
Kernel Application (KERNEL)

version 2.6

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 Kernel Reference Manual 1

1.1 kernel (Application) . 27

1.2 application (Module) . 31

1.3 auth (Module) . 38

1.4 code (Module) . 41

1.5 disk log (Module) . 49

1.6 erl boot server (Module) . 63

1.7 erl ddll (Module) . 65

1.8 erl prim loader (Module) . 68

1.9 erlang (Module) . 71

1.10 error handler (Module) . 106

1.11 error logger (Module) . 108

1.12 file (Module) . 113

1.13 gen tcp (Module) . 126

1.14 gen udp (Module) . 130

1.15 global (Module) . 132

1.16 global group (Module) . 136

1.17 heart (Module) . 140

1.18 inet (Module) . 142

1.19 init (Module) . 149

1.20 net adm (Module) . 154

1.21 net kernel (Module) . 156

1.22 os (Module) . 158

1.23 pg2 (Module) . 161

1.24 rpc (Module) . 163

1.25 seq trace (Module) . 167

1.26 user (Module) . 175

1.27 wrap log reader (Module) . 176

1.28 app (File) . 178

1.29 config (File) . 180

iKernel Application (KERNEL)

ii Kernel Application (KERNEL)

Kernel Reference Manual

Short Summaries

� Application kernel [page 27] – The Kernel Application
� Erlang Module application [page 31] – Functions for controlling applications
� Erlang Module auth [page 38] – The Erlang Network Authentication Server
� Erlang Module code [page 41] – Erlang Code Server
� Erlang Module disk log [page 49] – A disk based term logging facility
� Erlang Module erl boot server [page 63] – Boot Server for Other Erlang Machines
� Erlang Module erl ddll [page 65] – Dynamic Driver Loader and Linker
� Erlang Module erl prim loader [page 68] – The Low Level Erlang Loader.
� Erlang Module erlang [page 71] – The Erlang BIFs
� Erlang Module error handler [page 106] – Default System Error Handler
� Erlang Module error logger [page 108] – The Erlang Error Logger
� Erlang Module file [page 113] – File Interface Module
� Erlang Module gen tcp [page 126] – Interface to TCP/IP sockets
� Erlang Module gen udp [page 130] – Interface to UDP.
� Erlang Module global [page 132] – A Global Name Registration Facility
� Erlang Module global group [page 136] – Grouping Nodes to Global Name

Registration Groups
� Erlang Module heart [page 140] – Heartbeat Monitoring of an Erlang Runtime

System.
� Erlang Module inet [page 142] – Access to TCP/IP protocols.
� Erlang Module init [page 149] – Called at System Start
� Erlang Module net adm [page 154] – Various Erlang Net Administration Routines
� Erlang Module net kernel [page 156] – Erlang Networking Kernel
� Erlang Module os [page 158] – Operating System Specific Functions
� Erlang Module pg2 [page 161] – Distributed Named Process Groups
� Erlang Module rpc [page 163] – Remote Procedure Call Services
� Erlang Module seq trace [page 167] – Sequential Tracing of Messages.
� Erlang Module user [page 175] – Standard I/O Server
� Erlang Module wrap log reader [page 176] – A function to read internally

formatted wrap disk logs
� File app [page 178] – Application resource file
� File config [page 180] – Configuration file

1Kernel Application (KERNEL)

Kernel Reference Manual

kernel

No functions are exported.

application

The following functions are exported:

� get all env()
[page 31] Gets all configuration parameters for the application.

� get all env(Application) -> Env
[page 31] Gets all configuration parameters for the application.

� get all key()
[page 31] Gets all the resource file keys for the application.

� get all key(Application) -> fok, Keysg | undefined
[page 31] Gets all the resource file keys for the application.

� get application()
[page 32] Gets the name of an application.

� get application(Pid | Module) -> fok, Applicationg | undefined
[page 32] Gets the name of an application.

� get env(Key)
[page 32] Gets the value of a configuration parameter.

� get env(Application, Key) -> fok, Valueg | undefined
[page 32] Gets the value of a configuration parameter.

� get key(Key)
[page 32] Gets the value of a configuration parameter.

� get key(Application, Key) -> fok, Valueg | undefined
[page 32] Gets the value of a configuration parameter.

� load(Application)
[page 32] Loads an application.

� load(Application, DistNodes) -> ok | ferror, Reasong
[page 32] Loads an application.

� loaded applications() -> [fName, Description, Versiong]
[page 33] Gets the currently loaded applications

� permit(Application, Bool) -> ok | ferror, Reasong
[page 33] Changes an application’s permission to run on the node

� start(Application)
[page 34] Starts an application.

� start(Application, Type) -> ok | ferror, Reasong
[page 34] Starts an application.

� start type() -> normal | local | ftakeover, node()g | ffailover,
node()g
[page 34] Check the type of start of an application.

� stop(Application) -> ok
[page 34] Stops a running application

2 Kernel Application (KERNEL)

Kernel Reference Manual

� takeover(Application, Type) -> fok, Pidg | ferror, Reasong
[page 35] Moves a distributed application to the current node

� which applications() -> [fName, Description, Versiong]
[page 35] Gets the currently running applications

� Module:config change(Changed, New, Removed) -> ok
[page 36] Informs an application of changed configuration parameters

� Module:start(Type, ModuleStartArgs) -> fok, Pidg | fok, Pid, Stateg
| ferror, Reasong
[page 36] Starts an application

� Module:start phase(Phase, Type, PhaseStartArgs) -> ok | ferror,
Reasong
[page 36] Starts an application in the Phase

� Module:prep stop(State) -> NewState
[page 37] Called when the application is being stopped

� Module:stop(State) -> void()
[page 37] Called when the application has stopped

auth

The following functions are exported:

� start()
[page 39]

� stop()
[page 39]

� open(Name)
[page 39]

� is auth(Node)
[page 39]

� exists(Node)
[page 39]

� cookie()
[page 39]

� node cookie(Node, Cookie)
[page 39]

� node cookie([Node, Cookie])
[page 39]

� cookie([Cookie])
[page 40]

code

The following functions are exported:

3Kernel Application (KERNEL)

Kernel Reference Manual

� start() -> fok, Pidg | ferror, Whatg
[page 41] Starts the code server.

� start(Flags) -> fok, Pidg | ferror, Whatg
[page 41] Starts the code server.

� start link() -> fok, Pidg | ferror, Whatg
[page 41] Starts and links to the code server.

� start link(Flags) -> fok, Pidg | ferror, Whatg
[page 41] Starts and links to the code server.

� set path(DirList) -> true | ferror, Whatg
[page 42] Sets the code server search path.

� get path() -> Path
[page 42] Returns the current path of the code server.

� add path(Dir) -> true | ferror, Whatg
[page 42] Add a directory to the end of path.

� add pathz(Dir) -> true | ferror, Whatg
[page 42] Add a directory to the end of path.

� add patha(Dir) -> true | ferror, Whatg
[page 42] Adds a directory to the beginning of path.

� add paths(DirList) -> ok
[page 42] Adds directories to the end of path.

� add pathsz(DirList) -> ok
[page 42] Adds directories to the end of path.

� add pathsa(DirList) -> ok
[page 43] Adds directories to the beginning of path.

� del path(NameDir) -> true | false | ferror, Whatg
[page 43] Deletes a directory from the path.

� replace path(Name, Dir) -> true | ferror, Whatg
[page 43] Replaces a directory with another in the path.

� load file(Module) -> fmodule, Moduleg | ferror, Whatg
[page 43] Loads a module (residing in File).

� load abs(File) -> fmodule, Moduleg | ferror, Whatg
[page 43] Loads a module (residing in File).

� ensure loaded(Module) -> fmodule, Moduleg | ferror, Whatg |
finterpret, Moduleg
[page 44] Tries to ensure that a module is loaded.

� delete(Module) -> true | false
[page 44] Deletes the code in Module.

� purge(Module) -> true | false
[page 44] Purges the code in Module.

� soft purge(Module) -> true | false
[page 44] Purges the code in Module if no process uses it.

� is loaded(Module) -> ffile, Loadedg | false
[page 44] Tests if Module is loaded.

� all loaded() -> [LoadMod]
[page 45] Gets all loaded modules.

4 Kernel Application (KERNEL)

Kernel Reference Manual

� load binary(Module, File, Binary) -> fmodule, Moduleg | ferror,
Whatg
[page 45] Loads object code as a binary.

� stop() -> stopped
[page 45] Stops the code server.

� root dir() -> RootDir
[page 45] Returns the root directory of Erlang/OTP.

� lib dir() -> LibDir
[page 45] Returns the library directory.

� lib dir(Name) -> LibDir | ferror, Whatg
[page 45] Returns the directory for name.

� compiler dir() -> CompDir
[page 46] Returns the compiler directory.

� priv dir(Name) -> PrivDir | ferror, Whatg
[page 46] Returns the priv directory for name.

� get object code(Module) -> fModule, Bin, AbsFileNameg | error
[page 46] Gets the object code for a module.

� objfile extension() -> Ext
[page 46] Returns the object code file extension.

� stick dir(Dir) -> ok | ferror, term()g
[page 46] Marks a directory as ’sticky’.

� unstick dir(Dir) -> ok | ferror, term()g
[page 47] Marks a directory as ’non-sticky’.

� which(Module) -> WhichFile
[page 47] Returns the directory to a module.

� clash() -> ok
[page 47] Searches for modules with identical names.

� interpret(Module) -> fmodule, Moduleg | ferror, Whatg
[page 47] Marks a module as being interpreted.

� interpret binary(Module, File, Binary) -> fmodule, Moduleg | ferror,
Whatg
[page 47] Loads an interpreted module into the interpreter.

� delete interpret(Module) -> ok | ferror, Whatg
[page 47] Do not interpret a module.

� interpreted() -> Modules
[page 48] Returns all interpreted modules.

� interpreted(Module) -> true | false
[page 48]

disk log

The following functions are exported:

� accessible logs() -> f[LocalLog], [DistributedLog]g
[page 50] Returns accessible logs on the current node

5Kernel Application (KERNEL)

Kernel Reference Manual

� alog(Log, Term) -> ok | ferror, Reasong
[page 50] Asynchronously logs an item

� balog(Log, Bytes) -> ok | ferror, Reasong
[page 50] Asynchronously logs an item

� alog terms(Log, TermList) -> ok | ferror, Reasong
[page 51] Asynchronously logs several items

� balog terms(Log, BytesList) -> ok | ferror, Reasong
[page 51] Asynchronously logs several items

� block(Log)
[page 51] Blocks a disk log

� block(Log, QueueLogRecords) -> ok | ferror, Reasong
[page 51] Blocks a disk log

� change header(Log, Header) -> ok | ferror, Reasong
[page 52] Changes the head or head func option for an owner

� change notify(Log, Owner, Notify) -> ok | ferror, Reasong
[page 52] Changes the notify option for an owner

� change size(Log, Size) -> ok | ferror, Reasong
[page 52] Changes the size of an open disk log

� chunk(Log, Continuation)
[page 53] Reads a chunk of objects written to the disk log.

� chunk(Log, Continuation, N) -> fContinuation2, Termsg |
fContinuation2, Terms, Badbytesg | eof | ferror, Reasong
[page 53] Reads a chunk of objects written to the disk log.

� chunk info(Continuation) -> InfoList | ferror, Reasong
[page 54] Returns a list of fTag, Valueg pairs describing the chunk continuation

� chunk step(Log, Continuation, Step) -> fok, Continuation2g | ferror,
Reasong
[page 54] Steps forward or backward among wrap log files

� close(Log) -> ok | ferror, Reasong
[page 54] Closes a disk log

� format error(Error) -> character list()
[page 55] Returns an English description of a disk log error reply

� inc wrap file(Log) -> ok | ferror, Reasong
[page 55] Changes to next wrap log file

� info(Log) -> InfoList | ferror, no such logg
[page 55] Returns a list of fTag, Valueg pairs describing the disk log

� lclose(Log) -> ok | ferror, Reasong
[page 56] Closes a disk log on one node

� lclose(Log, Node) -> ok | ferror, Reasong
[page 56] Closes a disk log on one node

� log(Log, Term) -> ok | ferror, Reasong
[page 57] Logs an item

� blog(Log, Bytes) -> ok | ferror, Reasong
[page 57] Logs an item

� log terms(Log, TermList) -> ok | ferror, Reasong
[page 57] Logs several items

6 Kernel Application (KERNEL)

Kernel Reference Manual

� blog terms(Log, BytesList) -> ok | ferror, Reasong
[page 57] Logs several items

� open(ArgL) -> OpenRet | DistOpenRet
[page 58] Opens a disk log file

� reopen(Log, File)
[page 60] Reopens a disk log, and saves the old log

� reopen(Log, File, Head)
[page 61] Reopens a disk log, and saves the old log

� breopen(Log, File, BHead) -> ok | ferror, Reasong
[page 61] Reopens a disk log, and saves the old log

� sync(Log) -> ok | ferror, Reasong
[page 61] Flushes contents of the log to the disk

� truncate(Log)
[page 61] Truncates a disk log

� truncate(Log, Head)
[page 61] Truncates a disk log

� btruncate(Log, BHead) -> ok | ferror, Reasong
[page 61] Truncates a disk log

� unblock(Log) -> ok | ferror, Reasong
[page 62] Unblocks a disk log

erl boot server

The following functions are exported:

� start(Slaves) -> fok, Pidg | ferror, Whatg
[page 63] Starts the boot server.

� start link(Slaves) -> fok, Pidg | ferror, Whatg
[page 63] Starts the boot server and links the caller.

� add slave(Slave) -> ok | ferror, Whatg
[page 63] Adds a slave to the list of allowed slaves.

� delete slave(Slave) -> ok | ferror, Whatg
[page 64] Deletes a slave from the list of allowed slaves.

� which slaves() -> Slaves
[page 64] Returns the current list of allowed slave hosts.

erl ddll

The following functions are exported:

� start() -> fok, Pidg | ferror, Reasong
[page 65] Starts the server.

� start link() -> fok, Pidg | ferror, Reasong
[page 65] Starts the server and links it to the calling process.

7Kernel Application (KERNEL)

Kernel Reference Manual

� stop() -> ok
[page 65] Stops the server.

� load driver(Path, Name) -> ok | ferror, ErrorDescriptorg
[page 65] Loads a driver.

� unload driver(Name) -> ok | ferror, ErrorDescriptorg
[page 65] Loads a driver.

� loaded drivers() -> fok, DriverListg
[page 66] Loads a driver.

� format error(ErrorDescriptor) -> string()
[page 66] Formats an error descriptor

erl prim loader

The following functions are exported:

� start(Id,Loader,Hosts) -> fok, Pidg | ferror, Whatg
[page 68] Starts the Erlang low level loader.

� get file(File) -> fok, Bin, FullNameg | error
[page 68] Gets a file.

� get path() -> fok, Pathg
[page 69] Gets the path set in the loader.

� set path(Path) -> ok
[page 69] Sets the path of the loader.

erlang

The following functions are exported:

� abs(Number)
[page 72]

� erlang:append element(Tuple, Term)
[page 72]

� apply(fModule, Functiong, ArgumentList)
[page 72]

� apply(Module, Function, ArgumentList)
[page 72]

� atom to list(Atom)
[page 72]

� erlang:binary to float(Binary)
[page 73]

� binary to list(Binary)
[page 73]

� binary to list(Binary, Start, Stop)
[page 73]

8 Kernel Application (KERNEL)

Kernel Reference Manual

� binary to term(Binary)
[page 73]

� bump reductions(Reductions)
[page 73]

� erlang:cancel timer(Ref)
[page 73]

� erlang:check process code(Pid, Module)
[page 74]

� concat binary(ListOfBinaries)
[page 74]

� date()
[page 74]

� erlang:delete module(Module)
[page 74]

� erlang:demonitor(Ref)
[page 75]

� erlang:disconnect node(Node)
[page 75]

� erlang:display(Term)
[page 75]

� element(N, Tuple)
[page 75]

� erase()
[page 75]

� erase(Key)
[page 75]

� exit(Reason)
[page 75]

� exit(Pid, Reason)
[page 76]

� fault(Reason)
[page 76]

� fault(Reason, Args)
[page 76]

� float(Number)
[page 76]

� erlang:float to binary(Float, Size)
[page 77]

� float to list(Float)
[page 77]

� erlang:fun info(Fun)
[page 77]

� erlang:function exported(Module, Function, Arity)
[page 77]

� erlang:fun info(Fun, Item)
[page 78]

9Kernel Application (KERNEL)

Kernel Reference Manual

� erlang:fun to list(Fun)
[page 78]

� erlang:garbage collect()
[page 78]

� erlang:garbage collect(Pid)
[page 78]

� get()
[page 78]

� get(Key)
[page 78]

� erlang:get cookie()
[page 78]

� get keys(Value)
[page 78]

� group leader()
[page 79]

� group leader(Leader, Pid)
[page 79]

� halt()
[page 79]

� halt(Status)
[page 79]

� erlang:hash(Term, Range)
[page 79]

� hd(List)
[page 80]

� erlang:info(What)
[page 80]

� integer to list(Integer)
[page 80]

� is alive()
[page 80]

� erlang:is builtin(Module, Function, Arity)
[page 80]

� is process alive(Pid)
[page 80]

� length(List)
[page 80]

� link(Pid)
[page 80]

� list to atom(CharIntegerList)
[page 81]

� list to binary(List)
[page 81]

� list to float(AsciiIntegerList)
[page 81]

10 Kernel Application (KERNEL)

Kernel Reference Manual

� list to integer(AsciiIntegerList)
[page 81]

� list to pid(AsciiIntegerList)
[page 81]

� list to tuple(List)
[page 81]

� erlang:load module(Module, Binary)
[page 82]

� erlang:loaded()
[page 82]

� erlang:localtime()
[page 82]

� erlang:localtime to universaltime(DateTime)
[page 82]

� make ref()
[page 83]

� make tuple(Arity, InitialValue)
[page 83]

� erlang:md5(Data) -> Digest
[page 83]

� erlang:md5 init() -> Context
[page 83]

� erlang:md5 update(Context, Data) -> NewContext
[page 83]

� erlang:md5 final(Context) -> Digest
[page 83]

� erlang:module loaded(Module)
[page 83]

� erlang:monitor(Type, Item)
[page 84]

� monitor node(Node, Flag)
[page 84]

� node()
[page 85]

� node(Arg)
[page 85]

� nodes()
[page 85]

� now()
[page 85]

� open port(PortName, PortSettings)
[page 85]

� erlang:phash(Term, Range)
[page 87]

� pid to list(Pid)
[page 87]

11Kernel Application (KERNEL)

Kernel Reference Manual

� port close(Port, Data)
[page 88]

� port command(Port, Data)
[page 88]

� port connect(Port, Pid)
[page 88]

� port control(Port, Operation, Data)
[page 89]

� erlang:port info(Port, Item)
[page 89]

� erlang:ports()
[page 89]

� erlang:port to list(Port)
[page 90]

� erlang:pre loaded()
[page 90]

� erlang:process display(Pid, Type)
[page 90]

� process flag(Flag, Option)
[page 90]

� process flag(Pid, Flag, Option)
[page 91]

� process info(Pid)
[page 91]

� process info(Pid, Item)
[page 92]

� processes()
[page 93]

� erlang:purge module(Module)
[page 93]

� put(Key, Value)
[page 93]

� erlang:read timer(Ref)
[page 93]

� erlang:ref to list(Ref)
[page 93]

� register(Name, Pid)
[page 94]

� registered()
[page 94]

� erlang:resume process(Pid)
[page 94]

� round(Number)
[page 94]

� self()
[page 94]

12 Kernel Application (KERNEL)

Kernel Reference Manual

� erlang:send after(Time, Pid, Msg)
[page 94]

� erlang:set cookie(Node, Cookie)
[page 95]

� setelement(Index, Tuple, Value)
[page 95]

� size(Item)
[page 95]

� spawn(Fun)
[page 95]

� spawn(Node, Fun)
[page 95]

� spawn(Module, Function, ArgumentList)
[page 95]

� spawn(Node, Module, Function, ArgumentList)
[page 96]

� spawn link(Fun)
[page 96]

� spawn link(Node, Fun)
[page 96]

� spawn link(Module, Function, ArgumentList)
[page 96]

� spawn link(Node, Module, Function, ArgumentList)
[page 96]

� spawn opt(Module, Function, ArgumentList, Options)
[page 96]

� split binary(Binary, Pos)
[page 97]

� erlang:start timer(Time, Pid, Msg)
[page 98]

� statistics(Type)
[page 98]

� erlang:suspend process(Pid)
[page 98]

� erlang:system flag(Flag, Value)
[page 98]

� erlang:system info(What)
[page 99]

� term to binary(Term)
[page 99]

� term to binary(Term, Options)
[page 99]

� throw(Any)
[page 100]

� time()
[page 100]

13Kernel Application (KERNEL)

Kernel Reference Manual

� tl(List)
[page 100]

� erlang:trace(PidSpec, How, Flaglist)
[page 100]

� erlang:trace info(PidOrFunc, Item)
[page 102]

� erlang:trace pattern(MFA, MatchSpec)
[page 103]

� erlang:trace pattern(MFA, MatchSpec, FlagList)
[page 103]

� trunc(Number)
[page 104]

� tuple to list(Tuple)
[page 104]

� erlang:universaltime()
[page 105]

� erlang:universaltime to localtime(DateTime)
[page 105]

� unlink(Pid)
[page 105]

� unregister(Name)
[page 105]

� whereis(Name)
[page 105]

� yield()
[page 105]

error handler

The following functions are exported:

� undefined function(Module, Func, ArgList) -> term()
[page 106] Called when an undefined function is encountered

� undefined lambda(Module, Fun, ArgList) -> term()
[page 106] Called when an undefined lambda (fun) is encountered

error logger

The following functions are exported:

� start() -> fok, Pidg | ferror, Whatg
[page 108] Starts the error logger event manager.

� start link() -> fok, Pidg | ferror, Whatg
[page 108] Starts the error logger event manager.

14 Kernel Application (KERNEL)

Kernel Reference Manual

� error report(Report) -> ok
[page 108] Sends a standard error report event to the error logger.

� error report(Type,Report) -> ok
[page 109] Sends a user defined error report type event.

� info report(Report) -> ok
[page 109] Sends an information report to the error logger.

� info report(Type,Report) -> ok
[page 109] Sends a user defined information report type event.

� error msg(Format) -> ok
[page 110] Sends an error event to the error logger.

� error msg(Format,Args) -> ok
[page 110] Sends an error event to the error logger.

� format(Format,Args) -> ok
[page 110] Sends an error event to the error logger.

� info msg(Format) -> ok
[page 110] Sends an information event to the error logger.

� info msg(Format,Args) -> ok
[page 110] Sends an information event to the error logger.

� tty(Flag) -> ok
[page 110] Enables or disables error printouts to the tty.

� logfile(Request) -> ok | FileName | ferror, Whatg
[page 110] Enables or disables error printouts to a file.

� add report handler(Module) -> ok | Other
[page 111] Adds a new event handler to the error logger.

� add report handler(Module,Args) -> ok | Other
[page 111] Adds a new event handler to the error logger.

� delete report handler(Module) -> Return | ferror, Whatg
[page 111] Deletes an error report handler.

� swap handler(ToHandler) -> ok
[page 111] Swap from a primitive first handler to a standard event handler

file

The following functions are exported:

� change group(Filename, Gid)
[page 113] Change owner for a file

� change owner(Filename, Uid)
[page 113] Change owner of a file

� change owner(Filename, Uid, Gid)
[page 113] Change owner for a file

� change time(Filename, Mtime)
[page 113] Change the modification time for a file

� change time(Filename, Mtime, Atime)
[page 113] Change the modification time for a file

15Kernel Application (KERNEL)

Kernel Reference Manual

� close(IoDevice)
[page 113] Close a file

� consult(Filename)
[page 113] Read Erlang terms from a file

� del dir(DirName)
[page 114] Delete a directory

� delete(Filename)
[page 114] Delete a file

� eval(Filename)
[page 114] Evaluate expressions in a file

� file info(Filename)
[page 114] Get information about a file

� format error(ErrorDescriptor)
[page 115] Returns an English description of an error term

� get cwd()
[page 115] Get the current working directory

� get cwd(Drive)
[page 115] Get the current working directory for the drive specified

� list dir(DirName)
[page 116] List files in a directory

� make dir(DirName)
[page 116] Make a directory

� make link(Existing, New)
[page 116] Make a hard link to a file

� make symlink(Name1, Name2)
[page 116] Make a symbolic link to a file or directory

� open(Filename, ModeList)
[page 117] Open a file

� path consult(Path, Filename)
[page 118] Read Erlang terms from a file

� path eval(Path, Filename)
[page 118] Evaluate expressions in a file

� path open(Path, Filename, Mode)
[page 118] Open a file for access

� position(IoDevice, Location)
[page 118] Set position in a file

� pread(IoDevice, Location, Number)
[page 119] Write to a file at a certain position

� pwrite(IoDevice, Location, Bytes)
[page 119] Write to a file at a certain position

� read(IoDevice, Number)
[page 119] Read from a file

� read file(Filename)
[page 119] Read a file

� read file info(Filename)
[page 120] Get information about a file

16 Kernel Application (KERNEL)

Kernel Reference Manual

� read link(Linkname)
[page 121] See what a link is pointing to

� read link info(Filename)
[page 121] Get information about a link or file

� rename(Source, Destination)
[page 121] Rename a file

� set cwd(DirName)
[page 122] Set the current working directory

� sync(IoDevice)
[page 122] Synchronizes the in-memory state of a file with that on the physical
medium

� truncate(IoDevice)
[page 122] Truncate a file

� write(IoDevice, Bytes)
[page 122] Write to a file

� write file(Filename, Binary)
[page 122] Write a file

� write file info(Filename, FileInfo)
[page 123] Change file information

gen tcp

The following functions are exported:

� accept(ListenSocket) -> fok, Socketg | ferror, Reasong
[page 127] Accepts an incoming connection request on a listen socket.

� accept(ListenSocket, Timeout) -> fok, Socketg | ferror, Reasong
[page 127] Accepts an incoming connection request on a listen socket.

� close(Socket) -> ok | ferror, Reasong
[page 127] Closes an TCP socket

� connect(Address, Port, Options) -> fok, Socketg | ferror, Reasong
[page 127] Connects to a TCP port.

� connect(Address, Port, Options, Timeout) -> fok, Socketg | ferror,
Reasong
[page 127] Connects to a TCP port.

� controlling process(Socket, NewOwner) -> ok | ferror, epermg
[page 128] Assigns a new controlling process to a socket

� listen(Port, Options) -> fok, Socketg | ferror, Reasong
[page 128] Sets up a socket which listen on Port

� recv(Socket, Length) -> fok, Packetg | ferror, Reasong
[page 128] Receives a packet from a passive socket

� recv(Socket, Length, Timeout)
[page 128] Receives a packet from a passive socket

� send(Socket, Packet) -> ok | ferror, Reasong
[page 129] Sends a packet

17Kernel Application (KERNEL)

Kernel Reference Manual

gen udp

The following functions are exported:

� close(Socket) -> ok | ferror, Reasong
[page 130] Close Socket.

� controlling process(Socket,NewOwner) ->
[page 130] Change controlling process of a Socket.

� open(Port) -> fok, Socket g | f error, Reason g
[page 130] Associates a UDP port number with the process calling it.

� open(Port,Options) -> fok, Socket g | f error, Reason g
[page 130] Associates a UDP port number with the process calling it.

� recv(Socket, Length) -> fok,fAddress, Port, Packetgg | ferror,
Reasong
[page 131] Receives a packet from a passive socket

� recv(Socket, Length, Timeout)
[page 131] Receives a packet from a passive socket

� send(S,Address,Port,Packet) -> ok | ferror, Reasong
[page 131] Sends a packet to a specified Address and Port (from port associated
with Id).

global

The following functions are exported:

� del lock(Id)
[page 132] Deletes the lock Id

� del lock(Id, Nodes) -> void()
[page 132] Deletes the lock Id

� notify all name(Name, Pid1, Pid2) -> none
[page 133] Name resolving function that notifies both Pids

� random exit name(Name, Pid1, Pid2) -> Pid1 | Pid2
[page 133] Name resolving function that kills one Pid

� random notify name(Name, Pid1, Pid2) -> Pid1 | Pid2
[page 133] Name resolving function that notifies one Pid

� register name(Name, Pid)
[page 133] Globally registers Pid as Name

� register name(Name, Pid, Resolve) -> yes | no
[page 133] Globally registers Pid as Name

� registered names() -> [Name]
[page 133] Returns all globally registered names

� re register name(Name, Pid)
[page 134] Atomically re-registers Pid for Name

� re register name(Name, Pid, Resolve) -> void()
[page 134] Atomically re-registers Pid for Name

18 Kernel Application (KERNEL)

Kernel Reference Manual

� send(Name, Msg) -> Pid
[page 134] Sends Msg to the global process Name

� set lock(Id)
[page 134] Sets a lock on the specified nodes

� set lock(Id, Nodes)
[page 134] Sets a lock on the specified nodes

� set lock(Id, Nodes, Retries) -> boolean()
[page 134] Sets a lock on the specified nodes

� start()
[page 135] Starts the global name server

� start link() -> fok, Pidg | ferror, Reasong
[page 135] Starts the global name server

� stop() -> void()
[page 135] Stops the global name server

� sync() -> void()
[page 135] Synchronizes the global name server

� trans(Id, Fun)
[page 135] Micro transaction facility

� trans(Id, Fun, Nodes)
[page 135] Micro transaction facility

� trans(Id, Fun, Nodes, Retries) -> Res | aborted
[page 135] Micro transaction facility

� unregister name(Name) -> void()
[page 135] Unregisters the global name Name

� whereis name(Name) -> Pid() | undefined
[page 135] Returns the Pid of the global process Name

global group

The following functions are exported:

� global groups() -> fOwnGroupName, [OtherGroupName]g | undefined
[page 137] Returns the global group names

� info() -> [fstate, Stateg, fown group name, atom()g,
fown group nodes, [Node]g, fsynced nodes, [Node]g, fsync error,
[Node]g, fno contact, [Node]g, fother groups, Other grpsg,
fmonitoring, [pid()]g]
[page 137] Returns the state of the global group process

� monitor nodes(Flag) -> ok
[page 137] Subscription of node status for nodes in the immediate global group

� own nodes() -> [Node] | ferror, ErrorMsgg
[page 137] Returns the global group names

� registered names(fnode, Nodeg) -> [Name] | ferror, ErrorMsgg
[page 137] Returns all globally registered names

� registered names(fgroup, GlobalGroupNameg) -> [Name]
[page 137] Returns all globally registered names

19Kernel Application (KERNEL)

Kernel Reference Manual

� send(Name, Msg) -> Pid | fbadarg, Msgg | ferror, ErrorMsgg
[page 138] Sends Msg to a registered process Name

� send(fnode, Nodeg, Name, Msg) -> Pid | fbadarg, Msgg | ferror,
ErrorMsgg
[page 138] Sends Msg to a registered process Name

� send(fgroup, GlobalGroupNameg, Name, Msg) -> Pid | fbadarg, Msgg |
ferror, ErrorMsgg
[page 138] Sends Msg to a registered process Name

� sync() -> ok
[page 138] Synchronizes the immediate global group

� whereis name(Name) -> Pid | undefined | ferror, ErrorMsgg
[page 138] Returns the Pid of the global process Name

� whereis name(fnode, Nodeg, Name) -> Pid | undefined | ferror,
ErrorMsgg
[page 138] Returns the Pid of the global process Name

� whereis name(fgroup, GlobalGroupNameg, Name) -> Pid | undefined |
ferror, ErrorMsgg
[page 138] Returns the Pid of the global process Name

� start()
[page 139] Starts the global group server

� start link() -> fok, Pidg | ferror, Reasong
[page 139] Starts the global group server

� stop() -> void()
[page 139] Stops the global group server

heart

The following functions are exported:

� start() -> fok, Pidg | ignore | ferror, Whatg
[page 140] Starts the heart program.

� set cmd(Cmd) -> ok | ferror, fbad cmd, Cmdgg
[page 141] Sets a temporary reboot command.

� clear cmd() -> ok
[page 141] Clears the temporary boot command.

inet

The following functions are exported:

� format error(Tag)
[page 142] Returns a diagnostic error string.

� gethostbyaddr(Address) -> fok, Hostentg | ferror, Reasong
[page 142] Returns a hostent record for the host with the given address

20 Kernel Application (KERNEL)

Kernel Reference Manual

� gethostbyname(Name) -> fok, Hostentg | ferror, Reasong
[page 142] Returns a hostent record for the host with the given name

� gethostbyname(Name, Family) -> fok, Hostentg | ferror, Reasong
[page 143] Returns a hostent record for the host with the given name

� gethostname() -> fok, Nameg | ferror, Reasong
[page 143] Returns the local hostname

� sockname(Socket) -> fok, fIP, Portgg | ferror, Reasong
[page 143] Returns the local address and port number for a socket.

� peername(Socket) -> fok, fAddress, Portgg | ferror, Reasong
[page 143] Returns the address and port for the other end of a connection.

� port(Socket) -> fok, Numberg
[page 143] Returns the local port number for a socket.

� close(Socket) -> ok
[page 143] Closes a socket of any type

� getaddr(IP,inet) -> fok,fA1,A2,A3,A4gg | ferror, Reasong
[page 144] Returns the IP-adress for IP

� setopts(Socket, Options) -> ok | ferror, Reasong
[page 144] Sets one or more options for a socket.

init

The following functions are exported:

� boot(BootArgs) -> void()
[page 149] Start the Erlang runtime system.

� get arguments() -> Flags
[page 149] Get all flag arguments.

� get argument(Flag) -> fok, Valuesg | error
[page 150] Get values associated with an argument.

� get args() -> [Arg]
[page 150] Get all (non-flag) arguments.

� get plain arguments() -> [Arg]
[page 150] Get all (non-flag) arguments.

� restart() -> void()
[page 150]

� reboot() -> void()
[page 150]

� stop() -> void()
[page 150]

� get status() -> fInternalStatus, ProvidedStatusg
[page 151] Get status information during system start.

� script id() -> Id
[page 151] Get the identity of the used boot script.

21Kernel Application (KERNEL)

Kernel Reference Manual

net adm

The following functions are exported:

� host file()
[page 154]

� dns hostname(Host)
[page 154]

� localhost()
[page 154]

� names(), names(Host)
[page 154]

� ping(Node)
[page 154]

� world (), world (verbose)
[page 154]

� world list (Hostlist), world list (Hostlist, verbose)
[page 154]

net kernel

The following functions are exported:

� kernel apply(M, F, A)
[page 156]

� monitor nodes(Flag)
[page 156]

� allow(NodeList)
[page 156]

� connect node(Node)
[page 157]

os

The following functions are exported:

� cmd(Command) -> string()
[page 158] Executes Command in a command shell of the target OS.

� find executable(Name) -> Filename | false
[page 158] Returns the absolute filename of a program.

� find executable(Name, Path) -> Filename | false
[page 158] Returns the absolute filename of a program.

� getenv() -> List
[page 158] Returns a list of all environment variables.

22 Kernel Application (KERNEL)

Kernel Reference Manual

� getenv(VarName) -> Value | false
[page 159] Returns the Value of the environment variable VarName.

� getpid() -> Value
[page 159] Returns the process identifier of the emulator process as a string.

� putenv(VarName, Value) -> true
[page 159] Sets a new Value for the environment variable VarName.

� type() -> fOsfamily,Osnameg | Osfamily
[page 159] Returns the Osfamily and, in some cases, Osname of the current
operating system.

