
Event and Alarm handling
Application(EVA)

version 2.0

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 EVA User’s Guide 1

1.1 Introduction . 2

Architecture . 2

1.2 Services . 3

Basic Event and Alarm service . 3

Log Control service . 7

EVA log service . 8

1.3 EVA adaptations . 10

Example . 10

1.4 EVA SNMP interface . 13

EVA SNMP adaptation . 13

LOG SNMP interface . 20

EVA-LOG SNMP interface . 24

SNMPEA LOG SNMP interface . 25

1.5 Appendix A . 26

Interfaces . 26

1.6 EVA Release Notes . 27

EVA - Event and Alarm Handler v2.0.2.1 . 27

EVA - Event and Alarm Handler v2.0.2 . 27

EVA 2.0.1 . 28

EVA 2.0.0 . 28

EVA 1.0 . 28

2 EVA Reference Manual 29

2.1 eva (Application) . 33

2.2 eva (Module) . 35

2.3 eva log (Module) . 41

2.4 eva server (Module) . 43

2.5 eva sup (Module) . 44

2.6 log (Module) . 46

2.7 log server (Module) . 50

iEvent and Alarm handling Application (EVA)

3 EVA Reference Manual - SNMP adaptation 51

3.1 eva log snmp (Module) . 53

3.2 eva snmp adaptation (Module) . 55

3.3 log snmp (Module) . 58

3.4 log snmpea (Module) . 60

Glossary 61

ii Event and Alarm handling Application (EVA)

Chapter 1

EVA User's Guide

The Event and Alarm Handling application, EVA is an operation and maintenance application in the
fault management area. It contains support for applications to send events and alarms and create logs. It
provides managers functions for controlling the events and alarms and controlling the logs.

EVA is a management protocol independent application that needs protocol adaptations to
communicate with a remote manager. Currently, one such adaptation for SNMP is included in EVA.

1Event and Alarm handling Application (EVA)

1.1 Introduction

The operation and maintenance support in OTP consists of a generic model for management
subsystems in OTP, and some components to be used in these subsystems. The model that this support
is based upon is described in “OAM Principles”.

This document describes one of these components, the Fault Management application EVA. EVA
consists of support for Event and Alarm Handling and support for generic Log Control.

EVA is a modular application that consists of two management protocol independent services. It
contains also rules and functions for defining protocol adaptations for EVA. One such adaptation is
included for SNMP. It consists of SNMP MIBs and implementation of these MIBs.

EVA uses the applications Mnesia and SASL.

Architecture

EVA is a subapplication that can be included into another application. It is designed to work as a
distributed application, which means that it always executes on one node, with other nodes as standby
nodes. EVA should run on the same node as other operation and maintenance applications, specifically
the management protocol termination application, to minimize internal network traffic.

EVA is designed to be protocol independent, and may be used with different management protocols.
For each such protocol, an EVA adaptation must be written. For example, we have defined an SNMP
adaptation, and more adaptations may be defined in the future, e.g. for HTTP, CORBA or any
proprietary protocol (e.g. plain Erlang).

The event and alarm support can run in two different modes, in server mode and in client mode. In
client mode, no processes are running, but the code implementing the API is loaded. There must always
be one server running on one node in the network of Erlang nodes that the system consists of.

For EVA, all involved nodes are seen as one (distributed) system. This means for example that there is
one active alarm list for the entire system.

2 Event and Alarm handling Application (EVA)

1.2 Services

There are two management protocol independent EVA services provided, the basic Event and Alarm
service and the Log Control service. The basic EVA service provides clients with an API for registering
and sending events and alarms. The Log control service provides a mechanism for control of generic
logs. Also included is a specialization of the generic log function for logging of events and alarms.

Each service provides client functions that can be used from applications in the system to, for example,
send alarms. There is also an API that management applications can use to monitor and control the
system. This API can be extended for specific management protocols, such as SNMP or CORBA.

Basic Event and Alarm service

This service contains functions for the client API to EVA. EVA is a distributed global application,
which means that clients can access the EVA functionality from any node.

Clients can register and send events and alarms. Management applications can subscribe to event and
alarms, and control the treatment of them.

An event is a notification sent from the NE to a management application. An event is uniquely
identified by its name. A special form of an event is an alarm. An alarm represents a fault in the system
that needs to be reported to the manager. An example of an alarm could be equipment on fire. When
an alarm is sent, it becomes active, and is stored in an active alarm list. When the application that sent
the alarm notices that the fault that caused the alarm is not valid anymore, it clears the alarm. When an
alarm is cleared, the alarm is deleted from the active alarm list, and an clear alarm event is generated
by EVA. Each fault may give rise to several alarms, maybe with different severities. There can however
only be one active alarm for each fault at the same time. For example, associated with disk space usage
may be two alarms, disk 80 percent filled and disk 90 percent filled. These two alarms
represents the same fault, but only one of them can be active at the same time. An active alarm is
identified by its fault id. In contrast to alarms, ordinary events do not represent faults, and are not
stored as the alarms in the active alarm list.

The basic EVA server is a global server to which all events and alarms are sent. The server updates its
tables (e.g. the active alarm list), and sends the event or alarm to the alarm handler process that runs
on the same node as the global server. alarm handler is a gen event process defined in the SASL
application.

Before a client can send an event or alarm, the name of the event must be registered in EVA. To register
an event, a client calls register event/2. The parameters of this function are the name of the event
and whether the event should be logged by default or not. A manager can decide to change this value
later. To register an alarm, a client calls register alarm/4. The parameters of this function are the
name and logging parameters as for events, and the class and default severity of the alarm.

EVA stores the definitions of events and alarms in the Mnesia tables eventTable and alarmTable
respectively. Since an alarm is a special form of an event, each alarm is present in both of these tables.
The active alarm list is stored in the Mnesia table alarm. The records for all these tables are defined in
the header file eva.hrl, available in the include directory in the distribution.

3Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

Event Definition Table

All registered events are stored in the eventTable. It has the following attributes:

� name

� log

� generated

The event is uniquely identified by its name, which is an atom.

The log attribute is a boolean flag that tells whether this event should be stored in some log when it is
generated or not. This attribute is writable.

The generated attribute is a counter that counts how many times the event has been generated.

Alarm Definition Table

The alarmTable extends the eventTable, and has the following attributes:

� name

� class

� severity

The alarm is uniquely identified by its name, which is an atom. Note that each alarm is present in the
eventTable as well.

The class attribute categorizes the alarm, and is defined when the alarm is registered. It is as defined in
X.733, ITU Alarm Reporting Function:

� communications. An alarm of this class is principally associated with the procedures or processes
required to convey information from one point to another.

� qos. An alarm of this class is principally associated with a degradation in the quality of service.

� processing. An alarm of this class is principally associated with a software or processing fault.

� equipment. An alarm of this class is principally associated with an equipment fault.

� environmental. An alarm of this class is principally associated with a condition relating to an
enclosure in with equipment resides.

The severity parameter defines five severity levels, which provide an indication of how it is perceived
that the capability of the managed object has been affected. Those severity levels which represent
service affecting conditions ordered from most severe to least severe are critical, major, minor and
warning. The levels used are as defined in X.733, ITU Alarm Reporting Function:

� indeterminate. The Indeterminate severity level indicates that the severity level cannot be
determined.

� critical. The Critical severity level indicates that a service affecting condition has occurred and
an immediate corrective action is required. Such a severity can be reported, for example, when a
managed object becomes totally out of service and its capability must be restored.

� major. The Major severity level indicates that a service affecting condition has developed and an
urgent corrective action is required. Such a severity can be reported, for example, when there is a
severe degradation in the capability of the managed object and its full capability must be restored.

4 Event and Alarm handling Application (EVA)

1.2: Services

� minor. The Minor severity level indicates the existence of a non-service affecting fault condition
and that corrective action should be taken in order to prevent a more serious (for example, service
affecting) fault. Such a severity can be reported, for example, when the detected alarm condition
is not currently degrading the capacity of the managed object.

� warning. The Warning severity level indicates the detection of a potential or impending service
affecting fault, before any significant effects have been felt. Action should be taken to further
diagnose (if necessary) and correct the problem in order to prevent it from becoming a more
serious service affecting fault.

When an alarm is cleared, a clear alarm event is generated. This event clears the alarm with the
fault id contained in the event. It is not required that the clearing of previously reported alarms are
reported. Therefore, a managing system cannot assume that the absence of an clear alarm event for a
fault means that the condition that caused the generation of previous alarms is still present. Managed
object definers shall state if, and under which conditions, the clear alarm event is used.

Active Alarm List

The active alarm list is stored in the ordered Mnesia table alarm. The corresponding record is sent to
the alarm handler when an alarm is sent. It has the following read-only attributes:

� index

� fault id

� name

� sender

� cause

� severity

� time

� extra

A row in the active alarm list is uniquely identified by its fault id. However, to make the table
ordered, the alarms uses the integer index as a key into the table. For each new alarm, EVA allocates a
new index that is greater than the index of all other active alarms.

The name is the name of the corresponding alarm type, defined in alarmTable.

sender is a term that uniquely identifies the resource that generated the alarm.

cause describes the probable cause of the alarm.

severity is the perceived severity of the alarm.

time is the UTC time the alarm was generated.

extra is any extra information describing the alarm.

5Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

Event

When an event is generated, the event record is sent to alarm handler. It has the following attributes:

� name

� sender

� time

� extra

The name is the name of the corresponding event type, defined in eventTable.

sender is a term that uniquely identifies the resource that generated the event.

time is the UTC time the event was generated.

extra is any extra information describing the event.

Example

As an example of how to register and send events and alarms, consider the following code:

%%%---
%%% Resource code
%%%---
reg() ->

eva:register_event(boardRemoved, true),
eva:register_event(boardInserted, false),
eva:register_alarm(boardFailure, true, equipment, minor).

remove_board(No) ->
eva:send_event(boardRemoved, {board, No}, []).

insert_board(No, BoardName, BoardType) ->
eva:send_event(boardInserted, {board, No}, {BoardName, BoardType}).

board_on_fire(No) ->
FaultId = eva:get_fault_id(),
%% Cause = fire, ExtraParams = []
eva:send_alarm(boardFailure, FaultId, {board, No}, fire, []),
FaultId.

Two events and one alarm is defined. Board removal is an event that is logged by default, and board
insertion is an event that is not logged by default. The alarm equipmentFailure is a minor alarm that is
logged by default.

When the application detects that board N is on fire, board on fire(N) is called. This function is
responsible for sending the alarm. It gets a new fault identifier for the fault, and calls
eva:send alarm/5, pointing out the faulty board (N), and suggests that the probable cause for the
equipment trouble is fire.

The board on fire function returns the fault identifier for the new alarm. This fault identifier can be
used at a later time in a call to eva:clear alarm(FaultId) to clear the alarm.

6 Event and Alarm handling Application (EVA)

1.2: Services

Log Control service

The Log Control service contains functions for monitoring logs, and functions for transferring logs to
remote hosts, e.g. management stations. The main purpose of the Log Control service is to provide one
entity through which all logs in the system can be controlled by a management station. Regardless of
the type log, all logs are controlled in a similiar fashion.

Clients can register their logs in the log server. Management applications can control the logs, and
transfer the logs to a remote host.

Log monitoring

This service uses a log server that monitors all logs in the system. Each log uses the standard module
disk log for the actual logging.

Each log has an administrative and an operational status, that both can be either up or down. If the
operational status is up, the log is working, and if it is down, the log does not work. The administrative
status is writable, and reflects the desired operational status. Normally they are both the same. If the
administrative status is set to up, the operational status will be up as well. However, if the log for some
reason does not work, e.g. if the disk partition is full, the operational status will be down. When the
operational status is down, no events are logged in the log.

Alarms The Tlog service defines two EVA alarms; log file error and log wrap too often.

� log file error. This alarm is generated if a file error occurs when an item is logged. Default
severity is critical. The cause for this alarm can be any Reason as returned from file:write in
case of error. The alarm is cleared if the file system starts working again. For example, the alarm
can be generated if the partition is full, and cleared when space is available.

� log wrap too often. This alarm is generated when the log wraps more often than the wrap time.
Default severity is major. The cause for this alarm is undefined. The alarm is cleared if the log
wraps within the wrap time, the next time it wraps.

