok

Deletes (clears) information about all terminated processes from the interpreter.

iaa(Flag) -> true

Types:

� Flag = FlagItem | [FlagItem]
� FlagItem = init | break | exit | false

Interpreted processes can be attached automatically, without the need to attach to a
process using the monitor window, i:im() or int:m(). An attachment window - not
described here - pops up for the attached process. Flag specifies at which point
interpreted processes are automatically attached.

Flag is one of:

� init. Attach to a process the very first time it calls an interpreted function.

� break. Attach to a process whenever it reaches a break point.

� exit. Attach to a process when it terminates.

� false. Deactivate the automatic attach facility.

If several conditions are to be active, a list of flags must be given.

iaa(Flag,Function) -> true

Types:

� Flag = FlagItem | [FlagItem]
� FlagItem = init | break | exit | false
� Function = fMod,Funcg

32 Debugger Application (DEBUGGER)

Debugger Reference Manual i (Module)

� Mod = atom()
� Fun = atom()

As above, but instead of using the default attachment window, the specified Function
is used in order to start the interaction with the attached process. The Function
parameter must be the tuple fMod,Funcg, and this function should implement the
corresponding functionality in the same way as the int show:a start/3,4 functions.

ist(Flag) -> true

Types:

� Flag = all | true | no tail | false

The interpreter can keep call frames in the stack for future inspections. Typically, you
can go up and down in the stack in order to inspect the flow of control when the
execution has been stopped - at a break point, when the process has terminated, or in a
single step execution.

By default, the whole stack is kept (Flag = all or true). If processes with a very long
life time and with a lot of tail recursive calls are interpreted, the no tail flag should be
used. No tail recursive calls are kept in the stack if this flag is used.

The false flag should be used if the interpreter is not to keep call frames.

ia(Pid) -> ok | no proc

Types:

� Pid = pid()

Attaches to the Pid process. An attachment window pops up.

ia(X,Y,Z) -> ok | no proc

Types:

� X = Y = Z = int()

Attaches to the process with process identity c:pid(X,Y,Z). An attachment window pops
up.

ia(Pid,Function) -> ok | no proc

Types:

� Pid = pid()
� Function = fMod, Fung
� Mod = atom()
� Fun = atom()

Attaches to the Pid process. Use Function for the interaction with the attached
process, as for the i:iaa/2 function.

ia(X,Y,Z,Function) -> ok | no proc

Types:

� X = Y = Z = int()
� Function = fMod, Fung
� Mod = atom()

33Debugger Application (DEBUGGER)

i (Module) Debugger Reference Manual

� Fun = atom()

Attaches to the process with process identity c:pid(X,Y,Z). Use Function for the
interaction with the attached process, as for the i:iaa/2 function.

ib(Module,Line) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� What = badarg | break exists

Creates a new break point at Line in Module. The execution of an interpreted process
will be stopped before the expression at Line in Module is executed.

ib(Module,Function,Arity) -> ok | ferror, Whatg

Types:

� Module = atom()
� Function = atom()
� Arity = int()
� What = badarg | function not found

Creates break points at the first line in every clause of the Module:Function/Arity
function.

ir(Module,Line) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� What = badarg | no break exists

Deletes the break point located at Line in Module.

ir() -> ok

Deletes all existing break points.

ir(Module) -> ok

Types:

� Module = atom()

Deletes all existing break points in Module.

ir(Module,Function,Arity) -> ok | ferror, Whatg

Types:

� Module = atom()
� Function = atom()
� Arity = int()
� What = badarg | function not found

34 Debugger Application (DEBUGGER)

Debugger Reference Manual i (Module)

Deletes break points at the first line in every clause of the Module:Function/Arity
function.

ibd(Module,Line) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� What = badarg | no break

Makes the break point at Line in Module inactive. The break point still exists, but no
processes will be stopped at the break point.

ibe(Module,Line) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� What = badarg | no break

Makes the break point at Line in Module active. Processes will again be stopped at the
break point.

iba(Module,Line,Action) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� Action = enable | disable | delete
� What = badarg | no break

Sets the status of the break point at Line in Module after it is triggered the next time.
Action is: enable, disable, or delete.

ibc(Module,Line,Function) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� Function = fM,Fg
� Mod = atom()
� Func = atom()
� What = badarg | no break

Makes the break point at Line in Module conditional. Function is called whenever the
break point is reached. Function is a tuple fMod,Funcg. Function must have arity 1
and return either true or false. This way, the break point either triggers, or not. The
argument to Function is the current variable bindings of the process at the place of the
break point. The bindings can be inspected using int:get binding/2.

ipb() -> ok

Makes a printout of all existing break points.

