Erlang Run-Time System Application
(ERTYS)

version 5.0

Typeset in IATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 ERTS User’s Guide 1
1.1 Match specificationsinErlang 2
Grammar e e e e 2
Function descriptions e 3
Variables and literals 4
Executionofthematch L 5
Examples 5

1.2 How to interpret the Erlang crashdumps L. 8
Reasons for crashdumps 8
Process information 9
Internal table information 11
ETStables e 11
TIMEIS . . . o e 11
Loaded module information 11
ATOMS . . L L 12
Disclaimer e e e e 12

1.3 How to implement an alternative carrier for the erlang distribution 13
Introduction e e e 13
Thedriver e e e 14

The erlang interface to thedriver 27

The distribution module 28
Putting it all together 28

14 tty- Acommandlineinterface. L 30
Normal Mode e 30

Shell Break Mode e 31

Erlang Run-Time System Application (ERTS) i

2 ERTS Reference Manual 33

2.1 epmd (Command) L 36
2.2 erl (Command) 38
2.3 erlc (Command) e 42
2.4 erlsrv (Command) 45
25 run_erl (Command) L 50
2.6 start (Command) 51
2.7 start_erl (Command) 52
2.8 werl (Command) 54
2.9 erl_set_memory_block (CModule) 55
List of Tables 59

Erlang Run-Time System Application (ERTS)

Chapter 1

ERTS User's Guide

The Erlang Runtime System Application ERTS.

Erlang Run-Time System Application (ERTS)

1.1 Match specifications in Erlang

A “match specification” (match_spec) is an Erlang term describing a small “program” that will try to
match something (preferably the parameters to a function as used in the erlang:trace_pattern/2
BIF). The match_spec in many ways works like a small function in Erlang, but is interpreted/compiled
by the Erlang runtime system to something much more efficient than calling an Erlang function. The
match_spec is also very limited compared to the expressiveness of real Erlang functions.

Match specifications are given to the BIF erlang:trace_pattern/2 to execute matching of function
arguments as well as to define some actions to be taken when the match succeeds (the MatchBody part).

The most notable difference between a match_spec and an Erlang fun is of course the syntax. Match
specifications are Erlang terms, not Erlang code. A match_spec also has a somewhat strange concept of
exceptions. An exception (e.g., badarg) in the MatchCondition part, which resembles an Erlang guard,
will generate immediate failure, while an exception in the MatchBody part, which resembles the body of
an Erlang function, is implicitly caught and results in the single atom >EXIT’.

Grammar

A match_spec can be described in this informal grammar:

e MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

¢ MatchHead ::= MatchVariable | >_> | [MatchHeadPart, ...]

¢ MatchHeadPart ::= term() | MatchVariable | °>_’

e MatchVariable ::= '$<number>’

e MatchConditions ::= [MatchCondition, ...] | []

e MatchCondition ::= { BoolFunction } | { BoolFunction, ConditionExpression, ... }

e BoolFunction ::= is_atom | is_constant | is_float | is_integer | is_1ist | is_number
is_pid | is_port | is_reference | is_tuple | is_binary | is_function | is_record | ’and’
’or’ | not’ | xor’ | andthen | orelse

¢ ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction,
ConditionExpression, ... } | TermConstruct

e ExprMatchVariable ::= MatchVariable (bound in the MatchHead) | *$_° | *$$’

e TermConstruct = {{}} | {{ ConditionExpression, ... }} | [1 | [ConditionExpression, ...] |
NonCompositeTerm | Constant

e NonCompositeTerm ::= term() (not list or tuple)
e Constant ::= {const, term()}
e GuardFunction ::= BoolFunction | abs | element | hd | length | node | round | size | t1 |

trunc | >+’ | ’=? | ’%x?> | ’div’ | ’rem’ | ’band’ | ’bor’ | ’bxor’ | ’bnot’ | ’bsl’ | ’bsr’ |
>>) |)>=> | ><: | ;=<> | Y=z | pR— | :=/=: | ;/=; | self

e MatchBody ::= [ActionTerm]

¢ ActionTerm ::= ConditionExpression | ActionCall

¢ ActionCall ::= {ActionFunction} | {ActionFunction, ActionTerm, ...}

2 Erlang Run-Time System Application (ERTS)

1.1: Match specifications in Erlang

e ActionFunction ::= set_seq_token | message | return trace | process_dump | enable_trace |
disable_trace | display | caller

Function descriptions

The different functions allowed in match_spec work like this:

is_atom, is_constant, is_float, is_integer, is_list, is_number, is_pid, is_port, is_reference, is_tuple, is_binary,
is_function: Like the corresponding guard tests in Erlang, return true or false.

is_record: Takes an additional parameter, which SHALL be the result of record_info(<record_type>,
size), like in {is_record, ’$1’, rectype, record_info(rectype, size)}.

‘not’: Negates its single argument (anything other than false gives false).

and’: Returns true if all its arguments (variable length argument list) evaluate to true, else false.
Evaluation order is undefined.

‘or’: Returns true if any of its arguments evaluates to true. Variable length argument list. Evaluation
order is undefined.

andthen: Like ’and’, but quits evaluating its arguments as soon as one argument evaluates to something
else than true. Arguments are evaluated left to right.

orelse: Like ’or’, but quits evaluating as soon as one of its arguments evaluates to true. Arguments are
evaluated left to right.

’xor’: Only two arguments, of which one has to be true and the other false to return true; otherwise
>xor’ returns false.

abs, element, hd, length, node, round, size, tl, trunc, ’+’, ’-*, "*’, ’div’, 'rem’, ’band’, ’bor’, ’bxor’, 'bnot’, 'bsl’,
bsr’, T>, > <, =, ==, ==, '=/=, /= self: Work as the corresponding Erlang bif’s (or
operators). In case of bad arguments, the result depends on the context. In the MatchConditions part
of the expression, the test fails immediately (like in an Erlang guard), but in the MatchBody, exceptions
are implicitly caught and the call results in the atom *EXIT’.

set_seq-token: Works like seq_trace:set_token/2, but returns true on success and >EXIT’ on error or
bad argument. Only allowed in the MatchBody part.

message: Sets an additional message appended to the trace message sent. One can only set one
additional message in the body; subsequent calls will replace the appended message. As a special case,
{message, false} disables sending of trace messages for this function call, which can be useful if only
the side effects of the MatchBody are desired. Another special case is {message, true} which sets the
default behavior, trace message is sent with no extra information (if no other calls to message are placed
before {message, true}, itisin facta “noop”).

Takes one argument, the message. Returns true and can only be used in the MatchBody part.

return_trace: Causes a trace message to be sent upon return from the current function. Takes no
arguments, returns true and can only be used in the MatchBody part.

process_.dump: Returns some textual information about the current process as a binary. Takes no
arguments and is only allowed in the MatchBody part.

enable_trace: With one parameter this function turns on tracing like the Erlang call

erlang:trace(self (), true, [P]), where P isthe parameter to enable_trace. With two
parameters, the first parameter should be either a process identifier or the registered name of a process.
In this case tracing is turned on for the designated process in the same way as in the Erlang call
erlang:trace(P1, true, [P2]), where P1 is the first and P2 is the second argument. The process P1
gets its trace messages sent to the same tracer as the process executing the statement uses. P1 can not be

Erlang Run-Time System Application (ERTS) 3

Chapter 1: ERTS User's Guide

one of the atoms all, new or existing (unless, of course, they are registered names). Returns true and
may only be used in the MatchBody part.

disable_trace: With one parameter this function disables tracing like the Erlang call
erlang:trace(self(), false, [P]), where P is the parameter to disable trace. With two
parameters it works like the Erlang call erlang:trace(P1, false, [P2]), where P1 can be either a
process identifier or a registered name and is given as the first argument to the match_spec function.
Returns true and may only be used in the MatchBody part.

caller: Returns the calling function as a tuple {Module, Function, Arity} or the atom undefined if the
calling function cannot be determined. May only be used in the MatchBody part.

Note that if a “technically built in function” (i.e. a function not written in Erlang) is traced, the caller
function will always return the atom undefined. The calling Erlang function is not available during
such calls.

display: For debugging purposes only; displays the single argument as an Erlang term on stdout, which is
seldom what is wanted. Returns true and may only be used in the MatchBody part.

Note that all “function calls” have to be tuples, even if they take no arguments. The value of self is the
atom() self, but the value of {self} is the pid() of the current process.

Variables and literals

Variables take the form ’$<number>’ where <number> is an integer between 0 (zero) and 100000000
(1e+8), the behavior if the number is outside these limits is undefined. In the MatchHead part, the
special variable >_’> matches anything, and never gets bound (like _ in Erlang). In the
MatchCondition/MatchBody parts, no unbound variables are allowed, why ’>_’ is interpreted as itself
(an atom). Variables can only be bound in the MatchHead part. In the MatchBody and MatchCondition
parts, only variables bound previously may be used. As a special case, in the
MatchCondition/MatchBody parts, the variable >$_’> expands to the whole expression which matched
the MatchHead (i.e., the whole parameter list to the possibly traced function) and the variable ’> $$’
expands to a list of the values of all bound variables in order (i.e. [’$1°,°$2°, ...]).

In the MatchHead part, all literals (except the variables noted above) are interpreted as is. In the
MatchCondition/MatchBody parts, however, the interpretation is in some ways different. Literals in the
MatchCondition/MatchBody can either be written as is, which works for all literals except tuples, or by
using the special form {const, T}, where T is any Erlang term. For tuple literals in the match_spec, one
can also use double tuple parentheses, i.e., construct them as a tuple of arity one containing a single
tuple, which is the one to be constructed. The “double tuple parenthesis” syntax is useful to construct
tuples from already bound variables, like in {{*$1’, [a,b,’$2°]}}. Some examples may be needed:

4 Erlang Run-Time System Application (ERTS)

1.1: Match specifications in Erlang

Expression Variable bindings Result

{{'$1"$2°}} '$1'=a, '$2' =D {a,b}

{const, {'$1", '$2°}} doesn’t matter {'$1",'$2’}

a doesn’t matter a

$1° $1'=1] |

[$17] $1U=1 [0l

[{{a}}] doesn’t matter [{a}]

42 doesn’t matter 42

"hello” doesn’t matter "hello”

$1 doesn’t matter 49 (the ASCII value for the character ’1’)

Table 1.1: Literals in the MatchCondition/MatchBody parts of a match_spec

Execution of the match

The execution of the match expression, when the runtime system decides whether a trace message
should be sent, goes as follows:

For each tuple in the MatchExpression list and while no match has succeeded:
e Match the MatchHead part against the arguments to the function, binding the ’$<number>"

variables (much like in ets:match/2). If the MatchHead cannot match the arguments, the match
fails.

e Evaluate each MatchCondition (where only ’$<number>’ variables previously bound in the
MatchHead can occur) and expect it to return the atom true. As soon as a condition does not
evaluate to true, the match fails. If any BIF call generates an exception, also fail.

e Evaluate each ActionTerm in the same way as the MatchConditions, but completely ignore the
return values. Regardless of what happens in this part, the match has succeeded.

Examples

Match an argument list of three where the first and third arguments are equal:

L
{
[’$1° , 2.7, 1$1] ,
1,
tl
}
]

Match an argument list of three where the second argument is a number greater than three:

Erlang Run-Time System Application (ERTS) 5

Chapter 1: ERTS User's Guide

L
{
[:_3, >$1>’ ;_;]’
L
{ 1> :$1:’ 3}
1,
(]
}
]

Match an argument list of three, where the third argument is a tuple containing argument one and two
or a list beginning with argument one and two (i. e. [a,b, [a,b,c]] or [a,b,{a,b}]):

[
{
[°$1°, °$2°, °$3°],
[
{orelse,
{7=:=:’ :$3:’ {{:$17’:$2:}}}’
{’and’,
{>=:=", %17, {hd, ’$3°}},
{>=:=>, %27, {hd, {t1l, ’$3°}}}
}
}
1,
(]
}
]

The above problem may also be solved like this:

L
{
0e1°, °$2°, {°81°, °$231,
a1,
(]
3,
{
1, ’$22, [’$1°, 827 | 1],
a1,
(]
}
]

Match two arguments where the first is a tuple beginning with a list which in turn begins with the
second argument times two (i. e. [{[4.x],y},2] or [{[8], Y, z}.4])

L
0$1>, 271,

L
{=:=>, {"x>, 2, ’$2°}, {hd, {element, 1, ’$1°}}}

6 Erlang Run-Time System Application (ERTS)

1.1: Match specifications in Erlang

Match three arguments. When all three are equal and are numbers, append the process dump to the
trace message, else let the trace message be as is, but set the sequential trace token label to 4711.