Example The following is an example of code that creates a log to be controlled by the generic Log
Control function:

start() ->
disk_log:open([{name, "ex_log"},

{file, "ex_log/ex_log.LOG"},
{type, wrap},
{size, {10000, 4}}]),

log:open("ex_log", ex_log_type, 3600).

test() ->
%% Log an item
disk_log:log("ex_log", {1, "log this"}),

%% Set the administrative status of the log to ’down’
log:set_admin_status("ex_log", down),

%% Try to log - this one won’t be logged
disk_log:log("ex_log", {2, "won’t be logged"}),

7Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

Logs1 = log:get_logs(),

%% Set the administrative status of the log to ’up’
log:set_admin_status("ex_log", up),

%% Log an item
disk_log:log("ex_log", {3, "log this"}),

Logged = disk_log:chunk("ex_log", start),
{Logs1, Logged}.

Log transfer

It is possible to transfer a log to a remote host. When the log is transferred, the log may be filtered, and
the log records may be formatted.

As the logs are implemented as disk log logs, each log consists of several log files. When the log is
transferred, it is written to one single file on the remote host. When disk log is used, the log records are
normally not formatted when they are stored in the log, in order to increase log performance. However,
a manager will probably need the log formatted in a human readable format. Thus, when the log is
being transferred, each log record may be formatted in a log specifc way. Of course, to further increase
performance, the log can be transferred as is, and leave it to the managar to format the log off-line.

EVA log service

The EVA log service uses the generic Log Control service to implement log functionality for events and
alarms defined in EVA.

In the rest of this description, the term event refers to both events and alarms as defined in EVA.

This log functionality supports logging of events from EVA. It uses the module disk log for logging of
events. There can be several event logs active at the same time. It is possible to create new event logs
dynamically, either from within an application, or from a management system. Each log uses a filter
function to decide whether an event should be stored in the log or not.

There is a concept of a default log. The default log is used to log any event that has the log flag in
eventTable set to true, but no log is currently able to store the event (or there is no other log defined
to log the event). The usage of the default log is optional.

For example, suppose that we want to define an alarm log, that logs all alarms in the system. We can do
this with the following code:

-module(alarm_log).
-export([alarm_filter/1, make_alarm_log/0]).

alarm_filter(Item) when record(alarm, Item) -> true;
alarm_filter(_) -> false.

make_alarm_log() ->
disk_log:open([{name, "alarm_log"},

{format, internal},
{type, wrap},
{size, {10000, 10}}]),

eva_log:open("alarm_log", {alarm_log, alarm_filter, []}, 36000).

8 Event and Alarm handling Application (EVA)

1.2: Services

If we set the administrative status of this log to down, and an alarm that should be logged according to
its definition in the eventTable, the alarm is stored in the default log instead of "alarm log" (provided
there are no other logs that are defined to log the alarm).

9Event and Alarm handling Application (EVA)

1.3 EVA adaptations

As the basic EVA support is protocol independent, adaptations are needed for the actual management
protocols. Such an adaptation is the manager’s interface towards EVA. It may implement strategies for
filtering events and alarms to different operators, or it may store more information associated with each
event or alarm locally.

An EVA adaptation should be written as a gen event handler module. It should be installed into the
alarm handler process.

An adaptation is free to use the Mnesia tables defined in EVA. The eventTable and alarmTable must
be accessed within a Mnesia transaction, while the active alarm list (alarm) may be accessed dirty.
Some functions in the module eva could be useful as well.

When an event or alarm is registered or sent, an gen event event is generated as
gen event:notify(alarm handler, ...) by EVA, and should be taken care of in the handle event
function of the adaptation.

Example

Without going too deep into the details, the following is an example of a very simple adaptation, that
prints all events and alarms to standard out, and provides a function to print the active alarm list.

-module(simple_adaptation).

-behaviour(gen_event).

-include_lib("eva/include/eva.hrl").
-include_lib("mnemosyne/include/mnemosyne.hrl").

%%%---
%%% Simple EVA adaptation that formats events and alarms to standard
%%% out.
%%%---

%% External exports
-export([start/0, print_alarms/0]).

%% Internal exports
-export([init/1, handle_event/2, handle_call/2, handle_info/2, terminate/2]).

%%%---
%%% API
%%%---
start() ->

gen_event:add_handler(alarm_handler, ?MODULE, []).

print_alarms() ->
gen_event:call(alarm_handler, ?MODULE, print_alarms).

10 Event and Alarm handling Application (EVA)

1.3: EVA adaptations

%%%---
%%% Call-back functions from gen_event
%%%---
init(_) ->

io:format("Initializing simple EVA adaptation...~n"),
{ok, []}.

handle_event({send_event, #event{name = Name}}, S) ->
X = Name, % due to bug in mnemosyne...
Handle = query [E.generated || E <- table(eventTable),

E.name = Name] end,
{atomic, [Generated]} =

mnesia:transaction(fun() -> mnemosyne:eval(Handle) end),

io:format("** Event: ~w, ~w generated~n", [Name, Generated]),
{ok, S};

handle_event({send_alarm, #alarm{name = Name, severity = Severity}}, S) ->
X = Name, % due to bug in mnemosyne...
Handle = query [E.generated || E <- table(eventTable),

E.name = Name] end,
{atomic, [Generated]} =

mnesia:transaction(fun() -> mnemosyne:eval(Handle) end),

Handle2 = query [A.class || A <- table(alarmTable),
A.name = Name] end,

{atomic, [Class]} =
mnesia:transaction(fun() -> mnemosyne:eval(Handle2) end),

io:format("** ~w alarm ~w of class ~w, ~w generated~n",
[Severity, Name, Class, Generated]),

{ok, S};

handle_event(_, S) ->
{ok, S}.

handle_call(print_alarms, S) ->
Handle = query [{A.name, A.sender, A.cause, A.severity, AlarmDef.class} ||

A <- table(alarm),
AlarmDef <- table(alarmTable),
A.name = AlarmDef.name] end,

{atomic, Alarms} = mnesia:transaction(fun() -> mnemosyne:eval(Handle) end),
io:format("** Active alarm list~n"),
lists:foreach(
fun({Name, Sender, Cause, Severity, Class}) ->

io:format("~14w ~10w alarm ~p from ~p, probable cause: ~p~n",
[Severity, Class, Name, Sender, Cause])

end, Alarms),
{ok, ok, S}.

handle_info(_, S) ->
{ok, S}.

11Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

terminate(R, S) ->
io:format("Terminating simple EVA adaptation...~n"),
ok.

12 Event and Alarm handling Application (EVA)

1.4 EVA SNMP interface

This chapter describes an EVA adaptation for SNMP and an SNMP interface towards the Log Control
service. Also included are an SNMP interface towards the logging of event, and an SNMP interface
towards the snmp audit trail log.

An application that uses the logs or event generating function does not have to know that the events or
alarms are sent as SNMP traps, it just uses the EVA API.

There are four MIBs defined, OTP-EVA-MIB, OTP-LOG-MIB, OTP-EVA-LOG-MIB and
OTP-SNMPEA-LOG-MIB. These MIBs can be found in the mibs directory in the EVA distribution. They
are described in the following sections.

EVA SNMP adaptation

The EVA SNMP adaptation consists of functionality for translating the EVA events and alarms to
SNMP traps, an SNMP MIB for the EVA tables, such as the active alarm list, and an API to be used for
the SNMP instrumentation functions.

OTP-EVA-MIB

This MIB implements managed objects for the basic EVA service in OTP. It consists of the Event,
Alarm and CurrentAlarms groups.

Event group The Event group consists of the eventTable.

The eventTable has one entry for each event the system may generate. It defines all events in the
system and controls how an event should be treated, and to whom it should be sent. Note that an alarm
is a special kind of event, so all alarms are defined in this table as well.

The table has the following attributes:

� eventIndex

� eventTrapName

� eventTreatment

� eventCommunity

� eventSentTraps

� eventOwner

Each event has a unique index, eventIndex, which remains constant as long as the system is up and
running. If some events are deleted (e.g. due to a new software release), the row will disappear.

The eventTrapName attribute defines which SNMP trap is associated with an event. This is for the
manager to correlate incoming traps with the events.

The eventTreatment defines if the event should be sent as a trap or not, and if the event should be
logged or not. The possible values are none, log, snmpTrap, logAndTrap. This attribute is writable.
This makes it possible for the manager to select which events should be reported as traps at a specific
time, and to effectively make sure that an event will not be logged in any log. How the events are

13Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

logged and how to control the logs is not defined in this MIB. One log mechanism is defined in the
OTP-EVA-LOG-MIB, but others could be defined instead.

The eventCommunity defines to which managers the trap should be sent, if at all. This attribute is
writable.

The eventSentTraps counts the number of times the event has been sent as an SNMP trap. A manager
may poll this value to see if he has lost an event.

Finally, the eventOwner is the manager entity that ’owns’ the event, and is therefore responsible for its
configuration. This attribute is writable.

Alarm group The Alarm group consists of the alarmTable.

alarmTable is an extension to the eventTable. It has one entry for each defined alarm in the system.

The table is indexed by eventIndex and has the following attributes:

� alarmClass

� alarmSeverity

The alarmClass and alarmSeverity have the values defined by EVA. alarmSeverity is writable.

CurrentAlarm group The CurrentAlarm group consists of two scalar variables,
numberOfCurrentAlarms, and currentAlarmLastTimeChanged, the table currentAlarmTable and the
event (defined as a trap) alarmCleared.

The numberOfCurrentAlarms is the number of active alarms in the currentAlarmTable.

The currentAlarmLastTimeChanged is a time stamp when the currentAlarmTable was changed. The
time the table is changed is sent in each trap. A manager may store this value internally, and poll the
currentAlarmTable variable regularly. If the internally stored value differs from the value of this
variable, some alarm was lost (or not sent to the manager). In this case, the manager may download the
entire table.

The currentAlarmTable is a list of all currently active alarms in the system. All objects in the table
except for alarmSeverity, are read-only.

The table has the following attributes:

� currentAlarmFaultId

� currentAlarmEventIndex

� currentAlarmObject

� currentAlarmCause

� currentAlarmSeverity

� currentAlarmTime

� currentAlarmInformation

� currentAlarmExtra1

� currentAlarmExtra2

14 Event and Alarm handling Application (EVA)

1.4: EVA SNMP interface

Each active alarm has a unique index, currentAlarmFaultId, which remains constant as long as the
system is up and running. When an alarm is cleared, the fault id may be reused by another alarm, but
only if the new alarm originates from the same fault. If the system reboots, the currentAlarmTable is
reset, and all alarms that are still active are sent as new alarms.

currentAlarmEventIndex is a pointer into the eventTable. It connects the alarm to a certain trap.

currentAlarmObject defines which object generated the alarm. It should point to an instance of an
accessible object in the MIB. For example, if the alarm was generated by interface no 3 in ifTable, the
object should be fifIndex 3g.

currentAlarmCause describes the cause of the alarm, if known. This is an OBJECT IDENTIFIER,
which means that the possible causes must be defined in the MIB. If unknown, this object is f0 0g.

currentAlarmSeverity is the perceived severity of the alarm. The only value that can be written into
this object is clear. When set to clear, the alarm is cleared and removed from the active alarm list. A
clear alarm event is generated by EVA. A management application should use this with care.
Normally the application that generated an alarm is responsible for clearing the alarm.

currentAlarmTime is the time the alarm was generated. This value is written into
currentAlarmLastTimeChanged when the alarm is sent.

currentAlarmInformation is a string with extra information pin-pointing the problem. Use this string
with care, as too complicated strings makes it hard for a management application to make automated
decisions. The only option may be to display the string to the operator as is.

currentAlarmExtra1 and currentAlarmExtra2 are extra parameters used by alarms at their own
discretion. Can be used for example to identify additional objects in the alarm, or instead of
currentAlarmInformation to pin-point the problem, if the additional information is defined in some
MIB.

When an alarm is cleared, either by the application itself, or by an operator, the event alarmCleared is
sent. In this event, one single variable is sent, currentAlarmEventIndex. Note that the
currentAlarmFaultId is implicit in the instance OBJECT IDENTIFIER for this variable.

API

The applications generate events and alarms using the API provided by EVA. They are not aware that
the events and alarms are sent as SNMP traps to SNMP managers.