35Debugger Application (DEBUGGER)

i (Module) Debugger Reference Manual

ipb(Module) -> ok

Types:

� Module = atom()

Makes a printout of all existing break points located in Module.

iv() -> atom()

Returns the current version number of the interpreter.

help() -> ok

Prints help text.

Usage

Refer to the Debugger User’s Guide for information about the graphical interface.

See Also

int(3), code(3)

36 Debugger Application (DEBUGGER)

Debugger Reference Manual int (Module)

int (Module)

The module int provides an interface for the Erlang interpreter (debugger). The
graphical interface can be opened, but there are also commands available for interacting
with the interpreter from the Erlang shell.

The purpose of the interpreter is to provide mechanisms which makes it possible to
monitor what is going on while processes execute specified modules, or when processes
crash.

The following features are provided to assist the user to catch bugs:

o Specify which module(s) to be interpreted.

o Make processes stop on specified break points.

o Examine what has happened when a process has
stopped, or crashed, by means of process attachment.
This includes inspecting variable bindings.

o Change processes, so that you can experiment
by correcting the effects of one bug and proceed to
the next one.

o Single step the execution.

o Monitor the current status of all interpreted
processes. Processes spread over several Erlang
nodes can all be monitored and attached.

If a network of Erlang nodes, break points are always updated on all nodes.

Exports

m() -> pid()

Starts a new graphical monitor. This is the main window of the interpreter. All
interpreter functionality is accessed from the monitor window. The monitor window
displays the status of all processes that are running interpreted modules.

i(AbsModule) -> fmodule, Moduleg | error

Types:

� AbsModule = atom() | string() | [atom() | string()]

37Debugger Application (DEBUGGER)

int (Module) Debugger Reference Manual

� Module = atom()

Marks Module as being interpreted. The Module parameter can either be a single
module name, or a list of module names. Module is compiled into an abstract form
which is loaded into the interpreter. The actual paths are searched for the
corresponding source file(s) (Module.erl). Module can be given with an absolute path.

Note:
If Module is a list of modules, the result of the last module is returned.

Note:
If an interpreted module is compiled using the c:c function, this module is reloaded
into the interpreter.

i(AbsModule,Options) -> fmodule, Moduleg | error

Types:

� AbsModule = atom() | string() | [atom() | string()]
� Module = atom()
� Options = [opt()]
� opt() = verbose | fi,dir()g | fd,macro()g | fd,macro(),term()g
� dir() = string()
� macro() = atom()

As above, but verbose information is given in Options is one of:

verbose Print verbose information.

fi,Dirg Add Dir to the list of directories to be searched when including a file.

fd,Macrog

fd,Macro,Valueg Defines a macro Macro to have the value Value. The default is
true).

a(AbsModule) -> fmodule, Moduleg | error

Types:

� AbsModule = atom() | string() | [atom() | string()]
� Module = atom()

Obsolete function. It has the same functionality as int:i/1.

a(AbsModule,Options) -> fmodule, Moduleg | error

Types:

� AbsModule = atom() | string() | [atom() | string()]
� Module = atom()
� Options = [opt()]

38 Debugger Application (DEBUGGER)

Debugger Reference Manual int (Module)

� opt() = verbose | fi,dir()g | fd,macro()g | fd,macro(),term()g
� dir() = string()
� macro() = atom()

Obsolete function. It has the same functionality as int:i/2.

n(Module) -> ok

Types:

� Module = atom() | string() | [atom() | string()]

Does not interpret Module. The Module parameter can either be a single module name,
or a list of module names. Module is removed from the set of modules currently being
interpreted.

ni(AbsModule) -> fmodule,Moduleg | error | ok

ni(AbsModule,Options) -> fmodule,Moduleg | error | ok

na(AbsModule) -> fmodule,Moduleg | error | ok

na(AbsModule,Options) -> fmodule,Moduleg | error | ok

nn(Module) -> ok

Behaves as the corresponding i/1,i/2,a/1,a/2,n/1 functions described above, but on all
nodes in the network. These functions always return ok if we are alive, otherwise as
above.

interpreted() -> [Module]

Types:

� Module = atom()

Returns a list of all modules currently being interpreted.

version() -> atom()

Returns the current version number of the interpreter.

auto attach(Flag) -> true

Types:

� Flag = FlagItem | [FlagItem]
� FlagItem = init | break | exit | false

Interpreted processes can be attached automatically, without the need to attach to a
process using the monitor window int:m(). An attachment window - not described
here - pops up for the attached process. Flag specifies at which point interpreted
processes are automatically attached.

Flag is one of:

� init. Attach to a process the very first time it calls an interpreted function.

� break. Attach to a process whenever it reaches a break point.

� exit. Attach to a process when it terminates.