L
{
%1, °$1°, °$1°1,
[{is_number, ’$1°}],
[{message, {process_dump}}]
},
{
0,
[{set_seq_token, label, 4711}]
}
]

As can be noted above, the parameter list can be matched against a single MatchVariableoran ’>_’. To
replace the whole parameter list with a single variable is a special case. In all other cases the MatchHead
has to be a proper list.

Erlang Run-Time System Application (ERTS) 7

1.2 How to interpret the Erlang crash dumps

This document describes the erl_crash.dump file generated upon abnormal exit of the Erlang runtime
system.

The system will write the crash dump in the current directory of the emulator or in the file pointed out
by the environment variable (whatever that means on the current operating system)
ERL_CRASH_DUMP. For a crash dump to be written, there has to be a writable file system mounted.

Crash dumps are written mainly for one of two reasons; Either the builtin function erlang:halt/1 is
called explicitly from running Erlang code or else the runtime system has detected an error that cannot
be handled. The most usual reason that the system can’t handle the error is that the cause is external
limitations, such as running out of memory. A crash dump due to an internal error may be caused by
the system reaching limits in the emulator itself (like the number of simultaneous atoms in the system,
or too many simultaneous ets tables). Usually the emulator or the operating system can be reconfigured
to avoid the crash, why interpreting the crash dump correctly is important.

Reasons for crash dumps

The reason for the dump is noted in the beginning of the file as Slogan: <reason> (the word Slogan
has historical reasons). If the system is halted by the bif erlang:halt/1, the slogan is exactly the
parameter passed to the bif (a string), otherwise it is a description generated by the emulator or the
(Erlang) kernel. Normally the message should be enough to understand the problem, but nevertheless
some messages are described here. Note however that the suggested reasons for the crash are only
suggestions. The exact reasons for the errors may vary depending on the local applications and the
underlying operating system.

e “Can’t allocate N bytes of memory” - The system has run out of memory. The number N indicates
the amount of memory needed (in bytes) , which could give some hint of what the problem is. If
N is very large, it could be that an Erlang process consumes vast amounts of memory, possibly due
to an error in the Erlang code.

e “Can’t reallocate N bytes of memory” - Same as above.
e “Can’t allocate Something” - Same as above.

e “Got unusable memory block Address, size N” - The emulator has reached the 1GB limit of the
Erlang virtual memory space. Something consumes huge amounts of memory, probably an error
in the Erlang code.

¢ “Unexpected op code N” - Error in compiled code, beam file damaged or error in compiler.

e “Module Name undefined” | “Function Name undefined” | “No function Name:Name/1” | “No
function Name:start/2” - The kernel/stdlib applications are damaged or the start script is damaged.

¢ “Driver_select called with too large file descriptor N” - The number of file descriptors for sockets
pass 1024 (Unix only). The limit on file-descriptors in some Unix flavors can be set to over 1024,
but only 1024 sockets/pipes can be used simultaneously by Erlang (due to limitations in the Unix
select call). The number of open regular files is not affected by this.

e “Received SIGUSR1” - The SIGUSR1 signal was sent to the Erlang machine (Unix only).

8 Erlang Run-Time System Application (ERTS)

1.2: How to interpret the Erlang crash dumps

e “Kernel pid terminated (Who) (Exit-reason)” - The kernel supervisor has detected a failure, usually
that the application_controller has shut down (Who = application_controller, Why =
shutdown). That the application controller has shut down can be for various reasons, the most
usual being that the node-name of the distributed Erlang node is already in use. A complete
supervisor tree “crash” (i.e. the top supervisors has exited) will give about the same result. This
message comes from the Erlang code and not from the virtual machine itself. It is always due to
some kind of failure in an application, either within OTP or a “user-written”. Looking at the error
log for your application is probably the first step to take.

¢ “Init terminating in do_boot ()” - The primitive Erlang boot sequence was terminated, most
probably because the boot script has errors or cannot be read. This is usually a configuration error,
the system may have been started with a faulty -boot parameter or with a boot script from the
wrong version of OTP.

e “Could not start kernel pid (Who) ()" - One of the kernel processes could not start. This is
probably due to faulty arguments (like errors in a -config argument) or faulty configuration files.
Check that all files are in their correct location and that the configuration files (if any) are not
damaged. Usually there are also messages written to the controlling terminal and/or the error log
explaining what’s wrong.

Other errors than the one’s mentioned above may occur, as the erlang:halt/1 bif may generate any
message. If the message is not generated by the bif and does not occur in the list above, it may be due to
an error in the emulator. There may however be unusual messages that | haven’t mentioned, that still
are connected to an application failure. There is a lot more information available, so more thorough
reading of the crash dump may reveal the crash reason. The size of processes, the number of ets tables
and the Erlang data on each process stack can be quite useful for tracking down the problem.

Process information

After the general information in the crash dump (the date, slogan and version information) follows a
listing of each living Erlang process in the system. The process information for one process may look
like this (except for the line numbers of course):

(1) <0.2.0> Waiting. Registered as: erl_prim_loader
(2) Spawned as: erl_prim_loader:start_it/4

(3) Message buffer data: 262 words

(4) Link list: [<0.0.0>,<0,1>]

(56) Dictionary: [{fake, entry}]

(6) Reductions 2194 stack+heap 987 old_heap_sz=987
(7) Heap unused=85 0ldHeap unused=987

(8) Stack dump:

(9) 130efs8 Blank a

(10) 130ef4 Blank a

(11) 130ef0 Blank a

(12) 130eec <0.1.0>

(13) 130ee8 {state, [],none,get_from_port_efile,stop_port,exit_port,\
<0,1>,infinity,dummy_in_handler}

(14) 130ee4d ["/1disk/r6a_test/kernel_test","/ldisk/r6a_dev/1lib/\n kernel-2.4/ebin","/1disk

(15) 130ee0 Continuation pointer b754c,

(16) i = 0x125750, cp = 0xb754c, arity = 0, 125710: erl_prim_loader:loop/3,

Each line of the output should be interpreted as follows:

Erlang Run-Time System Application (ERTS) 9

Chapter 1: ERTS User's Guide

e (1) - The process id (<0.2.0>), the state of the process (Waiting) and the registered name of the
process, if any (erl_prim loader). The state of the process can be one of the following:

Scheduled - The process was scheduled to run but not currently running (“in the run queue”).

Waiting - The process was waiting for something (in receive).

Running - The process was currently running. If the bif erlang:halt/1 was called, this was
the process calling it.

Exiting - The process was on it’s way to exit.

Process is garbing, limited information. - This is bad luck, the process was garbage collecting
when the crash dump was written, the rest of the information for this process is limited.

Suspended - The process is suspended, either by the bif erlang:suspend process/1 or
because it’s trying to write to a busy port.

(2) - The entry point of the process, i. e. what function was referenced in the spawn or
spawn_link call that started the process.

e (3) - Size of fragmented heap data (incorrectly called message buffers). This is data either created
by messages being sent to the process or by the Erlang bif’s. This amount depends on so many
things, that this field is utterly uninteresting.

e (4) - Process id’s of processes linked to this one. May also contain ports. If process monitoring is
used, this field also tells in which direction the monitoring is in effect, i.e. a link being “to” a
process tells you that the “current” process was monitoring the other and a link “from” a process
tells you that the other process was monitoring the current.

e (5) - The contents of the process dictionary (the put/2 and get/1 thing).

e (6) - The number of reductions consumed by the process, the size of the stack and heap (they
share memory segment) and the size of the “old heap”. This “old heap” may require some
explanation. The Erlang virtual machine uses generational garbage collection with two
generations. There is one heap for new data items and one for the data that has survived two
garbage collections. The assumption (which is almost always correct) is that data that survives
two garbage collections can be “tenured” to a heap more seldom garbage collected, as they will
live for a long period. This is a quite usual technique in virtual machines. The sum of the heaps
and stack together constitute most of the process’ allocated memory.

e (7) - The amount of unused memory on each heap. This information is usually useless.

e (8) - (15) - A dump of the Erlang process stack. Most of the live data (i.e. variables currently in
use) are placed on the stack, why this can be quite interesting. One has to “guess” what’s what,
but as the information is symbolic, thorough reading of this information can be very useful. As an
example, we can find the state variable of the Erlang primitive loader on line (13). The stack also
contains other things, like “Continuation pointer”, “Blank” “Frame”, “Catch” and such. Those fields
are only interesting for developers who understand the internal structure of the beam emulator.

(16) - Miscellaneous information abut the process state:
— i - The current instruction pointer, only interesting for runtime system developers.

— ¢p - The current continuation pointer, i.e. the return address for the current call. Usually
useless for other than runtime system developers.

— arity - Number of live argument registers, quite uninteresting.

— The function into which i points - This is the current function of the process. This may be
followed by the function into which cp points, which is the function calling the current
function. The argument registers, if any living, may follow. These may contain the
arguments of the function if they are not yet moved to the stack.

Usually the current function is the only useful information on this line.

10 Erlang Run-Time System Application (ERTS)

1.2: How to interpret the Erlang crash dumps

Internal table information

This section mostly contains information for runtime system developers. What can be of interest is the
following fields:

e Hash Table(atom_tab) - The number of objects in the atom table, which is indicated by the field
objs(N), is the number of atoms present in the system at the time of the crash. Some ten
thousands atoms is perfectly normal, but more could indicate that the bif erlang:1ist to_atom/1
is used to dynamically generate a lot of different atoms, which is never a good idea.

e Hash Table(module_code) - The field objs (N) indicates the number of loaded modules in the
system.

¢ Allocated binary N - This number indicates how many bytes are allocated to binaries (the binary
data-type) for the whole system. Binaries allocated directly on process heaps (small binaries) are
not counted for here.

The rest of the information is only of interest for runtime system developers.

ETS tables

This section contains information about all the ETS tables in the system. The following fields are
interesting for each table:

o Table Number(with name)Name - The identifier and the name of the table.

e Owner Pid - The process owning the table.

Buckets: N | Ordered set (AVL tree), Elements: N - The most interesting here is that it indicates
if the table is a ordered_set or not.

Table’s got N objects - the number of objects in the table

Table’s got N words of active data - The number of words (usually 4 bytes/word) allocated to data
in the table.

Timers

This section contains information about all the timers started with the bif erlang:start timer/3.
Each line includes the message to be sent, the pid to receive the message and how many milliseconds
there was left until the message would have been sent.

Loaded module information

This is a list of all loaded modules, together with the memory usage of each module, in bytes. Note that
loaded code is usually larger than the packed format in the beam files.

At the end of the list, the memory usage by loaded code is summarized. There is one field for “Current
code” which is code that is the current latest version of the modules. There is also a field for “Old code”
which is code where there exists a newer version in the system, but the old version is not yet purged.

Erlang Run-Time System Application (ERTS) 11

Chapter 1: ERTS User's Guide

Atoms

Now all the atoms in the system are written. This is only interesting if one suspects that dynamic
generation of atoms could be a problem, otherwise this section can be ignored.

Disclaimer
The format of the crash dump evolves between releases of OTP. Some information here may not apply

to your version. A description as this will never be complete, it’s meant as an explanation of the crash
dump in general and as a help when trying to find application errors, not as a complete specification.

12 Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the
erlang distribution

This document describes how one can implement ones own carrier protocol for the erlang distibution.
The distribution is normally carried by the TCP/IP protocol. Whats explained here is the method for
replacing TCP/IP whith another protocol.

The document is a step by step explanation of the uds_dist example application (seated in the kernel
applications examples directory). The uds_dist application implements distribution over Unix domain
sockets and is written for the Sun Solaris 2 operating environment. The mechanisms are however
general and applies to any operating system erlang runs on. The reason the C code is not made portable,
is simply readability.