However, each trap that should be sent must be defined in an SNMP MIB, and there must be
instrumentation functions that translates the EVA events and alarms into SNMP traps. Normally, each
event and alarm in the system is mapped to separate SNMP traps. This mapping is done when the
events are registered. The following functions are available for the registration. They could be called
e.g. when the corresponding MIB is loaded. They are described in detail in the Reference Manual, eva,
the module eva snmp adaptation [page 55].

register events([fName, Trap, EFunc, Treatment, Communityg] This function is used to
associate each event with the corresponding trap and an Erlang instrumentation function that
translates the #event into a trap. It also defines the default treatment and community.

register alarms([fName, Trap, AFunc, Treatment, Communityg] This function is used to
associate each alarm with the corresponding trap and an Erlang instrumentation function that
translates the #alarm into a trap. It also defines the default treatment and community.

In these functions, the instrumentation functions should be defined as:

EFunc = fun(#event) -> {ok, SnmpVarbinds}
AFunc = fun(#alarm) -> {ok, ObjOID, CauseOID, SnmpVarbinds}

15Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

respectively, where SnmpVarbinds is a list of any extra SNMP variables included in the trap.

MIB definition rules

When using this SNMP EVA adaptation, each event and alarm must be defined as an SNMP trap in a
MIB. Any SNMP trap may be used as an event since there are no restrictions on these traps. However,
for each alarm, there are some objects that must be present in the trap definition. These objects must be
the first objects in the trap, and they must be defined in the following order:

� currentAlarmTime

� currentAlarmSeverity

� currentAlarmObject

Note that implicit in each of these objects is the currentAlarmFaultId, since this is the index for the
table.

These are the objects that are most important for the manager. Any other object may be retrieved by
sending a GET request to the agent.

An example of a correct trap definition using SNMP v1 syntax:

boardFailure TRAP-TYPE
ENTERPRISE board
VARIABLES {

currentAlarmTime,
currentAlarmSeverity,
currentAlarmObject,
boardName

}
DESCRIPTION

"An alarm sent when a board failure is detected."
::= 3

And the same trap using SNMP v2 syntax:

boardFailure NOTIFICATION-TYPE
OBJECTS {

currentAlarmTime,
currentAlarmSeverity,
currentAlarmObject
}

STATUS current
DESCRIPTION

"An alarm sent when a board failure is detected."
::= { board 0 3 }

The values of these mandatory objects are set by EVA.

Note that after the three mandatory objects, any other objects may be specified.

16 Event and Alarm handling Application (EVA)

1.4: EVA SNMP interface

Example

This section shows an example of how EVA may be used by an application. The complete code is
available in the example directory in the distribution.

The example application is an application that controls boards and generates an event when a board is
removed or inserted, and an alarm if a board failure is detected.

The following code is the SNMP independent resource code:

%%%---
%%% Resource code
%%%---
reg() ->

eva:register_event(boardRemoved, true),
eva:register_event(boardInserted, false),
eva:register_alarm(boardFailure, true, equipment, minor).

remove_board(No) ->
eva:send_event(boardRemoved, {board, No}, []).

insert_board(No, BoardName, BoardType) ->
eva:send_event(boardInserted, {board, No}, {BoardName, BoardType}).

board_on_fire(No) ->
FaultId = eva:get_fault_id(),
%% Cause = fire, ExtraParams = []
eva:send_alarm(boardFailure, FaultId, {board, No}, fire, []),
FaultId.

The function reg/0 is used to register the events and the alarm in EVA. The boardRemoved event just
identifies the removed board, but the boardInserted identifies the board and sends the name and type
of the board as extra parameters in the event.

When this is mapped to SNMP, the following MIB is designed:

BOARD-MIB DEFINITIONS ::= BEGIN

IMPORTS
DisplayString

FROM RFC1213-MIB
OBJECT-TYPE

FROM RFC-1212
experimental

FROM RFC1155-SMI
currentAlarmTime, currentAlarmSeverity, currentAlarmObject

FROM OTP-EVA-MIB;

board OBJECT IDENTIFIER ::= {experimental 1}

boardTable OBJECT-TYPE
SYNTAX SEQUENCE OF BoardEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

17Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

"Contains information about the boards in the system."
::= { board 1 }

boardEntry OBJECT-TYPE
SYNTAX BoardEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"A set of parameters for boards."
INDEX { boardIndex }
::= { boardTable 1 }

BoardEntry ::= SEQUENCE {
boardIndex INTEGER,
boardName DisplayString,
boardType DisplayString
}

boardIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"A unique index identifying each board."
::= { boardEntry 1 }

boardName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The name of the board."
::= { boardEntry 2 }

boardType OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The type of the board."
::= { boardEntry 3 }

-- Events

boardRemoved TRAP-TYPE
ENTERPRISE board
VARIABLES {

boardName
}

DESCRIPTION
"An event sent when a board is removed."

::= 1

18 Event and Alarm handling Application (EVA)

1.4: EVA SNMP interface

boardInserted TRAP-TYPE
ENTERPRISE board
VARIABLES {

boardName,
boardType
}

DESCRIPTION
"An event sent when a board is inserted."

::= 2

-- Alarms

boardFailure TRAP-TYPE
ENTERPRISE board
VARIABLES {

currentAlarmTime,
currentAlarmSeverity,
currentAlarmObject,
boardName
}

DESCRIPTION
"An alarm sent when a board failure is detected."

::= 3

-- Causes

fire OBJECT IDENTIFIER ::= {board 2}
-- DESCRIPTION
-- "The board is on fire."

END

To implement this MIB, instrumentation functions for the managed objects are needed for the SNMP
agent. Also, we must write instrumentation functions for the traps for EVA.

%%%---
%%% SNMP adaptation code
%%%---
mgm_init() ->

snmp:load_mibs(snmp_master_agent, ["BOARD-MIB"]),
Events = [{boardRemoved, boardRemoved, snmpTrap, "standard trap",

{?MODULE, boardRemoved}},
{boardInserted, boardInserted, snmpTrap, "standard trap",
{?MODULE, boardInserted}}],

Alarms = [{boardFailure, boardFailure, snmpTrap, "standard trap",
{?MODULE, boardFailure}}],

eva_snmp_adaptation:register_events(Events),
eva_snmp_adaptation:register_alarms(Alarms).

%%---
%% instrumentation functions
%%---

19Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

% Using default instrumentation

%%---
%% "backwards" instrumentation functions event -> trap
%%---
boardRemoved(#event{sender = {board, Idx}}) ->

[#boardTable{name = Name}] = mnesia:dirty_read({boardTable, Idx}),
{ok, [{boardName, [Idx], Name}]}.

boardInserted(#event{sender = {board, Idx}, extra = {Name, Type}}) ->
{ok, [{boardName, [Idx], Name},

{boardType, [Idx], Type}]}.

boardFailure(#alarm{sender = {board, Idx}, cause = Cause}) ->
[#boardTable{name = Name}] = mnesia:dirty_read({boardTable, Idx}),
{value, Oid} = snmp:name_to_oid(boardName),
{value, COid} = snmp_cause(Cause),
{ok, {Oid ++ [Idx], COid, [{boardName, [Idx], Name}]}}.

snmp_cause(fire) -> snmp:name_to_oid(fire);
snmp_cause(_) -> [0,0].

LOG SNMP interface

The LOG SNMP interface consists of functionality for controlling the logs in the system using SNMP,
and an SNMP MIB which also includes functions for tranferring logs to a remote host with FTP.

OTP-LOG-MIB

This MIB implements managed objects for the Log Control service. It consists of the logGroup,
logTransferGroup, and the logAlarmsGroup.

Log group The Log group consists of the table logTable.

The logTable has one entry for each log in the system.

Applications can choose to extend this table, for logs of certain types. This can be used e.g. to specify
additional parameters for what should be logged in a log. The evaLogDiscriminatorTable is such an
example.

The logTable has the following attributes:

� logIndex

� logName

� logType

� logAdminStatus

� logOperStatus

� logMaxSize

� logNumberOfRecords

20 Event and Alarm handling Application (EVA)

1.4: EVA SNMP interface

� logMinWrapTime

� logWrapPercentage

� logOwner

� logRowStatus

Each log is identified by a unique index, logIndex.

logName is a string that gives a human readable name for the log. This attribute is writable at creation
time. The name must be unique.

logType is an OBJECT IDENTIFIER that specifies what type of log it is. This attribute is writable at
creation time. If it is an unknown log type, this entry has the value 0.0.

logAdminStatus can be up or down. Specifies the desired logOperStatus. This attribute is writable.

logOperStatus can be up or down. Specifies whether the log is active or not. A log that is down discards
all log records sent to it.

logMaxSize defines the maximum size the log may occupy. When the max size is reached,
logWrapPercentage of the log space is freed to make room for more records. This attribute is writable
at creation time. If logTotalMaxSize + logMaxSize > logTotalMaxAllowedSize, the creation fails.

logNumberOfRecords counts the number of records in the log.

logMinWrapTime defines the minimum time between two wrap situations. If the log wraps more often,
an logWrapAlarm is sent. This attribute is writable at creation time.

logWrapPercentage defines how many percent of the log space is freed when the log reaches its
maximum size. This attribute is writable at creation time.

logOwner is the manager entity that ’owns’ the log, and is therefore responsible for its contents,
including entries in the logDiscriminatorTable. Logs created by the agent system have this object
equal to "local", and should not be deleted or otherwise modified by a manager. This attribute is
writable at creation.

logRowStatus is used to create and delete logs.

Log Alarms group Two alarms are defined, the logWrapAlarm which is sent if a log wraps too often
and logMediaErrorAlarmwhich is sent if the logging function detects an error in the storage media for
a log, and cannot log anything more.

There are two probable causes defined for the logMediaErrorAlarm. These are logNoSpaceLeft which
is used when there is no space left on the media, and logMediaBroken which is used when the storage
media is broken.

Log Transfer group The Log Transfer group consists of the table logTransferTable.

The logTransferTable has one entry for each transfer in the system. When a transfer entry has been
created (with createAndWait), its status is notInService. When it is made active, the log transfer
begins. When the transfer is complete, the status is notInService again. The outcome of the transfer
session is available in the variable logTransferLastResult.

Applications can choose to extend this table, for logs of certain types. This can be used e.g. to specify
additional log specific filtering parameters. The snmpeaLogTransferTable is such an example.

The logTransferTable has the following attributes:

� logTransferIndex

� logTransferStartTime

21Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

� logTransferStopTime

� logTransferFTPAddress

� logTransferFTPUser

� logTransferFTPPasswd

� logTransferFTPFile

� logTransferLastResult

� logTransferRowStatus

A log transfer entry refers to a particular log in the logTable. There may exist several log transfer
entries for each log. Thus, the logTransferTable is indexed by logIndex and a logTransferIndex.

logTransferStartTime is a DateAndTime variable that specifies that log records generated after this
time should be transferred. This attribute is writable.

logTransferStopTime is a DateAndTime variable that specifies that log records generated before this
time should be transferred. This attribute is writable.

logTransferFTPAddress is the IP address of the remote host to which the log should be transferred.
This attribute is writable.

logTransferFTPUser is the user in the FTP session. This attribute is writable.

logTransferFTPPasswd is the password for the user in the FTP session. This attribute is writable. If it
is read, the empty string is returned.

logTransferFTPFile is a string with the absolute file name for the log at the remote host. This
attribute is writable.

logTransferLastResult is an enumerated integer that contains the result of the last transfer. This
attribute is read-only. The following values are valid:

ok the transfer succeded

aborted the transfer was aborted by the management station

ftpBadAddress the FTP address could not be contacted

ftpLoginError the combination of FTP user and passwd was invalid

ftpWriteError the user had no write access to the file

ftpTransferError the FTP session aborted

otherError any other error, e.g. internal error in log

logTransferRowStatus controls the creation/deletion of transfer entries, and controls the transfer of
logs. If set to active, the transfer begins. If an active transfer’s status is set to notInService, the
transfer aborts. This attribute is writable.

Creation of local logs

The system may choose to create local logs, i.e. logs that cannot be modified by a manager. For
example, an alarm log can be created that always logs all alarms. To create a local log, the functions in
log should be used. All logs that log knows of will be visible in the logTable.