� version() -> fMajor, Minor, Releaseg | VersionString
[page 159] Returns the Operating System version.

pg2

The following functions are exported:

� create(Name) -> void()
[page 161] Creates a new, empty process group

� delete(Name) -> void()
[page 161] Deletes a process group

� get closest pid(Name) -> Pid | ferror, Reasong
[page 161] Common dispatch function

� get members(Name) -> [Pid] | ferror, Reasong
[page 162] Returns all processes in a group

� get local members(Name) -> [Pid] | ferror, Reasong
[page 162] Returns all local processes in a group

� join(Name, Pid) -> ok | ferror, Reasong
[page 162] Joins a process to a group

� leave(Name, Pid) -> ok | ferror, Reasong
[page 162] Makes a process leave a group

� which groups() -> [Name]
[page 162] Returns a list of all known groups

� start()
[page 162] Starts the pg2 server

� start link() -> fok, Pidg | ferror, Reasong
[page 162] Starts the pg2 server

rpc

The following functions are exported:

� start()
[page 163]

� stop()
[page 163]

23Kernel Application (KERNEL)

Kernel Reference Manual

� call(Node, Module, Function, Args)
[page 163]

� cast(Node, Module, Function, Args)
[page 163]

� block call(Node, Mod, Fun, Args)
[page 163]

� server call(Node, Name, ReplyWrapper, Msg)
[page 164]

� abcast(Name, Mess)
[page 164]

� abcast(Nodes, Name, Mess)
[page 164]

� sbcast(Name, Msg)
[page 164]

� sbcast(Nodes, Name, Msg)
[page 164]

� eval everywhere(Mod, Fun, Args)
[page 164]

� eval everywhere(Nodes, Mod, Fun, Args)
[page 164]

� multicall(M, F, A)
[page 164]

� multicall(Nodes, M, F, A)
[page 165]

� multi server call(Name, Msg)
[page 165]

� multi server call(Nodes, Name, Msg)
[page 165]

� safe multi server call(Name, Msg)
[page 165]

� safe multi server call(Nodes, Name, Msg)
[page 166]

� async call(Node, Mod, Fun, Args)
[page 166]

� yield(Key)
[page 166]

� nb yield(Key, Timeout)
[page 166]

� nb yield(Key)
[page 166]

� parallel eval(ListOfTuples)
[page 166]

� pmap(fM, Fg, Extraargs, List)
[page 166]

� pinfo(Pid)
[page 166]

� pinfo(Pid, Item)
[page 166]

24 Kernel Application (KERNEL)

Kernel Reference Manual

seq trace

The following functions are exported:

� set token(Component, ComponentValue) -> fComponent, PreviousValueg
[page 167] Sets the individual Component of the trace token.

� set token(Token) -> PreviousToken
[page 168] Sets the trace token to Value.

� get token(Component) -> fComponent, ComponentValueg
[page 168] Returns the ComponentValue of the trace token component Component.

� get token() -> TraceToken
[page 168] Returns the value of the trace token.

� print(TraceInfo) -> void
[page 168] Puts the Erlang term TraceInfo into the sequential trace output.

� reset trace() -> void
[page 169] Stops all sequential tracing on the Erlang node.

� set system tracer(ProcessOrPortId) -> PreviousId
[page 169] Sets the system tracer.

� get system tracer() -> pid() | port() | false
[page 169] Returns the pid() or port() of the current system tracer.

user

The following functions are exported:

� start() -> void()
[page 175] Starts the standard I/O system.

wrap log reader

The following functions are exported:

� chunk(Continuation)
[page 176] Reads a chunk of objects written to a wrap log.

� chunk(Continuation, N) -> fContinuation2, Termsg | fContinuation2,
Terms, Badbytesg | fContinuation2, eofg | ferror, Reasong
[page 176] Reads a chunk of objects written to a wrap log.

� close(Continuation) -> ok
[page 177] Closes a log

� open(Filename) -> OpenRet
[page 177] Opens a log file

� open(Filename, N) -> OpenRet
[page 177] Opens a log file

25Kernel Application (KERNEL)

Kernel Reference Manual

app

No functions are exported.

config

No functions are exported.

26 Kernel Application (KERNEL)

Kernel Reference Manual kernel (Application)

kernel (Application)

The Kernel application is the first application started, and it is one of two mandatory
applications. The Kernel application contains the following services:

� application controller

� auth

� code

� disk log

� erl boot server

� erl ddll

� error logger

� file

� global group

� global name server

� net kernel

� os

� rpc

� pg2

� timer

� user

It is possible to synchronize a set of Erlang nodes. One can specify for a node to wait a
specified amount of time for other nodes to become alive.

Error Logger Event Handlers

Two error logger event handlers are defined in the Kernel application. These are
described in error logger(3).

27Kernel Application (KERNEL)

kernel (Application) Kernel Reference Manual

Configuration

The following configuration parameters are defined for the Kernel application. See
application(3) for more information about configuration parameters.

distributed = [Distrib] <optional> Specifies which applications are distributed
and on which nodes they may execute. In this parameter:

� Distrib = fApplName, Nodesg | fApplName, Time, Nodesg

� ApplName = atom()

� Time = integer() > 0

� Nodes = [node() | fnode(), ..., node()g]

These parameters are described in application(3).

dist auto connect = Value <optional> Specifies when nodes will be automatically
connected. If this parameter is not specified, a node is always automatically
connected, e.g when a message is to be sent to that node. Value is one of:

never Connections are never automatically connected, they must be explicitly
connected. See net kernel(3).

once Connections will be established automatically, but only once per node. If a
node goes down, it must thereafter be explicitly connected. See net kernel(3).

permissions = [Perm] <optional> Specifies the default permission for applications
when they are started. In this parameter:

� Perm = fApplName, Boolg

� ApplName = atom()

� Bool = boolean()

error logger = Value <optional> Value is one of:

tty All standard error reports are written to stdio. This is the default option.
ffile, FileNameg All standard error reports are written to the file FileName,

where FileName is a string.
false No error logger handler is installed.

global groups = [GroupName, [Node]] <optional> Specifies the groups of nodes
which will have their own global name space. In this parameter:

� GroupName = atom()

� Node = atom()

These parameters are described in global group(3).

inet parse error log = LogMode <optional> LogMode is one of:

silent No error logger messages are generated when erroneous lines are found
and skipped in the various configuration files. The default if the variable is not
set is that erroneous lines are reported via the error logger.

net ticktime = TickTime <optional> Specifies the net kernel tick time.
TickTime is given in seconds. Once every TickTime / 4 second, all connected
nodes are ticked (if anything else has been written to a node) and if nothing has
been received from another node within the last four (4) tick times that node is
considered to be down. This ensures that nodes which are not responding, for
reasons such as hardware errors, are considered to be down.
The time T, in which a node that is not responding is detected, is calculated as:
MinT < T < MaxT where

28 Kernel Application (KERNEL)

Kernel Reference Manual kernel (Application)

MinT = TickTime - TickTime / 4
MaxT = TickTime + TickTime / 4

TickTime is by default 60 (seconds). Thus, 45 < T < 75 seconds.
Note:All communicating nodes should have the same TickTime value specified.
Note: Normally, a terminating node is detected immediately.

sync nodes mandatory = [NodeName] <optional> Specifies which other nodes
must be alive in order for this node to start properly. If some node in this list does
not start within the specified time, this node will not start either. If this parameter
is undefined, it defaults to the empty list.

sync nodes optional = [NodeName] <optional> Specifies which other nodes can
be alive in order for this node to start properly. If some node in this list does not
start within the specified time, this node starts anyway. If this parameter is
undefined, it defaults to the empty list.

sync nodes timeout = integer() | infinity <optional> Specifies the amount
of time (in milliseconds) this node will wait for the mandatory and optional nodes
to start. If this parameter is undefined, no node synchronization is performed. This
option also makes sure that global is synchronized.

start ddll = true | false <optional> Starts the ddll server if the parameter is
true (see erl ddll(3)). This parameter should be set to true in an embedded
system which uses this service.
The default value is false.

start dist ac = true | false <optional> Starts the dist ac server if the
parameter is true (see application(3)). This parameter should be set to true for
systems that use distributed applications.
The default value is false. If this parameter is undefined, the server is started if
the parameter distributed is set.

start boot server = true | false <optional> Starts the boot server if the
parameter is true (see erl boot server(3)). This parameter should be set to true
in an embedded system which uses this service.
The default value is false.

boot server slaves = [SlaveIP] <optional> If the start boot server
configuration parameter is true, this parameter can be used to initialize
boot server with a list of slave IP addresses. SlaveIP = string() | atom |
f integer(),integer(),integer(),integer()g

where 0 <= integer() <=255.
Examples of SlaveIP in atom, string and tuple form are:
’150.236.16.70’, "150,236,16,70", f150,236,16,70g.
The default value is [].

start disk log = true | false <optional> Starts the disk log server if the
parameter is true (see disk log(3)). This parameter should be set to true in an
embedded system which uses this service.
The default value is false.

start pg2 = true | false <optional> Starts the pg2 server (see pg2(3)) if the
parameter is true. This parameter should be set to true in an embedded system
which uses this service.
The default value is false.

29Kernel Application (KERNEL)

kernel (Application) Kernel Reference Manual

start timer = true | false <optional> Starts the timer server if the parameter
is true (see timer(3)). This parameter should be set to true in an embedded
system which uses this service.
The default value is false.

keep zombies = integer() <optional> Sets the value of the system flag
keep zombies.
The default value is 0.

See Also

application(3), auth(3), code(3), disk log(3), erl ddll(3), erl boot server(3),
error logger(3), file(3), global(3), global group(3), net kernel(3), pg2(3), rpc(3),
timer(3), user(3)

30 Kernel Application (KERNEL)

Kernel Reference Manual application (Module)

application (Module)

This module contains functions for controlling applications (eg. starting and stopping
applications), and functions to access information about any application, (eg.
configuration parameters)

All applications are started by the application controller process. Each application
has an application master process. This process monitors the application and reports
to the application controller if the application terminates.

An application can be started locally or distributed. A distributed application is started
on one of several nodes while a local application is always started on the current node.

The local applications are controlled by the application controller. The distributed
applications are controlled by another process, called the distributed application
controller (dist ac). The distributed application controller on different nodes monitor
each other. Therefore, if a node goes down, the distributed applications on that node
will be automatically re-started on one of the remaining nodes.

The distributed application controller is not started by default. Systems that use
distributed applications must set the configuration parameter start dist ac in kernel.

Exports

get all env()

get all env(Application) -> Env

Types:

� Application = atom()
� Env = [fKey, Valueg]
� Key = atom()
� Value = term()

Retrieves the values of the application’s configuration parameters. If Application is not
specified, then the configuration parameters for the application which executes the call
are returned.

get all key()

get all key(Application) -> fok, Keysg | undefined

Types:

� Application = atom()
� Keys = [fKey, Valueg]
� Key = atom()
� Value = term()

31Kernel Application (KERNEL)

application (Module) Kernel Reference Manual

Retrieves all the keys from the application’s resource file, Application.app. If
Application is not specified, then the keys for the application which executes the call
are returned.

get application()

get application(Pid | Module) -> fok, Applicationg | undefined

Types:

� Pid = pid()
� Module = atom()
� Application = atom()

Retrieves the name of the application where the process Pid executes. If Pid is not
specified, self() is used. If an atom is given the name of the application which contains
the module will be returned, or undefined.

get env(Key)

get env(Application, Key) -> fok, Valueg | undefined

Types:

� Application = atom()
� Key = atom()
� Value = term()

Retrieves the value of an application’s configuration parameter. If Application is not
specified, the parameter for the application which executes the call is retrieved.

get key(Key)

get key(Application, Key) -> fok, Valueg | undefined

Types:

� Application = atom()
� Key = atom()
� Value = term()

Retrieves the key from the application’s resource file, Application.app. If
Application is not specified, then the key for the application which executes the call is
returned.

If Key is a valid key (see app(4)) for which no value is defined, fok, undefinedg is
return. If Key is not a valid key, undefined is always returned.

load(Application)

load(Application, DistNodes) -> ok | ferror, Reasong

Types:

� Application = atom() | appl descr()
� DistNodes = fName, Nodesg | fName, Time, Nodesg | default
� appl descr() = fapplication, Name, [appl opt()]g
� Name = atom()
� Time = integer() > 0
� Nodes = [node() | fnode(), ..., node()g]

32 Kernel Application (KERNEL)

Kernel Reference Manual application (Module)

� appl opt() = fdescription, string()g | fvsn, vsn()g | fmodules, [fatom(), vsn()g]g |
fregistered, [atom()]g | fapplications, [atom()]g | fenv, [fatom(), term()g]g
|fmod, fMod, StartArgsgg

� vsn() = string()

If the name of the application is given, the application controller searches the current
path (the same as the code path) for a file called Application.app.
Note: This file must contain the appl descr() (written in plain text, with a dot and
space after the term).

description and version - Contains information about an application that can be
retrieved by calling application:loaded applications/0.

modules - Lists the modules that this application introduces.

registered is a list of the registered names that this application uses for its own
processes.

applications - Lists of other applications that must be started before this one.

env is a list of configuration parameters. Note: The definitions in this list may be
altered by definitions in the system configuration file, specified by the command line
argument -config. They can also be altered directly from the command line, by giving
-Name Par Value.

mod is the application call back module. Mod:start(StartType, StartArgs) is called
when the application is started. Refer to the call back function start/2.

The DistNodes parameter will override the value of the application in the Kernel
configuration parameter distributed. The data structure specifies a list of nodes where
the application Name may execute. If the nodes are specified in a tuple, the order of
where to start the application will be undefined. If a node crashes and Time has been
specified, then the application controller will wait for Time milliseconds before
attempting to restart the application on another node. If Time is not specified, it will
default to 0. If a node goes down, the application will be restarted immediately on
another node. If DistNodes is default, the value in the configuration parameter
distributed will be used.

loaded applications() -> [fName, Description, Versiong]

Types:

� Name = atom()
� Description = string()
� Version = string()

This function returns a list of applications which are loaded in the system. Description
and Version are as defined in the application specification.

permit(Application, Bool) -> ok | ferror, Reasong

Types:

� Name = atom()
� Bool = bool()

33Kernel Application (KERNEL)

application (Module) Kernel Reference Manual

This function changes an application’s permission to run on the node, or vice versa. If
the permission of a locally running application is set to false, the application will be
stopped. When the permission is set to true, the local application will be started. If the
permission of a running, distributed application is set to false, the application will be
moved to another node where it may run, if a node is available.

The application must be loaded before the permit function can be called.

This function does not return until the application is either started, stopped or
successfully moved to another node. However, in some cases where permission is set to
true the function may return ok even though the application itself has not started. This
is true when an application cannot start because it has dependencies on applications
which have not yet been started. When these applications are started the dependent
application will also be started.

By default, all applications are loaded with permission true on all nodes. The
permission is configurable with the parameter permissions in kernel.

start(Application)

start(Application, Type) -> ok | ferror, Reasong

Types:

� Application = atom()
� Type = permanent | transient | temporary

This function starts and application. If the application is not loaded, the application
controller will first try to load it, as if application:load(Application) was called.

The Type specifies what happens if the application dies.

� If a permanent application dies, all other applications are also terminated.

� If a transient application dies normally, this is reported and no other applications
are terminated. If a transient application dies abnormally, all other applications are
also terminated.

� If a temporary application dies this is reported and no other applications are
terminated. In this way, an application can run in test mode, without disturbing
the other applications.

Default value for Type is temporary.

start type() -> normal | local | ftakeover, node()g | ffailover, node()g

This function returns the type of application start which is executing.

normal is returned when an application is starting and the below circumstances have
not occurred.

local is returned if a supervised process restarts due to abnormal exit or if no start is
running at the time of request.

ftakeover, Nodeg is returned if the application is requested to move to another node
either due to a call to takeover/2 or when a node with higher priority to run the
application is restarted.

ffailover, Nodeg is returned if the application is restarted due to the Node crashing
where the application was previously executing.

stop(Application) -> ok

34 Kernel Application (KERNEL)

Kernel Reference Manual application (Module)

Types:

� Application = atom()

This function stops a running application. If the application was distributed, no other
node will restart it. All processes in the application tree are terminated, and also all
processes with the same group leader as the application.

takeover(Application, Type) -> fok, Pidg | ferror, Reasong

Types:

� Application = atom()
� Type = permanent | transient | temporary

This function moves a distributed application which executes on another node Node to
the current node. The application is started by calling Mod:start(ftakeover, Nodeg,
StartArgs) before the application is stopped on the other node. This makes it possible
to transfer application specific data from a currently running application to a new node.
When the application start function returns, the application on a Node is stopped. This
means that two instances of the application may be running on two different nodes at
one time. If this is not acceptable, parts of the application on the old node (Node) may
be shut down when the new node starts the application. Note: that the old application
must not be stopped entirely (i.e. application:stop/1must not be called on the old
node). The main supervisor, must still be alive.

which applications() -> [fName, Description, Versiong]

Types:

� Name = atom()
� Description = string()
� Version = string()

Returns a list of the applications which are running in the system. Description and
Version are as defined in the application specification.

Call back Module

The following functions are exported from an application call back module.

35Kernel Application (KERNEL)

application (Module) Kernel Reference Manual

Exports

Module:config change(Changed, New, Removed) -> ok

Types:

� Changed = [fParameter, NewValueg]
� New = [fParameter, Valueg]
� Removed = [Parameter]
� Parameter = atom()
� NewValue = term()
� Value = term()

After an installation of a new release all started applications on a node are notified of the
changed, new and removed configuration parameters. The unchanged configuration
parameters are not affected and therefore the function is not evaluated for applications
which have unchanged configuration parameters between the old and new releases.

Module:start(Type, ModuleStartArgs) -> fok, Pidg | fok, Pid, Stateg | ferror, Reasong

Types:

� Type = normal | ftakeover, node()g | ffailover, node()g
� ModuleStartArgs = term()
� Pid = pid()
� State = state()

This function starts a primary application. Normally, this function starts the main
supervisor of the primary application.

If Type is ftakeover, Nodeg, it is a distributed application which is running on the
Node. If the application does not have the start-phases key defined in the application’s
resource file, the application will be stopped by the application controller after this call
returns (see start-phase/3) This makes it possible to transfer the internal state from
the running application to the one to be started. This function must not stop the
application on Node, but it may shut down parts of it. For example, instead of stopping
the application, the main supervisor may terminate all its children.

If Type is ffailover, Nodeg, the application will be restarted due to a crash of the
node where the application was previously executing.
ffailover, node()g is valid only if the start phases key is defined in the
applications resource file. Otherwise the type is set to normal at failover.

The ModuleStartArgs parameter is specified in the application resource file (.app), as
fmod, fModule, ModuleStartArgsgg.

State is any term. It is passed to Module:prep stop/1. If no State is returned, [] is
used.

Module:start phase(Phase, Type, PhaseStartArgs) -> ok | ferror, Reasong

Types:

� Phase = atom()
� Type = normal | ftakeover, node()g | ffailover, node()g
� PhaseStartArgs = term()

36 Kernel Application (KERNEL)

Kernel Reference Manual application (Module)

� Pid = pid()
� State = state()

This function starts a application in the phase Phase. It is called by default only for a
primary application and not for the included applications, refer to User’s Guide chapter
’Design Principles’ regarding incorporating included applications.

The PhaseStartArgs parameter is specified in the application’s resource file (.app), as
fstart phases, [fPhase, PhaseStartArgsg]g, the Module as fmod, fModule,
ModuleStartArgsgg.

This call back function is only valid for applications with a defined start phases key.
This function will be called once per Phase.

If Type is ftakeover, Nodeg, it is a distributed application which runs on the Node.
When this call returns for the last start phase, the application on Node will be stopped
by the application controller. This makes it possible to transfer the internal state from
the running application. When designing the start phase function it is imperative that
the application is not allowed to terminate the application on node. However, it
possible to partially shut it down for eg. the main supervisor may terminate all the
application’s children.

If Type is ffailover, Nodeg, due to a crash of the node where the application was
previously executing, the application will restart.

Module:prep stop(State) -> NewState

Types:

� State = state()
� NewState = state()

See Module:stop/1. This function is called when the application is about to be
stopped, before shutting down the processes of the application.

State is the state that was returned from Mod:start/2, or [] if no state was returned.
NewState will be passed to Module:stop/1.

If Module:prep stop/1 isn’t defined, NewState will be identical to State.

Module:stop(State) -> void()

Types:

� State = state()

This function is called when the application has stopped, either because it crashed, or
because someone called application:stop. It cleans up after the Module:start/2
function.

Before Mod:stop/1 is called, Mod:prep stop/1 will have been called. State is the state
that was returned from Mod:prep stop/1.

See Also

kernel(3)

37Kernel Application (KERNEL)

auth (Module) Kernel Reference Manual

auth (Module)

Authentication determines which nodes are allowed to communicate with each other.
In a network of different Erlang nodes, it is built into the system at the lowest possible
level. Each node has its Magic Cookie, which is an Erlang atom.

Whenever a message is transferred from one node to another, it is accompanied by the
Magic Cookie of the receiving node. For example, a message transferred from node A
to node B is accompanied by what node A believes to be theMagic Cookie of node B.

When the message arrives at node B, the runtime system immediately checks that the
accompanying cookie is the right one. If it is, the message is passed on in the normal
way. If it is not, the message is transformed into a badcookie message, which is sent to
the system process net kernel. By default, the net kernel process passes the message
to the registered process auth, which is then responsible for taking the appropriate
action for the unauthorized message. In the standard system, the default action is to
shut down connection to that node.

At start-up, the first action of the standard auth server is to read a file named
$HOME/erlang.cookie. An atom is created from the contents of this file and the cookie
of the node is set to this atom with the use of erlang:set cookie(node(),
CookieAtom).

If the file does not exist, it is created. The UNIX permissions mode of the file is set to
octal 400 (read-only by owner) and filled with a random string. For this reason, the
same user, or group of users with identical cookie files, can have Erlang nodes which can
communicate freely and without interference from the Magic Cookie system. Users
who want to run nodes on separate file systems must be certain that their cookie files
are identical on the different file systems.

Initially, each node has a random atom assigned as its magic cookie. Once the
procedure described above has been concluded, the cookie is set to the contents of the
$HOME/erlang.cookie file.

To communicate with another node, the magic cookie of that node must be known. The
BIF erlang:set cookie(Node, Cookie) sets the cookie for Node to Cookie. From then
on, all messages will be accompanied by the cookie Cookie. If the cookie is not correct
when messages arrive at Node, they are sent to the auth server at Node. The call
erlang:set cookie(node(), CookieAtom) will set the current cookie to CookieAtom.
It will, however, also set the cookie of all other unknown nodes to CookieAtom. In the
case of the default auth server, this is the first thing done when the system starts. The
default then, is to assume that all nodes which communicate have the same cookie. In
the case of a single user on a single file system, this is indeed true and no further action
is required. The original cookie can also be fetched by the BIF erlang:get cookie().

If nodes which communicate do not have the same cookie, they can be set explicitly on
each node with the aid of erlang:set cookie(Node, Cookie). All messages sent to
the node Node will then be accompanied by the cookie Cookie. Distributed systems
with multiple User IDs can be handled in this way.

Initially, the system cookie is set to a random atom, and the (assumed) cookie of all
other nodes is initially set to the atom nocookie. Thus, an Erlang node is completely

38 Kernel Application (KERNEL)

Kernel Reference Manual auth (Module)

unprotected when erlang:set cookie(node(), nocookie) is run. Sometimes, this
may be appropriate for systems which are not normally networked, and it can also be
appropriate for maintenance purposes.

In the standard system, the default when two nodes are connected is to immediately
connect all other involved nodes as well. This way, there is always a fully connected
network. If there are nodes with different cookies, this method might be inappropriate
and the host OS command line option -connect all false must be issued to the
Erlang runtime system. See global(3).

This module uses the two BIFs erlang:get cookie() which returns the magic cookie
of the local node, and erlang:set cookie(Node,Cookie) which sets the magic cookie
of Node to Cookie. If Node is the user’s node, the cookie of all other unknown nodes are
also set to Cookie by this BIF.

Exports

start()

Starts the auth server.

stop()

Stops the auth server.

open(Name)

This function opens up the server with the name Name. If, for example, node N is run
with the cookie C, it is impossible for other nodes with other cookies to communicate
with node N. The call open/1 opens the server with the registered name Name so it can
be accessed by any other node, irrespective of cookie. The call must be executed on
both nodes to have any effect. All messages to the server must have the form Name !
Msg and all replies from the server fName, Replyg, or fName, Node, Replyg. With this
feature, it is possible to perform specific tasks on publicly announced Erlang network
servers.

is auth(Node)

Returns the value yes if communication with Node is authorized, no if Node does not
exist or communication is not authorized.

exists(Node)

Returns yes if Node exists, otherwise no.

cookie()

Reads cookie from $HOME/.erlang.cookie and sets it. This function is used by the
auth server at start-up.

node cookie(Node, Cookie)

39Kernel Application (KERNEL)

auth (Module) Kernel Reference Manual

If the cookie of Node is known to the user as Cookie but the user’s cookie is not known
at Node, this function informs Node of the identity of the user’s cookie.

node cookie([Node, Cookie])

Another version of the previous function with the arguments in a list which can be
given on the host OS command line.

cookie([Cookie])

Equivalent to erlang:set cookie(node(), Cookie), but with the argument in a list
so it can be given on the host OS command line.

40 Kernel Application (KERNEL)

Kernel Reference Manual code (Module)

code (Module)

This module deals with the loading of compiled and interpreted code into a running
Erlang runtime system.

The code server dynamically loads modules into the system on demand, which means
the first time the module is referenced. This functionality can be turned off using the
command line flag -mode embedded. In this mode, all code is loaded during system
start-up.

If started in interactive mode, all directories under the $ROOT/lib directory are
initially added to the search path of the code server (). The $ROOT directory is the
installation directory of Erlang/OTP, code:root dir(). Directories can be named
Name[-Vsn] and the code server, by default, chooses the greatest (>) directory among
those which have the same Name. The -Vsn suffix is optional.

If an ebin directory exists under a chosen directory, it is added to the directory. The
Name of the directory (or library) can be used to find the full directory name (including
the current version) through the priv dir/1 and lib dir/1 functions.

Exports

start() -> fok, Pidg | ferror, Whatg

start(Flags) -> fok, Pidg | ferror, Whatg

Types:

� Flags = [stick | nostick | embedded | interactive]
� Pid = pid()
� What = term()

This function starts the code server. start/0 implies that the stick and interactive
flags are set.

Flags can also be entered as the command line flags -stick, -nostick and -mode
embedded | interactive. -stick and -mode interactive are the defaults. The
stick flag indicates that a module can never be re-loaded once it has been loaded from
the kernel, stdlib, or compiler directories.

start link() -> fok, Pidg | ferror, Whatg

start link(Flags) -> fok, Pidg | ferror, Whatg

Types:

� Flags = [stick | nostick | embedded | interactive]
� Pid = pid()
� What = term()

41Kernel Application (KERNEL)

code (Module) Kernel Reference Manual

This function starts the code server and sets up a link to the calling process. This
function should be used if the code server is supervised. start link/0 implies that the
stick and interactive flags are set.

The Flags can also be given as command line flags, -stick, -nostick and -mode
embedded | interactive where -stick and -mode interactive is the default. The
stick flag indicates that a module which has been loaded from the kernel, stdlib or
compiler directories can never be reloaded.

set path(DirList) -> true | ferror, Whatg

Types:

� DirList = [Dir]
� Dir = string()
� What = bad directory | bad path

Sets the code server search path to the list of directories DirList.

get path() -> Path

Types:

� Path = [Dir]
� Dir = string()

Returns the current path.

add path(Dir) -> true | ferror, Whatg

add pathz(Dir) -> true | ferror, Whatg

Types:

� Dir = string()
� What = bad directory

Adds Dir to the current path. The directory is added as the last directory in the new
path. If Dir already exists in the path, it is not added.

add patha(Dir) -> true | ferror, Whatg

Types:

� Dir = string()
� What = bad directory

This function adds Dir to the beginning of the current path. If Dir already exists, the
old directory is removed from path.

add paths(DirList) -> ok

add pathsz(DirList) -> ok

Types:

� DirList = [Dir]
� Dir = string()

42 Kernel Application (KERNEL)

Kernel Reference Manual code (Module)

This function adds the directories in DirList to the end of the current path. If a Dir
already exists in the path, it is not added. This function always returns ok, regardless of
the validity of each individual Dir.

add pathsa(DirList) -> ok

Types:

� DirList = [Dir]
� Dir = string()

Adds the directories in DirList to the beginning of the current path. If a Dir already
exists, the old directory is removed from the path. This function always returns ok,
regardless of the validity of each individual Dir.

del path(NameDir) -> true | false | ferror, Whatg

Types:

� NameDir = Name | Dir
� Name = atom()
� Dir = string()
� What = bad name

This function deletes an old occurrence of a directory in the current path with the name
.../Name[-*][/ebin]. It is also possible to give the complete directory name Dir in
order to delete it.

This function returns true if the directory was deleted, and false if the directory was
not found.

replace path(Name, Dir) -> true | ferror, Whatg

Types:

� Name = atom()
� Dir = string()
� What = bad name | bad directory | fbadarg, term()g

This function replaces an old occurrence of a directory named .../Name[-*][/ebin],
in the current path, with Dir. If Name does not exist, it adds the new directory Dir last
in path. The new directory must also be named .../Name[-*][/ebin]. This function
should be used if a new version of the directory (library) is added to a running system.

load file(Module) -> fmodule, Moduleg | ferror, Whatg

Types:

� Module = atom()
� What = nofile | sticky directory | badarg | term()

This function tries to load the Erlang module Module, using the current path. It looks
for the object code file which has a suffix that corresponds to the Erlang machine used,
for example Module.beam. The loading fails if the module name found in the object
code differs from the name Module. load binary/3 must be used to load object code
with a module name that is different from the file name.

load abs(File) -> fmodule, Moduleg | ferror, Whatg

43Kernel Application (KERNEL)

code (Module) Kernel Reference Manual

Types:

� File = atom() | string()
� Module = atom()
� What = nofile | sticky directory | badarg | term()

This function does the same as load file(Module), but File is either an absolute file
name, or a relative file name. The current path is not searched. It returns a value in the
same way as load file(Module). Note that File should not contain an extension
(".beam"); load abs/1 adds the correct extension itself.

ensure loaded(Module) -> fmodule, Moduleg | ferror, Whatg | finterpret, Moduleg

Types:

� Module = atom()
� What = nofile | sticky directory | embedded | badarg | term()

This function tries to ensure that the module Module is loaded. To work correctly, a file
with the same name as Module.Suffix must exist in the current search path. Suffix
must correspond to the running Erlang machine, for example .beam. It returns a value
in the same way as load file(File), or finterpret, Moduleg if Module is interpreted.

If the system is started with the -mode embedded command line flag, this function will
not load a module which has not already been loaded. ferror, embeddedg is returned.

delete(Module) -> true | false

Types:

� Module = atom()

This function deletes the code in Module and the code in Module is marked as old. This
means that no external function calls can be made to this occurrence of Module, but a
process which executes code inside this module continues to do so. Returns true if the
operation was successful (i.e., there was a current version of the module, but no old
version), otherwise false.

purge(Module) -> true | false

Types:

� Module = atom()

This function purges the code in Module, that is, it removes code marked as old. If some
processes still execute code in the old occurrence of Module, these processes are killed
before the module is purged. Returns true if a process has been killed, otherwise false.

soft purge(Module) -> true | false

Types:

� Module = atom()

This function purges the code in Module, that is, it removes code marked as old, but
only if no process currently runs the old code. It returns false if a process uses the old
code, otherwise true.

is loaded(Module) -> ffile, Loadedg | false

Types:

44 Kernel Application (KERNEL)

Kernel Reference Manual code (Module)

� Module = atom()
� Loaded = AbsFileName | preloaded | interpreted
� AbsFileName = string()

This function tests if module Module is loaded. If the module is loaded, the absolute file
name of the file from which the code was obtained is returned.

all loaded() -> [LoadMod]

Types:

� LoadMod = fModule, Loadedg
� Module = atom()
� Loaded = AbsFileName | preloaded | interpreted
� AbsFileName = string()

This function returns a list of tuples of the type fModule, Loadedg for all loaded
modules. Loaded is the absolute file name of the loaded module, the atom preloaded if
the module was pre-loaded, or the atom interpreted if the module is interpreted.

load binary(Module, File, Binary) -> fmodule, Moduleg | ferror, Whatg

Types:

� Module = atom()
� What = sticky directory | badarg | term()

This function can be used to load object code on remote Erlang nodes. It can also be
used to load object code where the file name and module name differ. This, however, is
a very unusual situation and should be used with care. The parameter Binary must
contain object code for the module Module. The File parameter is only used by the
code server to keep a record from which file the object code in Module comes.
Accordingly, File is not opened and read by the code server.

stop() -> stopped

Stops the code server.

root dir() -> RootDir

Types:

� RootDir = string()

Returns the root directory of Erlang/OTP, which is the directory where it is installed.

lib dir() -> LibDir

Types:

� LibDir = string()

Returns the library directory.

lib dir(Name) -> LibDir | ferror, Whatg

Types:

� Name = atom()
� LibDir = string()

45Kernel Application (KERNEL)

code (Module) Kernel Reference Manual

� What = bad name

This function returns the current lib directory for the Name[-*] directory (or library).
The current path is searched for a directory named .../Name-* (the -* suffix is
optional for directories in the search path and it represents the version of the directory).

compiler dir() -> CompDir

Types:

� CompDir = string()

This function returns the compiler directory.

priv dir(Name) -> PrivDir | ferror, Whatg

Types:

� Name = atom()
� PrivDir = string()
� What = bad name

This function returns the current priv directory for the Name[-*] directory. The current
path is searched for a directory named .../Name-* (the -* suffix is optional for
directories in the search path and it represents the version of the directory). The /priv
suffix is added to the end of the found directory.

get object code(Module) -> fModule, Bin, AbsFileNameg | error

Types:

� Module = atom()
� Bin = binary()
� AbsFileName = string()

This function searches the code path in the code server for the object code of the
module Module. It returns fMod, Bin, Filenameg if successful, and error if not. Bin
is a binary data object which contains the object code for the module. This can be
useful if code is to be loaded on a remote node in a distributed system. For example,
loading module Module on node N is done as follows:

...
fMod, B, Fg = code:get object code(Mod),
rpc:call(N,code, load binary, [Mod, F, B]),
...

objfile extension() -> Ext

Types:

� Ext = string()

This function returns the object code file extension for the running Erlang machine, for
example “.beam”.

stick dir(Dir) -> ok | ferror, term()g

Types:

� Dir = string()

46 Kernel Application (KERNEL)

Kernel Reference Manual code (Module)

This function marks Dir as ’sticky’. The system issues a warning and rejects the request
if a user tries to re-load a module in a sticky directory. Sticky directories are used to
warn the user about inadvertent changes to system software.

unstick dir(Dir) -> ok | ferror, term()g

Types:

� Dir = string()

This function unsticks a directory which has been marked sticky. Code which is located
in the unstuck directory can be re-loaded into the system.

which(Module) -> WhichFile

Types:

� Module = atom()
� WhichFile = FileName | non existing | preloaded | interpreted
� FileName = string()

If the module is not loaded already, this function returns the directory path to the first
file name in the search path of the code server which contains the object code for
Module . If the module is loaded, it returns the directory path to the file name which
contains the loaded object code. If the module is pre-loaded or interpreted, this is
returned instead. non existingis returned if the module cannot be found.

clash() -> ok

Searches the entire code space for module names with identical names and writes a
report to stdout.

interpret(Module) -> fmodule, Moduleg | ferror, Whatg

Types:

� Module = atom()
� What = no interpreter | sticky directory | badarg

Marks Module as being interpreted.

interpret binary(Module, File, Binary) -> fmodule, Moduleg | ferror, Whatg

Types:

� Module = atom()
� File = string()
� Binary = binary()
� What = no interpreter | sticky directory | badarg | term()

Loads the interpreted Module into the interpreter. The parameter Binary contains the
abstract form (and the source code) of the module. The file File parameter locates the
used source code file.

delete interpret(Module) -> ok | ferror, Whatg

Types:

� Module = atom()

47Kernel Application (KERNEL)

code (Module) Kernel Reference Manual

� What = no interpreter | badarg

Stops interpretation of Module.

interpreted() -> Modules

Types:

� Modules = [Module]
� Module = atom()

Returns a list of all modules which are being interpreted.

interpreted(Module) -> true | false

Types:

� Module = atom()

Returns true if Module is being interpreted, otherwise false.

Notes

Dir has the described type string() in all functions. For backwards compatibility,
atom() is also allowed, but string() is recommended.

The described type for Module is atom() in all functions. For backwards compatibility,
string() is also allowed.