Introduction

To implement a new carrier for the erlang distribution, one must first make the protocol available to the
erlang machine, which involves writing an erlang driver. There is no way one can use a port program,
there has to be an erlang driver. Erlang drivers can either be statically linked to the emulator, which can
be an alternative when using the open source distribution of erlang, or dynamically loaded into the
erlang machines address space, which is the only alternative if a precompiled version of erlang is to be
used.

Writing an erlang driver is by no means easy. The driver is written as a couple of callback functions
called by the erlang emulator when data is sent to the driver or the driver has any data available on a file
descriptor. As the driver callback routines execute in the main thread of the erlang machine, the
callback functions can perform no blocking activity whatsoever. The callbacks should only set up file
descriptors for waiting and/or read/write available data. All I/0 has to be non blocking. Driver callbacks
are however executed in sequence, why a global state can safely be updated within the routines.

When the driver is implemented, one would preferrably write an erlang interface for the driver to be
able to test the functionality of the driver separately. This interface can then be used by the distribution
module which will cover the details of the protocol from the net _kernel. The easiest path is to mimic
the inet and gen_tcp interfaces, but a lot of functionality in those modules need not be implemented.
In the example application, only a few of the usual interfaces are implemented, and they are much
simplified.

When the protocol is available to erlang throug a driver and an erlang interface module, a distribution
module can be written. The distribution module is a module with well defined callbacks, much like a
gen_server (there is no compiler support for checking the callbacks though). The details of finding
other nodes (i.e. talking to epmd or something similar), creating a listen port (or similar), connecting to
other nodes and performing the handshakes/cookie verification are all implemented by this module.
There is however a utility module, dist_util, that will do most of the hard work of handling
handshakes, cookies, timers and ticking. Using dist_util makes implementing a distribution module
much easier and that’s what we are doing in the example application.

The last step is to create boot scripts to make the protocol implementation available at boot time. The
implementation can be debugged by starting the distribution when all of the system is running, but in a
real system the distribution should start very early, why a bootscript and some command line
parameters are necessary. This last step also implies that the erlang code in the interface and
distribution modules is written in such a way that it can be run in the startup phase. Most notably there

Erlang Run-Time System Application (ERTS) 13

Chapter 1: ERTS User's Guide

can be no calls to the application module or to any modules not loaded at boottime (i.e. only kernel,
stdlib and the application itself can be used).

The driver

Although erlang drivers in general may be beyond the scope of this document, a brief introduction
seems to be in place.

Drivers in general

An erlang driver is a native code module written in C (or assembler) which serves as an interface for
some special operating system service. This is a general mechanism that is used throughout the erlang
emulator for all kinds of 1/0. An erlang driver can be dynamically linked (or loaded) to the erlang
emulator at runtime by using the er1_dd11 erlang module. Some of the drivers in OTP are however
statically linked to the runtime system, but that’s more an optimization than a necessity.

The driver datatypes and the functions available to the driver writer are defined in the header file
erl driver.h (there is also an deprecated version called driver.h, dont use that one.) seated in

erlangs include directory (and in $ERL_TOP/erts/emulator/beam in the source code distribution).
Refer to that file for function prototypes etc.

When writing a driver to make a communications protocol avalable to erlang, one should know just
about everything worth knowing about that particular protocol. All operation has to be non blocking
and all possible situations should be accounted for in the driver. A non stable driver will affect and/or
crash the whole erlang runtime system, which is seldom what’s wanted.

The emulator calls the driver in the following situations:

e When the driver is loaded. This callback has to have a special name and will infor the emulator of
what callbacks should be used by returning a pointer to a Er1DrvEntry struct, which should be
properly filled in (see below).

¢ When a port to the driver is opened (by a open_port call from erlang). This routine should set up
internal data structures and return an opaque data entity of the type Er1DrvData, which is a
datatype large enough to hold a pointer. The pointer returned by this function will be the first
argument to all other callbacks concerning this particular port. It is usually called the port handle.
The emulator only stores the handle and doues never try to interpret it, why it can be virtually
anything (well anything not larger than a pointer that is) and can point to anything if it is a
pointer. Usually this pointer will refer to a structure holding information about the particular
port, as i t does in our example.

e When an erlang process sends data to the port. The data will arrive as a buffer of bytes, the
interpretation is not defined, but is up to the implementor. This callback returns nothing to the
caller, answers are sent to the caller as messages (using a routine called driver_output available
to all drivers). There is also a way to talk in a syncronous way to drivers, described below. There
can be an additional callback function for handling data that is frgmented (sent in a deep io-list).
That interface will get the data in a form suitable for Unix writev rather than in a single buffer.
There is no need for a distribution driver to implement such a callback, so we wont.

e When afile descriptor is signaled for input. This callback is called when the emulator detects
input on a file descriptor which the driver has marked for monitoring by using the interface
driver_select. The mechanism of driver select makes it possible to read non blocking from file
descriptors by calling driver_select when reading is needed and then do the actual reading in
this callback (when reading is actually possible). The typical scenario is that driver_select is

14 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

called when an erlang process orderes a read operation, and that this routine sends the answer
when data is available on the file descriptor.

When a file descriptor is signaled for output. This callback is called in a similar way as the
previous, but when writing to a file descriptor is possible. The usual scenario is that erlang orders
writing on a file descriptor and that the driver calls driver_select. When the descriptor is readu
for output, this callback is called an the driver can try to send the output. There may of course be
gueueing involved in such operations, and there are some convenient queue routines available to
the driver writer to use in such situations.

When a port is closed, either by an erlang process or by the driver calling one of the
driver_failure XXX routines. This routine should clean up everything connected to one
particular port. Note that when other callbacks call a driver failure XXX routine, this routine
will be immediately called and the callback routine issuing the error can make no more use of the
data structures for the port, as this routine surely has freed all associated data and closed all file
descriptors. If the queue utility available to driver writes is used, this routine will however not be
called until the queue is empty.

When an erlang process calls erlang:driver_control/2, which is a syncronous interface to
drivers. The control interface is used to set driver options, change states of ports etc. We’ll use
this interface quite a lot in our example.

When a timer expires. The driver can set timers with the function driver_set_timer. When such
timers expire, a specific callback function is called. We will not use timers in our example.

When the whole driver is unloaded. Every resource allocated by the driver should be freed.

The distribution driver's data structures

The driver used for erlang distribution should implement a reliable, order mainataining, variable length
packet oriented protocol. All error correction, resending and such need to be implemented in the driver
or by the underlying communications protocol. If the protocol is stream oriented (as is the case with
both TCP/IP and our streamed Unix domain sockets), some mechanism for packaging is needed. We
will use the simple method of having a header of four bytes containing the length of the package in a big
endian 32 bit integer (as Unix domain sockets only can be used between processes on the same
machine, we actually dont need to code the integer in some special endianess, but i’ll do it anyway
brcause in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we dont need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static
ErlDrvEntry structure.

1
(2
(3
(4
)
)
7
:))
(9
(10)

(11)
(12)

(13)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <fcntl.h>

#define HAVE_UIO_H
#include "erl_driver.h"

/%

Erlang Run-Time System Application (ERTS) 15

Chapter 1: ERTS User's Guide

(14) **x Interface routines

(15) =/

(16) static ErlDrvData uds_start(ErlDrvPort port, char xbuff);

(17) static void uds_stop(ErlDrvData handle);

(18) static void uds_command (ErlDrvData handle, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handle, ErlDrvEvent event);

(20) static void uds_output(ErlDrvData handle, ErlDrvEvent event);

(21) static void uds_finish(void);

(22) static int uds_control (ErlDrvData handle, unsigned int command,

(23) char* buf, int count, char** res, int res_size);

(24) /* The driver entry */
(25) static ErlDrvEntry uds_driver_entry = {

(26) NULL, /* init, N/A x/

27 uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready_input, called when input descriptor
(31) ready */

(32) uds_output, /* ready_output, called when output

(33) descriptor ready */

(34) "uds_drv", /* char *driver_name, the argument

(35) to open_port */

(36) uds_finish, /* finish, called when unloaded */

(37) NULL, /* void * that is not used (BC) *x/

(38) uds_control, /* control, port_control callback */

(39) NULL, /* timeout, called on timeouts */

(40) NULL /* outputv, vector output interface */
4 X

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for
Solaris, we know that the header uio.h exists, why we can define the preprocessor variable HAVE_UI0_H
before we include erl_driver.hat line 12. The definition of HAVE_UI0_H will make the I/O vectors
used in erlangs driver queues to correspond to the operating systems dito, which is very convenient.

The different callback functions are declared (“forward declarations”) on line 16 to 23.

The driver structure is similar for statically linked in drivers an dynamically loaded. However some of
the fields should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field
(the init function pointer) is always left blank in a dynamically loaded driver, which can be seen on
line 26. The NULL on line 37 should always be there, the field is no longer used and is retained for
backward compatibility. We use no timers in this driver, why no callback for timers is needed. The last
field (line 40) can be used to implement an interface similar to Unix writev for output. There is no
need for such interface in a distribution driver, so we leave it with a NULL value (We will however use
scatter/gather 1/0 internally in the driver).

Our defined callbacks thus are:
e uds_start, which shall initiate data for a port. We wont create any actual sockets here, just
initialize data structures.
e uds_stop, the function called when a port is closed.

¢ uds_command, which will handle messages from erlang. The messages can either be plain data to
be sent or more subtle instructions to the driver. We will use this function mostly for data

pumping.

16 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

e uds_input, this is the callback which is called when we have something to read from a socket.
e uds_output, this is the function called when we can write to a socket.

e uds_finish, which is called when the driver is unloaded. A distribution driver will actually (or
hopefully) never be unloaded, but we include this for completeness. Being able to clean up after
oneself is always a good thing.

e uds_control, the erlang:port_control/2 callback, which will be used a lot in this
implementation.

The ports implemented by this driver will operate in two major modes, which i will call the command
and data modes. In command mode, only passive reading and writing (like gen_tcp:recv/gen_tcp:send)
can be done, and this is the mode the port will be in during the distribution handshake. When the
connection is up, the port will be switched to data mode and all data will be immediately read and
passed further to the erlang emulator. In data mode, no data arriving to the uds_command will be
interpreted, but just packaged and sent out on the socket. The uds_control callback will do the
switching between those two modes.

While the net kernel informs different subsystems that the connection is coming up, the port should

accept data to send, but not receive any data, to avoid that data arrives from another node before every
kernel subsystem is prepared to handle it. We have a third mode for this intermediate stage, lets call it
the intermediate mode.

Lets define an enum for the differnt types of ports we have:

(1) typedef enum {

(2 portTypeUnknown, /* An uninitialized port */

¢ 3) portTypelListener, /* A listening port/socket */

(4 portTypeAcceptor, /* An intermidiate stage when accepting

(8 on a listen port */

(6 portTypeConnector, /* An intermediate stage when connecting */
7 portTypeCommand, /* A connected open port in command mode */
(8 portTypelntermediate, /* A connected open port in special

(9 half active mode */

(10 portTypeData /* A connectec open port in data mode */

(11) } PortType;

Lets look at the different types:

e portTypeUnknown - The type a port has when it’s opened, but not actually bound to any file
descriptor.

e portTypeListener - A port that is connected to a listen socket. This port will not do especially
much, ther will be no data pumping done on this socket, but there will be read data avalable
when one is trying to do an accept on the port.

e portTypeAcceptor - This is a port that is to represent the result of an accept operation. It is
created when one wants to accept from a listen socket, and it will be converted to a
portTypeCommand when the accept succeeds.

e portTypeConnector - Very similar to portTypeAcceptor, an intermediate stage between the
request for a connect operation and that the socket is really connected to ann accepting dito in the
other end. As soon as the sockets are connected, the port will switch type to portTypeCommand.

e portTypeCommand - A connected socket (or accepted socket if you want) that is in the command
mode mentioned earlier.

e portTypelntermediate - The intermediate stage for a connected socket. Ther should be no
processing of input for this socket.

Erlang Run-Time System Application (ERTS) 17

Chapter 1: ERTS User's Guide

e portTypeData - The mode where data is pumped through the port and the uds_command routine
will regard every call as a call where sending is wanted. In this mode all input available will be
read and sent to erlang as soon as it arrives on the socket, much like in the active mode of a
gen_tcp socket.

Now lets look at the state we’ll need for our ports. One can note that not all fields are used for all types
of ports and that one could save some space by using unions, but that would clutter the code with
multiple indirections, so i simply use one struct for all types of ports, for readability.