Manager use cases

This section describes how a manager may use the OTP-LOG-MIB to perform logging.

22 Event and Alarm handling Application (EVA)

1.4: EVA SNMP interface

Log creation When a management application wants to create a log, it should perform the following
steps.

1. Decide which type of log is wanted. This is defined in MIBs for applications that uses the generic
log control service.

2. Find a free logIndex by looping through the logTable.

3. Choose a name for the log, choose the maximum size, wrap percentage and minimum wrap time
for the log.

4. Send a SET request with these parameters and logRowStatus = createAndGo to the agent.

5. If the creation failed because the logIndex was occupied, choose a new logIndex.

Log deletion When a management application wants to delete a log, it should perform the following
steps.

1. Set the logRowStatus to destroy for the corresponding logIndex.

Controlling logs Sometimes it can be useful to block a specific log so that no records are stored in the
log, but not delete it. To accomplish this a manager should:

1. Set the logAdminStatus to down for the corresponding logIndex.

Log transfer creation When a log should be transferred to a remote host, the following steps should
be followed.

First, create the log transfer entry:

1. Decide the logIndex of the log that should be transferred.

2. Choose a free logTransferIndex by looping through all transfer entries with the same log index
as the selected log.

3. Decide general filtering parameters for the selected log. This means find values for
logTransferStartTime and logTransferStopTime.

4. Choose a remote host, user, password and filename.

5. Send a SET request with these parameters and logTransferRowStatus = createAndWait to the
agent.

6. Decide log specific filtering parameters for the selected log. This depends on if the type of the log
has defined additional filtering parameters.

When the log transfer entry is created, the log will be transferred each time the row is activated:

1. Send a SET request with logTransferRowStatus = active to the agent.

2. Poll the value of logTransferRowStatus until it becomes notInService.

3. Check the value of logTransferLastResult if the transfer succeeded or not.

If a log transfer takes too long time, the transfer may be aborted in the following way:

1. Send a SET request with logTransferRowStatus = notInService to the agent.

2. Poll the value of logTransferRowStatus until it becomes notInService. The
logTransferLastResult is now aborted.

23Event and Alarm handling Application (EVA)

Chapter 1: EVA User's Guide

API

The applications create logs using the API provided by the Log Control service. However, if an
application has defined additional managed objects in a MIB, the SNMP adaptation of the generic log
service must know of this, in order to use this information when logs are created or trasnferred.

There is just one function needed, and it is log snmp:register type/3. It registers the type of log in
the SNMP log adaptation. The function is described in detail in the reference manual.

EVA-LOG SNMP interface

The EVA-LOG SNMP interface consists of functionality for controlling the logging of events and alarms
using SNMP, and an SNMP MIB. This functionality uses the generic log control service described above.

OTP-EVA-LOG-MIB

This MIB implements managed objects for the EVA LOG service. It consists of the Eva Log group.

Eva Log group The Eva Log group consists of the table evaLogDiscriminatorTable, and the
variables evaLogTotalMaxSize and evaLogTotalMaxAllowedSize.

The evaLogDiscriminatorTable has the following attributes:

� evaLogDiscrEventIndex

� evaLogDiscrRowStatus

Each entry in this table is indexed by logIndex and evaLogDiscrEventIndex. Each row means that the
event with eventIndex equal to evaLogDiscrEventIndex should be logged in the log with logIndex.
The evaLogDiscrRowStatus is used to create and delete rows in the table.

The variable evaLogTotalMaxSize is the sum of specified maximum sizes of all logs. This object is
read-only.

The variable evaLogTotalMaxAllowedSize is the total size all event logs created by the manager are
allowed to fill. This object corresponds to the amount of disk space available for the log function in the
agent system. This object is read-only.

Manager use cases

This section describes how a manager may use the OTP-EVA-LOG-MIB to perform event and alarm
logging.

Log creation When a management application wants to create an event log, it should perform the
following steps.

1. Create a log in the logTable as described above, using the logType evaLogType.

2. If the creation succeed, decide which events should be logged in the log.

3. For each such event, create the corresponding row in evaLogDiscriminatorTable, using the
same logIndex as defined in step 1

24 Event and Alarm handling Application (EVA)

1.4: EVA SNMP interface

Log deletion When a management application wants to delete an event log, it should follow the steps
defined above in the section about general log deletion.

Controlling logs Sometimes it can be useful to block a specific log so that no events are stored in the
log, but not delete it. To accomplish this a manager should:

1. Set the logAdminStatus to down for the corresponding logIndex.

In other situations it can be useful to make a certain event not be stored in any log at all, for example if
the event is generated very often. This can be accomplished by:

1. Set the eventTreatment to snmpTrap or none for the event in eventTable. As long as the
eventTreatment is not log or logAndTrap, the event is not stored in any log.

SNMPEA LOG SNMP interface

The SNMPEA LOG SNMP interface consists of functionality for controlling the audit trail logging
mechanisms in the Extensible Snmp Agent in the system. This functionality uses the generic log control
service described above.

OTP-SNMPEA-LOG-MIB

This MIB implements managed objects for the SNMEPA LOG service. It consists of the Snmpea Log
group and Snmpea Log Transfer group.

Snmpea Log group The Snmpea Log group consists of the single variable
snmpeaLogDiscriminator. This variable controls which requests should be stored in the singel snmp
audit trail log in the system. The possible values are:

none Nothing is stored in the log.

readWrite All requests and traps are stored in the log.

write Only SET requests are stored in the log.

Snmpea Log Transfer group The Snmpea Log Transfer group consists of a table
snmpeaLogTransferTable that extends the logTransferTable. It consists of a single column,
snmpeaLogTransferIPAdress, which is used as a log specific filtering parameter. If this variable is set
for a transfer entry when the log is trasnferred, requests to or from this address only are transferred.

25Event and Alarm handling Application (EVA)

1.5 Appendix A

This section describes the interfaces involved in the operations and maintenance functions for EVA. As
an example SNMP is used for managament interaction.

Interfaces

2

| |
v ------- ---------- |

------ | | | SNMP | 6 --------- 3 --------
	5	EVA	4	EVA	-->	instrum	-->	SNMPEA
Appl	----->	(OTP)	----->	adapt.		(appl (*)	1	(OTP)
(*)				(OTP)			<--	
------ | | | - - - - | --------- / --------

------- \ | EVA-MIB | 1 /
\ | instrum | <--------------/
\4 ----------
\n \ ----------
-> | HTTP |

| EVA |
adapt.

The (*) marked blocks are in the application domain; the left-most is the actual application
implementation, are the right-most is the instrumentation of the application.

There are several interfaces involved:

1 From SNMPEA to instrumentation functions for the application. This interface is defined in
SNMPEA. [e.g. table func(get next, RowIndex, Cols)]

2 From instrumentation code to the resources. This interface is internal to the application, and may
differ between applications.

3 From instrumentation code for events and alarms to SNMPEA traps. This interface is defined in
SNMPEA. [e.g. snmp:send trap(Trap)]

4 From EVA to the different adaptations. This interface is defined in EVA. [e.g.
gen event:notify(#alarmfg)]

5 From applications to EVA. This interface is defined in EVA. [e.g. eva:send alarm(Name, Sender, ...)]

6 From SNMP EVA to application instrumentation. This interface is defined in EVA. [e.g.
board failure(#alarmfg)]

26 Event and Alarm handling Application (EVA)

1.6 EVA Release Notes

This document describes the changes made to the EVA application.

EVA - Event and Alarm Handler v2.0.2.1

Improvements and New Features

� EVA is now able to handle upgrade properly.

Fixed Bugs and Malfunctions

-

Incompatibilities With Event and Alarm handler v2.0.2

-

Known Bugs and Problems

-

EVA - Event and Alarm Handler v2.0.2

Improvements and New Features

� A duplicated entry in a case-statement, i.e., a few lines of unused code, has been removed.

Fixed Bugs and Malfunctions

-

Incompatibilities With Event and Alarm handler v2.0.1

-

Known Bugs and Problems

-

27Event and Alarm handling Application (EVA)

EVA 2.0.1

Reported Fixed Bugs and Malfunctions

� The configuration parameter use snmpea log didn’t work.
Own Id: OTP-2117

� The SNMP trap alarmCleared in OTP-EVA-MIB was erroneously defined and sent. The
currentAlarmEventIndex is sent in the trap now.
Own Id: OTP-2118

� The MODULE-IDENTITY was erroneously named in OTP-EVA-MIB. It is now corrected to
otpEvaModule.
Own Id: OTP-2136

EVA 2.0.0

Improvements and new features

� The log functionality is made generic. Any log in the system can be controlled by the log service
in eva.

� Any log can be filtered and formatted and transferred with FTP to a remote host.

� A timestamp is added to each event.

� The fault id for an alarm does not have to be generated by eva:get fault id/0.

� The default log argument in eva log:start link/1, eva sup:start link log/1,
eva sup:start link log snmp/3 and eva log sup:start link/1,3 is now a 2-tuple fName,
WrapTimeg. If the, old style is used, WrapTime defaults to 86400 seconds (i.e. 24 h)

Reported Fixed Bugs and Malfunctions

� The source code in the examples directory now compile!
Own Id: OTP-1766

� Errors in logging was not handled correctly; the operational status was not updated.
Own Id: OTP-1769

Incompatibilities with 1.0

� The generic log functionality is moved from the module eva log to the module log.

� The generic SNMP log functionality is moved from OTP-EVA-LOG-MIB to OTP-LOG-MIB.

EVA 1.0

New application.

28 Event and Alarm handling Application (EVA)

EVA Reference Manual

Short Summaries

� Application eva [page 33] – The Event and Alarm Handling Application

� Erlang Module eva [page 35] – Client API for the Event and Alarm handling
Functionality in the EVA Application

� Erlang Module eva log [page 41] – Log functionality for events and alarms in EVA

� Erlang Module eva server [page 43] – The Main Global Server in EVA

� Erlang Module eva sup [page 44] – A Supervisor for the EVA Application

� Erlang Module log [page 46] – Client API for the log functionality in the EVA
application

� Erlang Module log server [page 50] – The main server in LOG

eva

No functions are exported.

eva

The following functions are exported:

� aclear alarm(FaultId)
[page 37] Clears an alarm

� clear alarm(FaultId)
[page 37] Clears an alarm

� clear alarm(FaultId, Time) -> ok
[page 37] Clears an alarm

� get alarm status() -> [fSeverity, boolean()g]
[page 37] Returns information onwhether there is any active alarm or not

� get alarms(Item) -> [#alarm]
[page 37] Returns all active alarms matching Item

� get fault id() -> fault id()
[page 37] Returns a fault id for a new alarm

29Event and Alarm handling Application (EVA)

EVA Reference Manual

� get no alarms() -> integer()
[page 38] Returns the number of active alarms in the system

� register alarm(Name, Log, Class, Severity) -> boolean()
[page 38] Registers an alarm within EVA

� register event(Name, Log) -> boolean()
[page 38] Registers an event within EVA

� asend alarm(Name, FaultId, Sender, Cause, Extra)
[page 38] Sends an alarm and makes it active

� send alarm(Name, FaultId, Sender, Cause, Extra)
[page 38] Sends an alarm and makes it active

� send alarm(Name, FaultId, Sender, Cause, Extra, Time) -> ok |
ferror, Reasong
[page 38] Sends an alarm and makes it active

� asend event(Name, Sender, Extra)
[page 39] Sends an event

� send event(Name, Sender, Extra)
[page 39] Sends an event

� send event(Name, Sender, Extra, Time) -> ok | ferror, Reasong
[page 39] Sends an event

� unregister alarm(Name) -> void()
[page 39] Unregisters an alarm within EVA

� unregister event(Name) -> void()
[page 40] Unregisters an event within EVA

� alarm first() -> fok, Indexg | ’$end of table’
[page 40] Returns the index of the first element in the alarm table

� alarm next(Index) -> fok, NextIndexg | ’$end of table’
[page 40] Returns the next index in the alarm table

eva log

The following functions are exported:

� close(Name) -> ok
[page 41] Closes an event log

� get logs() -> [#eva log]
[page 41] Returns all event logs

� open(Name, FilterFunction, WrapTime) -> ok | ferror, Reasong
[page 41] Opens a new event log