48 Kernel Application (KERNEL)

Kernel Reference Manual disk log (Module)

disk log (Module)

disk log is a disk based term logger which makes it possible to efficiently log items on
files. Two types of logs are supported, halt logs and wrap logs. A halt log appends items
to a single file, the size of which may or may not be limited by the disk log module,
whereas a wrap log utilizes a sequence of wrap log files of limited size. As a wrap log file
has been filled up, further items are logged onto to the next file in the sequence, starting
all over with the first file when the last file has been filled up. For the sake of efficiency,
items are always written to files as binaries.

Two formats of the log files are supported, the internal format and the external format.
The internal format supports automatic repair of log files that have not been properly
closed, and makes it possible to efficiently read logged items in chunks using a set of
functions defined in this module. In fact, this is the only way to read internally
formatted logs. The external format leaves it up to the user to read the logged deep byte
lists. The disk log module cannot repair externally formatted logs.

For each open disk log there is one process that handles requests made to the disk log;
the disk log process is created when open/1 is called, provided there exists no process
handling the disk log. A process that opens a disk log can either be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and the
disk log is closed by the owner should the owner terminate. Owners can subscribe to
notifications, messages of the form fdisk log, Node, Log, Infog that are sent from
the disk log process when certain events occur, see the commands below and in
particular the open/1 option notify [page 59]. There can be several owners of a log, but
a process cannot own a log more than once. One and the same process may, however,
open the log as a user more than once. For a disk log process to properly close its file
and terminate, it must be closed by its owners and once by some non-owner process for
each time the log was used anonymously; the users are counted, and there must not be
any users left when the disk log process terminates.

Items can be logged synchronously by using the functions log/2, blog/2, log terms/2
and blog terms/2. For each of these functions, the caller is put on hold until the items
have been logged (but not necessarily written, use sync/1 to ensure that). By adding an
a to each of the mentioned function names we get functions that log items
asynchronously. Asynchronous functions do not wait for the disk log process to actually
write the items to the file, but return the control to the caller more or less immediately.

When using the internal format for logs, the functions log/2, log terms/2, alog/2,
and alog terms/2 should be used. These functions log one or more Erlang terms. By
prefixing each of the functions with a b (for “binary”) we get the corresponding blog
functions for the external format. These functions log one or more deep lists of bytes or,
alternatively, binaries of deep lists of bytes. For example, to log the string "hello" in
ASCII format, we can use disk log:blog(Log, "hello"), or disk log:blog(Log,
list to binary("hello")). The two alternatives are equally efficient. The blog
functions can be used for internally formatted logs as well, but in this case they must be
called with binaries constructed with calls to term to binary/1. There is no check to
ensure this, it is entirely the responsibility of the caller. If these functions are called with
binaries that do not correspond to Erlang terms, the chunk/2,3 and automatic repair

49Kernel Application (KERNEL)

disk log (Module) Kernel Reference Manual

functions will fail. The corresponding terms (not the binaries) will be returned when
chunk/2,3 is called.

A collection of open disk logs with the same name running on different nodes is said to
be a a distributed disk log if requests made to any one of the logs is automatically made
to the other logs as well. The members of such a collection will be called individual
distributed disk logs, or just distributed disk logs if there is no risk of confusion. One
could note here that there are a few functions that do not make requests to all members
of distributed disk logs, namely info, chunk, chunk step and lclose. An open disk log
that is not a distributed disk log is said to be a local disk log. A local disk log is accessible
only from the node where the disk log process runs, whereas a distributed disk log is
accessible from all nodes in the system, with exception for those nodes where a local
disk log with the same name as the distributed disk log exists. All processes on nodes
that have access to a local or distributed disk log can log items or otherwise change,
inspect or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items;
there is no attempt made to synchronize the contents of the files. However, as long as at
least one of the involved nodes is alive at each time, all items will be logged. When
logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If all nodes are down, the disk log functions reply with a
nonode error.

Errors are reported differently for asynchronous log attempts and other uses of the disk
log module. When used synchronously the disk log module replies with an error
message, but when called asynchronously, the disk log module does not know where to
send the error message. Instead owners subscribing to notifications will receive an
error status message.

The disk log module itself does not report errors to the error logger module; it is up
to the caller to decide whether the error logger should be employed or not. The
function format error/1 can be used to produce readable messages from error replies.
Information events are however sent to the error logger in two situations, namely when
a log is repaired, or when a file is missing while reading chunks.

The error message no such log means that the given disk log is not currently open.
Nothing is said about whether the disk log files exist or not.

Exports

accessible logs() -> f[LocalLog], [DistributedLog]g

Types:

� LocalLog = DistributedLog = term()

The accessible logs/0 function returns the names of the disk logs accessible on the
current node. The first list contains local disk logs, and the second list contains
distributed disk logs.

alog(Log, Term) -> ok | ferror, Reasong

balog(Log, Bytes) -> ok | ferror, Reasong

Types:

50 Kernel Application (KERNEL)

Kernel Reference Manual disk log (Module)

� Log = term()
� Term = term()
� Bytes = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log

The alog/2 and balog/2 functions asynchronously append an item to a disk log. The
function alog/2 is used for internally formatted logs, and the function balog/2 for
externally formatted logs. balog/2 can be used for internally formatted logs as well
provided the binary was constructed with a call to term to binary/1.

The owners that subscribe to notifications will receive the message read only,
blocked log or format external in case the item cannot be written on the log, and
possibly one of the messages wrap, full and error status if an item was written on
the log. The message error status is sent if there is something wrong with the header
function or a file error occurred.

alog terms(Log, TermList) -> ok | ferror, Reasong

balog terms(Log, BytesList) -> ok | ferror, Reasong

Types:

� Log = term()
� TermList = [term()]
� BytesList = [Bytes]
� Bytes = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log

The alog terms/2 and balog terms/2 functions asynchronously append a list of items
to a disk log. The function alog terms/2 is used for internally formatted logs, and the
function balog terms/2 for externally formatted logs. balog terms/2 can be used for
internally formatted logs as well provided the binaries were constructed with calls to
term to binary/1.

The owners that subscribe to notifications will receive the message read only,
blocked log or format external in case the items cannot be written on the log, and
possibly one or more of the messages wrap, full and error status if items were
written on the log. The message error status is sent if there is something wrong with
the header function or a file error occurred.

block(Log)

block(Log, QueueLogRecords) -> ok | ferror, Reasong

Types:

� Log = term()
� QueueLogRecords = bool()
� Reason = no such log | nonode | fblocked log, Logg

51Kernel Application (KERNEL)

disk log (Module) Kernel Reference Manual

With a call to block/1,2 a process can block a log. If the blocking process is not an
owner of the log, a temporary link is created between the disk log process and the
blocking process. The link is used to ensure that the disk log is unblocked should the
blocking process terminate without first closing or unblocking the log.

Any process can probe a blocked log with info/1 or close it with close/1. The
blocking process can also use the functions chunk/2,3, chunk step/3, and unblock/1
without being affected by the block. Any other attempt than those hitherto mentioned
to update or read a blocked log suspends the calling process until the log is unblocked or
returns an error message fblocked log, Logg, depending on whether the value of
QueueLogRecords is true or false. The default value of QueueLogRecords is true,
which is used by block/1.

change header(Log, Header) -> ok | ferror, Reasong

Types:

� Log = term()
� Header = fhead, Headg | fhead func, fM,F,Agg

� Head = none | term() | binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
fbadarg, headg

The change header/2 function changes the value of the head or head func option of a
disk log.

change notify(Log, Owner, Notify) -> ok | ferror, Reasong

Types:

� Log = term()
� Owner = pid()
� Notify = bool()
� Reason = no such log | nonode | fblocked log, Logg | fbadarg, notifyg |
fnot owner, Ownerg

The change notify/3 function changes the value of the notify option for an owner of
a disk log.

change size(Log, Size) -> ok | ferror, Reasong

Types:

� Log = term()
� Size = integer() > 0 | infinity | fMaxNoBytes, MaxNoFilesg
� MaxNoBytes = integer() > 0
� MaxNoFiles = integer() > 0
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
fnew size too small, CurrentSizeg | fbadarg, sizeg | ffile error, FileName, FileErrorg

52 Kernel Application (KERNEL)

Kernel Reference Manual disk log (Module)

The change size/2 function changes the size of an open log. For a halt log it is always
possible to increase the size, but it is not possible to decrease the size to something less
than the current size of the file.

For a wrap log it is always possible to increase both the size and number of files, as long
as the number of files does not exceed 65000. If the maximum number of files is
decreased, the change will not be valid until the current file is full and the log wraps to
the next file. The redundant files will be removed next time the log wraps around, i.e.
starts to log to file number 1.

As an example, assume that the old maximum number of files is 10 and that the new
maximum number of files is 6. If the current file number is not greater than the new
maximum number of files, the files 7 to 10 will be removed when file number 6 is full
and the log starts to write to file number 1 again. Otherwise the files greater than the
current file will be removed when the current file is full (e.g. if the current file is 8, the
files 9 and 10); the files between new maximum number of files and the current file (i.e.
files 7 and 8) will be removed next time file number 6 is full.

If the size of the files is decreased the change will immediately affect the current log. It
will not of course change the size of log files already full until next time they are used.

If the log size is decreased for instance to save space, the function inc wrap file/1 can
be used to force the log to wrap.

chunk(Log, Continuation)

chunk(Log, Continuation, N) -> fContinuation2, Termsg | fContinuation2, Terms,
Badbytesg | eof | ferror, Reasong

Types:

� Log = term()
� Continuation = start | cont()
� N = integer() > 0 | infinity
� Continuation2 = cont()
� Terms= [term()]
� Badbytes = integer()
� Reason = no such log | fformat external, Logg | fblocked log, Logg |
fnot internal wrap, Logg | fcorrupt log file, FileNameg | ffile error, FileName,
FileErrorg

The chunk/2,3 functions make it possible to efficiently read the terms which have been
appended to an internally formatted log. It minimizes disk I/O by reading 8 kilobyte
chunks from the file.

The first time chunk is called, an initial continuation, the atom start, must be provided.
If there is a disk log process running on the current node, terms are read from that log,
otherwise an individual distributed log on some other node is chosen, if such a log exists.

When chunk/3 is called, N controls the maximum number of terms that are read from
the log in each chunk. Default is infinity, which means that all the terms contained in
the 8 kilobyte chunk are read. If less than N terms are returned, this does not necessarily
mean that the end of the file has been reached.

The chunk function returns a tuple fContinuation2, Termsg, where Terms is a list of
terms found in the log. Continuation2 is yet another continuation which must be
passed on to any subsequent calls to chunk. With a series of calls to chunk it is possible
to extract all terms from a log.

53Kernel Application (KERNEL)

disk log (Module) Kernel Reference Manual

The chunk function returns a tuple fContinuation2, Terms, Badbytesg if the log is
opened in read-only mode and the read chunk is corrupt. Badbytes is the number of
bytes in the file which were found not to be Erlang terms in the chunk. Note also that
the log is not repaired. When trying to read chunks from a log opened in read-write
mode, the tuple fcorrupt log file, FileNameg is returned if the read chunk is
corrupt.

chunk returns eof when the end of the log is reached, or ferror, Reasong if an error
occurs. Should a wrap log file be missing, a message is output on the error log.

When chunk/2,3 is used with wrap logs, the returned continuation may or may not be
valid in the next call to chunk. This is because the log may wrap and delete the file into
which the continuation points. To make sure this does not happen, the log can be
blocked during the search.

chunk info(Continuation) -> InfoList | ferror, Reasong

Types:

� Continuation = cont()
� Reason = fno continuation, Continuationg

The chunk info/1 function returns the following pair describing the chunk
continuation returned by chunk/2,3 or chunk step/3:

� fnode, Nodeg. Terms are read from the disk log running on Node.

chunk step(Log, Continuation, Step) -> fok, Continuation2g | ferror, Reasong

Types:

� Log = term()
� Continuation = start | cont()
� Step = integer()
� Continuation2 = cont()
� Reason = no such log | end of log | fformat external, Logg | fblocked log, Logg |
ffile error, FileName, FileErrorg

The function chunk step can be used in conjunction with chunk/2,3 to search through
an internally formatted wrap log. It takes as argument a continuation as returned by
chunk/2,3 or chunk step/3, and steps forward (or backward) Step files in the wrap
log. The continuation returned points to the first log item in the new current file.

If the atom start is given as continuation, a disk log to read terms from is chosen. A
local or distributed disk log on the current node is preferred to an individual distributed
log on some other node.

If the wrap log is not full because all files have not been used yet, ferror, end of logg
is returned if trying to step outside the log.

close(Log) -> ok | ferror, Reasong

Types:

� Reason = no such log | nonode

54 Kernel Application (KERNEL)

Kernel Reference Manual disk log (Module)

The function close/1 closes a local or distributed disk log properly. An internally
formatted log must be closed before the system is stopped, otherwise the log is regarded
as unclosed and the automatic repair procedure will be activated next time the log is
opened.

The disk log process in not terminated as long as there are owners or users of the log. It
should be stressed that each and every owner must close the log, possibly by
terminating, and that any other process - not only the processes that have opened the
log anonymously - can decrement the users counter by closing the log. Attempts to
close a log by a process that is not an owner are simply ignored if there are no users.

If the log is blocked by the closing process, the log is also unblocked.

format error(Error) -> character list()

Given the error returned by any function in this module, the function format error
returns a descriptive string of the error in English. For file errors, the function
format error/1 in the file module is called.

inc wrap file(Log) -> ok | ferror, Reasong

Types:

� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
fhalt log, Logg | finvalid header, InvalidHeaderg | ffile error, FileName, FileErrorg

The inc wrap file/1 function forces the internally formatted disk log to start logging
to the next log file. It can be used, for instance, in conjunction with change size/2 to
reduce the amount of disk space allocated by the disk log.

The owners that subscribe to notifications will normally receive a wrap message, but in
case of an error with a reason tag of invalid header or file error an error status
message will be sent.

info(Log) -> InfoList | ferror, no such logg

The info/1 function returns a list of fTag, Valueg pairs describing the log. If there is a
disk log process running on the current node, that log is used as source of information,
otherwise an individual distributed log on some other node is chosen, if such a log exists.

The following pairs are returned for all logs:

� fname, Logg, where Log is the name of the log as given by the open/1 option name.

� ffile, Fileg. For halt logs File is the filename, and for wrap logs File is the
base name.

� ftype, Typeg, where Type is the type of the log as given by the open/1 option
type.

� fformat, Formatg, where Format is the format of the log as given by the open/1
option format.

� fsize, Sizeg, where Size is the size of the log as given by the open/1 option
size, or the size set by change size/2. The value set by change size/2 is
reflected immediately.

� fmode, Modeg, where Mode is the mode of the log as given by the open/1 option
mode.

� fowners, [fpid(), Notifyg]g where Notify is the value set by the open/1
option notify or the function change notify/3 for the owners of the log.

55Kernel Application (KERNEL)

disk log (Module) Kernel Reference Manual

� fusers, Usersg where Users is the number of anonymous users of the log, see
the open/1 option linkto [page 58].

� fstatus, Statusg, where Status is ok or fblocked, QueueLogRecordsg as set
by the functions block/1,2 and unblock/1.

� fnode, Nodeg. The information returned by the current invocation of the info/1
function has been gathered from the disk log process running on Node.

� fdistributed, Distg. If the log is local on the current node, then Dist has the
value local, otherwise all nodes where the log is distributed are returned as a list.

The following pairs are returned for all logs opened in read write mode:

� fhead, Headg. Depending of the value of the open/1 options head and head func
or set by the function change head/2, the value of Head is none (default), fhead,
Hg (head option) or fM,F,Ag (head func option).

� fno written items, NoWrittenItemsg, where NoWrittenItems is the number of
items written to the log since the disk log process was created.

The following pair is returned for halt logs opened in read write mode:

� ffull, Fullg, where Full is true or false depending on whether the halt log is
full or not.

The following pairs are returned for wrap logs opened in read write mode:

� fno current bytes, integer() >= 0g is the number of bytes written to the
current wrap log file.

� fno current items, integer() >= 0g is the number of items written to the
current wrap log file, header inclusive.

� fno items, integer() >= 0g is the total number of items in all wrap log files.

� fcurrent file, integer()g is the ordinal for the current wrap log file in the
range 1..MaxNoFiles, where MaxNoFiles is given by the open/1 option size or
set by change size/2.

� fno overflows, fSinceLogWasOpened, SinceLastInfogg, where
SinceLogWasOpened (SinceLastInfo) is the number of times a wrap log file has
been filled up and a new one opened or inc wrap file/1 has been called since the
disk log was last opened (info/1 was last called). The first time info/2 is called
after a log was (re)opened or truncated, the two values are equal.

Note that the chunk/2,3 and chunk step/3 functions do not affect any value returned
by info/1.

lclose(Log) -> ok | ferror, Reasong

lclose(Log, Node) -> ok | ferror, Reasong

Types:

� Node = node()
� Reason = no such log

56 Kernel Application (KERNEL)

Kernel Reference Manual disk log (Module)

The function lclose/1 closes a local log or an individual distributed log on the current
node. The function lclose/2 closes an individual distributed log on the specified node
if the node is not the current one. lclose(Log) is equivalent to lclose(Log, node()).
See also close/1 [page 55].

If there is no log with the given name on the specified node, no such log is returned.

log(Log, Term) -> ok | ferror, Reasong

blog(Log, Bytes) -> ok | ferror, Reasong

Types:

� Log = term()
� Term = term()
� Bytes = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fformat external, Logg |
fblocked log, Logg | ffull, Logg | finvalid header, InvalidHeaderg | ffile error,
FileName, FileErrorg

The log/2 and blog/2 functions synchronously append a term to a disk log. They
return ok or ferror, Reasong when the term has been written to disk. Terms are
written by means of the ordinary write() function of the operating system. Hence,
there is no guarantee that the term has actually been written to the disk, it might linger
in the operating system Kernel for a while. To make sure the item is actually written to
disk, the sync/1 function must be called.

The log/2 function is used for internally formatted logs, and blog/2 for externally
formatted logs. blog/2 can be used for internally formatted logs as well provided the
binary was constructed with a call to term to binary/1.

The owners that subscribe to notifications will be notified of an error with an
error status message if the error reason tag is invalid header or file error.

log terms(Log, TermList) -> ok | ferror, Reasong

blog terms(Log, BytesList) -> ok | ferror, Reasong

Types:

� Log = term()
� TermList = [term()]
� BytesList = [Bytes]
� Bytes = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fformat external, Logg |
fblocked log, Logg | ffull, Logg | finvalid header, InvalidHeaderg | ffile error,
FileName, FileErrorg

The log terms/2 and blog terms/2 functions synchronously append a list of items to
the log. The benefit of using these functions rather than the log/2 and blog/2
functions is that of efficiency: the given list is split into as large sublists as possible
(limited by the size of wrap log files), and each sublist is logged as one single item,
which reduces the overhead.

The log terms/2 function is used for internally formatted logs, and blog terms/2 for
externally formatted logs. blog terms/2 can be used for internally formatted logs as
well provided the binaries were constructed with calls to term to binary/1.

57Kernel Application (KERNEL)

disk log (Module) Kernel Reference Manual

The owners that subscribe to notifications will be notified of an error with an
error status message if the error reason tag is invalid header or file error.

open(ArgL) -> OpenRet | DistOpenRet

Types:

� ArgL = [Opt]
� Opt = fname, term()g | ffile, FileNameg, flinkto, LinkTog | frepair, Repairg |
ftype, Typeg | fformat, Formatg | fsize, Sizeg | fdistributed, [Node]g | fnotify,
bool()g | fhead, Headg | fhead func, fM,F,Agg | fmode, Modeg

� FileName = string() | atom()
� LinkTo = pid() | none
� Repair = true | false | truncate
� Type = halt | wrap
� Format = internal | external
� Size = integer() > 0 | infinity | fMaxNoBytes, MaxNoFilesg
� MaxNoBytes = integer() > 0
� MaxNoFiles = 0 < integer() < 65000
� Rec = integer()
� Bad = integer()
� Head = none | term() | binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Mode = read write | read only
� OpenRet = Ret | ferror, Reasong
� DistOpenRet = f[fNode, Retg], [fBadNode, ferror, DistReasongg]g
� Node = BadNode = atom()
� Ret = fok, Logg | frepaired, Log, frecovered, Recg, fbadbytes, Badgg
� DistReason = nodedown | Reason
� Reason = no such log | fbadarg, Argg | fsize mismatch, CurrentSize, NewSizeg |
farg mismatch, OptionName, CurrentValue, Valueg | fname already open, Logg |
fopen read write, Logg | fopen read only, Logg | fneed repair, Logg |
fnot a log file, FileNameg | finvalid index file, FileNameg | finvalid header,
InvalidHeaderg | ffile error, FileName, FileErrorg | fnode already open, Logg

The ArgL parameter is a list of options which have the following meanings:

� fname, Logg specifies the name of the log. This is the name which must be passed
on as a parameter in all subsequent logging operations. A name must always be
supplied.

� ffile, FileNameg specifies the name of the file which will be used for logged
terms. If this value is omitted and the name of the log is either an atom or a string,
the file name will default to lists:concat([Log, ".LOG"]) for halt logs. For
wrap logs, this will be the base name of the files. Each file in a wrap log will be
called <base name>.N, where N is an integer. Each wrap log will also have two
files called <base name>.idx and <base name>.siz.

� flinkto, LinkTog. If LinkTo is a pid, that pid becomes an owner of the log. If
LinkTo is none the log records that it is used anonymously by some process by
incrementing the users counter. By default, the process which calls open/1 owns
the log.

58 Kernel Application (KERNEL)

Kernel Reference Manual disk log (Module)

� frepair, Repairg. If Repair is true, the current log file will be repaired, if
needed. As the restoration is initiated, a message is output on the error log. If
false is given, no automatic repair will be attempted. Instead, the tuple ferror,
fneed repair, Loggg is returned if an attempt is made to open a corrupt log file.
If truncate is given, the log file will be truncated, creating an empty log. Default
is true, which has no effect on logs opened in read-only mode.

� ftype, Typeg is the type of the log. Default is halt.

� fformat, Formatg specifies the format of the disk log. Default is internal.

� fsize, Sizeg specifies the size of the log. When a halt log has reached its
maximum size, all attempts to log more items are rejected. The default size is
infinity, which for halt implies that there is no maximum size. For wrap logs,
the Size parameter may be either a pair fMaxNoBytes, MaxNoFilesg or
infinity. In the latter case, if the files of an already existing wrap log with the
same name can be found, the size is read from the existing wrap log, otherwise an
error is returned. Wrap logs write at most MaxNoBytes bytes on each file and use
MaxNoFiles files before starting all over with the first wrap log file. Regardless of
MaxNoBytes, at least the header (if there is one) and one item is written on each
wrap log file before wrapping to the next file. When opening an existing wrap log,
it is not necessary to supply a value for the option Size, but any supplied value
must equal the current size of the log, otherwise the tuple ferror,
fsize mismatch, CurrentSize, NewSizegg is returned.

� fdistributed, Nodesg. This option can be used for adding members to a
distributed disk log. The default value is [], which means that the log is local on
the current node.

� fnotify, bool()g. If true, the owners of the log are notified when certain events
occur in the log. Default if false. The owners are sent one of the following
messages when an event occurs:

– fdisk log, Node, Log, fwrap, NoLostItemsgg is sent when a wrap log has
filled up one of its files and a new file is opened. In case of using one of the
functions that append a list of items to a log fills up several files, only one
message is sent. NoLostItems is the number of previously logged items that
have been lost when truncating existing files.

– fdisk log, Node, Log, ftruncated, NoLostItemsgg is sent when a log has
been truncated or reopened. For halt logs NoLostItems is the number of items
written on the log since the disk log process was created. For wrap logs
NoLostItems is the number of items on all wrap log files.

– fdisk log, Node, Log, fread only, Itemsgg is sent when an
asynchronous log attempt is made to a log file opened in read-only mode.
Items is the items from the log attempt.

– fdisk log, Node, Log, fblocked log, Itemsgg is sent when an
asynchronous log attempt is made to a blocked log that does not queue log
attempts. Items is the items from the log attempt.

– fdisk log, Node, Log, fformat external, Itemsgg is sent when alog/2
or alog terms/2 is used for internally formatted logs. Items is the items from
the log attempt.

– fdisk log, Node, Log, fullg is sent when an attempt to log items to a
wrap log would write more bytes than the limit set by the size option.

– fdisk log, Node, Log, ferror status, Statusgg is sent when the error
status changes. The error status is defined by the outcome of the last attempt
to log items to a the log or to truncate the log or the last use of sync/1,

59Kernel Application (KERNEL)

disk log (Module) Kernel Reference Manual

inc wrap file/1 or change size/2. Status is one of ok and ferror,
Errorg, the former being the initial value.

� fhead, Headg specifies a header to be written first on the log file. If the log is a
wrap log, the item Head is written first in each new file. Head should be a term if
the format is internal, and a deep list of bytes (or a binary) otherwise. Default is
none, which means that no header is written first on the file.

� fhead func, fM,F,Agg specifies a function to be called each time a new log file is
opened. The call M:F(A) is assumed to return fok, Headg. The item Head is
written first in each file. Head should be a term if the format is internal, and a
deep list of bytes (or a binary) otherwise.

� fmode, Modeg specifies if the log is to be opened in read-only or read-write mode.
It defaults to read write.

The open/1 function returns fok, Logg if the log file was successfully opened. If the
file was successfully repaired, the tuple frepaired, Log, frecovered, Recg,
fbadbytes, Badgg is returned, where Rec is the number of whole Erlang terms found
in the file and Bad is the number of bytes in the file which were non-Erlang terms. If the
distributed parameter was given, open/1 returns a list of successful replies and a list
of erroneous replies. Each reply is tagged with the node name.

When a disk log is opened in read-write mode, any existing log file is checked for. If
there is none a new empty log is created, otherwise the existing file is opened at the
position after the last logged item, and the logging of items will commence from there.
If the format is internal and the existing file is not recognized as an internally
formatted log, a tuple ferror, fnot a log file, FileNamegg is returned.

The open/1 function cannot be used for changing the values of options of an already
open log; when there are prior owners or users of a log, all option values except name,
linkto and notify are just checked against the values that have been supplied before as
option values to open/1, change head/2, change notify/3 or change size/2. As a
consequence, none of the options except name is mandatory. If some given value differs
from the current value, a tuple ferror, farg mismatch, OptionName,
CurrentValue, Valuegg is returned. Caution: an owner’s attempt to open a log as
owner once again is acknowledged with the return value fok, Logg, but the state of the
disk log is not affected in any way.

If a log with a given name is local on some node, and one tries to open the log
distributed on the same node, then the tuple ferror, fnode already open, Namegg is
returned. The same tuple is returned if the log is distributed on some node, and one
tries to open the log locally on the same node. Opening individual distributed disk logs
for the first time adds those logs to a (possibly empty) distributed disk log. The option
values supplied are used on all nodes mentioned by the distributed option. Individual
distributed logs know nothing about each other’s option values, so each node can be
given unique option values by creating a distributed log with several calls to open/1.

It is possible to open a log file more than once by giving different values to the option
name or by using the same file when distributing a log on different nodes. It is up to the
user of the disk log module to ensure that no more than one disk log process has write
access to any file, or the the file may be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates
with the EXIT message fffailed,Reasong,[fdisk log,open,1g]g. The function
returns ferror, Reasong for all other errors.

reopen(Log, File)

60 Kernel Application (KERNEL)

Kernel Reference Manual disk log (Module)

reopen(Log, File, Head)

breopen(Log, File, BHead) -> ok | ferror, Reasong

Types:

� Log = term()
� File = string()
� Head = term()
� BHead = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
fsame file name, Logg | finvalid index file, FileNameg | finvalid header,
InvalidHeaderg | ffile error, FileName, FileErrorg

The reopen functions first rename the log file to File and then re-create a new log file.
In case of a wrap log, File is used as the base name of the renamed files. By default the
header given to open/1 is written first in the newly opened log file, but if the Head or
the BHead argument is given, this item is used instead. The header argument is used
once only; next time a wrap log file is opened, the header given to open/1 is used.

The reopen/2,3 functions are used for internally formatted logs, and breopen/3 for
externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message
fffailed,Errorg,[fdisk log,Fun,Arityg]g, and other processes that have requests
queued receive the message fdisk log, Node, ferror, disk log stoppedgg.

sync(Log) -> ok | ferror, Reasong

Types:

� Log = term()
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
ffile error, FileName, FileErrorg

The sync/1 function ensures that the contents of the log is actually written to the disk.
This is usually a rather expensive operation.

truncate(Log)

truncate(Log, Head)

btruncate(Log, BHead) -> ok | ferror, Reasong

Types:

� Log = term()
� Head = term()
� BHead = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
finvalid header, InvalidHeaderg | ffile error, FileName, FileErrorg

61Kernel Application (KERNEL)

disk log (Module) Kernel Reference Manual

The truncate functions remove all items from a disk log. If the Head or the BHead
argument is given, this item is written first in the newly truncated log, otherwise the
header given to open/1 is used. The header argument is only used once; next time a
wrap log file is opened, the header given to open/1 is used.

The truncate/1,2 functions are used for internally formatted logs, and btruncate/2
for externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

If the attempt to truncate the log fails, the disk log process terminates with the EXIT
message fffailed,Reasong,[fdisk log,Fun,Arityg]g, and other processes that have
requests queued receive the message fdisk log, Node, ferror,
disk log stoppedgg.

unblock(Log) -> ok | ferror, Reasong

Types:

� Log = term()
� Reason = no such log | nonode | fnot blocked, Logg | fnot blocked by pid, Logg

The unblock/1 function unblocks a log. A log can only be unblocked by the blocking
process.

See Also

file(3), pg2(3), wrap log reader [page 176](3)

62 Kernel Application (KERNEL)

Kernel Reference Manual erl boot server (Module)

erl boot server (Module)

This server is used to assist diskless Erlang nodes which fetch all Erlang code from
another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime
system is started with the -loader inet command line flag. All hosts specified with the
-hosts Host flag must have one instance of this server running.

This server can be started with the kernel configuration parameter start boot server.

Exports

start(Slaves) -> fok, Pidg | ferror, Whatg

Types:

� Slaves = [Host]
� Host = atom()
� Pid = pid()
� What = void()

Starts the boot server. Slaves is a list of IP addresses for hosts which are allowed to use
this server as a boot server.

start link(Slaves) -> fok, Pidg | ferror, Whatg

Types:

� Slaves = [Host]
� Host = atom()
� Pid = pid()
� What = void()

Starts the boot server and links to the caller. This function is used to start the server if it
is included in a supervision tree.

add slave(Slave) -> ok | ferror, Whatg

Types:

� Slave = Host
� Host = atom()
� What = void()

Adds a Slave node to the list of allowed slave hosts.

63Kernel Application (KERNEL)

erl boot server (Module) Kernel Reference Manual

delete slave(Slave) -> ok | ferror, Whatg

Types:

� Slave = Host
� Host = atom()
� What = void()

Deletes a Slave node from the list of allowed slave hosts.

which slaves() -> Slaves

Types:

� Slaves = [Host]
� Host = atom()

Returns the current list of allowed slave hosts.

SEE ALSO

init(3), erl prim loader(3)

64 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll (Module)

erl ddll (Module)

The erl ddll module can load and link a linked-in driver, if run-time loading and
linking of shared objects, or dynamic libraries, is supported by the underlying operating
system.

Exports

start() -> fok, Pidg | ferror, Reasong

Starts ddll server. The error return values are the same as for gen server.

start link() -> fok, Pidg | ferror, Reasong

Starts ddll server and links it to the calling process. The error return values are the
same as for gen server.

stop() -> ok

Stops ddll server.

load driver(Path, Name) -> ok | ferror, ErrorDescriptorg

Types:

� Name = string() | atom()
� Path = string() | atom()

Loads and links the dynamic driver Name. Name must be sharable object/dynamic library.
Two drivers with different Paths cannot be loaded under the same name. The number
of dynamically loadable drivers are limited by the size of driver tab in config.c.

If the server is not started the caller will crash.

unload driver(Name) -> ok | ferror, ErrorDescriptorg

Types:

� Name = string() | atom()

Unloads the dynamic driver Name. This will fail if any port programs are running the
code that is being unloaded. Linked-in driver cannot be unloaded. The process must
previously have called load driver/1 for the driver.

There is no guarantee that the memory where the driver was loaded is freed. This
depends on the underlying operating system.

If the server is not started the caller will crash.

65Kernel Application (KERNEL)

erl ddll (Module) Kernel Reference Manual

loaded drivers() -> fok, DriverListg

Types:

� DriverList = [Driver()]
� Driver = string()

Returns a list of all the available drivers, both (statically) linked-in and dynamically
loaded ones.

If the server is not started the caller will crash.

format error(ErrorDescriptor) -> string()

Takes an ErrorDescriptorwhich has been returned by one of load driver/2 and
unload driver/1 and returns a string which describes the error or warning.

Differences Between Statically Linked-in Drivers and

Dynamically Loaded Drivers

Except for the following minor changes, all information in Appendix E of Concurrent
Programming in Erlang, second edition, still applies.

The driver entry struct has two new members: finish and handle.

Before the driver is unloaded, the finish function is called, without arguments, to give
the driver writer a chance to clean up and release memory allocated in driver init.

The member handle contains a pointer obtained from the operating system when the
driver was loaded. Without this, the driver cannot be unloaded!

The init function in struct driver entry is not used anymore. After the driver is
loaded, the function struct driver entry *driver init(void *) is called with
handle as argument. If the operating system loader cannot find a function called
driver init, the driver will not be loaded. The driver init function must initialize a
struct driver entry and return a pointer to it.

Example:

#include <stdio.h>
#include "driver.h"
static long my_start();
static int my_stop(), my_read();
static struct driver_entry my_driver_entry;
/*
* Initialize and return a driver entry struct
*/

struct driver_entry *driver_init(void *handle)
{
my_driver_entry.init = null_func; /* Not used */
my_driver_entry.start = my_start;
my_driver_entry.stop = my_stop;
my_driver_entry.output = my_read;
my_driver_entry.ready_input = null_func;
my_driver_entry.ready_output = null_func;
my_driver_entry.driver_name = "my_driver";

66 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll (Module)

my_driver_entry.finish = null_func;
my_driver_entry.handle = handle; /* MUST set this!!! */
return &my_driver_entry;

}

config.c

The size of the driver tab array, defined in config.c, limits the number of
dynamically loadable drivers.

Compiling Your Driver

Please refer to your C compiler or operating system documentation for information
about producing a sharable object or DLL.

The include file driver.h is found in the usr/include directory of the Erlang
installation.

67Kernel Application (KERNEL)

erl prim loader (Module) Kernel Reference Manual

erl prim loader (Module)

The erl prim loader is used to load all Erlang modules into the system. The start
script is also fetched with the low level loader.

The erl prim loader knows about the environment and how to fetch modules. The
loader could, for example, fetch files using the file system (with absolute file names as
input), or a database (where the binary format of a module is stored).

The -loader Loader command line flag can be used to choose the method used by the
erl prim loader. Two Loader methods are supported by the Erlang runtime system:
efile and inet. If another loader is required, then it has to be implemented by the
user. The Loader provided by the user must fulfill the protocol defined below, and it is
started with the erl prim loader by evaluating
open port(fspawn,Loaderg,[binary]).

Exports

start(Id,Loader,Hosts) -> fok, Pidg | ferror, Whatg

Types:

� Id = term()
� Loader = atom() | string()
� Hosts = [Host]
� Host = atom()
� Pid = pid()
� What = term()

Starts the Erlang low level loader. This function is called by the init process (and
module). The init process reads the command line flags -id Id, -loader Loader, and
-hosts Hosts. These are the arguments supplied to the start/3 function.

If -loader is not given, the default loader is efile which tells the system to read from
the file system.

If -loader is inet, the -id Id, -hosts Hosts, and -setcookie Cookie flags must also
be supplied. Hosts identifies hosts which this node can contact in order to load
modules. One Erlang runtime system with a erl boot server process must be started
on each of hosts given in Hosts in order to answer the requests. See
erl boot server(3).