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds_data {

(4) int fd; /* File descriptor */

(5 ErlDrvPort port; /* The port identifier */

(6) int lockfd; /* The file descriptor for a lock file in
«n case of listen sockets */

(8 Byte creation; /* The creation serial derived from the
9 lockfile */

(10) PortType type; /* Type of port */

(11 char *name; /* Short name of socket for unlink */

(12) Word sent; /* Bytes sent */

(13) Word received; /* Bytes received */

(14) struct uds_data *partner; /* The partner in an accept/listen pair */
(15) struct uds_data *next; /* Next structure in list */

(16) /* The input buffer and it’s data */

an int buffer_size; /* The allocated size of the input buffer */
(18) int buffer_pos; /* Current position in input buffer */
(19) int header_pos; /* Where the current header is in the

(20) input buffer */

21 Byte *buffer; /* The actual input buffer */

(22) } UdsData;

This structure is used for all types of ports although some fields are useless for some types. The least
memory consuming solution would be to arrange this structure as a union of structures, but the multiple
indirections in the code to access a field in such a structure will clutter the code to much for an example.

Let’s look at the fields in our structure:

e fd - The file descriptor of the socket associated with the port.

e port - The port identifier for the port which this structure corresponds to. It is needed for most
driver XXX calls from the driver back to the emulator.

o lockfd - If the socket is a listen socket, we use a separate (reguler) file for two purpouses:

— We want a locking mechanism that gives no race conditions, so that we can be sure of if
another erlang node uses the listen socket name we require or if the file is only left there
from a previous (crashed) session.

— We store the creation serial number in the file. The creation is a number that should change
between different instances of different erlang emulatorors with the same name, so that
process identifiers from one emulator won’t be valid when sent to a new emulator with the
same distribution name. The creation can be between 0 and 3 (two bits) and is stored in
every process identifier sent to another node.

In a system with TCP based distribution, this data is kept in the erlang port mapper daemon
(epmd), which is contacted when a distributed node starts. The lockfile and a convention for

18 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

the UDS listen socket’s name will remove the need for epmd when using this distribution
module. UDS is always restricted to one host, why avoiding a port mapper is easy.

e creation - The creation number for a listen socket, which is calculated as (the value found in the
lockfile + 1) rem 4. This creation value is also written back into the lockfile, so that the next
invocation of the emulator will found our value in the file.

e type - The current type/state of the port, which can be one of the values declared above.

e name - The name of the socket file (the path prefix removed), which allows for deletion (unlink)
when the socket is closed.

e sent - How many bytes that have been sent over the socket. This may wrap, but that’s no problem
for the distribution, as the only thing that interests the erlang distribution is if this value has
changed (the erlang net_kernel ticker uses this value by calling the driver to fetch it, which is done
through the driver_control routine).

e received - How many bytes that are read (received) from the socket, used in similar ways as sent.

e partner - A pointer to another port structure, which is either the listen port from which this port
is accepting a connection or the other way around. The “partner relation” is always bidirectional.

e next - Pointer to next structure in a linked list of all port structures. This list is used when
accepting connections and when the driver is unloaded.

o buffer_size, buffer_pos, header_pos, buffer - data for input buffering. Refer to the source code (in
the kernel/examples directory) for details about the input buffering. That certainly goes beyond
the scope of this document.

Selected parts of the distribution driver implementation

The distribution drivers implementation is not completely covered in this text, detais about buffering
and other things unrelated to driver writing are not explained. Likewise are some peculiarities of the
UDS protocol not explained in detail. The chosen protocol is not important.

Prototypes for the driver callback routines can be found in the erl driver.h header file.

The driver initialization routine is (usually) declared with a macro to make the driver easier to port
between different operating systems (and flavours of systems). This is the only routine that has to have
a well defined name. All other callbacks are reached through the driver structure. The macro to use is
named DRIVER_INIT and takes the driver name as parameter.

(1) /* Beginning of linked list of ports */
(2) static UdsData *first_data;

(3) DRIVER_INIT(uds_drv)

4 {

(5) first_data = NULL;

(6) return &uds_driver_entry;
(M

The routine initializes the single global data structure and returns a pointer to the driver entry. The
routine will be called when erl_dd11:1o0ad driver is called from erlang.

The uds_start routine is called when a port is opened from erlang. In our case, we only allocate a
structure and initialize it. Creating the actual socket is left to the uds_command routine.

Erlang Run-Time System Application (ERTS) 19

Chapter 1: ERTS User's Guide

(1) static ErlDrvData uds_start(ErlDrvPort port, char *buff)
(2) {

(3) UdsData *ud;

(4

(5) ud = ALLOC(sizeof (UdsData));
(6) ud->fd = -1;

(o) ud->lockfd = -1;

(8) ud->creation = 0;

(9 ud->port = port;

(10) ud->type = portTypeUnknown;
(11D ud->name = NULL;

(12) ud->buffer_size = 0;

(13) ud->buffer_pos = 0;

(14) ud->header_pos = 0;

(15) ud->buffer = NULL;

(16) ud->sent = 0;

an ud->received = 0;

(18) ud->partner = NULL;

(19) ud->next = first_data;

(20) first_data = ud;

(21)

(22) return((ErlDrvData) ud);
(23) %}

Every data item is initialized, so that no problems will arise when a newly created port is closed
(without there being any corresponding socket). This routine is called when open_port ({spawn,
"uds_drv"}, [1) is called from erlang.

The uds_command routine is the routine called when an erlang process sends data to the port. All
asyncronous commands when the port is in command mode as well as the sending of all data when the
port is in data mode is handeled in thi9s routine. Let’s have a look at it:

(1) static void uds_command(ErlDrvData handle, char *buff, int bufflen)
2) {

(3) UdsData *ud = (UdsData *) handle;

(4 if (ud->type == portTypeData || ud->type == portTypelntermediate) {
(5) DEBUGF (("Passive do_send %d",bufflen));

(6) do_send(ud, buff + 1, bufflen - 1); /* XXX */

7 return;

(8 }

) if (bufflen == 0) {

(10) return;

(11) }

(12) switch (¥buff) {

(13) case ’L’:

(14) if (ud->type != portTypeUnknown) {

(15) driver_failure_posix(ud->port, ENOTSUP);

(16) return;

an) }

(18) uds_command_listen(ud,buff,bufflen);

(19) return;

(20) case ’A’:

20 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

(21) if (ud->type !'= portTypeUnknown) {

(22) driver_failure_posix(ud->port, ENOTSUP);
(23) return;

(24) }

(25) uds_command_accept (ud,buff,bufflen);

(26) return;

27) case ’C’:

(28) if (ud->type != portTypeUnknown) {

(29) driver_failure_posix(ud->port, ENOTSUP);
(30) return;

(31) }

(32) uds_command_connect (ud,buff,bufflen) ;

(33) return;

(34) case ’S’:

(35) if (ud->type !'= portTypeCommand) {

(36) driver_failure_posix(ud->port, ENOTSUP);
(37) return;

(38) }

(39) do_send(ud, buff + 1, bufflen - 1);

(40) return;

(41) case ’R’:

(42) if (ud->type !'= portTypeCommand) {

(43) driver_failure_posix(ud->port, ENOTSUP);
(44) return;

(45) }

(46) do_recv(ud);

47) return;

(48) default:

(49) return;

(50) }

(51) }

The command routine takes three parameters; the handle returned for the port by uds_start, which is
a pointer to the internal port structure, the data buffer and the length of the data buffer. The buffer is
the data sent from erlang (a list of bytes) converted to an C array (of bytes).

If Erlang sends i.e. the list [$a,$b,$c] to the port, the bufflen variable will be 3 ant the buff veriable
will contain {’a’,’b’,’c’} (no null termination). Usually the first byte is used as an opcode, which is
the case in our driver to (at least when the port is in command mode). The opcodes are defined as:

e 'L’<socketname>: Create and listen on socket with the given name.

o 'A’<listennumber as 32 bit bigendian>: Accept from the listen socket identified by the given
identification number. The idientification number is retrieved with the uds_control routine.

e 'C’<socketname>: Connect to the socket named <socketname>.

e 'S’<data>: Send the data <data> on the connected/accepted socket (in command mode). The
sending is acked when the data has left this process.

¢ 'R’: Receive one packet of data.
One may wonder what is meant by “one packet of data” in the 'R’ command. This driver always sends
data packeted with a 4 byte header containing a big endian 32 bit integer that represents the length of

the data in the packet. There is no need for different packet sizes or soime kind of streamed mode, as
this driver is for the distribuion only. One may wonder why the header word is coded explicitly in big

Erlang Run-Time System Application (ERTS) 21

Chapter 1: ERTS User's Guide

endian when an UDS socket is local to the host. The answer simply is that | see it as a good practice
when writing a distribution driver, as distribution in practice usually cross the host boundaries.

On line 4-8 we handle the case where the port is in data or intermediate mode, the rest of the routine
handles the different commands. We see (first on line 15) that the routine uses the
driver_failure_posix () routine to report errors. One important thing to remember is that the failure
routines make a call to our uds_stop routine, which will remove the internal port data. The handle
(and the casted handle ud) is therefore invalid pointers after a driver_failure call and we should
immediately return. The runtime system will send exit signals to all linked processes.

The uds_input routine gets called when data is available on a file descriptor previously passed to the
driver_select routine. Typically this happens when a read command is issued and no data is available.
Lets look at the do_recv routine:

(1) static void do_recv(UdsData *ud)

(2) {

(3) int res;

(4) char *ibuf;

(5 for(;;) {

(6 if ((res = buffered_read_package(ud,&ibuf)) < 0) {

7 if (res == NORMAL_READ_FAILURE) {

(8) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 1);
(9 } else {

(10) driver_failure_eof (ud->port);

(11) }

(12) return;

(13) }

(14) /* Got a package */

(15) if (ud->type == portTypeCommand) {

(16) ibuf[-1] = ’R’; /* There is always room for a single byte
an opcode before the actual buffer

(18) (where the packet header was) */

(19) driver_output (ud->port,ibuf - 1, res + 1);

(20) driver_select (ud->port, (ErlDrvEvent) ud->fd, DO_READ,0);
(21) return;

(22) } else {

(23) ibuf [-1] = DIST_MAGIC_RECV_TAG; /* XXX */

(24) driver_output (ud->port,ibuf - 1, res + 1);

(25) driver_select (ud->port, (ErlDrvEvent) ud->fd, DO_READ,1);
(26) ¥

27) ¥

(28) %}

The routine tries to read data until a packet is read or the buffered read package routine returns a
NORMAL READ FATLURE (an internally defined constant for the module that means that the read
operation resulted in an EWOULDBLOCK). If the port is in command mode, the reading stops when one
package is read, but if it is in data mode, the reading continues until the socket buffer is empty (read
failure). If no more data can be read and more is wanted (always the case when socket is in data mode)
driver_select is called to make the uds_input callback be called when more data is available for reading.

When the port is in data mode, all data is sent to erlang in a format that suits the distribution, in fact
the raw data will never reach any erlang process, but will be translated/interpreted by the emulator
itself and then delivered in the correct format to the correct processes. In the current emulator version,
received data should be tagged with a single byte of 100. Thats what the macro DIST MAGIC_RECV_TAG
is defined to. The tagging of data in the distribution will possibly change in OTP-R7.

22 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

The uds_input routine will handle other input events (like nonblocking accept), but most importantly
handle data arriving at the socket by calling do_recv:

(1) static void uds_input (ErlDrvData handle, ErlDrvEvent event)

(2) {

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypelListener) {

(5 UdsData *ad = ud->partner;

(6) struct sockaddr_un peer;

7 int pl = sizeof(struct sockaddr_un);

(8) int fd;

(9 if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno != EWOULDBLOCK) {

(11) driver_failure_posix(ud->port, errno);
(12) return;

(13) }

(14) return;

(15) }

(16) SET_NONBLOCKING (£fd) ;

17 ad->fd = £fd;

(18) ad->partner = NULL;

(19) ad->type = portTypeCommand;

(20) ud->partner = NULL;

(21) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(22) driver_output (ad->port, "Aok",3);

(23) return;

(24) }

(25) do_recv(ud);

(26) }

The important line here is the last line in the function, the do_read routine is called to handle new
input. The rest of the function handles input on a listen socket, whinc means that there should be
possible to do an accept on the socket, which is also recognized as a read event.