� set filter(Name, FilterFunction)
[page 42] Changes the filter function for a log

� start link()
[page 42] Starts the eva log service

� start link(DefaultLog) -> fok, Pidg | ferror, Reasong
[page 42] Starts the eva log service

30 Event and Alarm handling Application (EVA)

EVA Reference Manual

eva server

The following functions are exported:

� create tables(Nodes) -> void()
[page 43] Creates the Mnesia tables required for the eva server

� start link() -> fok, Pidg | ferror, Reasong
[page 43] Starts the eva server

eva sup

The following functions are exported:

� create tables(Nodes) -> void()
[page 44] Creates Mnesia tables for basic EVA

� create tables log(Nodes) -> void()
[page 44] Creates Mnesia tables for basic EVA and log

� create tables log snmp(Nodes) -> void()
[page 44] Creates Mnesia tables for basic EVA, log, and SNMP implementations

� create tables snmp(Nodes) -> void()
[page 45] Creates Mnesia tables for basic EVA and SNMP implementation

� start link() -> fok, Pidg | ferror, Reasong
[page 45] Starts basic EVA

� start link log(DefaultLog) -> fok, Pidg | ferror, Reasong
[page 45] Starts basic EVA and log

� start link log snmp(DefaultLog, LogDir, MaxDirSize) -> fok, Pidg |
ferror, Reasong
[page 45] Starts basic EVA, log and SNMP implementations

� start link snmp() -> fok, Pidg | ferror, Reasong
[page 45] Starts basic EVA and SNMP implementation

log

The following functions are exported:

� close(Name) -> ok
[page 47] Closes an open log

� get logs() -> [Log]
[page 47] Gets all logs known to the log server

� open(Name,Type,WrapTime)
[page 47] Opens a log

� set admin status(Name, AdminStatus) -> OperStatus | ferror, Reasong
[page 47] Sets the administrative status of the log

� transfer(Host,User,Passwd,DestFile,SearchFunc) -> ok | ferror,
Reasong
[page 47] Transfers a log with FTP

31Event and Alarm handling Application (EVA)

EVA Reference Manual

log server

The following functions are exported:

� start link() -> fok, Pidg | ferror, Reasong
[page 50] Starts the log server

32 Event and Alarm handling Application (EVA)

EVA Reference Manual eva (Application)

eva (Application)

The Event and Alarm handling appliction (EVA) is a Fault Management application
that provides support to applications and managers for sending and controlling events
and alarms, and for control and transfer of logs in the system.

EVA is modular and provides two different management protocol independent services.
These two services are basic eva, which provides event and alarm definition and sending,
and log which provides support for controlling logs in the system, and for transferring
logs to remote systems. There is also a service called eva log, which provides a
specialization of the generic log mechanism, for logging of events and alarms. The basic
eva can be used independently of log. EVA defines an API that can be used to make
management protocol specific interfaces to EVA, for example SNMP, CORBA, or
HTTP interfaces. Currently, an SNMP interface to the two generic services are defined.

EVA is designed to be used as an included application, which means that it needs
another application to include it, in order to run. That application is an ordinary
application which starts the EVA services it needs in its supervision tree. The services
can either be started individually, or by using the supervisor eva sup.

EVA is designed to be a distributed global application, which means that the super
application that includes EVA may be specified as a distributed application which runs
at one node at a time only, with the other nodes as standby nodes. The basic EVA
service - the eva server - is a global server, which means that clients can access the EVA
functionality from any node.

EVA uses the Mnesia DBMS to store data. This means that Mnesia must be running on
all nodes where EVA can run, and that the tables EVA uses are created and configured
correctly. Each EVA service provides a function that should be called to create the
tables, and to define the replicas for Mnesia. Each such function is called
create tables* and takes one parameter that is a list of nodes. The Mnesia tables will
be replicated on these nodes; some on disk, and some in RAM. It is important that these
nodes are the same as where the super application that includes EVA is defined to run
as a distributed application.

CONFIGURATION

The following configuration parameters are defined for the EVA application; for more
information about configuration parameters see application(3):

use snmpea log = true | false <optional> Specifies if the audit trail log in snmp
should be visible and controllable in the log application. Default is false.

33Event and Alarm handling Application (EVA)

eva (Application) EVA Reference Manual

SNMP MIBs

The following MIBs are defined in EVA:

OTP-EVA-MIB (eva) This MIB contains objects for instrumentation and control of the
events and alarms in the system.

OTP-LOG-MIB (eva) This MIB contains objects for instrumentation and control of the
logs and FTP transfer of logs.

OTP-EVA-LOG-MIB (eva) This MIB contains objects for instrumentation and control
of the events and alarm logs in the system.

OTP-SNMPEA-LOG-MIB (eva) This MIB contains objects for instrumentation and
control of the snmp audit trail log in the system.

The MIBs are stored in the mibs directory. All MIBs are defined in SNMPv2 SMI
syntax. SNMPv1 versions of the mibs are delivered in the mibs/v1 directory.

The compiled MIBs are located under priv/mibs, and the generated .hrl files under
the include directory. To compile a MIB that IMPORTS an EVA MIB, give the option
fil, ["eva/priv/mibs"]g to the MIB compiler.

The MIBs are loaded into the agent when the services are started.

SEE ALSO

eva(3), eva log(3), eva server(3), eva sup(3), eva log snmp(3),
eva snmp adaptation(3), log(3), log snmp(3), log snmpea(3), snmp(6)

34 Event and Alarm handling Application (EVA)

EVA Reference Manual eva (Module)

eva (Module)

This module contains functions for the client API to the Event and Alarm handling
application EVA. EVA is a distributed global application, which means that clients can
access the EVA functionality from any node. There is a globally registered server called
eva server to which all requests are sent. The client functions for sending and clearing
events and alarms exist in two variants; one asynchronous and one synchronous. The
decision to use one or the other depends on how secure the delivery of events should
be. If the asynchronous variant is used, the message may be lost if the node where the
eva server crashes after the message is sent, but before it is correctly received. The
synchronous variant fails if it does not get an acknowledgment back from the server. In
this case, it is up to the client application to decide what to do. It may, for example, wait
a few seconds for another node to takeover the EVA application, and then try again.

An event is a notification sent from the NE to a management application. An event is
uniquely identified by its name. A special form of an event is an alarm. An alarm
represents a fault in the system that needs to be reported to the manager. An example
of an alarm could be equipment on fire. When an alarm is sent, it becomes active and
is stored in an active alarm list. When the application from which the alarm was sent
notices that the fault that caused the alarm is not valid anymore, it clears the alarm.
When an alarm is cleared, the alarm is deleted from the active alarm list, and an
clear alarm event is generated by EVA. Each fault may give rise to several alarms,
maybe with different severities. There can, however, only be one active alarm for each
fault at any one time. For example, associated with disk space usage may be two alarms,
disk 80 percent filled and disk 90 percent filled. These two alarms represents
the same fault, but only one of them can be active at the same time. An active alarm is
identified by its fault id. In contrast to alarms, ordinary events do not represent a fault,
and they are not stored as the alarms in the active alarm list.

The basic EVA server is a global server to which all events and alarms are sent. The
server updates its tables, the active alarm list for example, and sends the event or alarm
to the alarm handler process that runs on the same node as the global server.
alarm handler is a gen event process defined in SASL.

EVA stores the definitions of events and alarms in the Mnesia tables eventTable and
alarmTable respectively. As an alarm is a special form of an event, each alarm is
present in both of these tables. The active alarm list is stored in the Mnesia table alarm.
The records for all these tables are defined in the header file eva.hrl, available in the
include directory in the distribution.

The EVA application provides functionality to send and to log events and alarms. The
logs can be examined by a manager at a later time.

Before a client can send any events or alarms, the name of the event must be registered
in EVA. To register an event, a client calls register event/2. The parameters of this
function are the name of the event and notification of whether the event should be
logged by default or not. A manager can decide to change this value later. To register an
alarm, a client calls register alarm/4. The parameters of this function are the name
and logging parameters as for events, and the class and default severity of the alarm.

35Event and Alarm handling Application (EVA)

eva (Module) EVA Reference Manual

Adaptations and Subscriptions

The EVA services are management protocol independent. However, to provide EVA
services to a manager, a management protocol is however needed. EVA uses
adaptations for mapping of EVA services to specific protocols. Adaptations need access
to the Mnesia tables used in EVA.

The event definitions are stored in the Mnesia table eventTable, and the alarm
definitions in alarmTable. They are replicated to disk and RAM on each node that may
run the EVA application. The tables are defined as follows:

-record(eventTable, {name, log, generated}).
-record(alarmTable, {name, class, severity}).

Each alarm is defined in both the event and alarm table, since an alarm is a special kind
of event. log is a boolean which defines whether the event should be logged or not,
generated is a counter that is incremented each time this event is sent, class and
severity are as defined in register alarm/4 below.

The active alarm list is stored in the Mnesia table alarm. The alarm record is defined as:

-record(alarm, {index, fault_id, name, sender,
cause, severity, time, extra}).

These records are defined in the file include/eva.hrl. To include this file in your code,
use -include lib("eva/include/eva.hrl")..

All these tables are part of the API, which means that they may be accessed and
modified by any application, for example by an EVA adaptation. They must be
accessed and modified within a transaction.

When an event or alarm is generated by an application, it is sent to the global eva server,
which updates the Mnesia tables, and constructs a record that it sends to the local
alarm handler process in the SASL application. alarm handler is a gen event
manager process, which means that eva server uses gen event:notify to send the event
or alarm record. An application which needs to subscribe to certain events, should write
a gen event handler module and install it in the alarm handler. EVA adaptations
should do this as well. The eva server sends the following gen event notifications to
alarm handler:

fregister alarm, Nameg Sent when an alarm has been registered.

fregister event, Nameg Sent when an event has been registered.

fsend alarm, #alarmg Sent when an alarm is to be sent. The eva server sends this
notification after the Mnesia tables have been updated. An adaptation should
translate the #alarm into a format suitable for the protocol that the adaptation
implements.

fsend event, #eventg Sent when an event is to be sent. The eva server sends this
notification after the Mnesia tables have been updated. An adaptation should
translate the #event into a format suitable for the protocol the adaptation
implements.

funregister alarm, Nameg Sent when an alarm has been unregistered.

funregister event, Nameg Sent when an event has been unregistered.

36 Event and Alarm handling Application (EVA)

EVA Reference Manual eva (Module)

When an alarm is cleared, EVA generates an event called clear alarm, where
#event.sender is the index in the table alarm. For example, if an application calls
eva:clear alarm(Fault) and the fault was stored with index 6 in the active alarm list,
the following #event is generated: #eventfname = clear alarm, sender = 6g.

The clear alarm event is generated using gen event:sync notify, which means that
all adaptations and subscribers are given a chance to take care of this event, before the
alarm is deleted from the active alarm list.

Exports

aclear alarm(FaultId)

clear alarm(FaultId)

clear alarm(FaultId, Time) -> ok

Types:

� FaultId = fault id()
� Time = integer() > 0 | infinity

These functions are used to clear an active alarm. The FaultId is a term the uniquely
identifies the fault. For example, the function get fault id/0 can be used to generate
a unique id.

aclear alarm/1 is an asynchronous function which just sends the clear alarm request to
the global eva server. clear alarm/1,2 are synchronous functions that wait Time ms
for an answer. If Time is not given, it defaults to 10000 ms.

If the server does not respond within the specified time, the function exits with reason
ftimeout, g.

get alarm status() -> [fSeverity, boolean()g]

Types:

� Severity = severity()

For each alarm severity, it returns information on whether there is any active alarm for
that severity or not.

get alarms(Item) -> [#alarm]

Types:

� Item = fname, Nameg | fsender, Senderg
� Name = atom()
� Sender = term()

Returns all active alarms which match Item. This function can be used by a client to
check if it has any active alarms defined when it starts. For each such alarm, it must be
prepared to clear it. A client may, for example, at start-up perform a “self-test” to see
which alarms should be active, and compare then this with what this function returns,
and clear or send missing alarms.

get fault id() -> fault id()

37Event and Alarm handling Application (EVA)

eva (Module) EVA Reference Manual

This function can be called before a client sends an alarm to obtain a globally unique
fault identity that can be used in subsequent calls to send alarm and clear alarm.