If -loader is something else, the given port program is started. The port program is
supposed to follow the protocol specified below.

get file(File) -> fok, Bin, FullNameg | error

68 Kernel Application (KERNEL)

Kernel Reference Manual erl prim loader (Module)

Types:

� File = string()
� Bin = binary()
� FullName = string()

This function fetches a file using the low level loader. File is either an absolute file
name or just the name of the file, for example "lists.beam". If an internal path is set
to the loader, this path is used to find the file. If a user supplied loader is used, the path
can be stripped off if it is obsolete, and the loader does not use a path. FullName is the
complete name of the fetched file. Bin is the contents of the file as a binary.

get path() -> fok, Pathg

Types:

� Path = [Dir]
� Dir = string()

This function gets the path set in the loader. The path is set by the init process
according to information found in the start script.

set path(Path) -> ok

Types:

� Path = [Dir]
� Dir = string()

This function sets the path of the loader if init interprets a path command in the start
script.

Protocol

The following protocol must be followed if a user provided loader port program is used.
The Loader port program is started with the command
open port(fspawn,Loaderg,[binary]). The protocol is as follows:

Function Send Receive

get file [102 | FileName] [121 | BinaryFile] (on success)

[122] (failure)

stop eof terminate

69Kernel Application (KERNEL)

erl prim loader (Module) Kernel Reference Manual

Command Line Flags

The erl prim loader module interprets the following flags:

-loader Loader Specifies the name of the loader used by erl prim loader. Loader can
be efile (use the local file system), or inet (load using the boot server on
another Erlang node). If Loader is user defined, the defined Loader port program
is started.
If the -loader flag is omitted, it defaults to efile.

-hosts Hosts Specifies which other Erlang nodes the inet loader can use. This flag is
mandatory if the -loader inet flag is present. On each host, there must be on
Erlang node with the erl boot server which handles the load requests. Hosts is a
list of IP addresses (hostnames are not acceptable).

-id Id Specifies the identity of the Erlang runtime system. If the system runs as a
distributed node, Id must be identical to the name supplied with the -sname or
-name distribution flags.

-setcookie Cookie Specifies the cookie of the Erlang runtime system. This flag is
mandatory if the -loader inet flag is present.

SEE ALSO

init(3), erl boot server(3)

70 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

erlang (Module)

By convention, Built In Functions (BIFs) are seen as being in the module erlang. Thus,
both the calls atom to list(Erlang) and erlang:atom to list(Erlang) are identical.

BIFs may fail for a variety of reasons. All BIFs fail if they are called with arguments of an
incorrect type. For example, atom to list/1 will fail if it is called with an argument
which is not an atom. If this type of failure is not within the scope of a catch (and the
BIF is not called within a guard; see below), the process making the call will exit, and an
EXIT signal with the associated reason badarg will be sent to all linked processes. The
other reasons that may make BIFs fail are described in connection with the description
of each individual BIF.

A few BIFs may be used in guard tests, for example:

tuple 5(Something) when size(Something) == 5 ->
is tuple size 5;

tuple 5() ->
is something else.

Here the BIF size/1 is used in a guard. If size/1 is called with a tuple, it will return
the size of the tuple (i.e., how many elements there are in the tuple). In the above
example, size/1 is used in a guard which tests if its argument Something is a tuple and,
if it is, whether it is of size 5. In this case, calling size with an argument other than a
tuple will cause the guard to fail and execution will continue with the next clause.
Suppose tuple 5/1 is written as follows:

tuple 5(Something) ->
case size(Something) of

5 -> is tuple size 5;
-> is something else

end.

In this case, size/1 is not in a guard. If Something is not a tuple, size/1 will fail and
cause the process to exit with the associated reason badarg (see above).

Some of the BIFs in this chapter are optional in Erlang implementations, and not all
implementations will include them.

The following descriptions indicate which BIFs can be used in guards and which BIFs
are optional.

71Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Exports

abs(Number)

Returns an integer or float which is the arithmetical absolute value of the argument
Number (integer or float).

> abs(-3.33).
3.33000
> abs(-3).
3

This BIF is allowed in guard tests.

Failure: badarg if the argument is not an integer or a float.

erlang:append element(Tuple, Term)

Returns a new tuple which has one element more than Tuple, and contains the
elements in Tuple followed by Term as the last element. Semantically equvivalent to
list to tuple(tuple to list(Tuple ++ [Term]), but much faster.

Failure: badarg if Tuple is not a tuple.

apply(fModule, Functiong, ArgumentList)

This is equivalent to apply(Module, Function, ArgumentList).

apply(Module, Function, ArgumentList)

Returns the result of applying Function in Module on ArgumentList. The applied
function must have been exported from Module. The arity of the function is the length
of ArgumentList.

> apply(lists, reverse, [[a, b, c]]).
[c,b,a]

apply can be used to evaluate BIFs by using the module name erlang.

> apply(erlang, atom to list, [’Erlang’]).
"Erlang"

Failure: error handler:undefined function/3 is called if Module has not exported
Function/Arity. The error handler can be redefined (see the BIF process flag/2). If
the error handler is undefined, or if the user has redefined the default error handler
so the replacement module is undefined, an error with the reason undef will be
generated.

atom to list(Atom)

Returns a list of integers (Latin-1 codes), which corresponds to the text representation
of the argument Atom.

>atom to list(’Erlang’).
"Erlang"

Failure: badarg if the argument is not an atom.

72 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

erlang:binary to float(Binary)

Returns a float corresponding to the big-endian IEEE representation in Binary. The size
of Binary must be 4 or 8 bytes.

Warning:
This is an internal BIF, only to be used by OTP code.

Failure: badarg if the argument is not a binary or not the representation of a number.

binary to list(Binary)

Returns a list of integers which correspond to the bytes of Binary.

binary to list(Binary, Start, Stop)

As binary to list/1, but it only returns the list from position Start to position Stop.
Start and Stop are integers. Positions in the binary are numbered starting from 1.

binary to term(Binary)

Returns an Erlang term which is the result of decoding the binary Binary. Binary is
encoded in the Erlang external binary representation. See term to binary/1.

bump reductions(Reductions)

This implementation-dependent function increments the reduction counter for the
current process. In the Beam emulator, the reduction counter is normally incremented
by one for each function and BIF call, and a context switch is forced when the counter
reaches 1000.

Warning:
This BIF might be removed in a future version of the Beam machine without prior
warning. It is unlikely to be implemented in other Erlang implementations. If you
think that you must use it, encapsulate it your own wrapper module, and/or wrap it
in a catch.

erlang:cancel timer(Ref)

cancel timer(Ref) cancels a timer, where Ref was returned by either send after/3 or
start timer/3. If the timer was there to be removed, cancel timer/1 returns the
time in ms left until the timer would have expired, otherwise false (which may mean
that Ref was never a timer, or that it had already been cancelled, or that it had already
delivered its message).

Note: usually, cancelling a timer does not guarantee that the message has not already
been delivered to the message queue. However, in the special case of a process P
cancelling a timer which would have sent a message to P itself, attempting to read the
timeout message from the queue is guaranteed to remove the timeout in that situation:

73Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

cancel timer(Ref),
receive

ftimeout, Ref, g ->
ok

after 0 ->
ok

end

Failure: badarg if Ref is not a reference.

erlang:check process code(Pid, Module)

Returns true if the process Pid is executing an old version of Module, if the current call
of the process executes code for an old version of the module, if the process has
references to an old version of the module, or if the process contains funs that
references the old version of the module. Otherwise, it returns false.

> erlang:check process code(Pid, lists).
false

This is an optional BIF.

Failure: badarg, if the process argument is not a Pid, or the module argument is not an
atom.

concat binary(ListOfBinaries)

Concatenates a list of binaries ListOfBinaries into one binary.

date()

Returns the current date as fYear, Month, Dayg

> date().
f1995, 2, 19g

erlang:delete module(Module)

Moves the current version of the code of Module to the old version and deletes all export
references of Module. Returns undefined if the module does not exist, otherwise true.

> delete module(test).
true

This is an optional BIF.

Failure: badarg if there is already an old version of the module (see BIF
purge module/1).

Warning:
In normal Erlang implementations code handling - which includes loading, deleting,
and replacing modules - is performed in the module code. This BIF is intended for
use with the implementation of the module code and should not be used elsewhere.

74 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

erlang:demonitor(Ref)

If Ref is a reference which the current process obtained by calling erlang:monitor/2,
the monitoring is turned off. No action is performed if the monitoring already is turned
of before the call. Returns true.

After the call to erlang:monitor/2 the monitoring process will not get any new ’DOWN’
message from this monitor into the receive queue.

It is an error if Ref refers to a monitoring started by another process. Not all such cases
are cheap to check; if checking is cheap, the call fails with badarg (for example if Ref is
a remote reference).

erlang:disconnect node(Node)

Forces the disconnection of a node. This will appear to the node Node as if the current
node has crashed. This BIF is mainly used in the Erlang network authentication
protocols. Returns true if disconnection succeeds, otherwise false.

Failure: badarg if Node is not an atom.

erlang:display(Term)

Prints a text representation Term on the standard output. Useful for debugging
(especially startup problems) and strongly discouraged for other purposes.

element(N, Tuple)

Returns the Nth element (numbering from 1) of Tuple.

> element(2, fa, b, cg).
b

Failure: badarg if N < 1, or N > size(Tuple), or if the argument Tuple is not a tuple.
Allowed in guard tests.

erase()

Returns the process dictionary and deletes it.

> put(key1, f1, 2, 3g), put(key2, [a, b, c]), erase().
[fkey1,f1, 2, 3gg,fkey2,[a, b, c]g]

erase(Key)

Returns the value associated with Key and deletes it from the process dictionary.
Returns undefined if no value is associated with Key. Key can be any Erlang term.

> put(key1, fmerry, lambs, are, playingg),
X = erase(key1), fX, erase(key1)g.

ffmerry, lambs, are, playingg, undefinedg

exit(Reason)

Stops the execution of the current process with the reason Reason. Can be caught.
Reason is any Erlang term. Since evaluating this function causes the process to
terminate, it has no return value.

75Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

> exit(foobar).
** exited: foobar **
> catch exit(foobar).
f’EXIT’, foobarg

exit(Pid, Reason)

Sends an EXIT message to the process Pid. Returns true.

> exit(Pid, goodbye).
true

Note:
The above is not necessarily the same as:

Pid ! f’EXIT’, self(), goodbyeg

The above two alternatives are the same if the process with the process identity Pid is
trapping exits. However, if Pid is not trapping exits, the Pid itself will exit and
propagate EXIT signals in turn to its linked processes.

If the reason is the atom kill, for example exit(Pid, kill), an untrappable EXIT
signal will be sent to the process Pid. In other words, the process Pid will be
unconditionally killed.

Returns true.

Failure: badarg if Pid is not a Pid.

fault(Reason)

Stops the execution of the current process with the reason Reason, where Reason is any
Erlang term. The actual EXIT term will be fReason, Whereg, where Where is a list of
the functions most recently called (the current function first). Since evaluating this
function causes the process to terminate, it has no return value.

fault(Reason, Args)

Stops the execution of the current process with the reason Reason, where Reason is any
Erlang term. The actual EXIT term will be fReason, Whereg, where Where is a list of
the functions most recently called (the current function first). The Args is expected to
be the arguments for the current function; in Beam it will be used to provide the actual
arguments for the current function in the Where term. Since evaluating this function
causes the process to terminate, it has no return value.

float(Number)

Returns a float by converting Number to a float.

> float(55).
55.0000

76 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

Note:
float/1 is allowed in guard tests, but it tests whether the argument is a float or not.

-module(t).

f(F) when float(F) -> float;
f(F) -> not a float.

1> t:f(1).
not a float
2> t:f(1.0).
float
3>

Failure: badarg if the argument is not a float or an integer.

erlang:float to binary(Float, Size)

Returns a binary containing the big-endian IEEE representation of Float. Size is the
size in bits, and must be either 32 or 64.

Warning:
This is an internal BIF, only to be used by OTP code.

Failure: badarg if the argument is not a float.

float to list(Float)

Returns a list of integers (ASCII codes) which corresponds to Float.

> float to list(7.0).
"7.00000000000000000000e+00"

Failure: badarg if the argument is not a float.

erlang:fun info(Fun)

Returns a list containing information about the fun Fun. This BIF is only intended for
debugging. The list returned contains the following tuples, not necessarily in the order
listed here (i.e. you should not depend on the order).

fpid,Pidg Pid is the pid of the process that originally created the fun. It will be the
atom undefined if the fun is given in the tuple representation.

fmodule,Moduleg Module (an atom) is the module in which the fun is defined.

findex,Indexg Index (an integer) is an index into the module’s fun table.

funiq,Uniqg Uniq (an integer) is a unique value for this fun.

fenv,Envg Env (a list) is the environment or free variables for the fun.

erlang:function exported(Module, Function, Arity)

77Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Returns true if the module Module is loaded and it contains an exported function
Function/Arity; otherwise returns false. Returns false for any BIF (functions
implemented in C rather than in Erlang).

This function is retained mainly for backwards compatibility. It is not clear why you
really would want to use it.

erlang:fun info(Fun, Item)

Returns information about the Fun as specified by Item, in the form fItem, Infog.
Item can be any of the atoms id, module, index, uniq, or env. See the
erlang:fun info/1 BIF.

erlang:fun to list(Fun)

Returns a textual representation of the fun Fun.

erlang:garbage collect()

Forces an immediate garbage collection of the currently executing process. You should
not use erlang:garbage collect() unless you have noticed or have good reasons to
suspect that the spontaneous garbage collection will occur too late or not at all.
Improper use may seriously degrade system performance.

Compatability note: In versions of OTP prior to R7, the garbage collection took place at
the next context switch, not immediately. To force a context switch after a call to
erlang:garbage collect(), it was sufficient to make any function call.

erlang:garbage collect(Pid)

Works like erlang:garbage collect() but on any process. The same caveats apply.
Returns false if Pid refers to a dead process; true otherwise.

get()

Returns the process dictionary as a list of fKey, Valueg tuples.

> put(key1, merry), put(key2, lambs),
put(key3, fare, playingg), get().

[fkey1, merryg, fkey2, lambsg, fkey3, fare, playinggg]

get(Key)

Returns the value associated with Key in the process dictionary, and undefined if no
value is associated with Key. Key can be any Erlang term.

> put(key1, merry), put(key2, lambs),
put(fany, [valid, term]g, fare, playingg),
get(fany, [valid, term]g).

fare, playingg

erlang:get cookie()

Returns the “magic cookie” of the current node, if the node is alive; otherwise the atom
nocookie.

get keys(Value)

78 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

Returns a list of keys which corresponds to Value in the process dictionary.

> put(mary, f1, 2g), put(had, f1, 2g), put(a, f1, 2g),
put(little, f1, 2g), put(dog, f1, 3g), put(lamb, f1, 2g),
get keys(f1, 2g).

[mary, had, a, little, lamb]

group leader()

Every process is a member of some process group and all groups have a leader.

This BIF returns the process identifier Pid of the group leader for the process which
evaluates the BIF. When a process is spawned, the group leader of the spawned process
is the same as that of the process which spawned it. Initially, at system start-up, init is
both its own group leader and the group leader of all processes.

group leader(Leader, Pid)

Sets the group leader of Pid to Leader. Typically, this is used when a processes started
from a certain shell should have another group leader than init. The process Leader is
normally a process with an I/O protocol. All I/O from this group of processes are thus
channeled to the same place.

halt()

Halts the Erlang runtime system and indicates normal exit to the calling environment.
Has no return value.

> halt().
unix prompt%

halt(Status)

Status must be a non-negative integer, or a string. Halts the Erlang runtime system.
Has no return value. If Status is an integer, it is returned as an exit status of Erlang to
the calling environment. If Status is a string, produces an Erlang crash dump with
String as slogan, and then exits with a non-zero status code.

Note that on many platforms, only the status codes 0-255 are supported by the
operating system.

erlang:hash(Term, Range)

Returns a hash value for Term within the range 1..Range. The allowed range is
1..2^27-1.

Warning:
This BIF is deprecated as the hash value may differ on different architectures. Also
the hash values for integer terms larger than 2^27 as well as large binaries are very
poor. The BIF is retained for backward compatibility reasons (it may have been used
to hash records into a file), but all new code should use the BIF erlang:phash/2
instead.

79Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

hd(List)

Returns the first item of List.

> hd([1,2,3,4,5]).
1

Allowed in guard tests.

Failure: badarg if List is the empty list [], or is not a list.

erlang:info(What)

This BIF is now equvivalent to erlang:system info/1 [page 99].

integer to list(Integer)

Returns a list of integers (ASCII codes) which correspond to Integer.

> integer to list(77).
"77"

Failure: badarg if the argument is not an integer.

is alive()

Returns the atom true if the current node is alive; i.e., if the node can be part of a
distributed system. Otherwise, it returns the atom false.

erlang:is builtin(Module, Function, Arity)

Returns true if Module:Function/Arity is a BIF implemented in C; otherwise returns
false. This BIF is useful for builders of cross reference tools.

is process alive(Pid)

Pid must refer to a process on the current node. Returns the atom true if the process is
alive, i.e., has not exited. Otherwise, it returns the atom false. This is the preferred
way to check whether a process exists. Unlike process info/[1,2],
is process alive/1 does not report zombie processes as alive.

length(List)

Returns the length of List.

> length([1,2,3,4,5,6,7,8,9]).
9

Allowed in guard tests.

Failure: badarg if the argument is not a proper list.

link(Pid)

Creates a link to the process (or port) Pid, if there is not such a link already. If a process
attempts to create a link to itself, nothing is done. Returns true.

Failure: badarg if the argument is not a Pid or port. Sends the EXIT signal noproc to
the process which evaluates link if the argument is the Pid of a process which does not
exist.

80 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

list to atom(CharIntegerList)

Returns an atom whose text representation is the integers (Latin-1 codes) in
CharIntegerList.

> list to atom([69, 114, 108, 97, 110, 103]).
’Erlang’

Failure: badarg if the argument is not a list of integers, or if any integer in the list is not
an integer in the range [0, 255].

list to binary(List)

Returns a binary which is made from the integers and binaries in List. List may be
deep and may contain any combination of integers and binaries.

Example: list to binary([Bin1,1,[2,3,Bin2],4|Bin3])

Failure: badarg if the argument is not a list, or if the list or any sublist contains anything
else than binaries or integers in the range [0, 255].

list to float(AsciiIntegerList)

Returns a float whose text representation is the integers (ASCII-values) in
AsciiIntegerList.

> list to float([50,46,50,48,49,55,55,54,52,101,43,48]).
2.20178

Failure: badarg if the argument is not a list of integers, or if AsciiIntegerList
contains a bad representation of a float.

list to integer(AsciiIntegerList)

Returns an integer whose text representation is the integers (ASCII-values) in
AsciiIntegerList.

> list to integer([49, 50, 51]).
123

Failure: badarg if the argument is not a list of integers, or if AsciiIntegerList
contains a bad representation of an integer.

list to pid(AsciiIntegerList)

Returns a Pid whose text representation is the integers (ASCII-values) in
AsciiIntegerList. This BIF is intended for debugging, and in the Erlang operating
system. It should not be used in application programs.

> list to pid("<0.4.1>").
<0.4.1>

Failure: badarg if the argument is not a list of integers, or AsciiIntegerList contains a
bad representation of a Pid.

list to tuple(List)

Returns a tuple which corresponds to List. List can contain any Erlang terms.

> list to tuple([mary, had, a, little, fdog, cat, lambg]).
fmary, had, a, little, fdog, cat, lambgg

81Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Failure: badarg if List is not a proper list.

erlang:load module(Module, Binary)

If Binary contains the object code for the module Module, this BIF loads that object
code. Also, if the code for the module Module already exists, all export references are
replaced so they point to the newly loaded code. The previously loaded code is kept in
the system as ‘old code’, as there may still be processes which are executing that code.
It returns either fmodule, Moduleg, where Module is the name of the module which
has been loaded, or ferror, Reasong if load fails. Reason is one of the following:

badfile If the object code in Binary has an incorrect format.

not purged If Binary contains a module which cannot be loaded because old code for
this module already exists (see the BIFs purge module and delete module).

badfile If the object code contains code for another module than Module

Warning:
Code handling - which includes loading, deleting, and replacing of modules - is done
by the module code in normal Erlang implementations. This BIF is intended for the
implementation of the module named code and should not be used elsewhere.

This is an optional BIF.

Failure: badarg if the first argument is not an atom, or the second argument is not a
binary.

erlang:loaded()

Returns a list of all loaded Erlang modules, including preloaded modules. A module will
be included in the list if it has either current code or old code or both loaded.

erlang:localtime()

Returns the current local date and time ffYear, Month, Dayg, fHour, Minute,
Secondgg.

The time zone and daylight saving time correction depend on the underlying OS.

> erlang:localtime().
ff1996,11,6g,f14,45,17gg

erlang:localtime to universaltime(DateTime)

Converts local date and time in DateTime to Universal Time Coordinated (UTC), if this
is supported by the underlying OS. Otherwise, no conversion is done and DateTime is
returned. The return value is of the form ffYear, Month, Dayg, fHour, Minute,
Secondgg.

Failure: badarg if the argument is not a valid date and time tuple ffYear, Month,
Dayg, fHour, Minute, Secondgg.

> erlang:localtime to universaltime(ff1996,11,6g,f14,45,17gg).
ff1996,11,6g,f13,45,17gg

82 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

make ref()

Returns an almost unique reference.

The returned reference will reoccur after approximately 2^82 calls; therefore it is
unique enough for most practical purposes.

> make ref().
#Ref<0.0.0.135>

make tuple(Arity, InitialValue)

Returns a new tuple of the given Arity, where all elements are InitialValue.

> erlang:make tuple(4, []).
f[],[],[],[]g

erlang:md5(Data) -> Digest

Types:

� Data = iolist() | binary()
� Digest = binary()

Computes an MD5 message digest from Data, where the length of the digest is 128 bits
(16 bytes). Data is a binary or a list of small integers and binaries.

See The MD5 Message Digest Algorithm (RFC 1321) for more information about MD5.

Failure: badarg if the Data argument is not a list, or if the list or any sublist contains
anything else than binaries or integers in the range [0, 255].

erlang:md5 init() -> Context

Types:

� Context = binary()

Creates an MD5 context, to be used in subsequent calls to md5 update/2.

erlang:md5 update(Context, Data) -> NewContext

Types:

� Data = iolist() | binary()
� Context = NewContext = binary()

Updates an MD5 Context with Data, and returns a NewContext.

erlang:md5 final(Context) -> Digest

Types:

� Context = Digest = binary()

Finishes the update of an MD5 Context and returns the computed MD5 message digest.

erlang:module loaded(Module)

83Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Returns the atom true if the module contained in atom Module is loaded, otherwise it
returns the atom false. It does not attempt to load the module.

Warning:
This BIF is intended for the implementation of the module named code and should
not be used anywhere else. Use code:is loaded/1 instead.

> erlang:module loaded(lists).
true

This is an optional BIF.

Failure: badarg if the argument is not an atom.

erlang:monitor(Type, Item)

The current process starts monitoring Item, and will be notified when Item dies, with a
message f’DOWN’, Ref, Type, Object, Infog, where Ref is the value returned by the
call to erlang:monitor/2, and Info gives additional information. The message is also
sent if Item is already dead. Object refers to the same entity as Item, but sometimes
with a different format e.g when Item is a process name Object may be the pid. The
value returned can be used for disabling the monitor (see erlang:demonitor/1).

The currently allowed value for Type is the atom process. Item may then be a pid, an
atom Name or a tuple fName, Nodeg where Node also is an atom; Info in the message is
the exit reason of the process (or noproc or noconnection, when the process does not
exist or the remote node goes down, respectively, in analogy with link/1). Object in
the message is the pid that Item refers to, but if Name is not registered on the referred
node or if Node is not alive then Object is equal to Name, If an attempt is made to
monitor a process on an older node (where remote process monitoring is not
implemented (or one where remote process monitoring by registered name is not
implemented)), the call fails with badarg.

Making several calls to erlang:monitor/2 for the same item is not an error; it results in
several completely independent monitorings.

monitor node(Node, Flag)

Monitors the status of the node Node. If Flag is true, monitoring is turned on; if Flag is
false, monitoring is turned off. Calls to the BIF are accumulated. This is shown in the
following example, where a process is already monitoring the node Node and a library
function is called:

monitor node(Node, true),
... some operations

monitor node(Node, false),

84 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

After the call, the process is still monitoring the node.

If Node fails or does not exist, the message fnodedown, Nodeg is delivered to the
process. If a process has made two calls to monitor node(Node, true) and Node
terminates, two nodedown messages are delivered to the process. If there is no
connection to Node, there will be an attempt to create one. If this fails, a nodedown
message is delivered.

Returns true.

Failure: badarg if Flag is not true or false, and badarg if Node is not an atom
indicating a remote node, or if the local node is not alive.

node()

Returns the name of the current node. If it is not a networked node but a local Erlang
runtime system, the atom nonode@nohost is returned.

Allowed in guard tests.

node(Arg)

Returns the node where Arg is located. Arg can be a Pid, a reference, or a port.

Allowed in guard tests.

Failure: badarg if Arg is not a Pid, reference, or port.

nodes()

Returns a list of all known nodes in the system, excluding the current node.

now()

Returns the tuple fMegaSecs, Secs, Microsecsg

which is the elapsed time since 00:00 GMT, January 1, 1970 (zero hour) on the
assumption that the underlying OS supports this. Otherwise, some other point in time
is chosen. It is also guaranteed that subsequent calls to this BIF returns continuously
increasing values. Hence, the return value from now() can be used to generate unique
time-stamps. It can only be used to check the local time of day if the time-zone info of
the underlying operating system is properly configured.

open port(PortName, PortSettings)

Returns a port identifier as the result of opening a new Erlang port. A port can be seen
as an external Erlang process. PortName is one of the following:

fspawn, Commandg Starts an external program. Command is the name of the external
program which will be run. Command runs outside the Erlang work space unless an
Erlang driver with the name Command is found. If found, that driver will be started.
A driver runs in the Erlang workspace, which means that it is linked with the
Erlang runtime system.
When starting external programs on Solaris, the system call vfork is used in
preference to fork for performance reasons, although it has a history of being less
robust. If there are problems with using vfork, setting the environment variable
ERL NO VFORK to any value will cause fork to be used instead.

85Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Atom This use of open port() is obsolete and will be removed in a future version of Erlang.
Use the file module instead. The atom is assumed to be the name of an external
resource. A transparent connection is established between Erlang and the resource
named by the atom Atom. The characteristics of the port depend on the type of
resource. If Atom represents a normal file, the entire contents of the file is sent to
the Erlang process as one or more messages. When messages are sent to the port, it
causes data to be written to the file.

ffd, In, Outg Allows an Erlang process to access any currently opened file descriptors
used by Erlang. The file descriptor In can be used for standard input, and the file
descriptor Out for standard output. It is only used for various servers in the Erlang
operating system (shell and user). Hence, its use is very limited.

PortSettings is a list of settings for the port. Valid values are:

fpacket, Ng Messages are preceded by their length, sent in N bytes, with the most
significant byte first. Valid values for N are 1, 2, or 4.

stream Output messages are sent without packet lengths. A user-defined protocol
must be used between the Erlang process and the external object.

fline, Ng Messages are delivered on a per line basis. Each line (delimited by the
OS-dependent newline sequence) is delivered in one single message. The message
data format is fFlag, Lineg, where Flag is either eol or noeol and Line is the
actual data delivered (without the newline sequence).
N specifies the maximum line length in bytes. Lines longer than this will be
delivered in more than one message, with the Flag set to noeol for all but the last
message. If end of file is encountered anywere else than immediately following a
newline sequence, the last line will also be delivered with the Flag set to noeol. In
all other cases, lines are delivered with Flag set to eol.
The fpacket, Ng and fline, Ng settings are mutually exclusive.

fcd, Dirg This is only valid for fspawn, Commandg. The external program starts using
Dir as its working directory. Dir must be a string. Not available on VxWorks.

fenv, Environmentg This is only valid for fspawn, Commandg. The environment of
the started process is extended using the environment specifications in
Environment. Environment should be a list of tuples fName, Valueg, where Name
is the name of an environment variable, and Value is the value it is to have in the
spawned port process. Both Name and Value must be strings. The one exception is
Value being the atom false (in analogy with os:getenv/1), which removes the
environment variable. Not available on VxWorks.

exit status This is only valid for fspawn, Commandg where Command refers to an
external program. When the external process connected to the port exits, a
message of the form fPort, fexit status, Statusgg is sent to the connected
process, where Status is the exit status of the external process. If the program
aborts, on Unix the same convention is used as the shells do (i.e. 128+signal). If
the eof option has been given as well, the eof message and the exit status
message appear in an unspecified order. If the port program closes its stdout
without exiting, the exit status option will not work.

use stdio This is only valid for fspawn, Commandg. It allows the standard input and
output (file descriptors 0 and 1) of the spawned (UNIX) process for
communication with Erlang.

nouse stdio The opposite of the above. Uses file descriptors 3 and 4 for
communication with Erlang.

86 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

stderr to stdout Affects ports to external programs. The executed program gets its
standard error file redirected to its standard output file. stderr to stdout and
nouse stdio are mutually exclusive.

in The port can only be used for input.

out The port can only be used for output.

binary All I/O from the port are binary data objects as opposed to lists of bytes.

eof The port will not be closed at the end of the file and produce an EXIT signal.
Instead, it will remain open and a fPort, eofg message will be sent to the process
holding the port.

The default is stream for all types of port and use stdio for spawned ports.

Failure: badarg if the format of PortName or PortSettings is incorrect. If the port
cannot be opened, the exit reason is the Posix error code which most closely describes
the error, or einval if no Posix code is appropriate. The following Posix error codes
may appear:

enomem There was not enough memory to create the port.

eagain There are no more available operating system processes.

enametoolong The external command given was too long.

emfile There are no more available file descriptors.

enfile A file or port table is full.

During use of a port opened using fspawn, Nameg, errors arising when sending messages
to it are reported to the owning process using exit signals of the form f’EXIT’, Port,
PosixCodeg. Posix codes are listed in the documentation for the file module.

The maximum number of ports that can be open at the same time is 1024 by default,
but can be configured by the environment variable ERL MAX PORTS.

erlang:phash(Term, Range)

Portable hash function that will give the same hash for the same erlang term regardless
of machine architecture and ERTS version (The BIF was introduced in ERTS 4.9.1.1).
Range can be between 1 and 2^32, the function returns a hash value for Term within the
range 1..Range.

This BIF should always be used instead of the old deprecated erlang:hash/2 BIF, as it
calculates better hashes for all datatypes.

pid to list(Pid)

Returns a list which corresponds to the process Pid.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

> pid to list(whereis(init)).
"<0.0.0>"

87Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Failure: badarg if the argument is not a Pid.

port close(Port, Data)

Closes an open port. Roughly the same as Port ! fself(), closeg except for the
error behaviour (see below), and that the port does not reply with fPort, closedg.
Any process may close a port with port close/1, not only the port owner (the
connected process).

Returns: true.

Failure: badarg if Port is not an open port.

For comparision: Port ! fself(), closeg fails with badarg if Port cannot be sent
to (i.e. Port refers neither to a port nor to a process). If Port is a closed port nothing
happens. If Port is an open port and the current process is the port owner the port
replies with fPort, closedg when all buffers have been flushed and the port really
closes, but if the current process is not the port owner the port owner fails with badsig.

Note that any process can close a port using Port ! fPortOwner, closeg just as if it
itself was the port owner, but the reply always goes to the port owner.

In short: port close(Port) has a cleaner and more logical behaviour than Port !
fself(), closeg.

port command(Port, Data)

Sends data to a port. Same as Port ! fself(), fcommand, Datagg except for the
error behaviour (see below). Any process may send data to a port with
port command/2, not only the port owner (the connected process).

Returns: true.

Failure: badarg if Port is not an open port or if Data is not an I/O list. An I/O list is a
binary or a (possibly) deep list of binaries or integers in the range 0 through 255.

For comparision: Port ! fself(), fcommand, Datagg fails with badarg if Port
cannot be sent to (i.e. Port refers neither to a port nor to a process). If Port is a closed
port the data message disappears without a sound. If Port is open and the current
process is not the port owner, the port owner fails with badsig. The port owner fails
withbadsig also if Data is not a legal I/O list.

Note that any process can send to a port using Port ! fPortOwner, fcommand,
Datagg just as if it itself was the port owner.

In short: port command(Port, Data) has a cleaner and more logical behaviour than
Port ! fself(), fcommand, Datagg.

port connect(Port, Pid)

Sets the port owner (the connected port) to Pid. Roughly the same as Port !
fself(), fconnect, Pidgg except for the following:

� The error behavior differs, see below.

� The port does not reply with fPort,connectedg.

� The new port owner gets linked to the port.

88 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

The old port owner stays linked to the port and have to call unlink(Port) if this is not
desired. Any process may set the port owner to be any process with port connect/2.

Returns: true.

Failure: badarg if Port is not an open port or if Pid is not a valid local pid.

For comparision: Port ! fself(), fconnect, Pidgg fails with badarg if Port
cannot be sent to (i.e. Port refers neither to a port nor to a process). If Port is a closed
port nothing happens. If Port is an open port and the current process is the port owner
the port replies with fPort, connectedg to the old port owner. Note that the old port
owner is still linked to the port, and that the new is not. If Port is an open port and the
current process is not the port owner the port owner fails with badsig. The port owner
fails with badsig also if Pid is not a valid local pid.

Note that any process can set the port owner using Port ! fPortOwner, fconnect,
Pidgg just as if it itself was the port owner, but the reply always goes to the port owner.

In short: port connect(Port, Pid) has a cleaner and more logical behaviour than
Port ! fself(), fconnect, Pidgg.

port control(Port, Operation, Data)

Performs a synchronous control operation on a port. The meaning of Operation and
Data depends on the port, i.e. on the port driver. Not all port drivers support this
control feature.

Returns: a list of integers in the range 0 through 255, or a binary, depending on the port
driver. The meaning of the returned data also depends on the port driver.

Failure: badarg if Port is not an open port, if Operation cannot fit in a 32-bit integer, if
the port driver does not support synchronous control operations, if Data is not a valid
I/O list (see port command/2), or if the port driver so decides for any reason (probably
something wrong with Operation or Data).

erlang:port info(Port, Item)

Returns information about the port Port as specified by Item, which can be any one of
the atoms id, connected, links, name, input, or output.

fid, Indexg Index is the internal index of the port. This index may be used to
separate ports.

fconnected, Pidg Pid is the process connected to the port.

flinks, ListOfPidsg ListOfPids is a list of Pids with processes to which the port has
a link.

fname, Stringg String is the command name set by open port.

finput, Bytesg Bytes is the total number of bytes read from the port.

foutput, Bytesg Bytes is the total number of bytes written to the port.

All implementations may not support all of the above Items. Returns undefined if the
port does not exist.

Failure: badarg if Port is not a process identifier, or if Port is a port identifier of a
remote process.

erlang:ports()

89Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Returns a list of all ports on the current node.

erlang:port to list(Port)

Returns a list which corresponds to the port identifier Port.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

> erlang:port to list(open port(fspawn,lsg, [])).
"#Port<0.15>"

Failure: badarg if the argument is not a port.

erlang:pre loaded()

Returns a list of Erlang modules which are pre-loaded in the system. As all loading of
code is done through the file system, the file system must have been loaded previously.
Hence, at least the module init must be pre-loaded.

erlang:process display(Pid, Type)

Writes information about the local process Pid on standard error. The currently
allowed value for the atom Type is backtrace, which shows the contents of the stack,
including information about the call chain, with the most recent data printed last. The
format of the output is not further defined. Pid may be a zombie process.

process flag(Flag, Option)

Sets certain flags for the process which calls this function. Returns the old value of the
flag.

process flag(trap exit, Boolean) When trap exit is set to true, EXIT signals
arriving to a process are converted to f’EXIT’, From, Reasong messages, which
can be received as ordinary messages. If trap exit is set to false, the process exits
if it receives an EXIT signal other than normal and the EXIT signal is propagated
to its linked processes. Application processes should normally not trap exits.

process flag(error handler, Module) This is used by a process to redefine the error
handler for undefined function calls and undefined registered processes.
Inexperienced users should not use this flag since code autoloading is dependent on
the correct operation of the error handling module.

process flag(priority, Level) This sets the process priority. Level is an atom. All
implementations support three priority levels, low, normal, and high. The default
is normal.