The output mechanisms are similar to the input. Lets first look at the do_send routine:

(1) static void do_send(UdsData *ud, char *buff, int bufflen)
(2) {

(3) char header[4];

(4) int written;

(5 SysIOVec iov[2];

(6) ErlI0Vec eio;

«Cn ErlDrvBinary *binv[] = {NULL,NULL};
(8 put_packet_length(header, bufflen);
9 iov[0] .iov_base = (char *) header;
(10) iov[0] .iov_len = 4;

(11) iov[1] .iov_base = buff;

(12) iov[1] .iov_len = bufflen;

(13) eio.iov = iov;

(14) eio.binv = binv;

Erlang Run-Time System Application (ERTS) 23

Chapter 1: ERTS User's Guide

(15) eio.vsize = 2;

(16) eio.size = bufflen + 4;

an written = 0;

(18) if (driver_sizeq(ud->port) == 0) {

(19) if ((written = writev(ud->fd, iov, 2)) == eio.size) {
(20) ud->sent += written;

(21) if (ud->type == portTypeCommand) {
(22) driver_output(ud->port, "Sok", 3);
(23) }

(24) return;

(25) } else if (written < 0) {

(26) if (errno '= EWOULDBLOCK) {

27 driver_failure_eof (ud->port);
(28) return;

(29) } else {

(30) written = 0;

(31) }

(32) } else {

(33) ud->sent += written;

(34) }

(35) /* Enqueue remaining */

(36) }

(37) driver_enqv (ud->port, &eio, written);

(38) send_out_queue (ud) ;

(39) }

This driver uses the writev system call to send data onto the socket. A combination of writev and the
driver output queues is very convenient. An ErllOVec structure contains a SyslOVec (which is
equivalent to the struct iovec structure defined in uio.h. The ErllOVec also contains an array of
ErIDrvBinary pointers, of the same length as the number of buffers in the I/O vector itself. One can use
this to allocate the binaries for the queue “manually” in the driver, but we’ll just fill the binary array
with NULL values (line 7) , which will make the runtime system allocate it’s own buffers when we call
driver_enqv (line 37).

The routine builds an I/O vector containing the header bytes and the buffer (the opcode has been
removed and the buffer length decreased by the output routine). If the queue is empty, we’ll write the
data directly to the socket (or at least try to). If any data is left, it is stored in the que and then we try to
send the queue (line 38). An ack is sent when the message is delivered completely (line 22). The
send_out_queue Will send acks if the sending is completed there. If the port is in command mode, the
erlang code serializes the send operations so that only one packet can be waiting for delivery at a time.
Therefore the ack can be sent simply whenever the queue is empty.

A short look at the send_out_queue routine:

(1) static int send_out_queue(UdsData *ud)

(2) A{

(3 for(;;) {

(4) int vlen;

(5) SysIOVec *tmp = driver_peekq(ud->port, &vlen);

(6) int wrote;

«n if (tmp == NULL) {

(8) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_WRITE, 0);
(9 if (ud->type == portTypeCommand) {

(10) driver_output (ud->port, "Sok", 3);

24 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

(11) }

(12) return O;

(13) }

(14) if (vlen > IO_VECTOR_MAX) {

(15) vlen = I0O_VECTOR_MAX;

(16) }

a7) if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
(18) if (errno == EWOULDBLOCK) {

(19) driver_select(ud->port, (ErlDrvEvent) ud->fd,
(20) DO_WRITE, 1);

(21) return O;

(22) } else {

(23) driver_failure_eof (ud->port);

(24) return -1;

(25) }

(26) }

27) driver_deq(ud->port, wrote);

(28) ud->sent += wrote;

(29) }

(30) }

What we do is simply to pick out an I/O vector from the queue (which is the whole queue as an
SyslOVec). If the 1/0O vector is to long (IO_VECTOR_MAX is defined to 16), the vector length is
decreased (line 15), otherwise the writev (line 17) call will fail. Writing is tried and anything written is
dequeued (line 27). If the write fails with ENOULDBLOCK (note that all sockets are in nonblocking mode),
driver_select is called to make the uds_output routine be called when there is space to write again.

We will continue trying to write until the queue is empty or the writing would block.
The routine above are called from the uds_output routine, which looks like this:

(1) static void uds_output (ErlDrvData handle, ErlDrvEvent event)
(2) {

(3) UdsData *ud = (UdsData *) handle;

(4 if (ud->type == portTypeConnector) {

(5) ud->type = portTypeCommand;

(6) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_WRITE, 0);
Qo) driver_output (ud->port, "Cok",3);

(8 return;

(9 }

(10) send_out_queue (ud) ;

(11) 2

The routine is simple, it first handles the fact that the output select will concern a socket in the
buissiness of connectiong (and the connecting blocked). If the socket is in a connected state it simply
sends the output queue, this routine is called when there is possible to write to a socket where we have
an output queue, so there is no question what to do.

The driver implements a control interface, which is a syncronous interface called when erlang calls
erlang:driver_control/3. This is the only interface that can control the driver when it is in data
mode and it may be called with the following opcodes:

e 'C’: Set port in command mode.
e ’I’: Set port in intermidiate mode.

Erlang Run-Time System Application (ERTS) 25

Chapter 1: ERTS User's Guide

e 'D’: Set port in data mode.

¢ 'N’: Get identification number for listen port, this identification number is used in an accept
command to the driver, it is returned as a big endian 32 bit integer, which happens to be the file
identifier for the listen socket.

e 'S’ Get statistics, which is the number of bytes received, the numer of bytes sent and the number
of bytes pending in the output queue. This data is used when the distribution checks that a
connection is alive (ticking). The statistics is returned as 3 32 bit big endian integers.

e 'T’: Send a tick message, which is a packet of length 0. Ticking is done when the port is in data
mode, so the command for sending data cannot be used (besides it ignores zero length packages in
command mode). This is used by the ticker to send dummy data when no other traffic is present.

e 'R’: Get creation number of listen socket, which is used to dig out the number stored in the lock
file to differentiate between invocations of erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to allocate it’s own buffer is the
provided one is to small. Here is the code for uds_control:

(1) static int uds_control(ErlDrvData handle, unsigned int command,

(2 char* buf, int count, char** res, int res_size)
(3) A

(4) /* Local macro to ensure large enough buffer. */

(5) #define ENSURE(N) \n(6) do {

(11D UdsData *ud = (UdsData *) handle;

(12) switch (command) {
(13) case ’S’:

(14) {

(15) ENSURE(13);

(16) **xres = 0;

17) put_packet_length((*res) + 1, ud->received);

(18) put_packet_length((*res) + 5, ud->sent);

(19) put_packet_length((*res) + 9, driver_sizeq(ud->port));
(20) return 13;

21 3

(22) case ’C’:

(23) if (ud->type < portTypeCommand) {

(24) return report_control_error(res, res_size, "einval");

(25) ¥

(26) ud->type = portTypeCommand;

27 driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(28) ENSURE(1) ;

(29) **xres = 0;

(30) return 1;

(31) case ’I’:

(32) if (ud->type < portTypeCommand) {

(33) return report_control_error(res, res_size, "einval");

(34) 3

(35) ud->type = portTypelntermediate;

(36) driver_select (ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(37) ENSURE(1) ;

(38) **xres = 0;

(39) return 1;

26 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

(40)
(41)
(42)
(43)
(44)
(45)
(46)
4n
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67
(68)
(69)
(70
(7D
(72)
(73)
(74)
(75)

case ’D’:
if (ud->type < portTypeCommand) {
return report_control_error(res, res_size, "einval");
}
ud->type = portTypeData;
do_recv(ud) ;
ENSURE (1) ;
**xres = 0;
return 1;
case ’N’:
if (ud->type != portTypelListener) {
return report_control_error(res, res_size, "einval");
}
ENSURE(5) ;
(xres) [0] = 0;
put_packet_length((*res) + 1, ud->fd);
return 5;
case ’T’: /* tick */
if (ud->type != portTypeData) {
return report_control_error(res, res_size, "einval");
}
do_send(ud,"",0);
ENSURE (1) ;
**xres = 0;
return 1;
case ’R’:
if (ud->type != portTypelListener) {
return report_control_error(res, res_size, "einval");
}
ENSURE(2) ;
(*res) [0]
(*res) [1]
return 2;
default:
return report_control_error(res, res_size, "einval");

0;
ud->creation;

}

(76) #undef ENSURE

aTn ¥

The macro ENSURE (line 5 to 10) is used to ensure that the buffer is large enough for our answer. We
switch on the command and take actions, there is not much to say about this routine. Worth noting is
that we always has read select active on a port in data mode (achieved by calling do_recv on lin 45), but
turn off read selection in intermediate and command modes (line 27 and 36).

The rest of the driver is more or less UDS specific and not of general interest.

The erlang interface to the driver

Not written yet

Erlang Run-Time System Application (ERTS)

27

Chapter 1: ERTS User's Guide

The distribution module

The dist_util module
Not written yet

The uds_dist callback module
Not written yet

Putting it all together

To test the distribution, one can use the net_kernel:start/1 function, which is useful as it starts the
distribution on a running system, where tracing/debugging can be performed. The
net_kernel:start/1 routine takes a list as it’s single argument. The lists first element should be the
node name (without the “@hostname™) as an atom, and the second (and last) element should be one of
the atoms shortnames or longnames. In the example case shortnames is preferred.

For net kernel to find out which distribution module to use, the command line argument -proto_dist
is used. The argument is followed bu one or more distribution module names, with the “_dist” suffix
removed, i.e. uds_dist as a distribution module is specified as -proto_dist uds.

If no epmd (TCP port mapper daemon) is used, one should also specify the command line option
-no_epmd, which will make erlang skip the epmd startup, both as a OS process and as an erlang dito.

The path to the directory where the distribution modules reside must be known at boot, which can
either be achieved by specifying -pa <path> on the command line or by building a boot script
containing the applications used for your distribution protocol (in the uds_dist protocol, it’s only the
uds_dist application that needs to be added to the script).

The distribution will be started at boot if all the above is specified and an -sname <name>> flag is
present at the command line, here follows two examples:

$ erl -pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin -proto_dist uds -no_epmd
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)

1> net_kernel:start([bing,shortnames]).
{0k,<0.30.0>}

(bing@hador)2>

$ erl -pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin -proto_dist uds \n -no_epmd -sname bong
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bong@hador) 1>

One can utilize the ERL_FLAGS environment variable to store the complicated parameters in:

28 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

$ ERL_FLAGS=-pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin \n -proto_dist uds -no_epmd
$ export ERL_FLAGS

$ erl -sname bang

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bang@hador) 1>

The ERL_FLAGS shuld preferrably not include the name of the node.

Erlang Run-Time System Application (ERTS) 29

1.4 tty - Acommand line interface

tty is a simple command line interface program where keystrokes are collected and interpreted.
Completed lines are sent to the shell for interpretation. There is a simple history mechanism, which
saves previous lines. These can be edited before sending them to the shell. tty is started when Erlang is
started with the command:

erl

tty operates in one of two modes:

e normal mode, in which lines of text can be edited and sent to the shell.

¢ shell break mode, which allows the user to kill the current shell, start multiple shells etc. Shell
break mode is started by typing Control G.

Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the emacs line
editing commands are supported. The following is a complete list of the supported line editing
commands.

Note: The notation C-a means pressing the control key and the letter a simultaneously. M-f means
pressing the ESC key followed by the letter £.

Key Sequence Function

C-a Beginning of line

C-b Backward character

M-b Backward word

C-d Delete character

M-d Delete word

C-e End of line

C-f Forward character

M-f Forward word

C-g Enter shell break mode

C-k Kill line

C-l Redraw line

C-n Fetch next line from the history buffer
C-p Fetch previous line from the history buffer

continued ...