This function does not communicate with the eva server, it just constructs a unique
reference and is therefore fast.

get no alarms() -> integer()

Returns the number of active alarms in the system.

register alarm(Name, Log, Class, Severity) -> boolean()

Types:

� Name = atom()
� Log = boolean()
� Class = class()
� Severity = severity()
� class() = unknown | communications | qos | processing | equipment |

environmental
� severity() = indeterminate | critical | major | minor| warning

Registers an alarm within EVA. An alarm must be registered before it is sent the first
time. The registration information is stored persistently, so this function can be called
just once. However, if EVA detects that the alarm is already registered, it discards the
registration and returns false. Otherwise, it returns true.

The Log parameter defines if the alarm should be logged by default or not.

The Class and Severity parameters are originally defined in X.733, ITU Alarm
Reporting Function.

register event(Name, Log) -> boolean()

Types:

� Name = atom()
� Log = boolean()

Registers an event within EVA. An event must be registered before it is sent the first
time. The registration information is stored persistently, so this function can be called
just once. However, if EVA detects that the event is already registered, it discards the
registration and returns false. Otherwise, it returns true.

The Log parameter defines if the event should be logged by default or not.

asend alarm(Name, FaultId, Sender, Cause, Extra)

send alarm(Name, FaultId, Sender, Cause, Extra)

send alarm(Name, FaultId, Sender, Cause, Extra, Time) -> ok | ferror, Reasong

Types:

� Name = atom()
� FaultId = fault id()
� Sender = term()
� Cause = term()
� Extra = term()
� Time = integer() > 0 | infinity

38 Event and Alarm handling Application (EVA)

EVA Reference Manual eva (Module)

� Reason = fno such alarm, Nameg | faborted, Name, Rg

These functions are used to send an alarm and make it active (stored in the active alarm
list).

Name is the name of the alarm. The alarm must be registered before this function is
called.

FaultId is a term the uniquely identifies the fault. For example, the function
get fault id/0 can be used to generate a unique id.

Sender is the object that generated the alarm. It could, for example, be a tuple fboard,
7g or a registered name. This object should be fairly constant - not a Pid - so that it is
possible to trace the sending object at a later time.

Cause is the cause of the alarm. It is recommended not to use strings as cause, to make
it easier to match upon for other programs. For example a management application may
want to translate the cause into another language.

Extra is any extra information which describes the alarm.

asend alarm/5 is an asynchronous function which just sends the alarm request to the
global eva server. send alarm/5,6 are synchronous functions that wait Time ms for an
answer. If Time is not given, it defaults to 10000 ms.

If the server does not respond within the specified time, the function exits with reason
ftimeout, g.

asend event(Name, Sender, Extra)

send event(Name, Sender, Extra)

send event(Name, Sender, Extra, Time) -> ok | ferror, Reasong

Types:

� Name = atom()
� Sender = term()
� Extra = term()
� Time = integer() > 0 | infinity
� Reason = fno such event, Nameg | faborted, Name, Rg

These functions are used to send an event to the eva server.

Name is the name of the event. The event must be registered before this function is
called.

Sender is the object that generated the event. It could, for example, be a tuple fboard,
7g or a registered name. This object should be fairly constant - not a Pid - so that it is
possible to trace the sending object at a later time.

Extra is any extra information which describes the event.

asend event/3 is an asynchronous function, that just sends the event request to the
global eva server. send event/3,4 are synchronous functions that waits Time ms for an
answer. If Time is not given, it defaults to 10000 ms.

If the server does not respond within the specified time, the function exits with reason
ftimeout, g.

unregister alarm(Name) -> void()

Types:

� Name = atom()

39Event and Alarm handling Application (EVA)

eva (Module) EVA Reference Manual

Unregisters an alarm within EVA. This function should only be used when an alarm
definition should be removed, due to a new release of the system, for example.

unregister event(Name) -> void()

Types:

� Name = atom()

Unregisters an event within EVA. This function should only be used when an event
definition should be removed, due to a new release of the system, for example.

Access functions for the Active Alarm List

The active alarm list is stored in the Mnesia table alarm. This table is indexed by an
integer alarmIndex. This integer is used to get the table ordered, with the latest sent
alarm after the previous. Currently ordered Mnesia tables cannot be traversed in a
convenient way and for this reason this module provides two functions to handle the
traversal. These functions will be removed if ordered tables are implemented in Mnesia.

Exports

alarm first() -> fok, Indexg | ’$end of table’

Types:

� Index = integer()

Returns the index of the first element in the alarm table. This is a temporary function
which will be removed if ordered tables are implemented in Mnesia.

alarm next(Index) -> fok, NextIndexg | ’$end of table’

Types:

� Index = NextIndex = integer()

Returns the next index after Index in the alarm table. This is a temporary function
which will be removed if ordered tables are implemented in Mnesia.

SEE ALSO

alarm handler(3), gen event(3), mnesia(3)

40 Event and Alarm handling Application (EVA)

EVA Reference Manual eva log (Module)

eva log (Module)

The EVA log service uses the generic Log Control service to implement log
functionality for events and alarms defined in EVA.

In the rest of this description, the term event refers to both events and alarms as defined
in EVA.

This log functionality supports logging of events from EVA. It uses the module
disk log for logging of events, using the internal log format defined by disk log.
There can be several logs active at the same time. Each log uses a filter function to
decide whether an event should be stored in the log or not.

There are several ways to control whether an event should be stored in a log or not.
First of all, eva log checks if the log flag in eventTable is set (see eva(3)). If it is set
to false, the event is not stored in any log, even if there are logs that are configured to
log the event. In this way, logging of individual events can be turned on/off by a
manager. If the log flag is true, eva log checks the operational status of the log. If it is
down, the event is not stored. If it is up, the associated filter function is called. If this
function returns true, the event is stored, otherwise it is discarded. To summarize, all
these conditions must be true for an event to be stored:

� The log flag for the event is true.

� The operational status for the log is up.

� The filter function for the log returns true, when applied to the event.

There is a concept of a default log. The default log is used to log any event that has the
log flag in eventTable set to true, but no log is currently able to store the event (or
there is no other log defined to log the event). The usage of the default log is optional.

Exports

close(Name) -> ok

Types:

� Name = string()

Closes an event log.

get logs() -> [#eva log]

Returns all event logs known to eva log. The record #eva log is defined in the file
eva log.hrl.

open(Name, FilterFunction, WrapTime) -> ok | ferror, Reasong

41Event and Alarm handling Application (EVA)

eva log (Module) EVA Reference Manual

Types:

� Name = string()
� FilterFunction = fM, F, Ag

� M = F = atom()
� A = list()
� WrapTime = integer()

Makes eva log aware of the log Name. The log must be an open disk log log, with log
format internal. This function will call log:open(Name, eva log, WrapTime) in
order to register the log in the generic Log Control service.

The FilterFunction is used when an event is received from EVA. It is then called as
M:F(Event ++ A), and supposed to return true if the event should be stored in the log.
All other return values makes the event be discarded. The filter function can be
exchanged during runtime, by using set filter/2.

set filter(Name, FilterFunction)

Types:

� Name = string()
� FilterFunction = fM, F, Ag

� M = F = atom()
� A = list()

Changes the filter function for the event log.

start link()

start link(DefaultLog) -> fok, Pidg | ferror, Reasong

Types:

� DefaultLog = fName, WrapTimeg | false
� Name = string()
� WrapTime = integer()

Starts the eva log service. This function can be used to include the service in a
supervisor. Normally, functions in the supervisor eva sup can be used instead.

DefaultLog is either the name and wrap time of the default log to use, or false. If it is
not false, the log must have been created with disk log, just as any other log (see
open/3). The default log is used to log any event that has the log flag set to true in
eventTable, but no log has actually logged the event, either because there was no such
log, or the log had operational status down. If the DefaultLog argument is omitted, it
defaults to false. If the default log is used, it will be made known to the generic Log
Control service as log:open(Name, eva log, WrapTime).

SEE ALSO

disk log(3), eva(3), eva sup(3), file(3), log(3)

42 Event and Alarm handling Application (EVA)

EVA Reference Manual eva server (Module)

eva server (Module)

This module implements the main global server in EVA. The client API towards this
server is defined in the module eva. The functions in this module are used to start the
service.

Exports

create tables(Nodes) -> void()

Types:

� Nodes = [node()]

This function creates the Mnesia tables required for the eva server. Nodes is a list of
nodes where the tables should be replicated. This list of nodes should specify the same
nodes where the application EVA can be run distributed, so that EVA always can have
local access to the tables.

This function should be called once when installing the EVA application in the system.

start link() -> fok, Pidg | ferror, Reasong

Starts the eva server. This function can be used to include the server in a supervisor.
Normally, functions in the supervisor eva sup can be used instead.

The function create tables/1 must have been called before the server is started.

SEE ALSO

eva(3), eva sup(3)

43Event and Alarm handling Application (EVA)

eva sup (Module) EVA Reference Manual

eva sup (Module)

This module provides a supervisor for the entire EVA application. An application can
use this supervisor, or write its own, using the start link functions of the individual
services.

The supervisor can be configured to start the different EVA services independently,
such as the basic eva server and eva log functionality, and to start the SNMP
implementations of the respective service. For each possible combination of services,
there is a corresponding start function, for example start link log/1 which starts the
basic eva server and the log functionality.

Before the services can be used, the Mnesia tables involved must be created. For each
combination of services, there is a corresponding function which creates the tables.
Each such function takes a list of nodes as its argument. This list of nodes defines to
which nodes the Mnesia tables will be replicated. These nodes should be the same
nodes as where the application where EVA is included can run distributed. This is as
per the kernel configuration parameter distributed.

Exports

create tables(Nodes) -> void()

Types:

� Nodes = [node()]

Creates the Mnesia tables for the basic EVA service (eva server) only.

create tables log(Nodes) -> void()

Types:

� Nodes = [node()]

Creates the Mnesia tables for the basic EVA service (eva server) and EVA log service
(eva log).

create tables log snmp(Nodes) -> void()

Types:

� Nodes = [node()]

Creates the Mnesia tables for the basic EVA service (eva server), EVA log service
(eva log), and for the SNMP implementation of these (eva snmp adaptation and
eva log snmp).

44 Event and Alarm handling Application (EVA)

EVA Reference Manual eva sup (Module)

create tables snmp(Nodes) -> void()

Types:

� Nodes = [node()]

Creates the Mnesia tables for the basic EVA service (eva server), and for the SNMP
implementation of this service (eva snmp adaptation).

start link() -> fok, Pidg | ferror, Reasong

Starts the supervisor and the basic EVA service (eva server) only.

start link log(DefaultLog) -> fok, Pidg | ferror, Reasong

Types:

� DefaultLog = string() | false

Starts the supervisor, the basic EVA service (eva server) and EVA log service
(eva log).

DefaultLog is passed to eva log:start link(DefaultLog).

start link log snmp(DefaultLog, LogDir, MaxDirSize) -> fok, Pidg | ferror, Reasong

Types:

� DefaultLog = string() | false
� LogDir = string()
� MaxDirSize = integer()

Starts the supervisor, the basic EVA service (eva server), EVA log service (eva log)
and the SNMP implementations of these (eva snmp adaptation and eva log snmp).

DefaultLog is passed to eva log:start link(DefaultLog), LogDir and MaxDirSize
to eva log snmp:start link(LogDir, MaxDirSize).

start link snmp() -> fok, Pidg | ferror, Reasong

Starts the supervisor, the basic EVA service (eva server) and the SNMP
implementation of this service (eva snmp adaptation).

SEE ALSO

eva log(3), eva server(3), eva log snmp(3), eva snmp adaptation(3)

45Event and Alarm handling Application (EVA)

log (Module) EVA Reference Manual

log (Module)

This module contains client functions to the generic Log Control services in the EVA
application. There are two services available; log monitoring and log transfer. The logs
are controlled by a log server, and each log may be transfered with FTP to a remote host.

The log server has a list of all active logs in the system. An application that wants to
make a log controllable with this functionality, must register the log in the log server.
Each log is implemented as a disk log log. The application stores its log records using
the ordinary functions in disk log. The following picture illustrates the idea:

+------+ tell +-------+
| Appl | --------> | log |
+------+ | server|

| +-------+
|open, /
|log*, /control
|close /
| +---------+
+--->| disk log|

+---------+

First, the application opens the log. Thenit registers the log in the log server, which
makes the log server control the log. The application can store log records in the log,
until it eventually closes the log, and tells the log server about it.