� false. Deactivate the automatic attach facility.

39Debugger Application (DEBUGGER)

int (Module) Debugger Reference Manual

If several conditions are to be active, a list of flags must be given.

auto attach(Flag,Function) -> true

Types:

� Flag = FlagItem | [FlagItem]
� FlagItem = init | break | exit | false
� Function = fMod,Funcg
� Mod = atom()
� Fun = atom()

As above, but instead of using the default attachment window, the specified Function
is used in order to start the interaction with the attached process. The Function
parameter must be the tuple fMod,Funcg, and this function should implement the
corresponding functionality in the same way as the int show:a start/3,4 functions.

stack trace(Flag) -> true

Types:

� Flag = all | true | no tail | false

The interpreter can keep call frames in the stack for future inspections. Typically, it is
possible to go up and down in the stack in order to inspect the flow of control when the
execution has been stopped - at a break point, when a process has terminated, or in a
single step execution.

By default, the whole stack is kept (Flag = all or true). If processes with a very long
life time and with a lot of tail recursive calls are interpreted, the no tail flag should be
used. No tail recursive calls are kept in the stack if this flag is used.

The false flag should be used if the interpreter is not to keep call frames.

snapshot() -> [Snap]

Types:

� Snap = fPid, InitialFunc, Status, Infog
� Pid = pid()
� InitialFunc = atom()
� Status = idle | running | waiting | break | exit | no conn
� Info = fg | fModule, Lineg | ExitReason
� Module = atom()
� Line = int()
� ExitReason = term()

Returns a list which contains the current status information of all interpreted processes,
[fPid,InitialFunc,Status,Infog, ...] where:

� Pid is the process identity of the interpreted process.

� InitialFunc is the name of the first interpreted function.

� Status is the current status of the process.

� Info is additional information if Status is break (the tuple fModule,Lineg) or exit
(the exit reason).

40 Debugger Application (DEBUGGER)

Debugger Reference Manual int (Module)

continue(Pid) -> ok | ferror, not interpretedg

Order Pid to resume the execution.

continue(X,Y,Z) -> ok | ferror, not interpretedg

Types:

� X = Y = Z = int()

Order the process c:pid(X,Y,Z) to resume the execution.

clear() -> ok

Delete (clear) information for all terminated processes from the interpreter.

file(Module) -> FileName | ferror, not loadedg

Types:

� Module = atom()
� FileName = string()

Returns the name of the corresponding source code file last loaded for Module. Returns
the name with the absolute path of the file.

break(Module,Line) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� What = badarg | break exists

Creates a new break point at Line in Module. The execution of an interpreted process is
stopped before the expression at Line in Module is executed.

delete break(Module,Line) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� What = badarg | no break exists

Deletes the break point located at Line in Module.

no break() -> ok

Deletes all existing break points.

no break(Module) -> ok

Types:

� Module = atom()

Deletes all existing break points in Module.

break in(Module,Function,Arity) -> ok | ferror, Whatg

41Debugger Application (DEBUGGER)

int (Module) Debugger Reference Manual

Types:

� Module = atom()
� Function = atom()
� Arity = int()
� What = badarg | function not found

Creates break points at the first line in every clause of the Module:Function/Arity
function.

del break in(Module,Function,Arity) -> ok | ferror, Whatg

Types:

� Module = atom()
� Function = atom()
� Arity = int()
� What = badarg | function not found

Deletes break points at the first line in every clause of the Module:Function/Arity
function.

disable break(Module,Line) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� What = badarg | no break

Makes the break point at Line in Module inactive. No processes will be stopped at the
break point, but the break point still exists.

enable break(Module,Line) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� What = badarg | no break

Makes the break point at Line in Module active. Processes will again be stopped at the
break point.

action at break(Module,Line,Action) -> ok | ferror, Whatg

Types:

� Module = atom()
� Line = int()
� Action = enable | disable | delete
� What = badarg | no break

Sets the status of the break point at Line in Module after it is triggered the next time.
Action is enable, disable, or delete.

test at break(Module,Line,Function) -> ok | ferror, Whatg

Types:

42 Debugger Application (DEBUGGER)

Debugger Reference Manual int (Module)

� Module = atom()
� Line = int()
� Function = fM,Fg
� Mod = atom()
� Func = atom()
� What = badarg | no break

Makes the break point at Line in Module conditional. Function is called whenever the
break point is reached. Function is a tuple fMod,Funcg. Function must have arity 1
and return either true or false. This way, the break point either triggers, or not. The
argument to Function is the current variable bindings of the process at the place of the
break point. The bindings can be inspected using int:get binding/2.

get binding(Variable,Bs) -> fvalue, Valueg | unbound

Types:

� Variable = atom()
� Bs = term()
� Value = term()

Gets the binding of Variable in the binding structure Bs. Variable must be an atom,
for example ’Num’. This function is be used from inside a conditional break point
function. Bs is supplied as an argument to the conditional test function above.

all breaks() -> [fBreak, Optionsg]

Types:

� Break = fModule, Lineg
� Module = atom()
� Line = int()
� Options = term()

Returns a list of all existing break points.

all breaks(Module) -> [fBreak, Optionsg]

Types:

� Module = atom()
� Break = fModule, Lineg
� Line = int()
� Options = term()

Returns a list of all existing break points located in Module.