30 Erlang Run-Time System Application (ERTS)

... continued

C-t

Transpose characters

C-y

Insert previously killed text

Table 1.2: tty text editing

Shell Break Mode

tty enters shell break mode when you type Control G. In this mode you can:

¢ Kill or suspend the current shell
e Connect to a suspended shell

e Start a new shell

Erlang Run-Time System Application (ERTS)

31

32

Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

Short Summaries

e Command epmd [page 36] — Erlang Port Mapper Daemon
e Command erl [page 38] — The Erlang Emulator
e Command erlc [page 42] — Compiler

e Command erlsrv [page 45] — Run the Erlang emulator as a service on Windows
NT(R)

e Command run_erl [page 50] — Redirect Erlang input and output streams on
Solaris(R)

e Command start [page 51] — OTP start script example for Unix

e Command start_erl [page 52] — Start Erlang for embedded systems on Windows
NT(R)

e Command werl [page 54] — The Erlang Emulator

e C Library erl_set_memory_block [page 55] — Custom memory allocation for Erlang
on VxWorks(R)

epmd

The following functions are exported:

e epmd [-daemon] Starts a name server as a daemon

e epmd -names Requests the names of the registrered Erlang nodes on this host
e epmd -kill Kills the epmd process

e epmd -help List options

erl

The following functions are exported:

e erl <arguments> Starts the Erlang system

Erlang Run-Time System Application (ERTS) 33

ERTS Reference Manual

erlc

The following functions are exported:

e erlc flags filel.ext file2.ext... Compiles files

erlsrv

The following functions are exported:

e erlsrv {set | add} <service-name> [<service options>] Adds or
modifies an Erlang service

e erlsrv {start | stop | disable | enable} <service-name> Manipulates
the current service status.

e erlsrv remove <service-name> Removes the service.

e erlsrv list [<service-name>>] Lists all erlang services or all options for one
service.

e erlsrv help Displays a brief help text

run_erl

The following functions are exported:

e run erl pipe dir/ log dir "exec command [command arguments]" Start the
Erlang emulator with the correct release data

start

The following functions are exported:

e start [data_file 1" This is an example script on how to startup the Erlang
system in embedded mode on Unix.

start_erl

The following functions are exported:

e start_erl [<erl options>] ++ [<start_erl options>] Start the Erlang
emulator with the correct release data

Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

werl

No functions are exported.

erl_set_memory_block

The following functions are exported:

e int erl_set memory._block(size t size, void *ptr, int
warn mixed malloc, int realloc_always.moves, int use_reclaim, ...)
Specifies parameters for Erlang internal memory allocation.

e int erl memory_show(...) A utility similar to VxWorks memShow, but for the
Erlang memory area.

e int erl mem info get(MEM PART STATS *stats) A utility similar to VxWorks
memPartInfoGet, but for the Erlang memory area.

Erlang Run-Time System Application (ERTS) 35

epmd (Command) ERTS Reference Manual

epmd (Command)

This daemon acts as a name server on all hosts involved in distributed Erlang
computations. When an Erlang node starts, the node has a name and it obtains an
address from the host OS kernel. The name and the address are sent to the epmd
daemon running on the local host. In a TCP/IP environment, the address consists of the
IP address and a port number. The name of the node is an atom on the form of
Name@Node. The job of the epmd daemon is to keep track of which node name listens on
which address. Hence, epmd map symbolic node names to machine addresses.

The daemon is started automatically by the Erlang start-up script.

The program epmd can also be used for a variety of other purposes, for example
checking the DNS (Domain Name System) configuration of a host.

Exports

epmd [-daemon]

epmd —names

epmd -kill

epmd -help

36

Starts a name server as a daemon. If it has no argument, the epmd runs as a normal
program with the controlling terminal of the shell in which it is started. Normally, it
should run as a daemon.

Requests the names of the local Erlang nodes epmd has registered.

Kills the epmd process.

Write short info about the usage including some debugging options not listed here.

Erlang Run-Time System Application (ERTS)

ERTS Reference Manual epmd (Command)

Logging

On some operating systems syslog will be used for error reporting when epmd runs as an
daemon. To enable the error logging you have to edit /etc/syslog.conf file and add an

entry

'epmd
*&1d; TABs> ; /var/log/epmd.log

where <TABs> are real tab characters. Spaces will silently be ignored.

Erlang Run-Time System Application (ERTS) 37

erl (Command) ERTS Reference Manual

erl (Command)

The erl program starts the Erlang runtime system. The exact details (e.g. whether erl
is a script or a program and which other programs it calls) are system-dependent.

Windows 95/98/2000/NT users will probably want to use the werl program instead,
which run in its own window with scrollbars and supports command-line editing. The
erl program on Windows provides no line editing in its shell, and on Windows 95 there
is no way to scroll back to text which has scrolled off the screen. The er1 program must
be used, however, in pipelines or if you want to redirect standard input or output.

Exports

erl <arguments>

38

Starts the Erlang system.

Any argument starting with a plus sign (+) is always interpreted as a system flag
(described below), regardless of where it occurs on the command line.

Arguments starting with a hyphen (=) are the start of a flag. A flag includes all following
arguments up to the next argument starting with a hyphen.

Example:
erl -sname arne -myflag 1 -s mod func arg

Here -sname arne is a flag and so are -myflag 1 and -s mod func arg. Note that
these flags are treated differently. -sname arne is interpreted by the OTP system, but it
still included in the list of flags returned by init:get _arguments/0. -s mod func arg
is also treated specially and it is not included in the return value for
init:get_arguments/0. Finally, -myflag 1 is not interpreted by the OTP system in
any way, but it is included in init:get_arguments/O0.

Plain arguments are not interpreted in any way. They can be retrieved using
init:get_args/0. Plain arguments can occur in two places: Before the first flag
argument on the command line, or after a -- argument.

Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl (Command)

Flags

The following flags are supported:

— Any arguments -- following will not be interpreted in any way. They can be
retrieved by init:get_args/0. The exception is arguments starting with a +,
which will be interpreted as system flags (see below).

-AppName Key Value Overrides the Key configuration parameter of the AppName
application. See application(3). This type of flag can also be retrieved using the
init module.

-boot File Specifies the name of the boot script, File.boot, which is used to start the
system. See init(3). Unless File contains an absolute path, the system searches for
File.boot in the current and <ERL_INSTALL DIR>/bin directories.

If this flag is omitted, the <ERL_INSTALL DIR>/bin/start.boot boot script is
used.

-boot_var Var Directory [Var Directory] If the boot script used contains another path
variable than $ROQT, this variable must have a value assigned in order to start the
system. A boot variable is used if user applications have been installed in another
location than underneath the <ERL_INSTALL DIR>/1ib directory. $Var is
expanded to Directory in the boot script.

-compile mod1 mod2 Makes the Erlang system compile mod1.erl mod2.erl
and then terminate (with non-zero exit code if the compilation of some file didn’t
succeed). Implies -noinput. Not recommended - use erlc(1) instead.

-config Config Reads the Config.config configuration file in order to configure the
system. See application(3).

-connect_all false If this flag is present, global will not maintain a fully connected
network of distributed erlang nodes, and then global name registration cannot be
used. See global(3).

-cookie Obsolete flag without any effect and common misspelling for -setcookie. Use
-setcookie Cookie option if want to override the default cookie.

-detached Starts the Erlang system detached from the system console. Useful for
running daemons and backgrounds processes.

-emu_args Useful for debugging. Prints out the actual arguments sent to the emulator.

-env Variable Value Sets the HOST OS environment variable Variable to the value
Value of the Erlang system. For example:

% erl -env DISPLAY gin:0

In this example, an Erlang system is started with the DISPLAY environment
variable set to the value gin:0.

-heart Starts heart beat monitoring of the Erlang system. See heart(3).

-hosts Hosts Specifies the IP addresses for the hosts on which an Erlang boot servers are
running. This flag is mandatory if the -1loader inet flag is present. On each host,
there must be one Erlang node running, on which the boot_server must be
started.

The IP addresses must be given in the standard form (four decimal numbers
separated by periods, for example “150.236.20.74”). Hosts names are not
acceptable, but an broadcast address (preferably limited to the local network) is.

Erlang Run-Time System Application (ERTS) 39

erl (Command) ERTS Reference Manual

-id Id Specifies the identity of the Erlang system. If the system runs as a distributed
node, Id must be identical to the name supplied together with the -sname or
-name distribution flags.

-instr Selects an instrumented Erlang system (virtual machine) to run, instead of the
ordinary one. When running an instrumented system, some resource usage data
can be obtained and analysed using the module instrument. Functionally, it
behaves exactly like an ordinary Erlang system.

-loader Loader Specifies the name of the loader used to load Erlang modules into the
system. See erl_prim_loader(3). Loader can be efile (use the local file system), or
inet (load using the boot_server on another Erlang node). If Loader is something
else, the user supplied Loader port program is started.

If the -loader flag is omitted efile is assumed.

-make Makes the Erlang system invoke make:al1() in the current work directory and
then terminate. See make(3). Implies -noinput.

-man Module Displays the manual page for the Erlang module Module. Only supported
on Unix.

-mode Mode The mode flag indicates if the system will load code automatically at
runtime, or if all code is loaded during system initialization. Mode can be either
interactive to allow automatic code loading, or embedded to load all code during
start-up. See code(3).

-name Name Makes the node a distributed node. This flag invokes all network servers
necessary for a node to become distributed. See net_kernel(3).
The name of the node will be Name@Host, where Host is the fully qualified host
name of the current host. This flag also ensures that epmd runs on the current host
before Erlang is started. See epmd(1).

-noinput Ensures that the Erlang system never tries to read any input. Implies
-noshell.

-noshell Starts an Erlang system with no shell at all. This flag makes it possible to have
the Erlang system as a component in a series of UNIX pipes.

-nostick Disables the sticky directory facility of the code server. See code(3).

-oldshell Invokes the old Erlang shell from Erlang release 3.3. The old shell can still be
used.

-pa Directories Adds the directories Directories to the head of the search path of the
code server, as if code:add pathsa/1 was called. See code(3).

-pz Directories Adds the directories Directories to the end of the search path of the
code server, as if code:add pathsa/1 was called. See code(3).

-s Mod [Fun [Args]] Passes the -s flag to the init:boot () routine. See init(3).

-setcookie Cookie Sets the magic cookie of the current node to Cookie. As
erlang:set_cookie(node(),Cookie) is used, all other nodes will also be assumed
to have their cookies set to Cookie. In this way, several nodes can share one magic
cookie. Erlang magic cookies are explained in auth(3).

-sname Name This is the same as the -name flag, with the exception that the host name
portion of the node name will not be fully qualified. The following command is
used do start Erlang at the host with the name gin.eua.ericsson.se

% erl -sname klacke
Eshell V4.7 (abort with ~G)
(klacke@gin) 1>

40 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl (Command)

Only the host name portion of the node name will be relevant. This is sometimes
the only way to run distributed Erlang if the DNS (Domain Name System) is not
running. There can be no communication between systems running with the
-sname flag and those running with the -name flag, as node names must be unique
in distributed Erlang systems.

-version Makes the system print out its version number.
All these flags are processed during the start-up of the Erlang kernel servers and before
any user processes are started. All flags are passed to init:boot (Args). See init(3). All

additional flags passed to the script will be passed to init:boot/2 as well, and they can
be accessed using the init module.

System Flags

The erl script invokes the code for the Erlang virtual machine. This program supports
the following flags:

+A size Sets the pool size for device driver threads. Default is O.

+B De-activates the break handler for ~C and "\ .

+h size Sets the default heap size of processes to the size size.

+| Displays info while loading code.

+P Number Sets the total number of processes for this system. The Number must be in
the range [15,32768].

+s size Sets the default stack size for Erlang processes to the size size.
+v Verbose
+V Prints the version of Erlang at start-up.

Example:

% erl -name foo +B +1

In this example, a distributed node is started with the break handler turned off and a lot
of info is displayed while the code is loading.

See Also

init(3), erl_prim_loader(3), erl_boot_server(3), code(3), application(3), heart(3),
net_kernel(3), auth(3), make(3), epmd(1)

Erlang Run-Time System Application (ERTS) 41

erlc (Command) ERTS Reference Manual

erlc (Command)

The erlc program provides a common way to run all compilers in the Erlang system.
Depending on the extension of each input file, erlc will invoke the appropriate
compiler. Regardless of which compiler is used, the same flags are used to provide
parameters such as include paths and output directory.

Exports

erlc flags filel.ext file2.ext...

Erlc compiles one or more files. The files must include the extension, for example .erl
for Erlang source code, or .yrl for Yecc source code. Erlc uses the extension to invoke
the correct compiler.