90 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

process flag(save calls, N) N must be an integer in the interval [0, 10000]. If N >
0, call saving is made active for the process, which means that information about
the N most recent global function calls, BIF calls, sends and receives made by the
process are saved in a list, which can be retrieved with process info(Pid,
last calls). A global function call is one in which the module of the function is
explicitly mentioned. Only a fixed amount of information is saved: a tuple
fModule, Function, Arityg for function calls, and the mere atoms send,
’receive’ and timeout for sends and receives (’receive’ when a message is
received and timeout when a receive times out). If N = 0, call saving is disabled for
the process. Whenever the size of the call saving list is set, its contents are reset.

Failure: badarg if Flag is not an atom, or is not a recognized flag value, or if Option is
not a recognized term for Flag.

process flag(Pid, Flag, Option)

Sets certain flags for the process Pid, in the same manner as process flag/2. Returns
the old value of the flag. The allowed values for Flag are only a subset of those allowed
in process flag/2, namely: save calls.

Failure: badarg if Pid is not a process on the local node, or if Flag is not an atom, or is
not a recognized flag value, or if Option is not a recognized term for Flag.

process info(Pid)

Returns a long list which contains information about the process Pid. This BIF is only
intended for debugging. It should not be used for any other purpose. The list returned
contains the following tuples. The order in which these tuples are returned is not
defined, nor are all the tuples mandatory.

fcurrent function, fModule, Function, Argumentsgg Module, Function,
Arguments is the current function call of the process.

fdictionary, Dictionaryg Dictionary is the dictionary of the process.

ferror handler, Moduleg Module is the error handler module used by the process
(for undefined function calls, for example).

fgroup leader, Groupleaderg Groupleader is group leader for the I/O of the
process.

fheap size, Sizeg Size is the heap size of the process in heap words.

finitial call, fModule, Function, Aritygg Module, Function, Arity is the
initial function call with which the process was spawned.

flinks, ListOfPidsg ListOfPids is a list of Pids, with processes to which the process
has a link.

fmessage queue len, MessageQueueLeng MessageQueueLen is the number of
messages currently in the message queue of the process. This is the length of the
list MessageQueue returned as the info item messages (see below).

fmessages, MessageQueueg MessageQueue is a list of the messages to the process,
which have not yet been processed.

fpriority, Levelg Level is the current priority level for the process. Only low and
normal are always supported.

freductions, Numberg Number is the number of reductions executed by the process.

91Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

fregistered name, Atomg Atom is the registered name of the process. If the process
has no registered name, this tuple is not present in the list.

fstack size, Sizeg Size is the stack size of the process in stack words.

fstatus, Statusg Status is the status of the process. Status is waiting (waiting for
a message), running, runnable (ready to run, but another process is running),
suspended (suspended on a “busy” port or by the erlang:suspend process/1
BIF), or exiting (if the process has exited, but remains as a zombie).

ftrap exit, Booleang Boolean is true if the process is trapping exits, otherwise it is
false.

Failure: badarg if the argument is not a Pid, or if Pid is a Pid of a remote process.

process info(Pid, Item)

Returns information about the process Pid as specified by Item, in the form fItem,
Infog. Item can be any one of the atoms backtrace, current function, dictionary,
error handler, exit, group leader, heap size, initial call, last calls, links,
memory, message queue len, messages, monitored by, monitors, priority,
reductions, registered name, stack size, status or trap exit.

Returns undefined if no information is known about the process.

process info can be used to obtain information about processes which have exited but
whose data are still kept, so called zombie processes. To determine whether to keep
information about dead processes, use the BIF erlang:system flag/2. Since
process info does not necessarily return undefined for a dead process, use
is process alive/1 to check whether a process is alive.

Item exit returns [] if the process is alive, or fexit, Reasong if the process has exited,
where Reason is the exit reason.

Item registered name returns [] if the process has no registered name. If the process is
a zombie, the registered name it had when it died is returned.

Item memory returns fmemory, Sizeg, where Size is the size of the process in bytes.
This includes stack, heap and internal structures.

Item backtrace returns a binary, which contains the same information as the output
from erlang:process display(Pid, backtrace). Use binary to list/1 to obtain
the string of characters from the binary.

Item last calls returns false if call saving is not active for the process (see
process flag/3 [page 91]). If call saving is active, a list is returned, in which the last
element is the most recent.

Item links returns a list of pids to which the process is linked.

Item monitors returns a list of monitors (started by erlang:monitor/2) that are active
for the process. For a local process monitor or a remote process monitor by pid, the list
item is fprocess, Pidg, and for a remote process monitor by name the list item is
fprocess, fName, Nodegg.

Item monitored by returns a list of pids that are monitoring the process (with
erlang:monitor/2).

Not all implementations support every one of the above Items.

Failure: badarg if Pid is not a process identifier, or if Pid is a process identifier of a
remote process.

92 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

processes()

Returns a list of all processes on the current node, including zombie processes. See
system flag/2 [page 99].

> processes().
[<0.0.1>, <0.1.1>, <0.2.1>, <0.3.1>, <0.4.1>, <0.6.1>]

erlang:purge module(Module)

Removes old code for Module. Before this BIF is used, erlang:check process code/2
should be called to check that no processes are executing old code in this module.

Warning:
In normal Erlang implementations, code handling - which is loading, deleting and
replacing modules - is evaluated by the module code. This BIF is intended to be used
by the implementation of the module code and should not be used in any other place.

This is an optional BIF.

Failure: badarg if Module does not exist.

put(Key, Value)

Adds a new Value to the process dictionary and associates it with Key. If a value is
already associated with Key, that value is deleted and replaced by the new value Value.
It returns any value previously associated with Key, or undefined if no value was
associated with Key. Key and Value can be any valid Erlang terms.

Note:
The values stored when put is evaluated within the scope of a catch will not be
retracted if a throw is evaluated, or if an error occurs.

> X = put(name, walrus), Y = put(name, carpenter),
Z = get(name),
fX, Y, Zg.

fundefined, walrus, carpenterg

erlang:read timer(Ref)

returns timer(Ref) returns the number of milliseconds remaining for a timer, where
Ref was returned by either send after/3 or start timer/3. If the timer was active,
read timer/1 returns the time in milliseconds left until the timer will expire, otherwise
false (which may mean that Ref was never a timer, or that it has been cancelled, or
that it has already delivered its message).

Failure: badarg if Ref is not a reference.

erlang:ref to list(Ref)

93Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Returns a list which corresponds to the reference Ref.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

> erlang:ref to list(make ref()).
"#Ref<0.0.0.134>"

Failure: badarg if the argument is not a reference.

register(Name, Pid)

Associates the name Name with the process identity Pid. Name, which must be an atom,
can be used instead of a pid in the send operator (Name ! Message).

Returns true.

Failure: badarg if Pid is not an active process, or if Pid is a process on another node, or
if the name Name is already in use, or if the process is already registered (it already has a
name), or if the name Name is not an atom, or if Name is the atom undefined.

registered()

Returns a list of names which have been registered using register/2.

> registered().
[code server, file server, init, user, my db]

erlang:resume process(Pid)

Resume a suspended process. This should be used for debugging purposes only, not in
production code.

round(Number)

Returns an integer by rounding the number Number. Allowed in guard tests.

> round(5.5).
6

Failure: badarg if the argument is not a float (or an integer).

self()

Returns the process identity of the calling process. Allowed in guard tests.

> self().
<0.16.1>

erlang:send after(Time, Pid, Msg)

94 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

Time is a non-negative integer, Pid is either a pid or an atom, and Msg is any Erlang
term. The function returns a reference.

After Time ms, send after/3 sends Msg to Pid.

If Pid is an atom, it is supposed to be the name of a registered process. The process
referred to by the name is looked up at the time of delivery. No error is given if the
name does not refer to a process. See also start timer/3 and cancel timer/1.

Limitations: Pid must be a process on the local node. The timeout value must fit in 32
bits.

Failure: badarg if any arguments are of the wrong type, or do not obey the limitations
noted above.

erlang:set cookie(Node, Cookie)

Sets the “magic cookie” of Node to the atom Cookie. If Node is the current node, the BIF
also sets the cookie of all other unknown nodes to Cookie (see auth(3)).

setelement(Index, Tuple, Value)

Returns a tuple which is a copy of the argument Tuple with the element given by the
integer argument Index (the first element is the element with index 1) replaced by the
argument Value.

> setelement(2, f10, green, bottlesg, red).
f10, red, bottlesg

Failure: badarg if Index is not an integer, or Tuple is not a tuple, or if Index is less than
1 or greater than the size of Tuple.

size(Item)

Returns an integer which is the size of the argument Item, where Item must be either a
tuple or a binary.

> size(fmorni, mulle, bwangeg).
3

Allowed in guard tests.

Failure: badarg if Item is not a tuple or a binary.

spawn(Fun)

Returns the Pid of a new process started by the application of Fun to the empty
argument list []. Otherwise works like spawn/3.

spawn(Node, Fun)

Returns the Pid of a new process started by the application of Fun to the empty
argument list [] on node Node. Otherwise works like spawn/4.

spawn(Module, Function, ArgumentList)

95Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Returns the Pid of a new process started by the application of Module:Function to
ArgumentList. Note: The new process created will be placed in the system scheduler
queue and will be run some time later.

error handler:undefined function(Module, Function, ArgumentList) is
evaluated by the new process if Module:Function/Arity does not exist (where Arity is
the length of ArgumentList). The error handler can be redefined (see BIF
process flag/2)). Arity is the length of the ArgumentList. If error handler is
undefined, or the user has redefined the default error handler so its replacement is
undefined, a failure with the reason undef will occur.

> spawn(speed, regulator, [high speed, thin cut]).
<0.13.1>

Failure: badarg if Module and/or Function is not an atom, or if ArgumentList is not a
list.

spawn(Node, Module, Function, ArgumentList)

Works like spawn/3, with the exception that the process is spawned at Node. If Node
does not exist, a useless Pid is returned.

Failure: badarg if Node, Module, or Function are not atoms, or ArgumentList is not a
list.

spawn link(Fun)

Works like spawn/1 except that a link is made from the current process to the newly
created one, atomically.

spawn link(Node, Fun)

Works like spawn/2 except that a link is made from the current process to the newly
created one, atomically.

spawn link(Module, Function, ArgumentList)

This BIF is identical to the following code being evaluated in an atomic operation:

> Pid = spawn(Module, Function, ArgumentList),
link(Pid),
Pid.

This BIF is necessary since the process created might run immediately and fail before
link/1 is called.

Failure: See spawn/3.

spawn link(Node, Module, Function, ArgumentList)

Works like spawn link/3, except that the process is spawned at Node. If an attempt is
made to spawn a process on a node which does not exist, a useless Pid is returned, and
an EXIT signal will be received.

spawn opt(Module, Function, ArgumentList, Options)

96 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

Works exactly like spawn/3, except that an extra option list can be given when creating
the process.

Warning:
This BIF is only useful for performance tuning. Random tweaking of the parameters
without measuring execution times and memory consumption may actually make
things worse. Furthermore, most of the options are inherently
implementation-dependent, and they can be changed or removed in future versions
of OTP.

link Sets a link to the parent process (like spawn link/3 does).

fpriority, Levelg Sets the priority of the new process. Equivalent to executing
process flag(priority, Level) in the start function of the new process, except
that the priority will be set before the process is scheduled in the first time.

ffullsweep after, Numberg The Erlang runtime system uses a generational garbage
collection scheme, using an “old heap” for data that has survived at least one
garbage collection. When there is no more room on the old heap, a fullsweep
garbage collection will be done.
Using the fullsweep after option, you can specify the maximum number of
generational collections before forcing a fullsweep even if there is still room on the
old heap. Setting the number to zero effectively disables the general collection
algorithm, meaning that all live data is copied at every garbage collection.
Here are a few cases when it could be useful to change fullsweep after. Firstly,
if you want binaries that are no longer used to be thrown away as soon as possible.
(Set Number to zero.) Secondly, a process that mostly have short-lived data will be
fullsweeped seldom or never, meaning that the old heap will contain mostly
garbage. To ensure a fullsweep once in a while, set Number to a suitable value such
as 10 or 20. Thirdly, in embedded systems with limited amount of RAM and no
virtual memory, you might want to preserve memory by setting Number to zero.
(You probably want to the set the value globally. See system flag/2 [page 99].)

fmin heap size, Sizeg Gives a minimum heap size in words. Setting this value
higher than the system default might speed up some processes because less garbage
collection is done. Setting too high value, however, might waste memory and slow
down the system due to worse data locality. Therefore, it is recommended to use
this option only for fine-tuning an application and to measure the execution time
with various Size values.

split binary(Binary, Pos)

Returns a tuple which contains two binaries which are the result of splitting Binary into
two parts at position Pos. This is not a destructive operation. After this operation, there
are three binaries altogether. Returns a tuple consisting of the two new binaries. For
example:

1> B = list to binary("0123456789").
#Bin
2> size(B).
10
3> fB1, B2g = split binary(B,3).
f#Bin, #Bing

97Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

4> size(B1).
3
5> size(B2).
7

Failure: badarg if Binary is not a binary, or Pos is not an integer or is out of range.

erlang:start timer(Time, Pid, Msg)

Time is a non-negative integer, Pid is either a pid or an atom, and Msg is any Erlang
term. The function returns a reference.

After Time ms, start timer/3 sends the tuple ftimeout, Ref, Msgg to Pid, where
Ref is the reference returned by start timer/3.

If Pid is an atom, it is supposed to be the name of a registered process. The process
referred to by the name is looked up at the time of delivery. No error is given if the
name does not refer to a process. See also send after/3 and cancel timer/1.

Limitations: Pid must be a process on the local node. The timeout value must fit in 32
bits.

Failure: badarg if any arguments are of the wrong type, or do not obey the limitations
noted above.

statistics(Type)

Returns information about the system. Type is an atom which is one of:

run queue Returns the length of the run queue, that is the number of processes that
are ready to run.

runtime Returns fTotal Run Time, Time Since Last Callg.

wall clock Returns fTotal Wallclock Time, Wallclock Time Since Last Callg.
wall clock can be used in the same manner as the atom runtime, except that real
time is measured as opposed to runtime or CPU time.

reductions Returns fTotal Reductions, Reductions Since Last Callg.

garbage collection Returns fNumber of GCs, Words Reclaimed, 0g. This
information may not be valid for all implementations.

All times are in milliseconds.

> statistics(runtime).
f1690, 1620g
> statistics(reductions).
f2046, 11g
> statistics(garbage collection).
f85, 23961, 0g

Failure: badarg if Type is not one of the atoms shown above.

erlang:suspend process(Pid)

Suspend a process. This should be used for debugging purposes only, not in production
code.

erlang:system flag(Flag, Value)

98 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

This BIF sets various system properties of the Erlang node. If Flag is a valid name of a
system flag, its value is set to Value, and the old value is returned.

The following values for Flag are currently allowed: keep zombies, fullsweep after,
and backtrace depth.

The value of the keep zombies flag is an integer which indicates how many processes to
keep in memory when they exit, so that they can be inspected with process info.
Originally, the number is 0. Setting it to 0 disables the keeping of zombies. A negative
number -N means to keep the N latest zombies; a positive value N means to keep the N
first zombies. Setting the flag always clears away any already saved zombies. The
maximum number of zombies which can be saved is 100. Resources owned by a
zombie process are cleared away immediately when the process dies, for example ets
tables and ports, and cannot be inspected.

The value of the fullsweep after is an non-negative integer which indicates how
many times generational garbages collections can be done without forcing a fullsweep
collection. The value applies to new processes; processes already running are not
affected.

In low-memory systems (especially without virtual memory), setting the value to zero
can help to conserve memory.

An alternative way to set this value is through the (operating system) environment
variable ERL FULLSWEEP AFTER.

erlang:system info(What)

What can be any of the atoms info, procs, loaded, dist, thread pool size or
allocated areas. The BIF returns information of the different ‘topics’ as binary data
objects (except for thread pool size and allocated areas, see below).

erlang:system info(thread pool size) Returns the number of threads used for
driver calls (as an integer).

erlang:system info(allocated areas) Returns a list of tuples. Each tuple contains
an atom describing the type of memory as first element and the amount of
allocated memory in bytes as second element. In those cases when the system
pre-allocate memory, a third element is present. This third element contains the
amount of used memory in bytes.
A lot of these values are shown by the (i)nfo alternative under the BREAK menu.
The BREAK menu can be reached by typing Control C in the Erlang shell.
Observe that this is not a complete list of memory allocated by the system!

Failure: badarg if What is not one of the atoms shown above.

term to binary(Term)

This BIF returns the encoded value of any Erlang term and turns it into the Erlang
external term format. It can be used for a variety of purposes, for example writing a
term to a file in an efficient way, or sending an Erlang term to some type of
communications channel not supported by distributed Erlang.

Returns a binary data object which corresponds to an external representation of the
Erlang term Term.

term to binary(Term, Options)

99Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

This BIF returns the encoded value of any Erlang term and turns it into the Erlang
external term format. If the Options list contains the atom compressed, the external
term format will be compressed. The compressed format is automatically recognised by
binary to term/1 in R7.

Returns a binary data object which corresponds to an external representation of the
Erlang term Term.

Failure: badarg if Options is not a list or if contains something else than the supported
flags (currently only the atom compressed).

throw(Any)

A non-local return from a function. If evaluated within a catch, catch will return the
value Any.

> catch throw(fhello, thereg).
fhello, thereg

Failure: nocatch if not evaluated within a catch.

time()

Returns the tuple fHour, Minute, Secondg of the current system time. The time zone
correction is implementation-dependent.

> time().
f9, 42, 44g

tl(List)

Returns List stripped of its first element.

> tl([geesties, guilies, beasties]).
[guilies, beasties]

Failure: badarg if List is the empty list [], or is not a list. Allowed in guard tests.

erlang:trace(PidSpec, How, Flaglist)

Turns on (if How == true) or off (if How == false) the trace flags in Flaglist for the
process or processes represented by PidSpec. PidSpec is either a pid for a local process,
or one of the following atoms:

existing All processes currently existing.

new All processes that will be created in the future.

all All currently existing processes and all processes that will be created in the future.

Flaglist can contain any number of the following atoms (the “message tags” refers to
the list of message following below):

send Traces the messages the process Pid sends. Message tags: send,
send to non existing process.

’receive’ Traces the messages the process Pid receives. Message tags: ’receive’.

procs Traces process related events, for example spawn, link, exit. Message tags:
spawn, exit, link, unlink, getting linked.

100 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

call Traces function calls to functions that tracing has been enabled for. Use the
erlang:trace pattern/3 [page 103] BIF to enable tracing for functions. Message
tags: call, return from.

return to Traces the actual return of a process from a traced function back to its
caller. This return trace only works together with call trace and functions traced
with the local option to erlang:trace pattern/3 [page 103] . The semantics is that
a message is sent when a call traced function actually returns, i.e. when a chain of
tail recursive calls is ended. There will be only one trace message sent per chain of
tail recursive calls, why the properties of tail recursiveness for function calls are
kept while tracing with this flag. Using call and return to trace together makes
it possible to know exactly in which function a process executes at any time.
To get trace messages containing return values from functions, use the
freturn traceg match spec action instead.
Message tags: return to.

running Traces scheduling of processes. Message tags: in, out.
garbage collection Traces garbage collections of processes. Message tags: gc start,

gc end.
timestamp Make a time stamp in all trace messages. The time stamp (Ts) is of the

same form as returned by erlang:now().
arity Instead of fMod, Fun, Argsg in call traces, there will be fMod, Fun, Arityg.
set on spawn Makes any process created by Pid inherit the flags of Pid, including the

set on spawn flag.
set on first spawn Makes the first process created by Pid inherit the flags of Pid

That process does not inherit the set on first spawn flag.
set on link Makes any process linked by Pid inherit the flags of Pid, including the

set on link flag.
set on first link Makes the first process linked to by Pid inherit the flags of Pid.

That process does not inherit the set on first link flag.
ftracer, Tracerg Tracer should be the pid for a local process or the port identifier for

a local port. All trace messages will be sent to the given process or port. If this flag
is not given, trace messages will be sent to the process that called erlang:trace/3.

The effect of combining set on first link with set on link is the same as having
set on first link alone. Likewise for set on spawn and set on first spawn.

If the timestamp flag is not given, the tracing process will receive the trace messages
described below. If the timestamp flag is given, the first element of the tuple will be
trace ts and the timestamp will be in the last element of the tuple.

ftrace, Pid, ’receive’, Messageg When the traced Pid receives something.
ftrace, Pid, send, Msg, Tog When Pid sends a message.
ftrace, Pid, send to non existing process, Msg, Tog When Pid sends a

message to a non existing process.
ftrace, Pid, call, fM,F,Agg When Pid makes a function/BIF call. The return

values of calls are never supplied, only the call and its arguments.
ftrace, Pid, return to, fM,F,Agg When Pid returns to function fM,F,Ag. This

message will be sent if both the call and the return to flags are present and the
function is set to be traced on local function calls. The message is only sent when
returning from a chain of tail recursive function calls where at least one call
generated a call trace message (i.e. the functions match specification matched
and fmessage,falseg was not an action).

101Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

ftrace, Pid, return from, fM,F,Ag, ReturnValueg When Pid returns from the
function fM,F,Ag This trace message is sent when the call flag has been specified,
and the function has a match specification with a return trace action.

ftrace, Pid, spawn, Pid2g When Pid spawns a new process Pid2.

ftrace, Pid, exit, Reasong When Pid exits with reason Reason.

ftrace, Pid, link, Pid2g When Pid links to a process Pid2.

ftrace, Pid, unlink, Pid2g When Pid removes the link from a process Pid2.

ftrace, Pid, getting linked, Pid2g When Pid gets linked to a process Pid2.

ftrace, Pid, in, fM,F,Agg When Pid is scheduled to run. The process will run in
function fM,F,Ag, where A is always the arity.

ftrace, Pid, out, fM,F,Agg When Pid is scheduled out. The process was running in
function fM,F,Ag where A is always the arity.

ftrace, Pid, gc start, Infog Sent when garbage collection is about to be started.
Info is a list of two-element tuples, where the first element is a key, and the
second is the value. You should not depend on the tuples have any defined order
Currently, the following keys are defined.

heap size The size of the used part of the heap.
old heap size The size of the used part of the old heap.
stack size The actual size of the stack.
recent size The size of the data that survived the previous garbage collection.
mbuf size The combined size of message buffers associated with the process.

All sizes are in words.

ftrace, Pid, gc end, Infog Sent when garbage collection is finished. Info contains
the same kind of list as in the gc start message, but the sizes reflect the new sizes
after garbage collection.

If the tracing process dies, the flags will be silently removed.

Only one process can trace a particular process. For this reason, attempts to trace an
already traced process will fail.

Returns: A number indicating the number of processes that matched PidSpec. If
PidSped is a pid, the return value will be 1. If PidSpec is all or existing the return
value will be the number of processes running, excluding tracer processes. If PidSpec is
new, the return value will be 0.

Failure: badarg if bad arguments are given.

erlang:trace info(PidOrFunc, Item)

Returns trace information about a process or exported function.

To get information about a process, PidOrFunc should be a pid or the atom new. The
atom new means that the default trace state for processes to be created will be returned.
Item must have one of the following values:

flags Return a list of atoms indicating what kind of traces is enabled for the process.
The list will be empty if no traces are enabled, and one or more of the followings
atoms if traces are enabled: send, ’receive’, set on spawn, call, return to,
procs, set on first spawn, set on link, running, garbage collection,
timestamp, and arity. The order is arbitrary.

102 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

tracer Return the identifier for process or port tracing this process. If this process is
not being traced, the return value will be [].

To get information about an exported function, PidOrFunc should be a three-element
tuple: fModule, Function, Arityg or the atom on load. No wildcards are allowed.
Item must have one of the following values:

traced Return global if this function is traced on global function calls, local if this
function is traced on local function calls (i.e local and global function calls) and
false if this function is not traced at all.

match spec Return the match specification for this function, if it has one. If the
function is not traced, the returned value is false and if the function is traced but
has no match specification defined, the returned value is [].

The actual return value will be fItem, Valueg, where Value is the requested
information as described above. If a pid for a dead process was given, or the name of a
non-existing function, Value will be undefined.

If PidOrFunc is the on load, the information returned refers to the default value for
code that will be loaded.

erlang:trace pattern(MFA, MatchSpec)

The same as erlang:trace pattern(MFA, MatchSpec, []), retained for backward
compatibility.

erlang:trace pattern(MFA, MatchSpec, FlagList)

This BIF is used to enable or disable call tracing for exported functions. It must be
combined with erlang:trace/3 [page 100] to set the call trace flag for one or more
processes.

Conceptually, call tracing works like this: Inside the Erlang virtual machine there is a set
of processes to be traced and a set of functions to be traced. Tracing will be enabled on
the intersection of the set. That is, if a process included in the traced process set calls a
function included in the traced function set, the trace action will be taken. Otherwise,
nothing will happen.

Use erlang:trace/3 [page 100] to add or remove one or more processes to the set of
traced processes. Use erlang:trace pattern/2 to add or remove exported functions
to the set of traced functions.

The erlang:trace pattern/3 BIF can also add match specifications to an exported
function. A match spefication comprises a pattern that the arguments to the function
must match, a guard expression which must evaluate to true and action to be
performed. The default action is to send a trace message. If the pattern does not match
or the guard fails, the action will not be executed.

The MFA argument should be a tuple like fModule, Function, Arityg or the atom
on load (described below). It can be the module, function, and arity for an exported
function (or a BIF in any module). The ’ ’ atom can be used to mean any of that kind.
Wildcards can be used in any of the following ways:

fMod,Func,’ ’g All exported functions of any arity named Func in module Mod.

fMod,’ ’,’ ’g All exported functions in module Mod.

f’ ’,’ ’,’ ’g All exported functions in all loaded modules.

103Kernel Application (KERNEL)

erlang (Module) Kernel Reference Manual

Other combinations, such as fMod,’ ’,Arityg, are not allowed. Local functions will
match wildcards only if the local option is in the FlagList.

If the MFA argument is the atom on load, the match specification and flag list will be
used on all modules that are newly loaded.

The MatchSpec argument can take any of the following forms:

false Disable tracing for the matching function(s). Any match specification will be
removed.

true Enable tracing for the matching function(s).

MatchSpecList A list of match specifications. An empty list is equvivalent to true.
See the ERTS User’s Guide for a description of match specifications.

The FlagList parameter is a list of options. The following options are allowed:

global Turn on or off call tracing for global function calls (i.e. calls specifying the
module explicitly). Only exported functions will match and only global calls will
generate trace messages. This is the default.

local Turn on of off call tracing for all types of function calls. Trace messages will be
sent whenever any of the specified functions are called, regardless of how it is
called. If the return to flag is set for the process, a return to message will also be
sent when this function returns to its caller.

The options are mutually exclusive and global is the default (if no options are
specified). A function can be either globally or locally traced. If global trace is specified
for a specified set of functions, local trace for the matching set of local functions will be
disabled, and vice versa.

When disabling trace, the option must match the type of trace that is set on the
function, so that local tracing must be disabled with the local option and global tracing
with the global option (or no option at all).

There is no way to directly change part of a match specification list. If a function has a
match specification, you can replace it with a completely new one. If you need to
change an existing match specification, use the erlang:trace info/2 [page 102] BIF to
retrieve the existing match specification.

Returns the number of exported functions that matched the MFA argument. This will be
zero if none matched at all.

Failure: badarg for invalid MFA or MatchSpec.

trunc(Number)

Returns an integer by the truncation of Number. Allowed in guard tests.

> trunc(5.5).
5

Failure: badarg if the argument is not a float, or an integer.

tuple to list(Tuple)

Returns a list which corresponds to Tuple. Tuple may contain any valid Erlang terms.

> tuple to list(fshare, f’Ericsson B’, 163gg).
[share, f’Ericsson B’, 163g]

104 Kernel Application (KERNEL)

Kernel Reference Manual erlang (Module)

Failure: badarg if the argument is not a tuple.

erlang:universaltime()

Returns the current date and time according to Universal Time Coordinated (UTC),
also called GMT, in the form ffYear, Month, Dayg, fHour, Minute, Secondgg if
supported by the underlying operating system. If not, erlang:universaltime() is
equivalent to erlang:localtime().

> erlang:universaltime().
ff1996,11,6g,f14,18,43gg

erlang:universaltime to localtime(DateTime)

Converts UTC date and time in DateTime to local date and time if supported by the
underlying operating system. Otherwise, no conversion is done, and DateTime is
returned. The return value is of the form ffYear, Month, Dayg, fHour, Minute,
Secondgg.

Failure: badarg if the argument is not a valid date and time tuple ffYear, Month,
Dayg, fHour, Minute, Secondgg.

> erlang:universaltime to localtime(ff1996,11,6g,f14,18,43gg).
ff1996,11,7g,f15,18,43gg

unlink(Pid)

Removes a link, if there is one, from the calling process to another process given by the
argument Pid.

Returns true. Will not fail if not linked to Pid, or if Pid does not exist.

Failure: badarg if the argument is not a valid Pid.

unregister(Name)

Removes the registered name for a process, given by the atom argument Name.

Returns the atom true.

> unregister(db).
true

Failure: badarg if Name is not the name of a registered process.

Users are advised not to unregister system processes.

whereis(Name)

Returns the Pid for the process registered under Name (see register/2). Returns
undefined if no such process is registered.

> whereis(user).
<0.3.1>

Failure: badarg if the argument is not an atom.

yield()

Voluntarily let other processes (if any) get a chance to execute. Using yield() is similar
to receive after 1 -> ok end, except that yield() is faster.

105Kernel Application (KERNEL)

error handler (Module) Kernel Reference Manual

error handler (Module)

The error handler module defines what happens when certain types of errors occur.

Exports

undefined function(Module, Func, ArgList) -> term()

Types:

� Module = Func = atom()
� ArgList = [term()]

This function is evaluated if a call is made to Module:Func(ArgList)which is
undefined. This function is evaluated inside the process making the original call.

If Module is interpreted, the interpreter is invoked and the return value of the
interpreted Func(ArgList) call is returned.

Otherwise, it returns, if possible, the value of apply(Module, Func, ArgList) after an
attempt has been made to autoload Module. If this is not possible, the function calling
Module:Func(ArgList) is exited.

undefined lambda(Module, Fun, ArgList) -> term()

Types:

� Module = Func = atom()
� ArgList = [term()]

This function is evaluated if a call is made to Fun(ArgList) when the module defining
the fun is not loaded. This function is evaluated inside the process making the original
call.

If Module is interpreted, the interpreter is invoked and the return value of the
interpreted Fun(ArgList) call is returned.

Otherwise, it returns, if possible, the value of apply(Fun, ArgList) after an attempt
has been made to autoload Module. If this is not possible, the process calling the fun is
exited.

106 Kernel Application (KERNEL)

Kernel Reference Manual error handler (Module)

Notes

The code in error handler is complex and should not be changed without fully
understanding the interaction between the error handler, the init process of the code
server, and the I/O mechanism of the code.

Changes in the code which may seem small can cause a deadlock as unforeseen
consequences may occur. The use of input is dangerous in this type of code.

107Kernel Application (KERNEL)

error logger (Module) Kernel Reference Manual

error logger (Module)

The error logger is an event manager behaviour which runs with the registered name
error logger (see more about event managers/handlers in the Design Principles
chapter and in gen event(3)). All error messages from the Erlang runtime system are
sent to this process as messages with the format femulator, Gleader, Strg, where
Str is a string which describes the error in plain English. The Gleader argument is the
group leader process of the process causing the error. This is useful in a distributed
setting as all error messages can be returned to the error logger process on the
originating node.

All errors detected by the standard libraries are reported with the error logger
functions. Errors detected in application modules should also be reported through the
error logger in order to get uniform reports.

Associated event handlers can be used to add private types of reports to the
error logger. An event handler which recognizes the specialized report type is first
added to the error logger (add report handler/1,2)

The standard configuration of the error logger supports the logging of errors to the
tty, or to a specified file. There is also a multi-file logger which logs all events, not
only the standard error events, to several files. (see log mf h(3)).

All error events are tagged with the group leader Gleader in order to send the error to
the originating node.

Exports

start() -> fok, Pidg | ferror, Whatg

start link() -> fok, Pidg | ferror, Whatg

Types:

� Pid = pid()
� What = falready started, Pidg | term()

Starts the error logger. The start link function should be used when the
error logger is supervised

error report(Report) -> ok

Types:

� Report = [fTag, Datag] | [term()] | string() | term()
� Tag = term()
� Data = term()

108 Kernel Application (KERNEL)

Kernel Reference Manual error logger (Module)

Sends a standard error report event to the error logger. This report event is handled by
the standard event handler. The report is formatted as follows:

Tag1: Data1
Tag2: Data2
Term1
Term2

If Report is a string(), the string is written.

The report is written with an error heading.

error report(Type,Report) -> ok

Types:

� Type = term()
� Report = [fTag, Datag] | [term()] | string() | term()
� Tag = term()
� Data = term()

Sends a user defined error report type event to the error logger. If specialized error
handling is required, an event handler recognizing this Type of report must first be
added to the error logger.

It is recommended that the Report follows the same structure as error report/1
above.

info report(Report) -> ok

Types:

� Report = [fTag, Datag] | [term()] | string() | term()
� Tag = term()
� Data = term()

Sends an information report to the error logger. This report event is handled by the
standard event handler. The report is formatted as follows:

Tag1: Data1
Tag2: Data2
Term1
Term2

If Report is a string(), the string is written.

The report is written with an information heading.

info report(Type,Report) -> ok

Types:

� Type = term()
� Report = [fTag, Datag] | [term()] | string() | term()
� Tag = term()
� Data = term()

109Kernel Application (KERNEL)

error logger (Module) Kernel Reference Manual

Sends a user defined information report type event to the error logger. If specialized
error handling is required, an event handler recognizing this Type of report must first be
added to the error logger.

It is recommended that the Report follows the same structure as info report/1 above.

error msg(Format) -> ok

error msg(Format,Args) -> ok

format(Format,Args) -> ok

Types:

� Format = string()
� Args = [term()]

Sends an error event to the error logger. The Format and Args arguments are the same
as the arguments of io:format/2. These events are handled by the standard event
handler.

info msg(Format) -> ok

info msg(Format,Args) -> ok

Types:

� Format = string()
� Args = [term()]

Sends an information event to the error logger. The Format and Args arguments are the
same as the arguments of io:format/2. These events are handled by the standard event
handler.

tty(Flag) -> ok

Types:

� Flag = true | false

Enables or disables error printouts to the tty. If Flag is false, all text that the error
logger would have sent to the terminal is discarded. If Flag is true, error messages are
sent to the terminal screen.

logfile(Request) -> ok | FileName | ferror, Whatg

Types:

� Request = fopen, FileNameg | close | filename
� FileName = atom() | string()
� What = term()

This function makes it possible to append a copy of all standard error printouts to a file.
It can be used in combination with the tty(false) function in to have a silent system,
where all errors are logged to a file.

Request can be:

� fopen, Filenameg. Opens the file Filename to store a copy of all error messages.
Returns ok, or ferror, Whatg.

� close. Closes the current log file. Returns ok, or ferror, Whatg.

110 Kernel Application (KERNEL)

Kernel Reference Manual error logger (Module)

� filename. Returns ferror, Whatg or FileName, where FileName is the name of
the open log file.

There can only be one active log file.

add report handler(Module) -> ok | Other

add report handler(Module,Args) -> ok | Other

Types:

� Module = atom()
� Args = term()
� Other = term()

Adds a new event handler to the error logger. The event handler is initialized by a call
to the Module:init/1 function. This function must return fok, Stateg. If anything else
(Other) is returned, the handler is not added.

The report (event) handler will be called for every error event that the error logger
receives (Module:handle event/2). Errors dedicated to this handler should be handled
accordingly.

delete report handler(Module) -> Return | ferror, Whatg

Types:

� Module = atom()
� Return = term()
� What = term()

Deletes an error report (event) handler. The Module:terminate/2 function is called in
order to finalize the event handler. The return value of the terminate/2 function is
Return.

swap handler(ToHandler) -> ok

Types:

� ToHandler = tty | flogfile, Fileg
� File = atom() | string()

The error logger event manager is initially started with a primitive event handler
which buffers and prints the raw error events. However, this function does install the
standard event handler to be used according to the system configuration.