Each log has an administrative and an operational status, that both can be either up or
down. The administrative status is configurable, and reflects the desired operational
status. Normally they are both the same. If the administrative status is set to up, the
operational status will be up as well. However, if the log for some reason does not work,
for example if the disk partition is full, the operational status will be down. When the
operational status is down, no records are stored in the log.

Alarms

Two EVA alarms are defined in the log service, log file error and
log wrap too often.

� log file error. This alarm is generated if there is a file error when an item
should be logged. Default severity is critical. The cause for this alarm can be
any Reason as returned from file:write in case of error (it returns ferror,
Reasong). The alarm is cleared if the file system starts working again.

� log wrap too often. This alarm is generated when the log wraps more often than
the wrap time. Default severity is major. The cause for this alarm is undefined.
The alarm is cleared if the log wraps within the wrap time, the next time it wraps.

46 Event and Alarm handling Application (EVA)

EVA Reference Manual log (Module)

Exports

close(Name) -> ok

Types:

� Name = string()

Use this function to remove a log from the log server.

get logs() -> [Log]

Types:

� Log = #log

Returns all logs known to log server. The record #log is defined in the file log.hrl.

open(Name,Type,WrapTime)

Types:

� Name = string()
� Type = term()
� WrapTime = integer()

Makes log server aware of the log Name. The log must be an open disk log log.

The type argument is there for information to a manager.

If the log is a wrap log, log server generates the log wrap too often alarm if the log
wraps more often than WrapTime seconds. In this context, wraps means that disk log
switches to a previously used file, and some log items are lost.

set admin status(Name, AdminStatus) -> OperStatus | ferror, Reasong

Types:

� Name = string()
� AdminStatus = OperStatus = up | down
� Reason = ferror, fno such log, Namegg

Sets the desired state of the log. Returns the new operational status of the log. If the
administrative status is set to up, and the operational status is down, there is some error
with the logging mechanism, for example if the disk partition is full.

If the operational status of the log is down, no log records will be stored in the log. This
function uses the functions disk log:block/unblock to change the operational status.

transfer(Host,User,Passwd,DestFile,SearchFunc) -> ok | ferror, Reasong

Types:

� Host = ip address()
� User = string()
� Passwd = string()
� DestFile = string()
� SearchFunc = fM,F,Ag

47Event and Alarm handling Application (EVA)

log (Module) EVA Reference Manual

� Reason = ftp bad address | ftp login error | ftp write error | ftp tranfer error |
fbad search result, term()g

� ip address() = string() | fint(), int(), int(), int()g
� M = F = atom()
� A = list()
� M:F(Continuation | A) -> SearchResult
� SearchResult = eof | fNewContinuation, Bytesg | ferror, Rg
� Continuation = start | cont()
� NewContinuation = cont()
� Bytes = binary()
� R = term()

This function is used to transfer a log with FTP to a remote host, for example a
mangement station. It could be triggered from for example SNMP or from a web
interface to the system. This log is received as one contiguous file, although it is stored
as several files in the underlying disk log log. It is possible to filter the log for certain
log records, and to format the log records. Thus, log records can be efficiently stored by
not formatting them when they are written, but later when the log is actually needed.
Of course, to further improve performance, the log records can be transferred
unformatted as well, and later formatted off-line at the management station.

The Host argument is either a string or a four-tuple representing the IP address of the
host. The string can be the name of the host, or the IP address in dotted decimal
notation, for example “150.236.14.136”.

The SearchFunc argument specifies a function that will be called by the transfer session
to get a chunk of log records to transfer. At the first call, the atom start is used as an
initial continuation. Each time the function is called, it is supposed to return a new
continuation and a binary that contains the bytes to be transferred (the formatted log
records). When the end of the log is reached, eof is returned by the function. The
return values of the SearchFunc is chosen to match those of disk log:chunk/2. The
extra arguments (A) to the functions can be used to pass filtering information to the
search function. An example of a search function:

-module(my_log).

f(Cont, Time) ->
case disk_log:chunk("my_log", Cont) of

eof ->
eof;

{error, R} ->
{error, R};

{NCont, ListOfTerms} ->
List = lists:map(fun(Term) ->

format(Term, Time)
end, ListOfTerms),

Bin = list_to_binary(List),
{NCont, Bin}

end.

%% Each log record is a tuple: {LogTime, LogData}
format({LogTime, LogData}, Time) when LogTime > Time ->

io_lib:format("time: ~p data: ~p~n", [LogTime, LogData]);
format(_LogRecord, _Time) ->

48 Event and Alarm handling Application (EVA)

EVA Reference Manual log (Module)

[].

This function can be used as follows to transfer all log records stored after 1997-11-01:

log:transfer("cave.ericsson.se", "mbj", "secret!", "my_log.txt",
{my_log, f, [{1997,11,01}]}

SEE ALSO

disk log(3), eva(3), file(3)

49Event and Alarm handling Application (EVA)

log server (Module) EVA Reference Manual

log server (Module)

This module implements the main server in the LOG application. The client API to
this server is defined in the module log.

Exports

start link() -> fok, Pidg | ferror, Reasong

Starts the log server. This function can be used to include the server in a supervisor.
Normally, functions in the supervisor log sup can be used instead.

SEE ALSO

eva log sup(3), log(3)

50 Event and Alarm handling Application (EVA)

EVA Reference Manual - SNMP

adaptation

Short Summaries

� Erlang Module eva log snmp [page 53] – Implements an SNMP Interface to EVA
log

� Erlang Module eva snmp adaptation [page 55] – An SNMP Adaptation to EVA

� Erlang Module log snmp [page 58] – Implements an SNMP interface to the log
service in the EVA application

� Erlang Module log snmpea [page 60] – SNMP instrumentation functions for the
OTP-SNMPEA-LOG-MIB

eva log snmp

The following functions are exported:

� create tables(Nodes) -> void()
[page 53] Creates the Mnesia tables required for EVA log SNMP implementation

� start link(LogDir, MaxSize) -> fok, Pidg | ferror, Reasong
[page 53] Starts the EVA LOG SNMP service

� log discr table(Op, RowIndex, Cols) -> InstrumRet
[page 54] Instrumentation function for the logDiscriminatorTable

� log table(Op, RowIndex, Cols) -> InstrumRet
[page 54] Instrumentation function for the logTable

� log total max allowed(get) -> InstrumRet
[page 54] Instrumentation function for the logTotalMaxAllowedSize

� log total max size(get) -> InstrumRet
[page 54] Instrumentation function for the logTotalMaxSize

51Event and Alarm handling Application (EVA)

EVA Reference Manual - SNMP adaptation

eva snmp adaptation

The following functions are exported:

� create tables(Nodes) -> void()
[page 55] Creates the required Mnesia tables

� name2index(Name) -> fok, Indexg | undefined
[page 55] Maps an event to the corresponding eventIndex

� register alarms(Alarms) -> void()
[page 55] Registers an alarm

� register events(Events) -> void()
[page 56] Registers an event

� start link() -> fok, Pidg | ferror, Reasong
[page 56] Starts the EVA SNMP adaptation service

� alarmTable(Op, RowIndex, Cols) -> InstrumRet
[page 57] Instrumentation function for the alarmTable

� curAlarmTable(Op, RowIndex, Cols) -> InstrumRet
[page 57] Instrumentation function for the currentAlarmTable

� curAlarmLastTimeChanged(get) -> InstrumRet
[page 57] Instrumentation function for the currentAlarmTable

� eventTable(Op, RowIndex, Cols) -> InstrumRet
[page 57] Instrumentation function for the eventTable

log snmp

The following functions are exported:

� create tables(Nodes) -> void()
[page 58] Creates the Mnesia tables required by the log SNMP implementation

� register type(Type,TypeOid,TypeFunc)
[page 58] Registers a log to the SNMP log functionality

� start link() -> fok, Pidg | ferror, Reasong
[page 59] Starts the LOG SNMP service

� log table(Op, RowIndex, Cols) -> InstrumRet
[page 59] Instrumentation function for the logTable

� log tr table(Op, RowIndex, Cols) -> InstrumRet
[page 59] Instrumentation function for the logTransferTable

log snmpea

The following functions are exported:

� snmpeaLogDiscriminator(Op,Val)
[page 60] Instrumentation function for snmpeaLogDiscriminator variable

52 Event and Alarm handling Application (EVA)

EVA Reference Manual - SNMP adaptation eva log snmp (Module)

eva log snmp (Module)

This module implements an SNMP interface to EVA LOG. The MIB implemented by
this adaptation is OTP-EVA-LOG-MIB. The MIB is located in the directory mibs in the
distribution.

Exports

create tables(Nodes) -> void()

Types:

� Nodes = [node()]

This function creates the necessary Mnesia tables for the eva log SNMP
implementation. Nodes is a list of nodes where the tables should be replicated. This list
of nodes should specify the same nodes where the application EVA can be run
distributed, so that EVA can always have local access to the tables.

This function should be called once when installing the EVA application in the system.

start link(LogDir, MaxSize) -> fok, Pidg | ferror, Reasong

Types:

� LogDir = string()
� MaxDirSize = integer()

Starts the EVA LOG SNMP implementation. This function can be used to include the
service in a supervisor. Normally, functions in the supervisor eva sup can be used
instead.

LogDir is a directory where all manager created logs are stored. The directory must
exist.

MaxDirSize is the maximum total space the logs manager created logs are allowed to
use.

The function create tables/1 must be called before the server is started.

53Event and Alarm handling Application (EVA)

eva log snmp (Module) EVA Reference Manual - SNMP adaptation

Instrumentation Functions for the OTP-EVA-LOG-MIB

In some cases, other adaptations may need access to the SNMP specific data in EVA
LOG. To do this, the instrumentation functions for the SNMP objects can be used.
These instrumentation functions takes the arguments and return the values defined in
the application snmp.

Exports

log discr table(Op, RowIndex, Cols) -> InstrumRet

Instrumentation function for logDiscriminatorTable. This function assumes that
access checks are made according to the MIB. It may crash if, for example,
logDiscrRowStatus is set no notReady.

log table(Op, RowIndex, Cols) -> InstrumRet

Instrumentation function for logTable. This function assumes that access checks are
made according to the MIB. It may crash if, for example, logOperStatus is set.

log total max allowed(get) -> InstrumRet

Instrumentation function for logTotalMaxAllowedSize.

log total max size(get) -> InstrumRet

Instrumentation function for logTotalMaxSize.

SEE ALSO

eva log(3), eva sup(3)

54 Event and Alarm handling Application (EVA)

EVA Reference Manual - SNMP adaptation eva snmp adaptation (Module)

eva snmp adaptation (Module)

This module implements an SNMP adaptation to basic EVA. The MIB implemented by
this adaptation is OTP-EVA-MIB. The MIB is located in the directory mibs in the
distribution.

The resources generate events and alarms using the API provided by EVA. They are not
aware that the events and alarms are sent as SNMP traps to SNMP managers.

However, each trap to be sent must be defined in an SNMP MIB, and there must be
instrumentation functions that translate the EVA events and alarms into SNMP traps.
Normally, each event and alarm in the system is mapped onto one separate SNMP trap.
This mapping is done by registration of the events. The following functions are available
for the registration. They could be called when the corresponding MIB is loaded.

Exports

create tables(Nodes) -> void()

Types:

� Nodes = [node()]

This function creates the Mnesia tables required for the eva snmp adaptation. Nodes is
a list of nodes where the tables should be replicated. This list of nodes should specify
the same nodes where the application EVA can be run distributed, so that EVA always
can have local access to the tables.