Generally Useful Flags

The following flags are supported:

-1 directory Instructs the compiler to search for include file in the specified directory. If
not given, the compiler assumes that include files are located in the current
working directory.

-0 directory The directory where the compiler should place the output files. If not
specified, output files will be placed in the current working directory.

-Dname Defines a macro.

-Dname=value Defines a macro with the given value. The value can be any Erlang
term. Depending on the platform, the value may need to be quoted if the shell
itself interprets certain characters. On Unix, terms which contain tuples and list
must be quoted. Terms which contain spaces must be quoted on all platforms.

-W Enables warning messages. Without this switch, only errors will be reported.
-v Enables verbose output.

-b output-type Specifies the type of output file. Generally, output-type is the same as the
file extension of the output file but without the period. This option will be ignored
by compilers that have a a single output format.

— Signals that no more options will follow. The rest of the arguments will be treated as
file names, even if they start with hyphens.

42 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlc (Command)

+term A flag starting with a plus (’+’) rather than a hyphen will be converted to an
Erlang term and passed unchanged to the compiler. For instance, the export_all
option for the Erlang compiler can be specified as follows:

erlc +export_all file.erl

Depending on the platform, the value may need to be quoted if the shell itself
interprets certain characters. On Unix, terms which contain tuples and list must be
guoted. Terms which contain spaces must be quoted on all platforms.

Special Flags

The flags in this section are useful in special situations such as re-building the OTP
system.

-ilroot directory Defines the root directory to be used for include_1ib directives in the
Erlang compiler. Defaults to the library directory of the emulator where the
compiler is run.

-pa directory Appends directory to the front of the code path in the invoked Erlang
emulator. This can be used to invoke another compiler than the default one.

-pz directory Appends directory to the code path in the invoked Erlang emulator.

Supported Compilers

.erl Erlang source code. It generates a .bean file.
The options -P, -E, and -S are equivalent to +'P’, +’E’, and +'S’, except that it is
not necessary to include the single quotes to protect them from the shell.
Supported options: -ilroot, -1, -o, -D, -v, -W, -b.

.yrl Yecc source code. It generates an .er1 file.

Use the -1 option with the name of a file to use that file as a customized prologue
file (the fourth argument of the yecc:yecc/4 function).

Supported options: -0, -v, -l (see above).

.mib MIB for SNMP. It generates a .bin file.
Supported options: -I, -0, -W.

.bin A compiled MIB for SNMP. It generates a .hr1 file.
Supported options: -0, -v.

.rel Script file. It generates a boot file.

Use the -1 to name directories to be searched for application files (equivalent to the
path in the option list for systools:make script/2).

Supported options: -o.

.h A interface definition for IG (Interface Generator). It generates C and Erlang files.
Supported options: -o.

Erlang Run-Time System Application (ERTS) 43

erlc (Command) ERTS Reference Manual

Environment Variables

ERLC_EMULATOR The command for starting the emulator. Default is erl in the same
directory as the erlc program itself, or if it doesn’t exist, erl in any of the directories
given in the PATH environment variable.

See Also

erl(1), erl_compile(3), compile(3), yecc(3), snmp(3)

44 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlsrv (Command)

erlsrv (Command)

This utility is specific to Windows NT(R) It allows Erlang emulators to run as services
on the NT system, allowing embedded systems to start without any user needing to log
in. The emulator started in this way can be manipulated through the Windows NT(R)
services applet in a manner similar to other services.

As well as being the actual service, erlsrv also provides a command line interface for
registering, changing, starting and stopping services.

To manipulate services, the logged in user should have Administrator privileges on the
machine. The Erlang machine itself is (default) run as the local administrator. This can
be changed with the Services applet in Windows NT(R).

The processes created by the service can, as opposed to normal services, be “killed” with
the task manager. Killing a emulator that is started by a service will trigger the “OnFail”
action specified for that service, which may be a reboot.

The following parameters may be specified for each Erlang service:

e StopAction: This tells erlsrv how to stop the Erlang emulator. Default is to kill
it (Win32 TerminateProcess), but this action can specify any Erlang shell
command that will be executed in the emulator to make it stop. The emulator is
expected to stop within 30 seconds after the command is issued in the shell. If the
emulator is not stopped, it will report a running state to the service manager.

e OnFail: This can be either of reboot, restart, restart_always or ignore (the
default). In case of reboot, the NT system is rebooted whenever the emulator
stops (a more simple form of watchdog), this could be useful for less critical
systems, otherwise use the heart functionality to accomplish this. The restart value
makes the Erlang emulator be restarted (with whatever parameters are registered
for the service at the occasion) when it stops. If the emulator stops again within 10
seconds, it is not restarted to avoid an infinite loop which could completely hang
the NT system. restart_always is similar to restart, but does not try to detect
cyclic restarts, it is expected that some other mechanism is present to avoid the
problem. The default (ignore) just reports the service as stopped to the service
manager whenever it fails, it has to be manually restarted.

On a system where release handling is used, this should always be set to ignore.
Use heart to restart the service on failure instead.

e Machine: The location of the Erlang emulator. The default is the erl.exe located
in the same directory as erlsrv.exe. Do not specify werl.exe as this emulator, it
will not work.

If the system uses release handling, this should be set to a program similar to
start_erl.exe.

e Env: Specifies an additional environment for the emulator. The environment
variables specified here are added to the system wide environment block that is
normally present when a service starts up. Variables present in both the system
wide environment and in the service environment specification will be set to the
value specified in the service.

Erlang Run-Time System Application (ERTS) 45

erlsrv (Command) ERTS Reference Manual

e WorkDir: The working directory for the Erlang emulator, has to be on a local drive
(there are no network drives mounted when a service starts). Default working
directory for services is %SystemDrive%/SystemPath’. Debug log files will be
placed in this directory.

e Priority: The process priority of the emulator, this can be one of realtime,
high, low or default (the default). Real-time priority is not recommended, the
machine will possibly be inaccessible to interactive users. High priority could be
used if two Erlang nodes should reside on one dedicated system and one should
have precedence over the other. Low process priority may be used if interactive
performance should not be affected by the emulator process.

e SName or Name: Specifies the short or long node-name of the Erlang emulator.
The Erlang services are always distributed, default is to use the service name as
(short) node-name.

e DebugType: Can be one of none (default), new, reuse or console. Specifies that
output from the Erlang shell should be sent to a “debug log”. The log file is named
<servicename>.debug or <servicename> .debug.<N>, where <N> is an integer
between 1 and 99. The logfile is placed in the working directory of the service (as
specified in WorkDir). The reuse option always reuses the same log file
(<servicename> . debug) and the new option uses a separate log file for every
invocation of the service (<servicename>.debug.<N>). The console option
opens an interactive Windows NT(R) console window for the Erlang shell of the
service. The console option automatically disables the StopAction and a service
started with an interactive console window will not survive logouts. If no
DebugType is specified (none), the output of the Erlang shell is discarded.

e Args: Additional arguments passed to the emulator startup program erl.exe (Or
start_erl.exe). Arguments that cannot be specified here are -noinput
(StopActions would not work), -name and -sname (they are specified in any way.
The most common use is for specifying cookies and flags to be passed to init:boot()

(-s).

The naming of the service in a system that uses release handling has to follow the
convention NodeName_Release, where NodeName is the first part of the Erlang
nodename (up to, but not including the “@”) and Release is the current release of the
application.

Exports

erlsrv {set | add} <service-name> [<service options>]

The set and add commands adds or modifies a Erlang service respectively. The simplest
form of an add command would be completely without options in which case all default
values (described above) apply. The service name is mandatory.

Every option can be given without parameters, in which case the default value is
applied. Values to the options are supplied only when the default should not be used
(i.e. erlsrv set myservice -prio -arg sets the default priority and removes all
arguments).

The following service options are currently available:

46 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlsrv (Command)

-stfopaction [<erlang shell command>]] Defines the StopAction, the command given
to the erlang shell when the service is stopped. Default is none.

-on[fail [{reboot | restart | restart_always}]] Specifies the action to take when the
erlang emulator stops unexpectedly. Default is to ignore.

-m[achine [<erl-command>]] The complete path to the erlang emulator, never use the
werl program for this. Default is the erl.exe in the same directory as erlsrv.exe.
When release handling is used, this should be set to a program similar to
start_erl.exe.

-e[nv [<variable>[=<value>]] ...] Edits the environment block for the service. Every
environment variable specified will add to the system environment block. If a
variable specified here has the same name as a system wide environment variable,
the specified value overrides the system wide. Environment variables are added to
this list by specifying <variable>=<value> and deleted from the list by specifying
<variable> alone. The environment block is automatically sorted. Any number of
-env options can be specified in one command. Default is to use the system
environment block unmodified (except for two additions, see below [page 48]).

-wlorkdir [<directory>]] The initial working directory of the erlang emulator. Default
is the system directory.

-p[riority [{low|high|realtime}]] The priority of the erlang emulator. The default is
the Windows NT(R) default priority.

{-sn[ame | -n[ame]} [<node-name>]] The node-name of the erlang machine,
distribution is mandatory. Default is -sname <service name>.

-d[ebugtype [{new |reuse|console}]] Specifies where shell output should be sent,
default is that shell output is discarded.

-ar[gs [<limited erl arguments>]] Additional arguments to the erlang emulator, avoid
-noinput, -noshell and -sname/-name. Default is no additional arguments.
Remember that the services cookie file is not necessarily the same as the interactive
users. The service runs as the local administrator. All arguments should be given
together in one string, use double quotes (*) to give an argument string containing
spaces and use quoted quotes (\”) to give an quote within the argument string if
necessary.

erlsrv {start | stop | disable | enable} <service-name>

These commands are only added for convenience, the normal way to manipulate the
state of a service is through the control panels services applet. The start and stop
commands communicates with the service manager for stopping and starting a service.
The commands wait until the service is actually stopped or started. When disabling a
service, it is not stopped, the disabled state will not take effect until the service actually
is stopped. Enabling a service sets it in automatic mode, that is started at boot. This
command cannot set the service to manual.

erlsrv remove <service-name>

This command removes the service completely with all its registered options. It will be
stopped before it is removed.

erlsrv list [<service-name>]

Erlang Run-Time System Application (ERTS) 47

erlsrv (Command) ERTS Reference Manual

erlsrv help

48

If no service name is supplied, a brief listing of all erlang services is presented. If a
service-name is supplied, all options for that service are presented.

ENVIRONMENT

The environment of an erlang machine started as a service will contain two special
variables, ERLSRV_SERVICE_NAME, which is the name of the service that started the
machine and ERLSRV_EXECUTABLE which is the full path to the erlsrv.exe that can be
used to manipulate the service. This will come in handy when defining a heart
command for your service. A command file for restarting a service will simply look like
this:

Q@echo off
%ERLSRV_EXECUTABLEY, stop %ERLSRV_SERVICE_NAMEY,
%ERLSRV_EXECUTABLE), start %ERLSRV_SERVICE_NAMEY

This command file is then set as heart command.

The environment variables can also be used to detect that we are running as a service
and make port programs react correctly to the control events generated on logout (see
below).

PORT PROGRAMS

When a program runs in the service context, it has to handle the control events that is
sent to every program in the system when the interactive user logs off. This is done in
different ways for programs running in the console subsystem and programs running as
window applications. An application which runs in the console subsystem (normal for
port programs) uses the win32 function SetConsoleCtrlHandler to a control handler
that returns TRUE in answer to the CTRL_LOGOFF_EVENT. Other applications just
forward WM_ENDSESSION and WM_QUERYENDSESSION to the default window procedure.
Here is a brief example in C of how to set the console control handler:

#include <windows.h>
/%
** A Console control handler that ignores the log off events,
** and lets the default handler take care of other events.
*/
BOOL WINAPI service_aware_handler (DWORD ctrl){

if (ctrl == CTRL_LOGOFF_EVENT)

return TRUE;

return FALSE;

}

void initialize_handler(void){
char buffer[2];

Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlsrv (Command)

/*
* We assume we are running as a service if this
* environment variable is defined
*/
if (GetEnvironmentVariable ("ERLSRV_SERVICE_NAME" ,buffer,
(DWORD) 2)){

/%
*x Actually set the control handler
*/
SetConsoleCtrlHandler (&service_aware_handler, TRUE);
}
}
NOTES

Even though the options are described in a Unix-like format, the case of the options or
commands is not relevant, and the “/” character for options can be used as well as the “-”
character.