111Kernel Application (KERNEL)

error logger (Module) Kernel Reference Manual

Events

The error logger event manager forwards the following events to all added event
handlers. In the events that follow, Gleader is the group leader process identity of the
error reporting process, and EPid is the process identity of the error logger. All other
variables are described with the function in which they appear.

ferror report, Gleader, fEpid, std error, Reportgg This event is generated
when the error report/1 function is called.

ferror report, Gleader, fEpid, Type, Reportgg This event is generated when
the error report/2 function is called.

finfo report, Gleader, fEpid, std info, Reportgg This event is generated when
the info report/1 function is called.

finfo report, Gleader, fEpid, Type, Reportgg This event is generated when the
info report/2 function is called.

ferror, Gleader, fEPid, Format, Argsgg This event is generated when the
error msg or format functions are called.

finfo msg, Gleader, fEPid, Format, Argsgg This event is generated when the
info msg functions are called.

finfo, Gleader, fEPid, term(), []gg This structure is only used by the init
process for erroneously received messages.

femulator, Gleader, string()g This event is generated by the runtime system. If
the error was not issued by a special process, Gleader is noproc. This event should
be handled in the handle info/2 function of the event handler.

Note:
All events issued by a process which has the group leader Gleader process located on
another node will be passed to this node by the error logger.

See Also

gen event(3), log mf h(3)

112 Kernel Application (KERNEL)

Kernel Reference Manual file (Module)

file (Module)

The module file provides an interface to the file system.

Most functions have a name argument such as a file name or directory name, which is
either an atom, a string, or a deep list of characters and atoms. A path is a list of
directory names. If the functions are successful, they return ok, or fok, Valueg.

If an error occurs, the return value has the format ferror, Reasong. Reason is an atom
which is named from the Posix error codes used in Unix, and in the runtime libraries of
most C compilers. In the following descriptions of functions, the most typical error
codes are listed. By matching the error code, applications can use this information for
error recovery. To produce a readable error string, use format error/1.

Exports

change group(Filename, Gid)

Change group of a file. See write file info/2.

change owner(Filename, Uid)

Change owner of a file. See write file info/2.

change owner(Filename, Uid, Gid)

Change owner and group of a file. See write file info/2.

change time(Filename, Mtime)

Change the modification and access times of a file. See write file info/2.

change time(Filename, Mtime, Atime)

Change the modification and access times of a file. See write file info/2.

close(IoDevice)

Closes the file referenced by IoDevice. It returns ok.

consult(Filename)

Opens file Filename and reads all the Erlang terms in it. Returns one of the following:

fok, TermListg The file was successfully read.

113Kernel Application (KERNEL)

file (Module) Kernel Reference Manual

ferror, Atomg An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang terms
in the file. Use the format error/1 function to convert the three-element tuple to
an English description of the error.

del dir(DirName)

Tries to delete the directory DirName. The directory must be empty before it can be
deleted. Returns ok if successful.

Typical error reasons are:

eacces Missing search or write permissions for the parent directories of DirName.

eexist The directory is not empty.

enoent The directory does not exist.

enotdir A component of DirName is not a directory. On some platforms, enoent is
returned instead.

einval Attempt to delete the current directory. On some platforms, eacces is
returned instead.

delete(Filename)

Tries to delete the file Filename. Returns ok if successful.

Typical error reasons are:

enoent The file does not exist.

eacces Missing permission for the file or one of its parents.

eperm The file is a directory and the user is not super-user.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

eval(Filename)

Opens the file Filename and evaluates all the expression sequences in it. It returns one
of the following:

ok The file was read and evaluated. The actual result of the evaluation is not returned;
any expression sequence in the file must be there for its side effect.

ferror, Atomg An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang terms
in the file. Use the format error/1 function to convert the three-element tuple to
an English description of the error.

file info(Filename)

114 Kernel Application (KERNEL)

Kernel Reference Manual file (Module)

Note:
This function is obsolete. Use read file info instead.

Retrieves information about a file. Returns fok, FileInfog if successful, otherwise
ferror, Reasong. FileInfo is a tuple with the following fields:

{Size,Type,Access,AccessTime,ModifyTime,UnUsed1,UnUsed2}

Size The size of the file in bytes.

Type The type of file which is device, directory, regular, or other.

Access The current system access to the file, which is one of the atoms read, write,
read write, or none.

AccessTime The last time the file was read, shown in the format fYear, Month, Day,
Hour, Minute, Secondg.

ModifyTime The last time the file was written, shown in the format fYear, Month,
Day, Hour, Minute, Secondg.

UnUsed1, UnUsed2 These fields are not used, but reserved for future expansion. They
probably contain unused.

Typical error reasons: Same as for read file info/1.

format error(ErrorDescriptor)

Given the error reason returned by any function in this module, it returns a descriptive
string of the error in English.

get cwd()

Returns fok, CurDirg, where CurDir (a string) is the current working directory of the
file server.

Note:
In rare circumstances, this function can fail on Unix. It may happen if read
permission does not exist for the parent directories of the current directory.

Typical error reasons are:

eacces Missing read permission for one of the parents of the current directory.

get cwd(Drive)

Drive should be of the form “Letter:”, for example “c:”. Returns fok, CurDirg or
ferror, Reasong, where CurDir (a string) is the current working directory of the drive
specified.

This function returns ferror, enotsupg on platforms which have no concept of
current drive (Unix, for example).

Typical error reasons are:

115Kernel Application (KERNEL)

file (Module) Kernel Reference Manual

enotsup The operating system have no concept of drives.

eacces The drive does not exist.

einval The format of Drive is invalid.

list dir(DirName)

Lists all the files in a directory. Returns fok, FilenameListg if successful. Otherwise,
it returns ferror, Reasong. FilenameList is a list of the names of all the files in the
directory. Each name is a string. The names are not sorted.

Typical error reasons are:

eacces Missing search or write permissions for DirName or one of its parent directories.

enoent The directory does not exist.

make dir(DirName)

Tries to create the directory DirName. Missing parent directories are NOT created.
Returns ok if successful.

Typical error reasons are:

eacces Missing search or write permissions for the parent directories of DirName.

eexist There is already a file or directory named DirName.

enoent A component of DirName does not exist.

enospc There is a no space left on the device.

enotdir A component of DirName is not a directory. On some platforms, enoent is
returned instead.

make link(Existing, New)

Makes a hard link from Existing to New, on platforms that support links (Unix). This
function returns ok if the link was successfully created, or ferror,Reasong. On
platforms that do not support links, ferror,enotsupgwill be returned.

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Existing or New.

eexist new already exists.

enotsup Hard links are not supported on this platform.

make symlink(Name1, Name2)

This function creates a symbolic link Name2 to the file or directory Name1, on platforms
that support symbolic links (most Unix systems). Name1 need not exist. This function
returns ok if the link was successfully created, or ferror,Reasong. On platforms that
do not support symbolic links, ferror,enotsupgwill be returned.

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Existing or New.

eexist new already exists.

116 Kernel Application (KERNEL)

Kernel Reference Manual file (Module)

enotsup Symbolic links are not supported on this platform.

open(Filename, ModeList)

Opens the file Filename in the mode determined by ModeList. ModeList may contain
one or more of the following items:

read The file, which must exist, is opened for reading.

write The file is opened for writing. It is created if it does not exist. Otherwise, it is
truncated (unless combined with read).

append The file will be opened for writing, and it will be created it does not exist. Every
write operation to a file openeded with append will take place at the end of the file.

raw The raw option allows faster access to a file, because no Erlang process is needed to
handle the file. However, a file opened in this way has the following limitations:

� The functions in the io module cannot be used, because they can only talk to
an Erlang process. Instead, use the read/2 and write/2 functions.

� Only the Erlang process which opened the file can use it.
� A remote Erlang file server cannot be used; the computer on which the Erlang

node is running must have access to the file system (directly or through NFS).

binary This option can only be used if the raw option is specified as well. When
specified, read operations on the file using the read/2 function will return binaries
rather than lists.

If both read and write are specified, the file is created if it does not exists. It is not
truncated if it exists.

Returns:

fok, IoDeviceg The file has been opened in the requested mode. IoDevice is a
reference to the file.

ferror, Reasong The file could not be opened.

A file descriptor is the Pid of the process which handles the file. The file process is
linked to the process which originally opened the file. If any process to which the file
process is linked terminates, the file will be closed by the file process and the process
itself will be terminated. The file descriptor returned from this call can be used as an
argument to the I/O functions (see io).

Note:
In previous versions of file, modes were given as on of the atoms read, write, or
read write instead of a list. This is still allowed for reasons of backwards
compatibility, but should not be used for new code. Also note that read write is not
allowed in a mode list.

Typical error reasons:

enoent The file does not exist.

eacces Missing permission for reading the file or searching one of the parent directories.

eisdir The named file is a directory.

117Kernel Application (KERNEL)

file (Module) Kernel Reference Manual

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

enospc There is a no space left on the device (if write access was specified).

path consult(Path, Filename)

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. The file is opened and all the terms
in it are read. The function returns one of the following:

fok, TermList, FullNameg The file was successfully read. FullName is the full name
of the file which was opened and read.

ferror, enoentg The file could not be found in any of the directories in Path.

ferror, Atomg An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang terms
in the file. Use the format error/1 function to convert the three-element tuple to
an English description of the error.

path eval(Path, Filename)

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. The file is opened and all the
expression sequences in it are evaluated. The function returns one of the following:

fok, FullNameg The file was read. FullName is the full name of the file which was
opened and evaluated.

ferror, enoentg The file could not be found in any of the directories in Path.

ferror, Atomg An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang terms
in the file. Use the format error/1 function to convert the three-element tuple to
an English description of the error.

path open(Path, Filename, Mode)

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. The function returns one of the
following:

fok, IoDevice, FullNameg The file was opened in the requested mode. IoDevice is a
reference to the file and FullName is the full name of the file which was opened.

ferror, enoentg Filename was not found in the path.

ferror, Reasong There was an error opening Filename.

position(IoDevice, Location)

Sets the position of the file referenced by IoDevice to Location. Returns fok,
NewPositiong (as absolute offset) if successful, otherwise ferror, Reasong. Location
is one of the following:

118 Kernel Application (KERNEL)

Kernel Reference Manual file (Module)

fbof, Offsetg Absolute offset

fcur, Offsetg Offset from the current position

feof, Offsetg Offset from the end of file

Integer The same as fbof, Integerg

bof || cur || eof The same as above with Offset 0.

Typical error reasons are:

einval Either the Location was illegal, or it evaluated to a negative offset in the file.
Note that if the resulting position is a negative value you will get an error but after
the call it is undefined where the file position will be.

pread(IoDevice, Location, Number)

Combines position/2 and read/2 in one operation, which is more efficient than
calling them one at a time. If IoDevice has been opened in raw mode, some restrictions
apply: Location is only allowed to be an integer; and the current position of the file is
undefined after the operation.

pwrite(IoDevice, Location, Bytes)

Combines position/2 and write/2 in one operation, which is more efficient than
calling them one at a time. If IoDevice has been opened in raw mode, some restrictions
apply: Location is only allowed to be an integer; and the current position of the file is
undefined after the operation.

read(IoDevice, Number)

Reads Number bytes from the file described by IoDevice. This function is the only way
to read from a file opened in raw mode (although it works for normally opened files,
too). Returns:

fok, ListOrBinaryg If the file was opened in binary mode, the read bytes are returned
in a binary, otherwise in a list. The list or binary will be shorter than the the
number of bytes requested if the end of the file is reached.

eof eof is returned if the Number was greater than zero and end of file was reached
before anything at all could be read.

ferror, Reasong A Posix error code will be returned if an error occurred.
Typical error reasons:

ebadf The file is not opened for reading.

read file(Filename)

Returns fok, Binaryg, where Binary is a binary data object that contains the contents
of Filename, or ferror, Reasong if an error occurs.

Typical error reasons:

enoent The file does not exist.

eacces Missing permission for reading the file, or for searching one of the parent
directories.

119Kernel Application (KERNEL)

file (Module) Kernel Reference Manual

eisdir The named file is a directory.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

enomem There is not enough memory for the contents of the file.

read file info(Filename)

Retrieves information about a file. Returns fok, FileInfog if successful, otherwise
ferror, Reasong. FileInfo is a record. Its definition can be found by including
file.hrl from the kernel application:

-include_lib("kernel/include/file.hrl").

The record contains the following fields.

size Size of file in bytes.

type The type of the file which can be device, directory, regular, or other.

access The current system access to the file, which is one of the atoms read, write,
read write, or none.

atime The last (local) time the file was read, in the format ffYear, Month, Dayg,
fHour, Minute, Secondgg.

mtime The last (local) time the file was written, in the format ffYear, Month, Dayg,
fHour, Minute, Secondgg.

ctime The interpreation of this time field depends on the operating system. On Unix,
it is the last time the file or or the inode was changed. In Windows, it is the create
time. The format is ffYear, Month, Dayg, fHour, Minute, Secondgg.

mode An integer which gives the file permissions as a sum of the following bit values:

8#00400 read permission: owner
8#00200 write permission: owner
8#00100 execute permission: owner
8#00040 read permission: group
8#00020 write permission: group
8#00010 execute permission: group
8#00004 read permission: other
8#00002 write permission: other
8#00001 execute permission: other
16#800 set user id on execution
16#400 set group id on execution

On Unix platforms, other bits than those listed above may be set.

links Number of links to the file (this will always be 1 for file systems which have no
concept of links).

major device An integer which identifies the file system where the file is located. In
Windows, the number indicates a drive as follows: 0 means A:, 1 means B:, and so
on.

minor device Only valid for character devices on Unix. In all other cases, this field is
zero.

inode An integer which gives the inode number. On non-Unix file systems, this field
will be zero.

120 Kernel Application (KERNEL)

Kernel Reference Manual file (Module)

uid An integer which indicates the owner of the file. Will be zero for non-Unix file
systems.

gid An integer which gives the group that the owner of the file belongs to. Will be zero
for non-Unix file systems.

Typical error reasons:

eacces Missing search permission for one of the parent directories of the file.

enoent The file does not exist.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

read link(Linkname)

This function returns fok,Filenameg if Linkname refers to a symbolic link or
ferror,Reasong otherwise. On platforms that do not support symbolic links, the
return value will be ferror,enotsupg.

Typical error reasons:

einval Linkname does not refer to a symbolic link.

enoent The file does not exist.

enotsup Symbolic links are not supported on this platform.

read link info(Filename)

This function works like read file info/1, except that if Filename is a symbolic link,
information about the link will be returned in the file info record and the type field
of the record will be set to symlink. If Filename is not a symbolic link, this function
returns exactly the same result as read file info/1. On platforms that do not support
symbolic link, this function is always equvivalent to read file info/1.

rename(Source, Destination)

Tries to rename the file Source to Destination. It can be used to move files (and
directories) between directories, but it is not sufficient to specify the destination only.
The destination file name must also be specified. For example, if bar is a normal file and
foo and baz are directories, rename("foo/bar", "baz") returns an error, but
rename("foo/bar", "baz/bar") succeeds. Returns ok if it is successful.

Note:
Renaming of open files is not allowed on most platforms (see eacces below).

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Source or
Destination. On some platforms, this error is given if either Source or
Destination is open.

eexist Destination is not an empty directory. On some platforms, also given when
Source and Destination are not of the same type.

121Kernel Application (KERNEL)

file (Module) Kernel Reference Manual

einval Source is a root directory, or Destination is a sub-directory of Source.

eisdir Destination is a directory, but Source is not.

enoent Source does not exist.

enotdir Source is a directory, but Destination is not.

exdev Source and Destination are on different file systems.

set cwd(DirName)

Sets the current working directory of the file server to DirName. Returns ok if successful.

Typical error reasons are:

enoent The directory does not exist.

enotdir A component of DirName is not a directory. On some platforms, enoent is
returned.

eacces Missing permission for the directory or one of its parents.

sync(IoDevice)

Makes sure that any buffers kept by the operating system (not by the Erlang runtime
system) are written to disk. On some platforms, this function might have no effect .

truncate(IoDevice)

Truncates the file referenced by IoDevice at the current position. Returns ok if
successful, otherwise ferror, Reasong.

write(IoDevice, Bytes)

Writes Bytes (possibly a deep list of characters, or a binary) to the file described by
IoDevice. This function is the only way to write to a file opened in raw mode (although
it works for normally opened files, too).

This function returns ok if successful, and ferror, Reasong otherwise.

Typical error reasons are:

ebadf The file is not opened for writing.

enospc There is a no space left on the device.

write file(Filename, Binary)

Writes the contents of the binary data object Binary to the file Filename. The file is
created if it does not exist already. If it exists, the previous contents are overwritten.
Returns ok, or ferror, Reasong.

Typical error reasons are:

enoent A component of the file name does not exist.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

enospc There is a no space left on the device.

eacces Missing permission for writing the file or searching one of the parent directories.

122 Kernel Application (KERNEL)

Kernel Reference Manual file (Module)

eisdir The named file is a directory.

write file info(Filename, FileInfo)

Change file information. Returns ok if successful, otherwise ferror, Reasong.
FileInfo is a record. Its definition can be found by including file.hrl from the kernel
application:

-include_lib("kernel/include/file.hrl").

The following fields are used from the record if they are given.

atime The last (local) time the file was read, in the format ffYear, Month, Dayg,
fHour, Minute, Secondgg.

mtime The last (local) time the file was written, in the format ffYear, Month, Dayg,
fHour, Minute, Secondgg.

ctime On Unix, any value give for this field will be ignored (the “ctime” for the file will
be set to the current time). On Windows, this field is the new creation time to set
for the file. The format is ffYear, Month, Dayg, fHour, Minute, Secondgg.

mode An integer which gives the file permissions as a sum of the following bit values:

8#00400 read permission: owner
8#00200 write permission: owner
8#00100 execute permission: owner
8#00040 read permission: group
8#00020 write permission: group
8#00010 execute permission: group
8#00004 read permission: other
8#00002 write permission: other
8#00001 execute permission: other
16#800 set user id on execution
16#400 set group id on execution

On Unix platforms, other bits than those listed above may be set.

uid An integer which indicates the owner of the file. Ignored for non-Unix file systems.

gid An integer which gives the group that the owner of the file belongs to. Ignored
non-Unix file systems.

Typical error reasons:

eacces Missing search permission for one of the parent directories of the file.

enoent The file does not exist.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

123Kernel Application (KERNEL)

file (Module) Kernel Reference Manual

POSIX Error Codes

eacces permission denied

eagain resource temporarily unavailable

ebadf bad file number

ebusy file busy

edquot disk quota exceeded

eexist file already exists

efault bad address in system call argument

efbig file too large

eintr interrupted system call

einval invalid argument

eio I/O error

eisdir illegal operation on a directory

eloop too many levels of symbolic links

emfile too many open files

emlink too many links

enametoolong file name too long

enfile file table overflow

enodev no such device

enoent no such file or directory

enomem not enough memory

enospc no space left on device

enotblk block device required

enotdir not a directory

enotsup operation not supported

enxio no such device or address

eperm not owner

epipe broken pipe

erofs read-only file system

espipe invalid seek

esrch no such process

estale stale remote file handle

exdev cross-domain link

Warnings

If an error occurs when accessing an open file with the io module, the process which
handles the file will exit. The dead file process might hang if a process tries to access it
later. This will be fixed in a future release.

124 Kernel Application (KERNEL)

Kernel Reference Manual file (Module)

See Also

filename(3)

125Kernel Application (KERNEL)

gen tcp (Module) Kernel Reference Manual

gen tcp (Module)

The gen tcp module provides functions for communicating with sockets using the
TCP/IP protocol.

The available options are described in the setopts/2 [page 144] function in the inet
manual page.

The possible ferror, Reasong results are described in the inet [page 145] manual page.

The following code fragment provides a simple example of a client connecting to a
server at port 5678, transferring a binary and closing the connection.

client() ->
SomeHostInNet = "localhost" % to make it runnable on one machine
fok, Sockg = gen tcp:connect(SomeHostInNet, 5678,

[binary, fpacket, 0g]),
ok = gen tcp:send(Sock, "Some Data"),
ok = gen tcp:close(Sock).

At the other end a server is listening on port 5678, accepts the connection and receives
the binary.

server() ->
fok, LSockg = gen tcp:listen(5678, [binary, fpacket, 0g,

factive, falseg]),
fok, Sockg = gen tcp:accept(LSock),
fok, Bing = do recv(Sock, []),
ok = gen tcp:close(Sock),
Bin.

do recv(Sock, Bs) ->
case gen tcp:recv(Sock, 0) of

fok, Bg ->
do recv(Sock, [Bs, B]);

ferror, closedg ->
fok, list to binary(Bs)g

end.

126 Kernel Application (KERNEL)

Kernel Reference Manual gen tcp (Module)

Exports

accept(ListenSocket) -> fok, Socketg | ferror, Reasong

accept(ListenSocket, Timeout) -> fok, Socketg | ferror, Reasong

Types:

� ListenSocket = socket()
� Socket = socket()
� Timeout = integer()
� Reason = atom()

Accepts an incoming connection request on a listen socket. Socket must be a socket
returned from listen/1. If no Timeout argument is specified, or it is infinity, the
accept function will not return until a connection has been established or the
ListenSocket has been closed. If accept returns because the ListenSocket has been
closed ferror, closedg is returned. If Timeout is specified and no connection is
accepted within the given time, accept will return ferror, timeoutg.

Packets can be sent to the returned socket using the send/2 function. Packets sent from
the peer will be delivered as messages

ftcp, Socket, Datag

unless factive, falseg was specified in the option list for the listen socket, in which
case packets should be retrieved by calling recv/2.

close(Socket) -> ok | ferror, Reasong

Types:

� Socket = socket()
� Reason = atom()

Closes an TCP socket.

connect(Address, Port, Options) -> fok, Socketg | ferror, Reasong

connect(Address, Port, Options, Timeout) -> fok, Socketg | ferror, Reasong

Types:

� Address = string() | atom() | ip address()
� Port = Timeout = integer()
� Options = list()
� Socket = socket()
� Reason = atom()

Connects to a server on TCP port Port on the host with IP address Address. The
Address argument can be either a hostname, or an IP address.

The available options are:

list Received Packet is delivered as a list.

binary Received Packet is delivered as a binary.

common inet options The common inet options available are described in the
setopts/2 [page 144] function in the inet manual page.

127Kernel Application (KERNEL)

gen tcp (Module) Kernel Reference Manual

Packets can be sent to the returned socket using the send/2 function. Packets sent from
the peer will be delivered as messages

ftcp, Socket, Datag

If the socket was closed the following message is delivered:

ftcp closed, Socketg

If an error occurred on the socket the following message is delivered:

ftcp error, Socket, Reasong

unless the socket is in passive mode, in which case packets are retrieved by calling
recv/2.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

controlling process(Socket, NewOwner) -> ok | ferror, epermg

Types:

� Socket = socket()
� NewOwner = pid()

Assigns a new controlling process to Socket. The controlling process is the process
which will receive messages from the socket. If called by any other process than the
current owner ferror, epermg will be returned.

listen(Port, Options) -> fok, Socketg | ferror, Reasong

Types:

� Port = integer()
� Options = list()
� Socket = socket()
� Reason = atom()

Sets up socket to listen on the port Port on the local host.

If the port number is zero, the listen function picks an available port number (use
inet:port/1 to retrieve it); otherwise, the specified port number is used.

The available options are described in the setopts/2 [page 144] function in the inet
manual page. Additionally, the option fbacklog, Bg can be given, where B is an
integer >= 0. The backlog value defaults to 5. The backlog value defines the maximum
length the queue of pending connections may grow to.

The returned socket can only be used in calls to accept.

recv(Socket, Length) -> fok, Packetg | ferror, Reasong

recv(Socket, Length, Timeout)

Types:

� Socket = socket()
� Length = integer()
� Packet = list() | binary()

128 Kernel Application (KERNEL)

Kernel Reference Manual gen tcp (Module)

� Timeout = integer()
� Reason = atom()

This function receives a packet from a socket in passive mode. A closed socket is
indicated by a return value of ferror, closedg.

The Length argument is only meaningful when the socket is in raw mode and denotes
number of bytes to read. If Length = 0 all available bytes are returned.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

send(Socket, Packet) -> ok | ferror, Reasong

Types:

� Socket = socket()
� Packet = list() | binary()
� Reason = atom()

Sends a packet on a socket.

129Kernel Application (KERNEL)

gen udp (Module) Kernel Reference Manual

gen udp (Module)

The gen udp module is an interface to User Datagram Protocol (UDP).

The possible ferror, Reasong results are described in the inet [page 145] manual page.

Exports

close(Socket) -> ok | ferror, Reasong

Types:

� Socket = Reason = term()

Removes the Socket created with open/1 or open/2.

controlling process(Socket,NewOwner) ->

Types:

� Socket = term()
� NewOwner = pid()

The process associated with a Socket is changed to NewOwner. The NewOwner will
receive all subsequent data.

open(Port) -> fok, Socket g | f error, Reason g

open(Port,Options) -> fok, Socket g | f error, Reason g

Types:

� Port = integer(0..65535)
� Options = list()
� Socket = term()
� Reason = term()

Associates a UDP port number (Port) with the calling process. It returns fok,
Socketg, or ferror, Reasong. The returned Socket is used to send packets from this
port with the send/4 function. Options is a list of options associated with this port.

When UDP packets arrive at the opened Port they will be delivered as messages of the
type fudp, Socket, IP, InPortNo, Packetg

IP and InPortNo define the address from which Packet came. Packet is a list of bytes if
the option list was specified. Packet is a binary if the option binary was specified.

The available options are:

list Received Packet is delivered as a list.

130 Kernel Application (KERNEL)

Kernel Reference Manual gen udp (Module)

binary Received Packet is delivered as a binary.

common inet options The common inet options available are described in the
setopts/2 [page 144] function in the inet manual page.

If you set Port to 0, the underlying Operating System assigns a free UDP port. (You can
find out which port by calling inet:port(Socket).)

If any of the following functions are called with a Socket that was not opened by the
calling process, they will return ferror,not ownerg. The ownership of a Socket can be
transferred to another process with controlling process/2.

recv(Socket, Length) -> fok,fAddress, Port, Packetgg | ferror, Reasong

recv(Socket, Length, Timeout)

Types:

� Socket = socket()
� Address = f integer(), integer(), integer(), integer()g
� Port = integer(0..65535)
� Length = integer()
� Packet = list() | binary()
� Timeout = integer()
� Reason = atom()

This function receives a packet from a socket in passive mode.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

send(S,Address,Port,Packet) -> ok | ferror, Reasong

Types:

� Address = f integer(), integer(), integer(), integer()g | atom() | string()
� Port = integer(0..65535)
� Packet = [byte()] | binary()
� Reason = term()

Sends Packet to the specified address (address, port). It returns ok, or ferror,
Reasong. Address can be an IP address expressed as a tuple, for example f192, 0, 0,
1g. It can also be a host name expressed as an atom or a string, for example
’somehost.some.domain’. Port is an integer, and Packet is either a list of bytes or a
binary.

131Kernel Application (KERNEL)

global (Module) Kernel Reference Manual

global (Module)

This documentation describes the Global module which consists of the following
functionalities:
1. Registration of global names
2. Global locks
3. Monitoring nodes
4. Maintenance of the fully connected network

These services are controlled via the process global which exists on every node. global
is started automatically when a node is started.

The ability to globally register names is a central concept in the programming of
distributed Erlang systems. In this module, the equivalent of the register/2 and
whereis/1 BIFs are implemented, but for a network of Erlang nodes. A registered name
is an alias for a process identity Pid. The system monitors globally registered Pids. If a
process terminates, the name will also be globally unregistered.

The registered names are stored in replica global name tables on every node. There is no
central storage point. Thus, the translation of a name to a Pid is extremely quick
because it is never a network operation. When any action in taken which results in a
change to the global name table all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For instance, the
specified resource could be a Pid of a process. When a global lock is set access to the
locked resource is denied for all other resources other than the lock requester.

Both the registration and lock functionalities are atomic. All nodes involved in these
actions will have the same view of the information.

The server also performs the critical task of continuously monitoring changes in node
configuration, if a node which runs a globally registered process goes down, the name
will be globally unregistered. The server will also maintain a fully connected network.
For example, if node N1 connects to node N2 (which is already connected to N3), the
global server on N1 then N3 will make sure that also N1 and N3 are connected. If this is
not desired, the command line flag -connect all false must be passed to init at
boot time. In this case, the name registration facility cannot be used (but the lock
mechanism will still work.)

Exports

del lock(Id)

del lock(Id, Nodes) -> void()

Types:

� Id = fResourceId, LockRequesterIdg

132 Kernel Application (KERNEL)

Kernel Reference Manual global (Module)

� ResourceId = term()
� LockRequesterId = term()
� Nodes = [node()]

Deletes the lock Id synchronously.

notify all name(Name, Pid1, Pid2) -> none

This function can be used as a name resolving function for register name/3 and
re register name/3. It unregisters both Pids, and sends the message
fglobal name conflict, Name, OtherPidg to both processes.

random exit name(Name, Pid1, Pid2) -> Pid1 | Pid2

This function can be used as a name resolving function for register name/3 and
re register name/3. It randomly chooses one of the Pids for registration and kills the
other one.

random notify name(Name, Pid1, Pid2) -> Pid1 | Pid2

This function can be used as a name resolving function for register name/3 and
re register name/3. It randomly chooses one of the Pids for registration, and sends
the message fglobal name conflict, Nameg to the other Pid.

register name(Name, Pid)

register name(Name, Pid, Resolve) -> yes | no

Types:

� Name = term()
� Pid = Pid()
� Resolve = fM, Fg where M:F(Name, Pid, Pid2) -> Pid | Pid2 | none

Globally notifies all nodes of a new global name in a network of Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered
names that already exist. The network is also informed of any global names in newly
connected nodes. If any name clashes are discovered, the Resolve function is called. Its
purpose is to decide which Pid is correct. This function blocks the global name server
during its execution. If the function crashes, or returns anything other than one of the
Pids, the name is unregistered. This function is called once for each name clash.

There are three pre-defined resolve functions, random exit name, random notify name
and notify all name. If no Resolve function is defined, random exit name is used.
This means that one of the two registered processes will be selected as correct while the
other is killed.

This function is completely synchronous. This means that when this function returns,
the name is either registered on all nodes or none.

The function returns yes if successful, no if it fails. For example, no is returned if an
attempt is made to register a process with a name that is already in use.

If a process with a registered name dies, or the node goes down, the name is
unregistered on all nodes.

registered names() -> [Name]

Types:

133Kernel Application (KERNEL)

global (Module) Kernel Reference Manual

� Name = term()

Returns a lists of all globally registered names.

re register name(Name, Pid)

re register name(Name, Pid, Resolve) -> void()

Types:

� Name = term()
� Pid = Pid()
� Resolve = fM, Fg where M:F(Name, Pid, Pid2) -> Pid | Pid2 | none

Atomically changes the registered name Name on all nodes to refer to Pid.

The Resolve function has the same behavior as in register name.

send(Name, Msg) -> Pid

Types:

� Name = term()
� Msg = term()
� Pid = Pid()

Sends the message Msg to the globally registered process Name. If Name is not a globally
registered name, the calling function will exit with reason fbadarg, fName, Msggg.

set lock(Id)

set lock(Id, Nodes)

set lock(Id, Nodes, Retries) -> boolean()

Types:

� Id = fResourceId, LockRequesterIdg
� ResourceId = term()
� LockRequesterId = term()
� Nodes = [node()]
� Retries = int() > 0 | infinity

Sets a lock on the specified nodes (or on all nodes if none are specified) on ResourceId
for LockRequesterId. If a lock already exists on ResourceId for another requester than
LockRequesterId, and Retries is not equal to 0, the process sleeps for a while and will
try to execute the action later. When Retries attempts have been made, false is
returned, otherwise true. If Retries is infinity, true is eventually returned (unless
the lock is never released).

If no value for Retries is given, infinity is used.

This function is completely synchronous.

If a process which holds a lock dies, or the node goes down, the locks held by the
process are deleted.

global keeps track of all processes sharing the same lock, i.e. if two processes set the
same lock both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur
as long as processes only lock one resource at a time. But if some processes try to lock
two or more resources, a deadlock may occur. It is up to the application to detect and
rectify a deadlock.

134 Kernel Application (KERNEL)

Kernel Reference Manual global (Module)

start()

start link() -> fok, Pidg | ferror, Reasong

This function starts the global name server. Normally, the server is started
automatically.

stop() -> void()

Stops the global name server.

sync() -> void()

Synchronizes the global name server with all nodes known to this node. These are the
nodes which are returned from erlang:nodes(). When this function returns, the
global name server will receive global information from all nodes. This function can be
called when new nodes are added to the network.

trans(Id, Fun)

trans(Id, Fun, Nodes)

trans(Id, Fun, Nodes, Retries) -> Res | aborted

Types:

� Id = fResourceId, LockRequesterIdg
� ResourceId = term()
� LockRequesterId = term()
� Fun = fun() | fM, Fg
� Nodes = [node()]
� Retries = int() > 0 | infinity
� Res = term()

Sets a lock on Id (using set lock/3). Evaluates Res = Fun() if successfully locked and
returns Res. Returns aborted if the lock attempt failed. If Retries is set to infinity,
the transaction will not abort.

infinity is the default setting and will be used if no value is given for Retries.

unregister name(Name) -> void()

Types:

� Name = term()

Globally removes Name from the network of Erlang nodes.

whereis name(Name) -> Pid() | undefined

Types:

� Name = term()

Returns either an atom undefined, or a Pid which is globally associated with Name.

135Kernel Application (KERNEL)

global group (Module) Kernel Reference Manual

global group (Module)

The global group function makes it possible to group the nodes in a system into
partitions, each partition having its own global name space, refer to global(3). These
partitions are called global groups.
The main advantage of dividing systems to global groups is that the background load
decreases while the number of nodes to be updated is reduced when manipulating
globally registered names.

The global groups-key in the .config file defines the global groups:

fglobal groups, [fGroupName, [Node]g] g

GroupName is an atom() naming a global group.
Node is an atom() naming a node.

The command erl -config File starts a node with a configuration file named
File.config. If the global groups-key is not defined the system will start as a whole,
without any partitions. When the key is not defined, the services of this function will
not give any extra value to global(3).

For the processes and nodes to run smoothly using this function the following criteria
must be met:

� The global group function must have a server process, global group, running on
each node.
NOTE: The processes are automatically started and synchronized when a node is
started.

� All processes must agree with the group definition in the immediate global group.
If two nodes do not agree, these nodes will not synchronize their name space and
an error message will be logged in the error logger.
Example: If one node has an illegal global group definition, such a node will run
isolated from the other nodes regarding the global name space; but not regarding
other system functions, e.g distribution of applications, refer to chapter NOTE
below.

� Nodes can only belong to one global group.

When the global group definitions are to be changed in a system upgrade, the upgrade
must fulfill the following steps:

1. First, all nodes which are to be removed from a global group must be taken down.

2. Nodes which are not affected by the redefinition of the global groups are to be
upgraded to be aware of the new global group definitions.
NOTE: All nodes in the system, also nodes in unchanged global groups, must be
upgraded. This because e.g send must have an accurate view of the total system.

3. Finally, all nodes which are new to a global group can be started.

When a non partitioned system is to be upgraded to become a partitioned system, all
nodes belonging to a global group will be disconnected from all nodes not belonging to
its immediate global group.