Usage

Refer to the Debugger User’s Guide for information about the graphical interface.

43Debugger Application (DEBUGGER)

See Also

i(3), c(3), code(3), error handler(3)

44 Debugger Application (DEBUGGER)

List of Figures

Chapter 1: Debugger User’s Guide
1.1 Conditional Break . 5

1.2 The Monitor Window. 8

1.3 The View Window . 11

1.4 The Attach Window (without the trace area) . 13

1.5 The Record Editor . 15

1.6 The Interpret dialog . 17

1.7 The Save Settings Dialog . 19

1.8 The Load Settings Dialog . 20

1.9 The Line Break Dialog . 20

1.10 The Conditional Break Dialog . 21

1.11 The Function Break Dialog . 22

45Debugger Application (DEBUGGER)

List of Figures

46 Debugger Application (DEBUGGER)

Index

Modules are typed in this way.
Functions are typed in this way.

a/1
int , 38

a/2
int , 38

action_at_break/3
int , 42

all_breaks/0
int , 43

all_breaks/1
int , 43

auto_attach/1
int , 39

auto_attach/2
int , 40

break/2
int , 41

break_in/3
int , 41

clear/0
int , 41

continue/1
int , 41

continue/3
int , 41

del_break_in/3
int , 42

delete_break/2
int , 41

disable_break/2
int , 42

enable_break/2

int , 42

file/1
int , 41

get_binding/2
int , 43

help/0
i , 36

i
help/0, 36
ia/1, 33
ia/2, 33
ia/3, 33
ia/4, 33
iaa/1, 32
iaa/2, 32
ib/2, 34
ib/3, 34
iba/3, 35
ibc/3, 35
ibd/2, 35
ibe/2, 35
ic/0, 32
ii/1, 31
il/0, 32
im/0, 31
ini/1, 32
inq/1, 32
ip/0, 32
ipb/0, 35
ipb/1, 36
iq/1, 32
ir/0, 34
ir/1, 34
ir/2, 34
ir/3, 34
ist/1, 33

47Debugger Application (DEBUGGER)

Index

iv/0, 36

i/1
int , 37

i/2
int , 38

ia/1
i , 33

ia/2
i , 33

ia/3
i , 33

ia/4
i , 33

iaa/1
i , 32

iaa/2
i , 32

ib/2
i , 34

ib/3
i , 34

iba/3
i , 35

ibc/3
i , 35

ibd/2
i , 35

ibe/2
i , 35

ic/0
i , 32

ii/1
i , 31

il/0
i , 32

im/0
i , 31

ini/1
i , 32

inq/1
i , 32

int
a/1, 38

a/2, 38
action_at_break/3, 42
all_breaks/0, 43
all_breaks/1, 43
auto_attach/1, 39
auto_attach/2, 40
break/2, 41
break_in/3, 41
clear/0, 41
continue/1, 41
continue/3, 41
del_break_in/3, 42
delete_break/2, 41
disable_break/2, 42
enable_break/2, 42
file/1, 41
get_binding/2, 43
i/1, 37
i/2, 38
interpreted/0, 39
m/0, 37
n/1, 39
na/1, 39
na/2, 39
ni/1, 39
ni/2, 39
nn/1, 39
no_break/0, 41
no_break/1, 41
snapshot/0, 40
stack_trace/1, 40
test_at_break/3, 42
version/0, 39

interpreted/0
int , 39

ip/0
i , 32

ipb/0
i , 35

ipb/1
i , 36

iq/1
i , 32

ir/0
i , 34

ir/1
i , 34

ir/2
i , 34

48 Debugger Application (DEBUGGER)

Index

ir/3
i , 34

ist/1
i , 33

iv/0
i , 36

m/0
int , 37

n/1
int , 39

na/1
int , 39

na/2
int , 39

ni/1
int , 39

ni/2
int , 39

nn/1
int , 39

no_break/0
int , 41

no_break/1
int , 41

snapshot/0
int , 40

stack_trace/1
int , 40

test_at_break/3
int , 42

version/0
int , 39

49Debugger Application (DEBUGGER)