Note that the program resides in the emulators bin-directory, not in the bin-directory
directly under the erlang root. The reasons for this are the subtle problem of upgrading
the emulator on a running system, where a new version of the runtime system should
not need to overwrite existing (and probably used) executables.

To easily manipulate the erlang services, put the

<erlang root>\erts-<version>\bin directory in the path instead of

<erlang root>\bin. The erlsrv program can be found from inside erlang by using the
os:find executable/1 erlang function.

For release handling to work, use start_erl as the Erlang machine. It is also worth
mentioning again that the name of the service is significant (see above [page 46]).

SEE ALSO

start_erl(1), release_handler(3)

Erlang Run-Time System Application (ERTS) 49

run_erl (Command) ERTS Reference Manual

run_erl (Command)

This describes the run_erl program specific to Solaris. This program redirect the
standard input and standard output streams so that all output can be logged. It also let
the program to_erl connect to the Erlang console making it possible to monitor and
debug an embedded system remotely.

You can read more about the use in the Embedded System User’s Guide.

Exports

run_erl pipe.dir/ log.dir "exec command [command arguments]"

50

The run_erl program arguments are:

pipe_dir This is where to put the named pipe, usually /tmp/.

log_dir This is where the log files are written. There will be one log file, run_erl.log
that log progress and warnings from the run_erl program itself and there will be
up to five log files at maximum 100KB each with the content of the standard
streams from and to the command. When the logs are full run_erl will delete and
reuse the oldest log file.

“exec command [command_arguments "] In the third argument command is the to
execute where everything written to stdin and stdout is logged to log dir.

SEE ALSO

start(1), start_erl(1)

Erlang Run-Time System Application (ERTS)

ERTS Reference Manual start (Command)

start (Command)

This describes the start script that is an example script on how to startup the Erlang
system in embedded mode on Unix.

You can read more about the use in the Embedded System User’s Guide.

Exports

start [data_file 1"

In the example there is one argument
data_file Optional, specifies what start_erl.data file to use.

There is also an environment variable RELDIR that can be set prior to calling this
example that set the directory where to find the release files.

SEE ALSO

run_erl(1), start_erl(1)

Erlang Run-Time System Application (ERTS) 51

start_erl (Command) ERTS Reference Manual

start_erl (Command)

This describes the start_erl program specific to Windows NT. Although there exists
programs with the same name on other platforms, their functionality is not the same.

The start_erl program is distributed both in compiled form (under <Erlang
root>\erts-<version>\bin) and in source form (under <Erlang
root>\erts-<version>\src). The purpose of the source code is to make it possible to
easily customize the program for local needs, such as cyclic restart detection etc. There
is also a “make”-file, written for the nmake program distributed with Microsoft(R) Visual
C++(R). The program can however be compiled with any Win32 C compiler (possibly
with slight modifications).

The purpose of the program is to aid release handling on Windows NT(R). The program
should be called by the er1srv program, read up the release data file start_erl.data and
start Erlang. Certain options to start_erl are added and removed by the release handler
during upgrade with emulator restart (more specifically the -data option).

Exports

start_erl [<erl options>] ++ [<start_erl options>]

The start_erl program in it’s original form recognizes the following options:

++ Mandatory, delimits start_erl options from normal Erlang options. Everything on
the command line before the ++ is interpreted as options to be sent to the erl
program. Everything after ++ is interpreted as options to start_erl itself.

-reldir <release root> Mandatory if the environment variable RELDIR is not specified.
Tells start_erl where the root of the release tree is placed in the file-system (like
<Erlang root>\releases). The start_erl.data file is expected to be placed in this
directory (if not otherwise specified).

-data <data file name> Optional, specifies another data file than start_erl.data in the
<release root>. It is specified relative to the <release root> or absolute
(includeing drive letter etc.). This option is used by the release handler during
upgrade and should not be used during normal operation. The release data file
should not normally be named differently.

-bootflags <boot flags file name> Optional, specifies a file name relative to actual
release directory (that is the subdirectory of <release root> where the .boot file
etc. are placed). The contents of this file is appended to the command line when
Erlang is started. This makes it easy to start the emulator with different options for
different releases.

52 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual start_erl (Command)

NOTES

As the source code is distributed, it can easily be modified to accept other options. The
program must still accept the -data option with the semantics described above for the
release handler to work correctly.

The Erlang emulator is found by examining the registry keys for the emulator version
specified in the release data file. The new emulator needs to be properly installed before
the upgrade for this to work.

Although the program is located together with files specific to emulator version, it is not
expected to be specific to the emulator version. The release handler does not change the
-machine option to erlsrv during emulator restart. Place the (possibly customized)
start_erl program so that it is not overwritten during upgrade.

The erlsrv program’s default options are not sufficient for release handling. The
machine erlsrv starts should be specified as the start_erl program and the arguments
should contain the ++ followed by desired options.

SEE ALSO

erlsrv(1), release_handler(3)

Erlang Run-Time System Application (ERTS) 53

werl (Command) ERTS Reference Manual

werl (Command)

On Windows 95/NT, the preferred way to start the Erlang system is:
werl <script-flags> <user-flags>

This will start Erlang in its own window, which is nice for interactive use
(command-line editing will work and there are scrollbars). All flags except the
-o0ldshell flag work as in erl.

In cases there you want to redirect standard input and/or standard output or use Erlang
in a pipeline, the werl is not suitable, and the erl program should be used instead.

54 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl_set_ memory_block (C Module)

erl_set_memory_block (C Module)

This documentation is specific to VxWorks.

The erl_set_memory_block function/command initiates custom memory allocation for
the Erlang emulator. It has to be called before the Erlang emulator is started and makes
Erlang use one single large memory block for all memory allocation.

The memory within the block can be utilized by other tasks than Erlang. This is
accomplished by calling the functions sys_alloc, sys_realloc and sys_free instead of
malloc, realloc and free respectively.

The purpose of this is to avoid problems inherent in the VxWorks systems malloc
library. The memory allocation within the large memory block avoids fragmentation by
using an “address order first fit” algorithm. Another advantage of using a separate
memory block is that resource reclamation can be made more easily when Erlang is
stopped.

The erl_set_memory block function is callable from any C program as an ordinary 10
argument function as well as from the commandline.

Exports

int erl_set_memory_block(size_t size, void *ptr, int warnmixedmalloc, int
realloc_always moves, int use_reclaim, o)

The function is called before Erlang is started to specify a large memory block where
Erlang can maintain memory internally.

Parameters:

size_t size The size in bytes of Erlang’s internal memory block. Has to be specified.
Note that the VxWorks system uses dynamic memory allocation heavily, so leave
some memory to the system.

void *ptr A pointer to the actual memory block of size size. If this is specified as 0
(NULL), Erlang will allocate the memory when starting and will reclaim the
memory block (as a whole) when stopped.

If a memory block is allocated and provided here, the sys_alloc etc routines can
still be used after the Erlang emulator is stopped. The Erlang emulator can also be
restarted while other tasks using the memory block are running without destroying
the memory. If Erlang is to be restarted, also set the use_reclaim flag.

If O is specified here, the Erlang system should not be stopped while some other
task uses the memory block (has called sys_alloc).

int warn_mixed_malloc If this flag is set to true (anything else than 0), the system will
write a warning message on the console if a program is mixing normal malloc with
sys_realloc Or sys_free.

Erlang Run-Time System Application (ERTS) 55

erl_set. memory_block (C Module) ERTS Reference Manual

int realloc_always_moves If this flag is set to true (anything else than 0), all calls to
sys_realloc result in a moved memory block. This can in certain conditions give
less fragmentation. This flag may be removed in future releases.

int use_reclaim If this flag is set to true (anything else than 0), all memory allocated
with sys_alloc is automatically reclaimed as soon as a task exits. This is very
useful to make writing port programs (and other programs as well) easier.
Combine this with using the routines save_open etc. specified in the reclaim.h file
delivered in the Erlang distribution.

Return Value:
Returns 0 (OK) on success, otherwise a value <> 0.

int erl memory_show(...)

Return Value:
Returns 0 (OK) on success, otherwise a value <> 0.

int erl mem info_get (MEM_PART_STATS *stats)

Parameter:

MEM_PART_STATS *stats A pointer to a MEM_PART_STATS structure as defined in
<memLib.h>. A successful call will fill in all fields of the structure, on error all
fields are left untouched.

Return Value:
Returns 0 (OK) on success, otherwise a value <> 0

NOTES

The memory block used by Erlang actually does not need to be inside the area known to
ordinary malloc. It is possible to set the USER_RESERVED_MEM preprocessor symbol when
compiling the wind kernel and then use user reserved memory for Erlang. Erlang can
therefor utilize memory above the 32 Mb limit of VxWorks on the PowerPC
architecture.

Example:
In config.h for the wind kernel:

#undef LOCAL_MEM_AUTOSIZE
#undef LOCAL_MEM_SIZE
#undef USER_RESERVED_MEM

#define LOCAL_MEM_SIZE 0x05000000
#define USER_RESERVED_MEM 0x03000000

In the start-up script/code for the VxWorks node:
erl_set_memory_block(sysPhysMemTop () -sysMemTop() ,sysMemTop(),0,0,1);

56 Erlang Run-Time System Application (ERTS)

Setting the use_reclaim flag decreases performance of the system, but makes
programming much easier. Other similar facilities are present in the Erlang system even
without using a separate memory block. The routines called save malloc,
save_realloc and save_free provide the same facilities by using VxWorks own
malloc. Similar routines exist for files, see the file reclaim.h in the distribution.

Erlang Run-Time System Application (ERTS) 57

58

Erlang Run-Time System Application (ERTS)

List of Tables

Chapter 1: ERTS User’s Guide
1.1 Literals in the MatchCondition/MatchBody parts of a match.spec
12 ttytextediting

Erlang Run-Time System Application (ERTS)

59

List of Tables

60 Erlang Run-Time System Application (ERTS)

Index

Modules are typed in this way.
Functions are typed in this way.

epmd
epmd -help (Command), 36
epmd -kill (Command), 36
epmd -names (Command), 36
epmd [-daemon] (Command), 36

epmd -help (Command)
epmd , 36

epmd -kill (Command)
epmd , 36

epmd -names (Command)
epmd , 36

epmd [-daemon] (Command)
epmd , 36

erl
erl <arguments> (Command), 38

erl <arguments> (Command)
erl, 38

erl_mem_info_get/1 (C function)
erl_set.memory_block , 56

erl_memory_show/1 (C function)
erl_set.memory_block , 56

erl_set_memory_block
erl_mem_info_get/1 (C function), 56
erl_memory_show/1 (C function), 56
erl_set_memory_block/6 (C function),
55

erl_set_memory_block/6 (C function)
erl_set.memory_block , 55

erlc

erlc flags filel.ext file2.ext...
(Command), 42

erlc flags filel.ext file2.ext...
(Command)
erlc, 42

erlsrv

erlsrv {set | add} <service-name> [<service opti
(Command), 46

erlsrv {start | stop | disable | enable} <
(Command), 47

erlsrv help (Command), 48

erlsrv list [<service-name>]
(Command), 47

erlsrv remove <service-name>

(Command), 47

erlsrv {set | add} <service-name> [<service options>
(Command)
erlsrv, 46

erlsrv {start | stop | disable | enable} <serv
(Command)
erlsrv , 47

erlsrv help (Command)
erlsrv, 48

erlsrv list [<service-name>] (Command)
erlsrv, 47

erlsrv remove <service-name> (Command)
erlsrv , 47

run_erl
run_erl pipe_dir/ log_dir exec command
[com-
mand_arguments]@run_erl pipe_dir/ log_dir "e:
(Command), 50

run_erl pipe_dir/ log_dir exec command [com-
mand_arguments]@run_erl pipe_dir/ log_dir "e:
(Command)
run_erl , 50

start
start [data_file |@start [data_file 1"
(Command), 51

start [data_file]J@start [data_file 1"
(Command)

Erlang Run-Time System Application (ERTS) 61l

Index

start , 51

start_erl

start_erl [<erl options>] ++ [<start_erl options>]
(Command), 52

start_erl [<erl options>] ++ [<start_erl options>]
(Command)
start_erl , 52

62 Erlang Run-Time System Application (ERTS)