136 Kernel Application (KERNEL)

Kernel Reference Manual global group (Module)

Exports

global groups() -> fOwnGroupName, [OtherGroupName]g | undefined

Types:

� OwnGroupName = atom()
� OtherGroupName = atom()
� ErrorMsg = term()

Returns the names of all the global groups known to the immediate global group.

info() -> [fstate, Stateg, fown group name, atom()g, fown group nodes, [Node]g,
fsynced nodes, [Node]g, fsync error, [Node]g, fno contact, [Node]g,
fother groups, Other grpsg, fmonitoring, [pid()]g]

Types:

� State = no conf | synced
� Other grps = [fOtherGrpName, [Node]g]
� OtherGrpName = atom()
� Node = atom()

Returns the state of the global group process. In the following ’nodes’ refers to nodes in
the immediate global group. synced nodes lists the nodes this node is synchronized
with at this moment. lists the nodes defining the own global group. sync error lists
the nodes with this node could not be synchronize. no contact lists nodes with this
node do not yet have established contact. other groups shows the definition of the
other global groups in the system. monitoring lists the processes which have subscribed
on nodeup and nodedown messages.

monitor nodes(Flag) -> ok

Types:

� Flag = bool()

The requesting process receives fnodeup,Nodeg and fnodedown,Nodeg messages about
the nodes from the immediate global group. If the flag Flag is set to true the service is
turned on; false turns it off.

own nodes() -> [Node] | ferror, ErrorMsgg

Types:

� Node = atom()
� ErrorMsg = term()

Returns the names of all nodes from the immediate global group, despite of the status
of the nodes. Use info/0 to get the information of the current status of the nodes.

registered names(fnode, Nodeg) -> [Name] | ferror, ErrorMsgg

registered names(fgroup, GlobalGroupNameg) -> [Name]

Types:

� Name = term()

137Kernel Application (KERNEL)

global group (Module) Kernel Reference Manual

� Node = atom()
� GlobalGroupName = atom()
� ErrorMsg = term()

Returns a lists of all globally registered names on the specified node or from the
specified global group.

send(Name, Msg) -> Pid | fbadarg, Msgg | ferror, ErrorMsgg

send(fnode, Nodeg, Name, Msg) -> Pid | fbadarg, Msgg | ferror, ErrorMsgg

send(fgroup, GlobalGroupNameg, Name, Msg) -> Pid | fbadarg, Msgg | ferror, ErrorMsgg

Types:

� GlobalGroupName = atom()
� Msg = term()
� Name = term()
� Node = atom()
� Pid = pid()
� ErrorMsg = term()

send/2 searches for the registered Name in all global groups defined, in the order of
appearance in the .config-file, until the registered name is found or all groups are
searched. If Name is found, the message Msg is sent to it. If it is not found, the function
exits with reason fbadarg, fName, Msggg.

send/3 searches for the registered Name in either the specified node or the specified
global group. If the registered name is found, the message Msg is sent to that process. If
Name is not found, the function exits with reason fbadarg, fName, Msggg.

sync() -> ok

sync synchronizes the global name servers on the nodes in the immediate global group.
It also unregisteres the names registered in the immediate global group on known nodes
outside to the immediate global group.

If it the global groups definition is unvalid, the function exits with reason ferror,
f’invalid global groups definition’, NodeGrpDefgg.

whereis name(Name) -> Pid | undefined | ferror, ErrorMsgg

whereis name(fnode, Nodeg, Name) -> Pid | undefined | ferror, ErrorMsgg

whereis name(fgroup, GlobalGroupNameg, Name) -> Pid | undefined | ferror, ErrorMsgg

Types:

� GlobalGroupName = atom()
� Name = term()
� Node = atom()
� Pid = pid()

whereis name/1 searches for the registered Name in all global groups defined, in the
order of appearance in the .config-file, until the registered name is found or all groups
are searched.

whereis name/2 searches for the registered Name in either the specified node or the
specified global group.

Returns either the atom undefined, or the Pid which is associated with Name.

138 Kernel Application (KERNEL)

Kernel Reference Manual global group (Module)

start()

start link() -> fok, Pidg | ferror, Reasong

This function starts the global group server. Normally, the server is started
automatically.

stop() -> void()

Stops the global group server.

NOTE

In the situation where a node has lost its connections to other nodes in its global group
but has connections to nodes in other global groups, a request from the other global
group may produce an incorrect or misleading result. When this occurs the isolated
node may not have accurate information, for example, about registered names in its
global group.

Note also that the send function is not secure.

Distribution of applications is highly dependent of the global group definitions. It is not
recommended that an application is distributed over several global groups of the
obvious reason that the registered names may be moved to another global group at
failover/takeover. There is nothing preventing doing this, but the application code must
in such case handle the situation.

SEE ALSO

erl(1), global(3)

139Kernel Application (KERNEL)

heart (Module) Kernel Reference Manual

heart (Module)

The heart module sends periodic heartbeats to an external port program, which is also
named heart. The purpose of the heart port program is to check that the Erlang
runtime system it is supervising is still running. If the port program has not received any
heartbeats within HEART BEAT TIMEOUT (default is 60 seconds) from the last one, the
system can be rebooted. Also, if the system is equipped with a hardware watchdog
timer and is running Solaris, the watchdog can be used to supervise the entire system.

This module is started by the init module during system start-up. The -heart
command line flag determines if the heart module should start .

If the system should be rebooted because of missing heart-beats, or a terminated Erlang
runtime system, the environment variable HEART COMMAND has to be set before the
system is started. If this variable is not set, a warning text will be printed but the system
will not reboot. However, if the hardware watchdog is used, it will trigger a reboot
HEART BEAT BOOT DELAY seconds later nevertheless (default is 60).

To reboot on the WINDOWS platform HEART COMMAND can be set to heart -shutdown
(included in the Erlang delivery) or of course to any other suitable program which can
activate a reboot.

The hardware watchdog will not be started under Solaris if the environment variable
HW WD DISABLE is set.

The HEART BEAT TIMEOUT and HEART BEAT BOOT DELAY environment variables can be
used to configure the heart timeouts, they can be set in the operating system shell
before erl -heart is started or can be passed on the command line like this: erl
-heart -env HEART BEAT TIMEOUT 30.

The value (in seconds) must be in the range 10 < X <= 65535.

It should be noted that if the system clock is adjusted with more than
HEART BEAT TIMEOUT seconds heart will timeout and try to reboot the system.
This can happen for example if the system clock is adjusted automatically by use of
NTP (Network Time Protocol).

Exports

start() -> fok, Pidg | ignore | ferror, Whatg

Types:

� Pid = pid()
� What = void()

Starts the heart program. This function returns ignore if the -heart command line flag
is not supplied.

140 Kernel Application (KERNEL)

Kernel Reference Manual heart (Module)

set cmd(Cmd) -> ok | ferror, fbad cmd, Cmdgg

Types:

� Cmd = string()

Sets a temporary reboot command. This command is used if a HEART COMMAND other
than the one specified with the environment variable should be used in order to reboot
the system. The new Erlang runtime system will (if it misbehaves) use the environment
variable HEART COMMAND to reboot.

The length of the Cmd command string must be less than 2047 characters.

clear cmd() -> ok

Clears the temporary boot command. If the system terminates, the normal
HEART COMMAND is used to reboot.

141Kernel Application (KERNEL)

inet (Module) Kernel Reference Manual

inet (Module)

Inet provides access to TCP/IP protocols.

Some functions returns a hostent record. Use this line in your module
-include lib("kernel/include/inet.hrl").
to include the record definition.

h addr list List of addresses for this host

h addrtype Type of address: inet or inet6

h aliases List of aliases (additional names for host)

h length Length of address in bytes

h name Official name for host

Addresses as inputs to functions can be either a string or a tuple. For instance, the IP
address 150.236.20.73 can be passed to gethostbyaddr/1 either as the string
“150.236.20.73” or as the tuple f150, 236, 20, 73g. Addresses returned by any
function in the inet module will be a tuple.

Hostnames may be specified as either atoms or a strings.

Where an address family is required, valid values are inet (standard IPv4 addresses) or
inet6 (IPv6).

Exports

format error(Tag)

Types:

� Tag = atom()

Returns a diagnostic error string. See the section below for possible Tag values and the
corresponding strings.

gethostbyaddr(Address) -> fok, Hostentg | ferror, Reasong

Types:

� Address = address()
� Hostent = hostent()

Returns a hostent record given an address.

gethostbyname(Name) -> fok, Hostentg | ferror, Reasong

142 Kernel Application (KERNEL)

Kernel Reference Manual inet (Module)

Types:

� Hostname = hostname()
� Hostent = hostent()

Returns a hostent record given a hostname.

gethostbyname(Name, Family) -> fok, Hostentg | ferror, Reasong

Types:

� Hostname = hostname()
� Family = family()
� Hostent = hostent()

Returns a hostent record given a hostname, restricted to the given address family.

gethostname() -> fok, Nameg | ferror, Reasong

Types:

� Hostname = hostname()

Returns the local hostname. Will never fail.

sockname(Socket) -> fok, fIP, Portgg | ferror, Reasong

Types:

� Socket = socket()
� Address = address()
� Port = integer()

Returns the local address and port number for a socket.

peername(Socket) -> fok, fAddress, Portgg | ferror, Reasong

Types:

� Socket = socket()
� Address = address()
� Port = integer()

Returns the address and port for the other end of a connection.

port(Socket) -> fok, Numberg

Types:

� Socket = socket()
� Number = integer()

Returns the local port number for a socket.

close(Socket) -> ok

Types:

� Socket = socket()

Closes a socket of any type.

143Kernel Application (KERNEL)

inet (Module) Kernel Reference Manual

getaddr(IP,inet) -> fok,fA1,A2,A3,A4gg | ferror, Reasong

Types:

� IP = fA1,A2,A3,A4g | string() | atom()
� A1 = A2 = A3 = A4 = integer()
� Reason = term()

Returns the IP-address as a tuple with integers for IP which can be an IP-address a
single hostname or a fully qualified hostname. At present only IPv4 adresses (the inet
argument) is supported, but the function is prepared to support IPv6 (inet6) in a near
future.

setopts(Socket, Options) -> ok | ferror, Reasong

Types:

� Socket = term()
� Options = list()

Sets one or more options for a socket. The following options are available:

factive, Booleang If the active option is true, which is the default, everything
received from the socket will be sent as messages to the receiving process. If the
active option is set to false (passive mode), the process must explicitly receive
incoming data by calling gen tcp:recv/N or gen udp:recv/N (depending on the
type of socket). Note: Passive mode provides flow control; the other side will not
be able send faster than the receiver can read. Active mode provides no flow
control; a fast sender could easily overflow the receiver with incoming messages.
Use active mode only if your high-level protocol provides its own flow control (for
instance, acknowledging received messages) or the amount of data exchanged is
small.

fbroadcast, Booleang Enable/disable permission to send broadcasts. (UDP)

fdontroute, true|falseg Use fdontroute, trueg to enable/disable routing bypass
for outgoing messages.

fheader, Sizeg This option is only meaningful if the binary option was specified
when the socket was created. If the header option is specified, the first Size
number bytes of data received from the socket will be elements of a list, and the
rest of the data will be a binary given as the tail of the same list. If for example
Size=2 the data received will match [Byte1,Byte2|Binary].

fkeepalive, Booleang (TCP/IP sockets) Enables periodic transmission on a
connected socket, when no other data is being exchanged. If the other end does
not respond, the connection is considered broken and an error message will be sent
to the controlling process. Default disabled.

fnodelay, Booleang If Boolean is true, the TCP NODELAY option is turned on for the
socket, which means that even small amounts of data will be sent immediately.
(TCP/IP sockets)

fpacket, PacketTypeg (TCP/IP sockets) Defines the type of packets to use for a
socket. The following values are valid:

raw | 0 No packaging is done.

144 Kernel Application (KERNEL)

Kernel Reference Manual inet (Module)

1 | 2 | 4 Packets consist of a header specifying the number of bytes in the
packet, followed by that number of bytes. The length of header can be one,
two, or four bytes; the order of the bytes is big-endian. Each send operation
will generate the header, and the header will be stripped off on each receive
operation.

asn1 | cdr | sunrm | fcgi | tpkt | line These packet types only have
effect on receiving. When sending a packet, it is the responsibility of the
application to supply a correct header. On receiving, however, there will be
one message sent to the controlling process for each complete packet received,
and, similarily, each call to gen tcp:recv/N returns one complete packet. The
header is not stripped off. The meanings of the packet types are as follows:
asn1 - ASN.1 BER,
sunrm - Sun’s RPC encoding,
cdr - Corba (GIOP 1.1),
fcgi - Fast CGI,
tpkt - TPKT format [RFC1006],
line - Line mode, a packet is a line terminated with newline, lines longer than
the receive buffer are truncated.

frecbuf, Integerg Gives the size of the receive buffer to use for the socket.

freuseaddr, Booleang Allows or disallows local reuse of port numbers. By default,
reuse is disallowed.

fsndbuf, Integerg Gives the size of the send buffer to use for the socket.

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by
format error/1 are as follows:

e2big argument list too long

eacces permission denied

eaddrinuse address already in use

eaddrnotavail cannot assign requested address

eadv advertise error

eafnosupport address family not supported by protocol family

eagain resource temporarily unavailable

ealign EALIGN

ealready operation already in progress

ebade bad exchange descriptor

ebadf bad file number

ebadfd file descriptor in bad state

ebadmsg not a data message

ebadr bad request descriptor

ebadrpc RPC structure is bad

145Kernel Application (KERNEL)

inet (Module) Kernel Reference Manual

ebadrqc bad request code

ebadslt invalid slot

ebfont bad font file format

ebusy file busy

echild no children

echrng channel number out of range

ecomm communication error on send

econnaborted software caused connection abort

econnrefused connection refused

econnreset connection reset by peer

edeadlk resource deadlock avoided

edeadlock resource deadlock avoided

edestaddrreq destination address required

edirty mounting a dirty fs w/o force

edom math argument out of range

edotdot cross mount point

edquot disk quota exceeded

eduppkg duplicate package name

eexist file already exists

efault bad address in system call argument

efbig file too large

ehostdown host is down

ehostunreach host is unreachable

eidrm identifier removed

einit initialization error

einprogress operation now in progress

eintr interrupted system call

einval invalid argument

eio I/O error

eisconn socket is already connected

eisdir illegal operation on a directory

eisnam is a named file

el2hlt level 2 halted

el2nsync level 2 not synchronized

el3hlt level 3 halted

el3rst level 3 reset

elbin ELBIN

elibacc cannot access a needed shared library

elibbad accessing a corrupted shared library

elibexec cannot exec a shared library directly

elibmax attempting to link in more shared libraries than system limit

146 Kernel Application (KERNEL)

Kernel Reference Manual inet (Module)

elibscn .lib section in a.out corrupted

elnrng link number out of range

eloop too many levels of symbolic links

emfile too many open files

emlink too many links

emsgsize message too long

emultihop multihop attempted

enametoolong file name too long

enavail not available

enet ENET

enetdown network is down

enetreset network dropped connection on reset

enetunreach network is unreachable

enfile file table overflow

enoano anode table overflow

enobufs no buffer space available

enocsi no CSI structure available

enodata no data available

enodev no such device

enoent no such file or directory

enoexec exec format error

enolck no locks available

enolink link has be severed

enomem not enough memory

enomsg no message of desired type

enonet machine is not on the network

enopkg package not installed

enoprotoopt bad proocol option

enospc no space left on device

enosr out of stream resources or not a stream device

enosym unresolved symbol name

enosys function not implemented

enotblk block device required

enotconn socket is not connected

enotdir not a directory

enotempty directory not empty

enotnam not a named file

enotsock socket operation on non-socket

enotsup operation not supported

enotty inappropriate device for ioctl

enotuniq name not unique on network

147Kernel Application (KERNEL)

inet (Module) Kernel Reference Manual

enxio no such device or address

eopnotsupp operation not supported on socket

eperm not owner

epfnosupport protocol family not supported

epipe broken pipe

eproclim too many processes

eprocunavail bad procedure for program

eprogmismatch program version wrong

eprogunavail RPC program not available

eproto protocol error

eprotonosupport protocol not supported

eprototype protocol wrong type for socket

erange math result unrepresentable

erefused EREFUSED

eremchg remote address changed

eremdev remote device

eremote pathname hit remote file system

eremoteio remote i/o error

eremoterelease EREMOTERELEASE

erofs read-only file system

erpcmismatch RPC version is wrong

erremote object is remote

eshutdown cannot send after socket shutdown

esocktnosupport socket type not supported

espipe invalid seek

esrch no such process

esrmnt srmount error

estale stale remote file handle

esuccess Error 0

etime timer expired

etimedout connection timed out

etoomanyrefs too many references

etxtbsy text file or pseudo-device busy

euclean structure needs cleaning

eunatch protocol driver not attached

eusers too many users

eversion version mismatch

ewouldblock operation would block

exdev cross-domain link

exfull message tables full

nxdomain the hostname or domain name could not be found

148 Kernel Application (KERNEL)

Kernel Reference Manual init (Module)

init (Module)

init is pre-loaded into the system before the system starts and it coordinates the
start-up of the system. The first function evaluated at start-up is boot(Bootargs),
where Bootargs is a list of the arguments supplied to the Erlang runtime system from
the local operating system. The Erlang code for the module init is always pre-loaded.

init reads a boot script which contains instructions on how to initiate the system. The
default boot script (start.boot) is in the directory <ERL INSTALL DIR>/bin.

init contains functions to fetch command line flags, or arguments, supplied to the
Erlang runtime system.

init also contains functions to restart, reboot, and stop the system.

Exports

boot(BootArgs) -> void()

Types:

� BootArgs = [term()]

Erlang is started with the command erl <script-flags> <user-flags>.

erl is the name of the Erlang start-up script. <script-flags>, described in erl(1), are
read by the script. <user-flags> are put into a list and passed as Args to boot/1.

The boot/1 function interprets the boot, mode, and s flags. These are described in
COMMAND LINE FLAGS.

If the boot function finds other arguments starting with the character -, that argument
is interpreted as a flag with zero or more values. It ends the previous argument. For
example:

erl -run foo bar -charles peterson

This starts the Erlang runtime system, evaluates foo:bar(), and sets the flag -charles,
which has the associated value peterson.

Other arguments which are passed to the boot function, and do not fit into the above
description, are passed to the init loop as plain arguments.

The special flag -- can be used to separate plain arguments to boot.

get arguments() -> Flags

Types:

� Flags = [fFlag,[Value]g]
� Flag = atom()

149Kernel Application (KERNEL)

init (Module) Kernel Reference Manual

� Value = string()

Returns all flags given to the system.

get argument(Flag) -> fok, Valuesg | error

Types:

� Flag = atom()
� Values = [FValue]
� FValue = [Value]
� Value = string()

Returns all values associated with Flag. If Flag is provided several times, each FValue
is returned in preserved order.

get args() -> [Arg]

Types:

� Arg = atom()

Returns the additional plain arguments as a list of atoms (possibly empty). It is
recommended that get plain arguments/1 be used instead, because of the limited
length of atoms.

get plain arguments() -> [Arg]

Types:

� Arg = string()

Returns the additional plain arguments as a list of strings (possibly empty).

restart() -> void()

The system is restarted inside the running Erlang node, which means that the emulator
is not restarted. All applications are taken down smoothly, all code is unloaded, and all
ports are closed before the system is booted again in the same way as initially started.
The same BootArgs are used again.

To limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown time command line flag should be used.

reboot() -> void()

All applications are taken down smoothly, all code is unloaded, and all ports are closed
before the Erlang node terminates. If the -heart system flag was given, the heart
program will try to reboot the system. Refer to the heart module for more information.

In order to limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown time command line flag should be used.

stop() -> void()

150 Kernel Application (KERNEL)

Kernel Reference Manual init (Module)

All applications are taken down smoothly, all code is unloaded, and all ports are closed
before the system terminates. If the -heart system flag was given, the heart program is
terminated before the Erlang node terminates. Refer to the heart module for more
information.

In order to limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown time command line flag should be used.

get status() -> fInternalStatus, ProvidedStatusg

Types:

� InternalStatus = starting | started | stopping
� ProvidedStatus = term()

The current status of the init process can be inspected. During system start
(initialization), InternalStatus is starting, and ProvidedStatus indicates how long
the boot script has been interpreted. Each fprogress,Infog term interpreted in the
boot script affects the ProvidedStatus status, i.e., ProvidedStatus gets the value of
Info.

script id() -> Id

Types:

� Id = term()

Get the identity of the boot script used to boot the system. Id can be any Erlang term.
In the delivered boot scripts, Id is fName,Vsng. Name and Vsn are strings.

Command Line Flags

The init module interprets the following flags:

-boot File Specifies the name of the boot script, File.boot, used to start the system.
Unless File contains an absolute path, the system searches for File.boot in the
current and <ERL INSTALL DIR>/bin directories
If this flag is omitted, the <ERL INSTALL DIR>/bin/start.boot boot script is
used.

-boot var Var Directory [Var Directory] If the boot script used contains another path
variable than $ROOT, that variable must have a value assigned in order to start the
system. A boot variable is used if user applications are installed in a different
location than underneath the <ERL INSTALL DIR>/lib directory. $Var is
expanded to Directory in the boot script.

-mode Mode The mode flag indicates if the system will load code automatically at
runtime, or if all code should be loaded during system initialization. Mode can be
either interactive (allow automatic code loading) or embedded (load all code
during start-up).

-shutdown time Time Specifies how long time (in ms) the init process is allowed to
spend shutting down the system. If Time milliseconds has elapsed, all processes
still existing are killed.
If -shutdown time is not specified, the default time is infinity.

151Kernel Application (KERNEL)

init (Module) Kernel Reference Manual

-run Module [Function [Args]] Evaluate the function during system initialization.
Function defaults to start and Args to []. If the function call ends abnormally,
the Erlang runtime system stops with an error message.
The arguments after -run are used as arguments to Erlang functions. All
arguments are passed as strings. For example:
erl -run foo -run foo bar -run foo bar baz 1 2

This starts the Erlang runtime system and then evaluates the following Erlang
functions:

foo:start()
foo:bar()
foo:bar([baz, "1", "2"]).

The functions are executed sequentially in the initialization process, which then
terminates normally and passes control to the user. This means that a -run call
which does not terminate will block further processing; to avoid this, use some
variant of spawn in such cases.

-s Module [Function [Args]] Evaluate the function during system initialization.
Function defaults to start and Args to []. If the function call ends abnormally,
the Erlang runtime system stops with an error message.
The arguments after -s are used as arguments to Erlang functions. All arguments
are passed as atoms. For example:
erl -s foo -s foo bar -s foo bar baz 1 2

This starts the Erlang runtime system and then evaluates the following Erlang
functions:

foo:start()
foo:bar()
foo:bar([baz, ’1’, ’2’]).

The functions are executed sequentially in the initialization process, which then
terminates normally and passes control to the user. This means that a -s call which
does not terminate will block further processing; to avoid this, use some variant of
spawn in such cases.
Due to the 255 character limit on atoms, it is recommended that -run be used
instead.

-init debug The init process writes some debug information while interpreting the
boot script.

Example

erl -- a b -children thomas claire -ages 7 3 -- x y
1> init:get plain arguments().
["a", "b", "x", "y"]
2> init:get argument(children).

152 Kernel Application (KERNEL)

Kernel Reference Manual init (Module)

fok, [["thomas", "claire"]]g
3> init:get argument(ages).
fok, [["7", "3"]]g
4> init:get argument(silly).
error

See also

erl prim loader(3), heart(3)

153Kernel Application (KERNEL)

net adm (Module) Kernel Reference Manual

net adm (Module)

This module contains various network utility functions.

Exports

host file()

This function reads the .hosts.erlang file. It returns the hosts in this file as a list, or it
returns ferror, Reasong if the file cannot be found.

dns hostname(Host)

This function calls epmd for the fully qualified name (DNS) of Host. It returns fok,
Longhostnameg if the call is successful, or ferror, Hostg if Host cannot be located by
DNS.

localhost()

This function returns the fully qualified name of the local host, if it can be found by
DNS.

names(), names(Host)

This function returns fok, Listg or ferror, Reasong. List is a list of tuples on the
form fName, Portg. For example: net adm:names(elrond) ->
fok,[f"foo",61178g,f"ts",61160g]g.

ping(Node)

This function tries to set up a connection to Node. It returns pang if it fails, and pong if
it is successful.

world (), world (verbose)

This function runs epmd - names on all hosts which are specified in the Erlang host file
.hosts.erlang, collects the replies and then evaluates ping on all those nodes.
Accordingly, connections are created to all nodes which are running on the hosts
specified in the .hosts.erlang file. An error message is printed if another user node is
found when this is done.

This function can be useful when a node is started, but the names of the other nodes in
the network are not initially known.

world list (Hostlist), world list (Hostlist, verbose)

154 Kernel Application (KERNEL)

Kernel Reference Manual net adm (Module)

These functions are the same as world/0 and world/1, but instead of reading the
hostfile from .hosts.erlang the hosts are specified in Hostlist.

Files

The .hosts.erlang file consists of a number of host names written as Erlang terms. It
can be located in the current work directory, $HOME/.hosts.erlang, or
code:root dir()/.hosts.erlang. The format of the .hosts.erlang file must be one
host name per line. The host names must be within quotes as shown in the following
examples:

’super.eua.ericsson.se’.
’renat.eua.ericsson.se’.
’grouse.eua.ericsson.se’.
’gauffin1.eua.ericsson.se’.
^ (new line)

155Kernel Application (KERNEL)

net kernel (Module) Kernel Reference Manual

net kernel (Module)

The net kernel is a system process which must be running for distributed Erlang to
work. The purpose of this process is to implement parts of the BIFs spawn/4 and
spawn link/4, and to provide authentication and monitoring of the network.

An Erlang runtime system can be started from the UNIX command line as follows:

% erl -name foobar

With this command line, the net kernel is started as net kernel:start([foobar]).
See erl(1).

This is done by the system itself, but the start([Name]) function can also be called
directly from the normal Erlang shell prompt, and a normal Erlang runtime system is
then converted to a node. The kernel can be shut down with the function stop(), but
only if the kernel was not started by the system itself. The node is then converted into a
normal Erlang runtime system. All other nodes on the network will regard this as a total
node crash.

If the system is started as % erl -sname foobar, the node name of the node will be
foobar@Host, where Host is the short name of the host (not the fully qualified domain
name). The -name flag gives a node with the fully qualified domain name. See erl(1).

The system can be started with the flag -dist auto connect to control automatic
connection of remote nodes. See connect node/1 below and erl(1).

Exports

kernel apply(M, F, A)

As the net kernel runs in the ’user space’, it is easy to provide another net kernel which
is tailor made for a specific application. For example, the user supplied kernel can limit
the set of registered processes which can be accessed from remote nodes, or it can
spawn a new process for each fnodeup, Nodeg message and perform some application
specific user authentication, a log-in procedure for example. The kernel apply(M, F,
A) function is supplied for this purpose.

monitor nodes(Flag)

A process which evaluates this function receives copies of the fnodeup, Nodeg and
fnodedown, Nodeg messages that the net kernel receives from the runtime system. The
flag Flag is set to true to turn the service on, and false to turn it off.

allow(NodeList)

156 Kernel Application (KERNEL)

Kernel Reference Manual net kernel (Module)

In a simple way, this function limits access to a node from a specific number of named
nodes. A node which evaluates this function can only be accessed from nodes listed in
the NodeList variable. Any access attempts made from nodes not listed in NodeList are
rejected.

connect node(Node)

Explicitly establishes a connection to the node specified by the atom Node. Returns
true if succesful, false if not, and ignored if net kernel is not started.

This function is only necessary if the system is started with the flag
-dist auto connect. See erl(1).

157Kernel Application (KERNEL)

os (Module) Kernel Reference Manual

os (Module)

The functions in this module are operating system specific. Careless use of these
functions will result in programs that will only run on a specific platform. On the other
hand, with careful use these functions can be of help in enabling a program to run on
most platforms.

Exports

cmd(Command) -> string()

Types:

� Command = string() | atom()

Executes Command in a command shell of the target OS and returns the result as a string.
This function is a replacement of the previous unix:cmd/1; on a Unix platform they are
equivalent.

Examples:

LsOut = os:cmd("ls"), % on unix platform
DirOut = os:cmd("dir"), % on Win32 platform

find executable(Name) -> Filename | false

find executable(Name, Path) -> Filename | false

Types:

� Name = string()
� Path = string()
� Filename = string()

These two functions look up an executable program given its name and a search path, in
the same way as the underlying operating system. find executable/1 uses the current
execution path (i.e., the environment variable PATH on Unix and Windows). Path, if
given, should conform to the syntax of execution paths on the operating system. The
absolute filename of the executable program Name is returned, or false if the program
was not found.

getenv() -> List

Types:

� List = list() of string

158 Kernel Application (KERNEL)

Kernel Reference Manual os (Module)

Returns a list of all environement variables. Each environment variable is a single string,
containing the name of the variable, followed by =, followed by the value.

getenv(VarName) -> Value | false

Types:

� Varname = string()
� Value = string()

Returns the Value of the environment variable VarName, or false if the environment
variable is undefined.

getpid() -> Value

Types:

� Value = string()

Returns the process identifier of the current Erlang emulator in the format most
commonly used by the operating system environment. Value is returned as a string
containing the (usually) numerical identifier for a process. On Unix, this is typically the
return value of the getpid() system call. On VxWorks, Value contains the task id
(decimal notation) of the Erlang task. On Windows, the process id as returned by the
GetCurrentProcessId() system call is used.

putenv(VarName, Value) -> true

Types:

� Varname = string()
� Value = string()

Sets a new Value for the environment variable VarName.

type() -> fOsfamily,Osnameg | Osfamily

Types:

� Osfamily = atom() = win32 | unix | vxworks
� Osname = atom()

Returns the Osfamily and, in some cases, Osname of the current operating system.

On Unix, Osname will be same string that uname -s returns, but in lower case. For
instance, on Solaris 1 and 2, the atom sunos will be returned.

In Windows, Osname will be either nt (on Windows NT), or windows (on Windows 95).
On VxWorks Osfamily alone is returned, i.e. the atom vxworks.

Note:
Think twice before using this function. Use the filename module if you want to
inspect or build file names in a portable way. Avoid matching on the Osname atom.

version() -> fMajor, Minor, Releaseg | VersionString

Types:

159Kernel Application (KERNEL)

os (Module) Kernel Reference Manual

� Major = Minor = Release = integer()
� VersionString = string()

Returns the operating system version. On most systems, this function returns a tuple,
but a string will be returned instead if the system has versions which cannot be
expressed as three numbers.

Note:
Think twice before using this function. If you still need to use it, always call
os:type() first.

160 Kernel Application (KERNEL)

Kernel Reference Manual pg2 (Module)

pg2 (Module)

This module implements process groups. The groups in this module differ from the
groups in the module pg in several ways. In pg, each message is sent to all members in
the group. In this module, each message may be sent to one, some, or all members.

A group of processes can be accessed by a common name. For example, if there is a
group named foobar, there can be a set of processes (which can be located on different
nodes) which are all members of the group foobar. There is no special functions for
sending a message to the group. Instead, client functions should be written with the
functions get members/1 and get local members/1 to find out which process are
members of the group. Then the message can be sent to one or more members of the
group.

If a member terminates, it is automatically removed from the group.

Warning:
This module is used by the disk log module for managing distributed disk logs. The
disk log names are used as group names, which means that some action may need to
be taken to avoid name clashes.

Exports

create(Name) -> void()

Types:

� Name = term()

Creates a new, empty process group. The group is globally visible on all nodes. If the
group exists, nothing happens.

delete(Name) -> void()

Types:

� Name = term()

Deletes a process group.

get closest pid(Name) -> Pid | ferror, Reasong

Types:

� Name = term()

161Kernel Application (KERNEL)

pg2 (Module) Kernel Reference Manual

This is a useful dispatch function which can be used from client functions. It returns a
process on the local node, if such a process exist. Otherwise, it chooses one randomly.

get members(Name) -> [Pid] | ferror, Reasong

Types:

� Name = term()

Returns all processes in the group Name. This function should be used from within a
client function that accesses the group. It is then optimized for speed.

get local members(Name) -> [Pid] | ferror, Reasong

Types:

� Name = term()

Returns all processes running on the local node in the group Name. This function should
to be used from within a client function that accesses the group. It is then optimized for
speed.

join(Name, Pid) -> ok | ferror, Reasong

Types:

� Name = term()

Joins the process Pid to the group Name.

leave(Name, Pid) -> ok | ferror, Reasong

Types:

� Name = term()

Makes the process Pid leave the group Name.

which groups() -> [Name]

Types:

� Name = term()

Returns a list of all known groups.

start()

start link() -> fok, Pidg | ferror, Reasong

Starts the pg2 server. Normally, the server does not need to be started explicitly, as it is
started dynamically if it is needed. This is useful during development, but in a target
system the server should be started explicitly. Use configuration parameters for kernel
for this.

See Also

kernel(3), pg(3)

162 Kernel Application (KERNEL)

Kernel Reference Manual rpc (Module)

rpc (Module)

This module contains services which are similar to remote procedure calls. It also
contains broadcast facilities and parallel evaluators. A remote procedure call is a
method to call a function on a remote node and collect the answer. It is used for
collecting information on a remote node, or for running a function with some specific
side effects on the remote node.

Exports

start()

Starts the rpc server. Normally, this is not necessary because the rpc server is started
automatically.

stop()

Stops the rpc server.

call(Node, Module, Function, Args)

Evaluates apply(Mod, Fun, Args) on the node Node and returns a value, or fbadrpc,
Reasong if the call fails.

cast(Node, Module, Function, Args)

Causes the expression apply(Mod, Fun, Args) to be evaluated on Node. No response
is delivered and the process which makes the call is not suspended until the evaluation is
complete, as is the case with call/4. The function immediately returns true. Example:

> rpc:cast(Node, erlang, halt, [])

This function shuts down the node Node.

The following function also shuts down the node, but the call returns the tuple
fbadrpc, noconnectiong

> rpc:call(Node, erlang, halt, [])

block call(Node, Mod, Fun, Args)

163Kernel Application (KERNEL)

rpc (Module) Kernel Reference Manual

The call/4 function causes the server at Node to create a new process for each request.
This means that several RPCs can be active concurrently. The rpc server is not affected
if a request does not return a value. This function can be used if the intention of the call
is to block the rpc server from any other incoming requests until the request has been
handled. The function can also be used for efficiency reasons when very small fast
functions are evaluated, for example BIFs that are guaranteed not to suspend.

> rpc:block call(Node, erlang, whereis, [file server]),

Returns the Pid of the file server at Node.

server call(Node, Name, ReplyWrapper, Msg)

This function is used when interacting with a server called Name at node Node. It is
assumed that the server receives messages in the format fFrom, Requestg and replies in
the format From ! fReplyWrapper, node(), Replyg. This function makes such a
server call and ensures that the entire call is packed into an atomic transaction which
either succeeds or fails. It never hangs, unless the server itself hangs.

The function returns ferror, Reasong, or the answer as produced by the server Name.

abcast(Name, Mess)

Broadcasts the message Mess asynchronously to the registered process Name on all nodes,
including the current node.

abcast(Nodes, Name, Mess)

The same as abcast/2, but only to the nodes Nodes.

sbcast(Name, Msg)

Broadcasts to all nodes synchronously and returns a list of the nodes which have Name as
a registered server. Returns fGoodnodes, Badnodesg.

It is synchronous in the sense that it is known that all servers have received the message
when we return from the call. It is not possible to know that the servers have actually
processed the message.

Any further messages sent to the servers, after this function has returned, will be
received by all servers after this message .

sbcast(Nodes, Name, Msg)

As sbcast/2 but only to the nodes in Nodes.

eval everywhere(Mod, Fun, Args)

Evaluates the expression apply(Mod, Fun, Args) on all nodes. No answers are
collected.

eval everywhere(Nodes, Mod, Fun, Args)

Evaluates the expression apply(Mod, Fun, Args) on the nodes Nodes.

multicall(M, F, A)

164 Kernel Application (KERNEL)

Kernel Reference Manual rpc (Module)

In contrast to an RPC, a multicall is an RPC which is sent concurrently from one client
to multiple servers. This is useful for collecting some information from a set of nodes, or
for calling a function on a set of nodes to achieve some side effects. It is semantically the
same as iteratively making a series of RPCs on all the nodes, but the multicall is faster as
all the requests are sent at the same time and are collected one by one as they come
back.

The function multicall/3 evaluates the expression apply(M, F, A) on all nodes and
collects the answers. It returns fReplies, Badnodesg, where Badnodes is a list of the
nodes that terminated during computation and Replies is a list of the return values.
This is useful when new object code is to be loaded on all nodes in the network.

%% Find object code for module Mod
fMod, File, Bing = code:get object code(Mod),

%% and load it on all nodes including this one
fReplies, g = rpc:multicall(code, load binary, [Mod, File, Bin]),

%% and then maybe check the Replies list.

This is an example of the side effects the RPCs may produce.

multicall(Nodes, M, F, A)

Executes the multicall only on the nodes Nodes.

multi server call(Name, Msg)

The function sends Msg to Name on all nodes, and collects the answers. It returns
fReplies, Badnodesg, where Badnodes is a list of the nodes which failed during the
call. This function assumes that if a request sent to a server called Name, the server
replies in the form fName, node(), Replyg. Otherwise, the function will hang. It also
assumes that the server receives messages in the form fFrom, Msgg, and then replies as
From ! fName, node(), Replyg.