This function should be called once when installing the EVA application in the system.

name2index(Name) -> fok, Indexg | undefined

Types:

� Name = atom()
� Index = integer()

Maps an event to the corresponding eventIndex value for the event, as defined in the
eventTable in OTP-EVA-MIB.

register alarms(Alarms) -> void()

Types:

� Alarms = [fName, Trap, Treatment, Community, Funcg]
� Name = Trap = atom()
� Func = fun(#alarm) -> fok, ObjOID, CauseOID, SnmpVarbindsg
� Treatment = none | snmpTrap

55Event and Alarm handling Application (EVA)

eva snmp adaptation (Module) EVA Reference Manual - SNMP adaptation

� Community = string()
� ObjOid = CauseOid = [integer()]

This function must be used to register an EVA alarm as an SNMP alarm. It is used to
associate each event with the corresponding SNMP trap and an Erlang instrumentation
function which translates the #alarm into a trap. The corresponding Trap must be
defined in an SNMP MIB. Treatment defines how this alarm is treated when it is
generated. If it is snmpTrap, it is sent to the Community.

When the EVA alarm Name is generated by an application, the adaptation calls
Func(#alarm). The purpose of the Func is to translate the Erlang record #alarm into
SNMP values. ObjOID is an OBJECT IDENTIFIER representation of the
#alarm.sender, CauseOID is an OBJECT IDENTIFIER representation of the
#alarm.cause, and SnmpVarbinds is a list of extra variable bindings for the trap. This
list is as defined for snmp:send trap.

The alarm record is defined in eva.hrl, available in the include directory in the
distribution.

register events(Events) -> void()

Types:

� Events = [fName, Trap, Treatment, Community, Funcg]
� Name = Trap = atom()
� Func = fun(#event) -> fok, SnmpVarbindsg
� Treatment = none | snmpTrap
� Community = string()

This function must be used to register an EVA event as an SNMP event. It is used to
associate each event with the corresponding SNMP trap and an Erlang instrumentation
function which translates the #event into a trap. The corresponding Trap must be
defined in an SNMP MIB. Treatment defines how this event is treated when it is
generated. If it is snmpTrap it is sent to the Community.

When the EVA event Name is generated by an application, the adaptation calls
Func(#event). The purpose of the Func is to translate the Erlang record #event into
SNMP values. The SnmpVarbinds is a list of extra variable bindings for the trap. This
list is as defined for snmp:send trap.

The event record is defined in eva.hrl, available in the include directory in the
distribution.

start link() -> fok, Pidg | ferror, Reasong

Starts the EVA SNMP adaptation. This function can be used to include the service in a
supervisor. Normally, functions in the supervisor eva sup can be used instead.

The function create tables/1 must be called before the service is started.

An EVA adaptation is always implemented as a gen event handler. So is
eva snmp adaptation. But in order to supervise this service from an ordinary
supervisor, this function creates a process that supervises the gen event handler.

56 Event and Alarm handling Application (EVA)

EVA Reference Manual - SNMP adaptation eva snmp adaptation (Module)

Instrumentation Functions for the OTP-EVA-MIB

In some cases, other adaptations may need access to the SNMP specific data in EVA. To
do this, the instrumentation functions for the SNMP objects can be used. These
instrumentation functions takes the arguments and return the values defined in the
application snmp.

Exports

alarmTable(Op, RowIndex, Cols) -> InstrumRet

Instrumentation function for alarmTable. This function assumes that access checks are
made according to the MIB, so it may crash if, for example, alarmClass is set.

curAlarmTable(Op, RowIndex, Cols) -> InstrumRet

Instrumentation function for currentAlarmTable. This function assumes that access
checks are made according to the MIB, so it may crash if, for example,
currentAlarmSeverity is set.

curAlarmLastTimeChanged(get) -> InstrumRet

Instrumentation function for currentAlarmLastTimeSent.

eventTable(Op, RowIndex, Cols) -> InstrumRet

Instrumentation function for eventTable. This function assumes that access checks are
made according to the MIB, so it may crash if, for example, eventTrapName is set.

SEE ALSO

eva(3), eva sup(3), gen event(3), snmp(3)

57Event and Alarm handling Application (EVA)

log snmp (Module) EVA Reference Manual - SNMP adaptation

log snmp (Module)

This module implements an SNMP interface to the log service in the EVA application.
The MIB implemented by this adaptation is OTP-LOG-MIB. The MIB is located in the
directory mibs in the distribution.

Exports

create tables(Nodes) -> void()

Types:

� Nodes = [node()]

This function creates the Mnesia tables required by the log SNMP implementation.
Nodes is a list of nodes where the tables should be replicated. This list of nodes should
specify the same nodes where the application EVA can be run distributed, in order for
the log server to always have local access to the tables.

This function should be called once when installing the EVA application in the system.

register type(Type,TypeOid,TypeFunc)

Types:

� Type = term()
� TypeOid = oid() = [int()]
� TypeFunc = fM,F,Ag

� M = F = atom()
� A = list()

This function is used to register a type of log to the SNMP log functionality. The Type is
the same as the Type argument given to log:open/3.

The purpose of this function is to tell the SNMP LOG functions that all logs of type
Type have an SNMP type defined in some MIB (TypeOid, defined as an OBJECT
IDENTITY), and that the TypeFunc should be used to control creation and transfer of
logs of this type.

The type control function (TypeFunc) will be called when a manger tries to create or
delete a log of type TypeOid, or when he tries to transfer a log of this type. The purpose
of this function is to check if creation is possible, and to format the log when it is
transferred. The function should be defined as:

58 Event and Alarm handling Application (EVA)

EVA Reference Manual - SNMP adaptation log snmp (Module)

M:F(validate creation, LogIndex, Cols | A) -> true | false | fSnmpErr, Colg Called
when the manager tries to create a new log of type TypeOid. It is supposed to
check if it is possible to create a new log of this type. If it is, it should return true.
If it is never possible to create logs of this type, it should return false. Otherwise,
the creation is not possible becasue some resource is not available, and the function
should return fSnmpError, Colg (see definition of SNMP instrumenetation
functions for a description of this).

M:F(create, Log | A) -> ok | error Called when M:F(validate creation, ...)
returned true. This function is supposed to create the log. Log is a #log record,
defined in log.hrl.

M:F(delete, Log | A) -> void() Called when a log previously created by a manager is
deleted.

M:F(search, LogIndex, LogTrIndex | A) -> SearchFunc Called when the manager
activates a log transfer for a log of this type. The LogIndex is the index into
logTable, and fLogIndex, LogTrIndexg is the index into the logTransferTable.
This function is supposed to return a search function as specified in
log:transfer/5. The records for these tables are defined in
include/log snmp.hrl.

start link() -> fok, Pidg | ferror, Reasong

Starts the LOG SNMP implementation. This function can be used to include the service
in a supervisor. Normally, functions in the supervisor log sup can be used instead.

The function create tables/1 must have been called before the server is started.

Instrumentation functions for the OTP-LOG-MIB

In some cases other adaptations may need access to the SNMP specific data in LOG. To
do this, the instrumentation functions for the SNMP objects can be used. These
instrumentation functions takes the arguments and return the values defined in the
application snmp.

Exports

log table(Op, RowIndex, Cols) -> InstrumRet

Instrumentation function for logTable. This function assumes that access checks are
made according to the MIB, so it may crash if e.g. logOperStatus is set.

log tr table(Op, RowIndex, Cols) -> InstrumRet

Instrumentation function for logTransferTable. This function assumes that access
checks are made according to the MIB.

59Event and Alarm handling Application (EVA)

log snmpea (Module)

This module contains the instrumentation functions for the OTP-SNMPEA-LOG-MIB.

In some cases other adaptations may need access to the SNMP specific data in EVA. To
do this, the instrumentation functions for the SNMP objects can be used. These
instrumentation functions takes the arguments and return the values defined in the
application snmp.

Exports

snmpeaLogDiscriminator(Op,Val)

Instrumentation function for the snmpeaLogDiscriminator variable.

60 Event and Alarm handling Application (EVA)

Glossary

EVA adaptation

Provides a mapping from the generic EVA support to a specific management protocol
Local for chapter 1.

NE

Network Element; In OTP, the Network Element is the entire distributed OTP system, meaning that
the distributed OTP system is managed as one entity.

NE

Network Element; In OTP, the Network Element is the entire distributed OTP system, meaning that
the distributed OTP system is managed as one entity.

61Event and Alarm handling Application (EVA)

Glossary

62 Event and Alarm handling Application (EVA)

Index

Modules are typed in this way.
Functions are typed in this way.

aclear_alarm/1
eva , 37

alarm_first/0
eva , 40

alarm_next/1
eva , 40

alarmTable/3
eva snmp adaptation , 57

asend_alarm/5
eva , 38

asend_event/3
eva , 39

clear_alarm/1
eva , 37

clear_alarm/2
eva , 37

close/1
eva log , 41
log , 47

create_tables/1
eva log snmp , 53
eva server , 43
eva snmp adaptation , 55
eva sup , 44
log snmp , 58

create_tables_log/1
eva sup , 44

create_tables_log_snmp/1
eva sup , 44

create_tables_snmp/1
eva sup , 45

curAlarmLastTimeChanged/1
eva snmp adaptation , 57

curAlarmTable/3

eva snmp adaptation , 57

eva
aclear_alarm/1, 37
alarm_first/0, 40
alarm_next/1, 40
asend_alarm/5, 38
asend_event/3, 39
clear_alarm/1, 37
clear_alarm/2, 37
get_alarm_status/0, 37
get_alarms/1, 37
get_fault_id/0, 37
get_no_alarms/0, 38
register_alarm/4, 38
register_event/2, 38
send_alarm/5, 38
send_alarm/6, 38
send_event/3, 39
send_event/4, 39
unregister_alarm/1, 39
unregister_event/1, 40

eva log
close/1, 41
get_logs/0, 41
open/3, 41
set_filter/2, 42
start_link/0, 42
start_link/1, 42

eva log snmp
create_tables/1, 53
log_discr_table/3, 54
log_table/3, 54
log_total_max_allowed/1, 54
log_total_max_size/1, 54
start_link/2, 53

eva server
create_tables/1, 43
start_link/0, 43

63Event and Alarm handling Application (EVA)

Index

eva snmp adaptation
alarmTable/3, 57
create_tables/1, 55
curAlarmLastTimeChanged/1, 57
curAlarmTable/3, 57
eventTable/3, 57
name2index/1, 55
register_alarms/1, 55
register_events/1, 56
start_link/0, 56

eva sup
create_tables/1, 44
create_tables_log/1, 44
create_tables_log_snmp/1, 44
create_tables_snmp/1, 45
start_link/0, 45
start_link_log/1, 45
start_link_log_snmp/3, 45
start_link_snmp/0, 45

eventTable/3
eva snmp adaptation , 57

get_alarm_status/0
eva , 37

get_alarms/1
eva , 37

get_fault_id/0
eva , 37

get_logs/0
eva log , 41
log , 47

get_no_alarms/0
eva , 38

log
close/1, 47
get_logs/0, 47
open/3, 47
set_admin_status/2, 47
transfer/5, 47

log_discr_table/3
eva log snmp , 54

log server
start_link/0, 50

log snmp
create_tables/1, 58
log_table/3, 59
log_tr_table/3, 59

register_type/3, 58
start_link/0, 59

log snmpea
snmpeaLogDiscriminator/2, 60

log_table/3
eva log snmp , 54
log snmp , 59

log_total_max_allowed/1
eva log snmp , 54

log_total_max_size/1
eva log snmp , 54

log_tr_table/3
log snmp , 59

name2index/1
eva snmp adaptation , 55

open/3
eva log , 41
log , 47

register_alarm/4
eva , 38

register_alarms/1
eva snmp adaptation , 55

register_event/2
eva , 38

register_events/1
eva snmp adaptation , 56

register_type/3
log snmp , 58

send_alarm/5
eva , 38

send_alarm/6
eva , 38

send_event/3
eva , 39

send_event/4
eva , 39

set_admin_status/2
log , 47

set_filter/2
eva log , 42

snmpeaLogDiscriminator/2

64 Event and Alarm handling Application (EVA)

Index

log snmpea , 60

start_link/0
eva log , 42
eva server , 43
eva snmp adaptation , 56
eva sup , 45
log server , 50
log snmp , 59

start_link/1
eva log , 42

start_link/2
eva log snmp , 53

start_link_log/1
eva sup , 45

start_link_log_snmp/3
eva sup , 45

start_link_snmp/0
eva sup , 45

transfer/5
log , 47

unregister_alarm/1
eva , 39

unregister_event/1
eva , 40

65Event and Alarm handling Application (EVA)