If any of the nodes or servers does not exist or crashes during the call, they appear in the
Badnodes list.

Warning:
If any of the nodes are of an older release of Erlang, the server cannot be monitored,
and this function hangs if the server does not exist.

If all nodes are of the current release of Erlang, safe multi server call/2,3 is now
obsolete and much more inefficient than multi server call/2,3.

The replies are not ordered in any particular way.

multi server call(Nodes, Name, Msg)

The same as above, but Msg is only sent to Nodes.

safe multi server call(Name, Msg)

165Kernel Application (KERNEL)

rpc (Module) Kernel Reference Manual

The same as the multi server call/2, except that this function handles the case
where the remote node exists, but no server called Name exists there, and the remote
node is of an older release of Erlang. This call is also slightly slower than
multi server call/2 since all request go via the rpc server at the remote sites.

safe multi server call(Nodes, Name, Msg)

The same as above, but only on the nodes Nodes.

async call(Node, Mod, Fun, Args)

Call streams with promises is a type of rpc which does not suspend the caller until
the result is finished. They return a Key which can be used at a later stage to collect the
value. The key can be viewed as a promise to deliver the answer. The expression
apply(Mod, Fun, Args) is evaluated for this function on Node. Returns Key which can
be used in a subsequent yield/1 (see below).

yield(Key)

Delivers the promised answer from a previous async call operation. If the answer is
available, it is returned immediately. Otherwise, the caller of yield/1 is suspended
until the answer arrives from Node.

nb yield(Key, Timeout)

This is a non-blocking version of yield. It returns the tuple fvalue, Vg when the
computation has finished, or the atom timeout when Timeout elapses.

Timeout is either a non-negative integer or the atom infinity.

nb yield(Key)

Same as nb yield(Key, 0).

parallel eval(ListOfTuples)

Evaluates the list of size 3 tuples ListOfTuples. Each tuple must be of the type fMod,
Fun, Argsg. Each tuple is sent for evaluation to neighboring nodes, and the replies are
collected and returned as a list of individual values. The return values are presented in
the same order as the original list ListOfTuples.

pmap(fM, Fg, Extraargs, List)

Takes exactly the same arguments and has the same return value as the lists:map/3
function, except that everything is evaluated in parallel on different nodes.

pinfo(Pid)

Location transparent version of process info/1.

pinfo(Pid, Item)

Location transparent version of process info/2.

166 Kernel Application (KERNEL)

Kernel Reference Manual seq trace (Module)

seq trace (Module)

Sequential tracing makes it possible to trace all messages resulting from one initial
message. Sequential tracing is completely independent of the ordinary tracing in Erlang,
which is controlled by the erlang:trace/3 BIF. See the chapter ”What is Sequential
Trace” [page 170] below for more information about what sequential tracing is and how
it can be used.

seq trace provides functions which control all aspects of sequential tracing. There are
functions for activation, deactivation, inspection and for collection of the trace output.

Note:
The implementation of sequential tracing is in beta status. This means that the
programming interface still might undergo minor adjustments (possibly
incompatible) based on feedback from users.

Exports

set token(Component, ComponentValue) -> fComponent, PreviousValueg

Types:

� Component = label | serial | Flag
� Flag = send | ’receive’ | print | timestamp
� ComponentValue = FlagValue | LabelValue | SerialValue
� FlagValue = bool() (for Flag)
� LabelValue = integer() (for label)
� SerialValue = fPrevious, Currentg
� Previous = Current = integer()

Sets the individual Component of the trace token to ComponentValue. Returns the
previous value of the trace token Component. The valid Component, ComponentValue
combinations are:

label, integer() The label component is an integer which identifies all events
belonging to the same sequential trace. If several sequential traces can be active
simultaneously label is used to identify the separate traces. Default is 0.

send, bool() A trace token flag (true | false) which enables/disables tracing on
message sending. Default is false.

’receive’, bool() A trace token flag (true | false) which enables/disables tracing
on message reception. Default is false.

167Kernel Application (KERNEL)

seq trace (Module) Kernel Reference Manual

print, bool() A trace token flag (true | false) which enables/disables tracing on
explicit calls to seq trace:print/1. Default is false.

timestamp, bool() A trace token flag (true | false) which enables/disables a
timestamp to be generated for each traced event. Default is false.

serial, SerialValue SerialValue = fPrevious, Currentg. The serial
component contains counters which enables the traced messages to be sorted,
should never be set explicitly by the user as these counters are updated
automatically. Default is f0, 0g.

set token(Token) -> PreviousToken

Types:

� Token = PreviousToken = term() | []

Sets the trace token for the current process to Token. If Token = [] then tracing is
disabled, otherwise Token should be an Erlang term returned from get token/0 or
set token/1. set token/1 can be used to temporarily exclude message passing from
the trace by setting the trace token to empty like this:

OldToken = seq trace:set token([]), % set to empty and save
% old value

% do something that should not be part of the trace
io:format("Exclude the signalling caused by this~n"),
seq trace:set token(OldToken), % activate the trace token again
...

Returns the previous value of the trace token.

get token(Component) -> fComponent, ComponentValueg

Types:

� Component = label | serial | Flag
� ComponentValue = FlagValue | LabelValue | SerialValue
� Flag = send | ’receive’ | print | timestamp
� FlagValue = bool() (for Flag)
� LabelValue = integer() (for label)
� SerialValue = fPrevious, Currentg (for serial)
� Previous = Current = integer()

Returns the value of the trace token componentComponent.

get token() -> TraceToken

Types:

� TraceToken = term() | []

Returns the value of the trace token for the current process. If [] is returned it means
that tracing is not active. Any other value returned is the value of an active trace token.
The value returned can be used as input to the set token/1 function.

print(TraceInfo) -> void

Types:

168 Kernel Application (KERNEL)

Kernel Reference Manual seq trace (Module)

� TraceInfo = term()

Puts the Erlang term TraceInfo into the sequential trace output if the process currently
is executing within a sequential trace and the print flag of the trace token is set.

reset trace() -> void

Sets the trace token to empty for all processes in the node. The process internal
counters used to create the serial of the trace token is set to 0. The trace token is set to
empty for all messages in message queues. Together this will effectively stop all ongoing
sequential tracing in the Erlang node.

set system tracer(ProcessOrPortId) -> PreviousId

Types:

� Pid = PreviousId = pid() | port() | false

Sets the system tracer. The system tracer can be either a pid or port denoted by
ProcessOrPortId. Returns the previous value (which can be false if no system tracer
is active). The function will generate f’EXIT’,fbadarg,Infogg if Pid is not the pid of
an existing local process.

get system tracer() -> pid() | port() | false

Returns the pid or port identifier of the current system tracer or false if no system
tracer is activated.

Trace Messages Sent To the System Tracer

The format of the messages are:

fseq trace, Label, SeqTraceInfo, TimeStampg

or

fseq trace, Label, SeqTraceInfog

depending on whether the timestamp flag of the trace token is set to true or false.
Where :

Label = integer()
TimeStamp = fSeconds, Milliseconds, Microsecondsg
Seconds = Milliseconds = Microseconds = integer()

The SeqTraceInfo can have the following formats:

fsend, Serial, From, To, Messageg Used when a process From with its trace token
flag print set to true has sent a message.

f’receive’, Serial, From, To, Messageg Used when a process To receives a
message with a trace token that has the ’receive’ flag set to true.

fprint, Serial, From, , Infog Used when a process From has called
seq trace:print(Label,Info) and has a trace token with print set to true and
label set to Label.

169Kernel Application (KERNEL)

seq trace (Module) Kernel Reference Manual

Serial = fPreviousSerial, ThisSerialg
PreviousSerial = ThisSerial = integer()
From = To = pid()

Serial is a tuple consisting of two integers where the first PreviousSerial denotes the
serial counter passed in the last received message which carried a trace token. If the
process is the first one in a new sequential trace the PreviousSerial is set to the value
of the process internal “trace clock”. The second integer ThisSerial is the serial
counter that a process sets on outgoing messages and it is based on the process internal
“trace clock” which is incremented by one before it is attached to the trace token in the
message.

What is Sequential Tracing

Sequential tracing is a way to trace a sequence of messages sent between different local
or distributed processes where the sequence is initiated by one single message. In short
it works like this:

Each process has a trace token which can be empty or not empty. When not empty the
trace token can be seen as the tuple fLabel, Flags, Serial, Fromg. The trace token
is passed invisibly with each message.

In order to start a sequential trace the user must explicitly set the trace token in the
process that will send the first message in a sequence.

The trace token of a process is automatically set to empty each time the process enters a
receive statement but will be set to a value again if the received message carries a
nonempty trace token.

On each Erlang node a process can be set as the system tracer. This process will receive
trace messages each time a message with a trace token is sent or received (if the trace
token flag send or ’receive’ is set). The system tracer can then print each trace event,
write it to a file or whatever suitable.

Note:
The system tracer will only receive those trace events that occur locally within the
Erlang node. To get the whole picture of a sequential trace that involves processes on
several Erlang nodes, the output from the system tracer on each involved node must
be merged (off line).

In the following sections Sequential Tracing and its most fundamental concepts are
described.

170 Kernel Application (KERNEL)

Kernel Reference Manual seq trace (Module)

Trace Token

Each process has a current trace token. Initially the token is empty. When the process
sends a message to another process, a copy of the current token will be sent “invisibly”
along with the message. The current token of a process is set in two ways, either

1. explicitly by the process itself, through a call to seq trace:set token, or
2. when a message is received.

In both cases the current token will be set. In particular, if the token of a message
received is empty, the current token of the process is set to empty.

A trace token contains a label, and a set of flags. Both the label and the flags are set in 1
and 2 above.

Serial

The trace token contains a component which we call the Serial which consists of two
integers Previous and Current. The purpose of Serial is uniquely identify each traced
event within a trace sequence and to order the messages chronologically and in the
different branches if any.

The algorithm for updating Serial can be described as follows:

Let each process have two counters prev cnt and curr cnt which both are set to 0
when a process is created. The counters are updated at the following occasions:

� When the process is about to send a message and the trace token is not empty.
Let the Serial of the trace token be tprev and tcurr.
curr cnt := curr cnt + 1
tprev := prev cnt
tcurr := curr cnt

The trace token with tprev and tcurr is then passed along with the message.
� When the process calls seq trace:print(Label,Info)the Label matches the label

part of the trace token and the trace token print flag is true.
The same algorithm as for send above.

� When a message is received and contains a nonempty trace token.
The process trace token is set to the trace token from the message.
Let the Serial of the trace token be tprev and tcurr.
if (curr cnt < tcurr)

curr cnt := tcurr
prev cnt := tprev

The curr cnt of a process is incremented each time the process is involved in a
sequential trace. The counter can reach its limit (27 bits) if a process is very long-lived
and is involved in much sequential tracing. If the counter overflows it will not be
possible to use the Serial for ordering of the trace events. To prevent the counter from
overflowing in the middle of a sequential trace the function seq trace:reset trace/0
can be called to reset the prev cnt and curr cnt of all processes in the Erlang node.
This function will also set all trace tokens in processes and their message queues to
empty and will thus stop all ongoing sequential tracing.

171Kernel Application (KERNEL)

seq trace (Module) Kernel Reference Manual

Performance considerations

The performance degradation for a system which is enabled for Sequential tracing is
negligible as long as no tracing is activated. When tracing is activated there will of course
be an extra cost for each traced message but all other messages will be unaffected.

Ports

Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port this has to be done
manually in the code of the port controlling process. The port controlling processes
have to check the appropriate sequential trace settings (as obtained from
seq trace:get token/1 and include trace information in the message data sent to their
respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace
specific information, and set appropriate sequential trace flags through calls to
seq trace:set token/2.

Distribution

Sequential tracing between nodes is performed transparently. This applies to C-nodes
built with Erl interface too. A C-node built with Erl interface only maintains one trace
token which means that the C-node will appear as one process from the sequential
tracing point of view.

In order to be able to perform sequential tracing between distributed Erlang nodes, the
distribution protocol has been extended (in a backward compatible way). An Erlang
node which supports sequential tracing can communicate with an older (OTP R3B)
node but messages passed within that node can of course not be traced.

Example of Usage

The example shown here will give rough idea of how the new primitives can be used
and what kind of output it will produce.

Assume that we have an initiating process with Pid = <0.30.0> like this:

172 Kernel Application (KERNEL)

Kernel Reference Manual seq trace (Module)

-module(seqex).
-compile(export all).

loop(Port) ->
receive
fPort,Messageg ->

seq trace:set token(label,17),
seq trace:set token(’receive’,true),
seq trace:set token(print,true),
seq trace:print(17,"**** Trace Started ****"),
call server ! fself(),the messageg;

fack,Ackg ->
ok

end,
loop(Port).

And a registered process ’call server’ with Pid = <0.31.0> like this:

loop() ->
receive
fPortController,Messageg ->

Ack = freceived, Messageg,
seq trace:print(17,"We are here now"),
PortController ! fack,Ackg

end,
loop().

A possible output from the system’s sequential tracer (inspired by AXE-10 and
MD-110) could look like:

17:<0.30.0> Info f0,1g WITH
"**** Trace Started ****"
17:<0.31.0> Received f0,2g FROM <0.30.0> WITH
f<0.30.0>,the messageg
17:<0.31.0> Info f2,3g WITH
"We are here now"
17:<0.30.0> Received f2,4g FROM <0.31.0> WITH
fack,freceived,the messagegg

The implementation of a system tracer process that produces the printout above could
look like this:

tracer() ->
receive

{seq_trace,Label,TraceInfo} ->
print_trace(Label,TraceInfo,false);

{seq_trace,Label,TraceInfo,Ts} ->
print_trace(Label,TraceInfo,Ts);

Other -> ignore
end,
tracer().

print_trace(Label,TraceInfo,false) ->
io:format("~p:",[Label]),
print_trace(TraceInfo);

print_trace(Label,TraceInfo,Ts) ->

173Kernel Application (KERNEL)

seq trace (Module) Kernel Reference Manual

io:format("~p ~p:",[Label,Ts]),
print_trace(TraceInfo).

print_trace({print,Serial,From,_,Info}) ->
io:format("~p Info ~p WITH~n~p~n", [From,Serial,Info]);

print_trace({’receive’,Serial,From,To,Message}) ->
io:format("~p Received ~p FROM ~p WITH~n~p~n",

[To,Serial,From,Message]);
print_trace({send,Serial,From,To,Message}) ->

io:format("~p Sent ~p TO ~p WITH~n~p~n",
[From,Serial,To,Message]).

The code that creates a process that runs the tracer function above and sets that process
as the system tracer could look like this:

start() ->
Pid = spawn(?MODULE,tracer,[]),
seq_trace:set_system_tracer(Pid), % set Pid as the system tracer
ok.

With a function like test/0 below the whole example can be started.

test() ->
P = spawn(?MODULE, loop, [port]),
register(call_server, spawn(?MODULE, loop, [])),
start(),
P ! {port,message}.

174 Kernel Application (KERNEL)

Kernel Reference Manual user (Module)

user (Module)

user is a server which responds to all the messages defined in the I/O interface. The
code in user.erl can be used as a model for building alternative I/O servers.

Exports

start() -> void()

Starts the basic standard I/O server for the user interface port.

175Kernel Application (KERNEL)

wrap log reader (Module) Kernel Reference Manual

wrap log reader (Module)

wrap log reader is a function to read internally formatted wrap disk logs, refer to
disk log(3). wrap log reader does not interfere with disk log activities; there is
however a known bug in this version of the wrap log reader, see chapter bugs below.

A wrap disk log file consists of several files, called index files. A log file can be opened
and closed. It is also possible to open just one index file separately. If an non-existent or
a non-internally formatted file is opened, an error message is returned. If the file is
corrupt, no attempt to repair it will be done but an error message is returned.

If a log is configured to be distributed, there is a possibility that all items are not loggen
on all nodes. wrap log reader does only read the log on the called node, it is entirely
up to the user to be sure that all items are read.

Exports

chunk(Continuation)

chunk(Continuation, N) -> fContinuation2, Termsg | fContinuation2, Terms, Badbytesg |
fContinuation2, eofg | ferror, Reasong

Types:

� Continuation = continuation()
� N = int() > 0 | infinity
� Continuation2 = continuation()
� Terms= [term()]
� Badbytes = integer()

This function makes it possible to efficiently read the terms which have been appended
to a log. It minimises disk I/O by reading large 8K chunks from the file.

The first time chunk is called an initial continuation returned from the open/1, open/2
must be provided.

When chunk/3 is called, N controls the maximum number of terms that are read from
the log in each chunk. Default is infinity, which means that all the terms contained in
the 8K chunk are read. If less than N terms are returned, this does not necessarily mean
that end of file is reached.

The chunk function returns a tuple fContinuation2, Termsg, where Terms is a list of
terms found in the log. Continuation2 is yet another continuation which must be
passed on into any subsequent calls to chunk. With a series of calls to chunk it is then
possible to extract all terms from a log.

176 Kernel Application (KERNEL)

Kernel Reference Manual wrap log reader (Module)

The chunk function returns a tuple fContinuation2, Terms, Badbytesg if the log is
opened in read only mode and the read chunk is corrupt. Badbytes indicates the
number of non-Erlang terms found in the chunk. Note also that the log is not repaired.

chunk returns fContinuation2, eofg when the end of the log is reached, and ferror,
Reasong if an error occurs.

The returned continuation may or may not be valid in the next call to chunk. This is
because the log may wrap and delete the file into which the continuation points. To
make sure this does not happen, the log can be blocked during the search.

close(Continuation) -> ok

Types:

� Continuation = continuation()

This function closes a log file properly.

open(Filename) -> OpenRet

open(Filename, N) -> OpenRet

Types:

� File = string() | atom()
� N = integer()
� OpenRet = fok, Continuationg | ferror, Reasong
� Continuation = continuation()

Filename specifies the name of the file which is to be read.

N specifies the index of the file which is to be read. If N is omitted the whole wrap log
file will be read; if it is specified only the specified index file will be read.

The open function returns fok, Continuationg if the log/index file was successfully
opened. The Continuation is to be used when chunking or closing the file.

The function returns ferror, Reasong for all errors.

Bugs

This version of the wrap log reader does not detect if the disk log wraps to a new
index file between a wrap log reader:open and the first wrap log reader:chunk. In
this case the chuck will actually read the last logged items in the log file, because the
opened index file was truncated by the disk log.

See Also

disk log(3)

177Kernel Application (KERNEL)

app Kernel Reference Manual

app (File)

The application resource file specifies the resources an application uses, and how the
application is started. There must always be one application resource file for each
application in the system.

This file is read when an application is loaded, or by the start script generating tools
(systools).

FILE SYNTAX

The application resource file is called Name.app where Name is the name of the
application. The file should be located in the ebin directory for the application.

The .app file contains one single Erlang term, which is called an application specification.
The file has the following syntax:

{application, ApplName,
[{description, String},
{vsn, String},
{id, String},
{modules, [{Mod1,Vsn1}, Mod2, {Mod3,Vsn3} .., {ModN,VsnN}]},
{maxP, Int | infinity},
{maxT, Seconds | infinity},
{registered, [Name1, Name2, ...]},
{applications, [Appl1, Appl2, .., ApplN]},
{included_applications, [Appl1, Appl2, .., ApplN]},
{env, [{Par1, Val1}, {Par2, Val2} .., {ParN, ValN}]},
{mod, {Mod, StartArgs}},
{start_phases, [{Phase, PhaseArgs}]}]}.

The keys have the following meanings:

� Name = atom() is the name of the application.

� Description = string() is a textual description of the application.

� Vsn = string() is the version of the application. This string must be a valid
filename.

� Id = string() is the product identification of the application.

� Modules = [Mod1 | fMod1, Vsn1g] is a list of all the modules and their versions
introduced by this application. A module can be listed without version, only the
name of the module is stated. A module can only be defined in one application.

� MaxT = int() | infinity is the maximum time that the application can run (or
the atom infinity). The key maxT is optional and defaults to infinity.

178 Kernel Application (KERNEL)

Kernel Reference Manual app

� Registered = [atom()] is a list of all the names of registered processes started in
this application.

� applications = [atom()] is a list of applications which must be started before
this application is started. Most applications have dependencies to the Kernel and
STDLIB applications.

� included applications = [atom()] is a list of applications which are included
by this application. An included application is loaded, but not started, by the
application controller. Processes implemented in an included application
should be placed underneath a supervisor in the including application. This key is
optional and defaults to [].

� env is a list of the environment variables in the application. Each parameter ParX
is an atom, and the associated ValX can be any term. The env key is optional and
defaults to an empty list.

� mod is the application callback module of the application behaviour. The
application master starts the application by evaluating the function
Mod:start(Type, StartArgs). When the application has stopped, by command
or because it terminates, the application master calls Mod:stop(State) to let the
application clean up. If no State was returned from Mod:start/2, Mod:stop([])
is called.
The mod key should be omitted for applications which are code libraries, such as
the application STDLIB. These applications have no dynamic behaviour of their
own and should not have a start function.

� start phases is a list of start phases and the attached start arguments for the
application. The application master starts the application by evaluating the
function Mod:start phase(Phase, Type, PhaseArgs) for each defined start
phase. Mod is the same callback module as defined in the mod key. Each parameter
Phase is an atom, and the associated PhaseArgs is a list of any terms. The key
start phases is optional, and the behaviour of the system is dependent if the key
is defined or not, refer to application (3).

SEE ALSO

application(3), systools(3)

179Kernel Application (KERNEL)

config (File)

A configuration file contains values for configuration parameters for the applications in
the system. The command erl -config Name tells the system to use data in the system
configuration file Name.config to override the arguments contained in the application
resource files for the set of applications used by this system.

An application should call application:get env(ApplName, Parameter) to retrieve the
values for the configuration parameters.

The parameters can also be overridden from the command line:

erl -ApplName Par1 Val1 Par2 Val2 ...

Note:
Each term should be an Erlang term. However, in the Unix shell, the term must be
enclosed in single quotation marks. For example: ’ffile, “a.log”g’.

FILE SYNTAX

The configuration file is called Name.config where Name is the name of the application.

The file has the following syntax:

[{AppName, [{Par, Val}]}].

There is one tuple for each application. The second element in each tuple is a list of
configuration parameters and their values.

� AppName = atom() is the name of the application.

� Par = atom() is the name of a configuration parameter.

� Val = term() is the value of the configuration parameter.

SEE ALSO

application(3), systools(3)

180 Kernel Application (KERNEL)

Index

Modules are typed in this way.
Functions are typed in this way.

abcast/2
rpc , 164

abcast/3
rpc , 164

abs/1
erlang , 72

accept/1
gen tcp , 127

accept/2
gen tcp , 127

accessible_logs/0
disk log , 50

add_path/1
code , 42

add_patha/1
code , 42

add_paths/1
code , 42

add_pathsa/1
code , 43

add_pathsz/1
code , 42

add_pathz/1
code , 42

add_report_handler/1
error logger , 111

add_report_handler/2
error logger , 111

add_slave/1
erl boot server , 63

all_loaded/0
code , 45

allow/1

net kernel , 156

alog/2
disk log , 50

alog_terms/2
disk log , 51

application
get_all_env/0, 31
get_all_env/1, 31
get_all_key/0, 31
get_all_key/1, 31
get_application/0, 32
get_application/1, 32
get_env/1, 32
get_env/2, 32
get_key/1, 32
get_key/2, 32
load/1, 32
load/2, 32
loaded_applications/0, 33
Module:config_change/3, 36
Module:prep_stop/1, 37
Module:start/2, 36
Module:start_phase/3, 36
Module:stop/1, 37
permit/2, 33
start/1, 34
start/2, 34
start_type/0, 34
stop/1, 34
takeover/2, 35
which_applications/0, 35

apply/3
erlang , 72

async_call/4
rpc , 166

atom_to_list/1
erlang , 72

181Kernel Application (KERNEL)

Index

auth
cookie/0, 39
cookie/1, 40
exists/1, 39
is_auth/1, 39
node_cookie/2, 39, 40
open/1, 39
start/0, 39
stop/0, 39

balog/2
disk log , 50

balog_terms/2
disk log , 51

binary_to_list/1
erlang , 73

binary_to_list/3
erlang , 73

binary_to_term/1
erlang , 73

block/1
disk log , 51

block/2
disk log , 51

block_call/4
rpc , 163

blog/2
disk log , 57

blog_terms/2
disk log , 57

boot/1
init , 149

breopen/3
disk log , 61

btruncate/2
disk log , 61

bump_reductions/1
erlang , 73

call/4
rpc , 163

cast/4
rpc , 163

change_group/2
file , 113

change_header/2
disk log , 52

change_notify/3
disk log , 52

change_owner/2
file , 113

change_owner/3
file , 113

change_size/2
disk log , 52

change_time/2
file , 113

change_time/3
file , 113

chunk/1
wrap log reader , 176

chunk/2
disk log , 53
wrap log reader , 176

chunk/3
disk log , 53

chunk_info/1
disk log , 54

chunk_step/3
disk log , 54

clash/0
code , 47

clear_cmd/0
heart , 141

close/1
disk log , 54
file , 113
gen tcp , 127
gen udp , 130
inet , 143
wrap log reader , 177

cmd/1
os , 158

code
add_path/1, 42
add_patha/1, 42
add_paths/1, 42
add_pathsa/1, 43
add_pathsz/1, 42
add_pathz/1, 42

182 Kernel Application (KERNEL)

Index

all_loaded/0, 45
clash/0, 47
compiler_dir/0, 46
del_path/1, 43
delete/1, 44
delete_interpret/1, 47
ensure_loaded/1, 44
get_object_code/1, 46
get_path/0, 42
interpret/1, 47
interpret_binary/3, 47
interpreted/0, 48
interpreted/1, 48
is_loaded/1, 44
lib_dir/0, 45
lib_dir/1, 45
load_abs/1, 43
load_binary/3, 45
load_file/1, 43
objfile_extension/0, 46
priv_dir/1, 46
purge/1, 44
replace_path/2, 43
root_dir/0, 45
set_path/1, 42
soft_purge/1, 44
start/0, 41
start/1, 41
start_link/0, 41
start_link/1, 41
stick_dir/1, 46
stop/0, 45
unstick_dir/1, 47
which/1, 47

compiler_dir/0
code , 46

concat_binary/1
erlang , 74

connect/3
gen tcp , 127

connect/4
gen tcp , 127

connect_node/1
net kernel , 157

consult/1
file , 113

controlling_process/2
gen tcp , 128
gen udp , 130

cookie/0
auth , 39

cookie/1
auth , 40

create/1
pg2 , 161

date/0
erlang , 74

del_dir/1
file , 114

del_lock/1
global , 132

del_lock/2
global , 132

del_path/1
code , 43

delete/1
code , 44
file , 114
pg2 , 161

delete_interpret/1
code , 47

delete_report_handler/1
error logger , 111

delete_slave/1
erl boot server , 64

disk log
accessible_logs/0, 50
alog/2, 50
alog_terms/2, 51
balog/2, 50
balog_terms/2, 51
block/1, 51
block/2, 51
blog/2, 57
blog_terms/2, 57
breopen/3, 61
btruncate/2, 61
change_header/2, 52
change_notify/3, 52
change_size/2, 52
chunk/2, 53
chunk/3, 53
chunk_info/1, 54
chunk_step/3, 54
close/1, 54

183Kernel Application (KERNEL)

Index

format_error/1, 55
inc_wrap_file/1, 55
info/1, 55
lclose/1, 56
lclose/2, 56
log/2, 57
log_terms/2, 57
open/1, 58
reopen/2, 60
reopen/3, 61
sync/1, 61
truncate/1, 61
truncate/2, 61
unblock/1, 62

dns_hostname/1
net adm , 154

element/2
erlang , 75

ensure_loaded/1
code , 44

erase/0
erlang , 75

erase/1
erlang , 75

erl boot server
add_slave/1, 63
delete_slave/1, 64
start/1, 63
start_link/1, 63
which_slaves/0, 64

erl ddll
format_error/1, 66
load_driver/2, 65
loaded_drivers/0, 66
start/0, 65
start_link/0, 65
stop/0, 65
unload_driver/1, 65

erl prim loader
get_file/1, 68
get_path/0, 69
set_path/1, 69
start/3, 68

erlang
abs/1, 72
apply/3, 72
atom_to_list/1, 72
binary_to_list/1, 73

binary_to_list/3, 73
binary_to_term/1, 73
bump_reductions/1, 73
concat_binary/1, 74
date/0, 74
element/2, 75
erase/0, 75
erase/1, 75
erlang:append_element/2, 72
erlang:binary_to_float/1, 73
erlang:cancel_timer/1, 73
erlang:check_process_code/2, 74
erlang:delete_module/1, 74
erlang:demonitor/1, 75
erlang:disconnect_node/1, 75
erlang:display/1, 75
erlang:float_to_binary/2, 77
erlang:fun_info/1, 77
erlang:fun_info/2, 78
erlang:fun_to_list/1, 78
erlang:function_exported/3, 77
erlang:garbage_collect/0, 78
erlang:garbage_collect/1, 78
erlang:get_cookie/0, 78
erlang:hash/2, 79
erlang:info/1, 80
erlang:is_builtin/3, 80
erlang:load_module/2, 82
erlang:loaded/0, 82
erlang:localtime/0, 82
erlang:localtime_to_universaltime/1,

82
erlang:md5/1, 83
erlang:md5_final/1, 83
erlang:md5_init/0, 83
erlang:md5_update/2, 83
erlang:module_loaded/1, 83
erlang:monitor/2, 84
erlang:phash/2, 87
erlang:port_info/2, 89
erlang:port_to_list/1, 90
erlang:ports/0, 89
erlang:pre_loaded/0, 90
erlang:process_display/2, 90
erlang:purge_module/1, 93
erlang:read_timer/1, 93
erlang:ref_to_list/1, 93
erlang:resume_process/1, 94
erlang:send_after/3, 94
erlang:set_cookie/2, 95
erlang:start_timer/3, 98
erlang:suspend_process/1, 98
erlang:system_flag/2, 98

184 Kernel Application (KERNEL)

Index

erlang:system_info/1, 99
erlang:trace/3, 100
erlang:trace_info/2, 102
erlang:trace_pattern/2, 103
erlang:trace_pattern/3, 103
erlang:universaltime/0, 105
erlang:universaltime_to_localtime/1,

105
exit/1, 75
exit/2, 76
fault/1, 76
fault/2, 76
float/1, 76
float_to_list/1, 77
get/0, 78
get/1, 78
get_keys/1, 78
group_leader/0, 79
group_leader/2, 79
halt/0, 79
halt/1, 79
hd/1, 80
integer_to_list/1, 80
is_alive/0, 80
is_process_alive/1, 80
length/1, 80
link/1, 80
list_to_atom/1, 81
list_to_binary/1, 81
list_to_float/1, 81
list_to_integer/1, 81
list_to_pid/1, 81
list_to_tuple/1, 81
make_ref/0, 83
make_tuple/2, 83
monitor_node/2, 84
node/0, 85
node/1, 85
nodes/0, 85
now/0, 85
open_port/2, 85
pid_to_list/1, 87
port_close/2, 88
port_command/2, 88
port_connect/2, 88
port_control/3, 89
process_flag/2, 90
process_flag/3, 91
process_info/1, 91
process_info/2, 92
processes/0, 93
put/2, 93
register/2, 94

registered/0, 94
round/1, 94
self/0, 94
setelement/3, 95
size/1, 95
spawn/1, 95
spawn/2, 95
spawn/3, 95
spawn/4, 96
spawn_link/1, 96
spawn_link/2, 96
spawn_link/3, 96
spawn_link/4, 96
spawn_opt/4, 96
split_binary/2, 97
statistics/1, 98
term_to_binary/1, 99
term_to_binary/2, 99
throw/1, 100
time/0, 100
tl/1, 100
trunc/1, 104
tuple_to_list/1, 104
unlink/1, 105
unregister/1, 105
whereis/1, 105
yield/0, 105

erlang:append_element/2
erlang , 72

erlang:binary_to_float/1
erlang , 73

erlang:cancel_timer/1
erlang , 73

erlang:check_process_code/2
erlang , 74

erlang:delete_module/1
erlang , 74

erlang:demonitor/1
erlang , 75

erlang:disconnect_node/1
erlang , 75

erlang:display/1
erlang , 75

erlang:float_to_binary/2
erlang , 77

erlang:fun_info/1
erlang , 77

erlang:fun_info/2

185Kernel Application (KERNEL)

Index

erlang , 78

erlang:fun_to_list/1
erlang , 78

erlang:function_exported/3
erlang , 77

erlang:garbage_collect/0
erlang , 78

erlang:garbage_collect/1
erlang , 78

erlang:get_cookie/0
erlang , 78

erlang:hash/2
erlang , 79

erlang:info/1
erlang , 80

erlang:is_builtin/3
erlang , 80

erlang:load_module/2
erlang , 82

erlang:loaded/0
erlang , 82

erlang:localtime/0
erlang , 82

erlang:localtime_to_universaltime/1
erlang , 82

erlang:md5/1
erlang , 83

erlang:md5_final/1
erlang , 83

erlang:md5_init/0
erlang , 83

erlang:md5_update/2
erlang , 83

erlang:module_loaded/1
erlang , 83

erlang:monitor/2
erlang , 84

erlang:phash/2
erlang , 87

erlang:port_info/2
erlang , 89

erlang:port_to_list/1
erlang , 90

erlang:ports/0
erlang , 89

erlang:pre_loaded/0
erlang , 90

erlang:process_display/2
erlang , 90

erlang:purge_module/1
erlang , 93

erlang:read_timer/1
erlang , 93

erlang:ref_to_list/1
erlang , 93

erlang:resume_process/1
erlang , 94

erlang:send_after/3
erlang , 94

erlang:set_cookie/2
erlang , 95

erlang:start_timer/3
erlang , 98

erlang:suspend_process/1
erlang , 98

erlang:system_flag/2
erlang , 98

erlang:system_info/1
erlang , 99

erlang:trace/3
erlang , 100

erlang:trace_info/2
erlang , 102

erlang:trace_pattern/2
erlang , 103

erlang:trace_pattern/3
erlang , 103

erlang:universaltime/0
erlang , 105

erlang:universaltime_to_localtime/1
erlang , 105

error handler
undefined_function/3, 106
undefined_lambda/3, 106

error logger
add_report_handler/1, 111

186 Kernel Application (KERNEL)

Index

add_report_handler/2, 111
delete_report_handler/1, 111
error_msg/1, 110
error_msg/2, 110
error_report/1, 108
error_report/2, 109
format/2, 110
info_msg/1, 110
info_msg/2, 110
info_report/1, 109
info_report/2, 109
logfile/1, 110
start/0, 108
start_link/0, 108
swap_handler/1, 111
tty/1, 110

error_msg/1
error logger , 110

error_msg/2
error logger , 110

error_report/1
error logger , 108

error_report/2
error logger , 109

eval/1
file , 114

eval_everywhere/3
rpc , 164

eval_everywhere/4
rpc , 164

exists/1
auth , 39

exit/1
erlang , 75

exit/2
erlang , 76

fault/1
erlang , 76

fault/2
erlang , 76

file
change_group/2, 113
change_owner/2, 113
change_owner/3, 113
change_time/2, 113
change_time/3, 113

close/1, 113
consult/1, 113
del_dir/1, 114
delete/1, 114
eval/1, 114
file_info/1, 114
format_error/1, 115
get_cwd/0, 115
get_cwd/1, 115
list_dir/1, 116
make_dir/1, 116
make_link/2, 116
make_symlink/2, 116
open/2, 117
path_consult/2, 118
path_eval/2, 118
path_open/3, 118
position/2, 118
pread/3, 119
pwrite/3, 119
read/2, 119
read_file/1, 119
read_file_info/1, 120
read_link/1, 121
read_link_info/1, 121
rename/2, 121
set_cwd/1, 122
sync/1, 122
truncate/1, 122
write/2, 122
write_file/2, 122
write_file_info/2, 123

file_info/1
file , 114

find_executable/1
os , 158

find_executable/2
os , 158

float/1
erlang , 76

float_to_list/1
erlang , 77

format/2
error logger , 110

format_error/1
disk log , 55
erl ddll , 66
file , 115
inet , 142

187Kernel Application (KERNEL)

Index

gen tcp
accept/1, 127
accept/2, 127
close/1, 127
connect/3, 127
connect/4, 127
controlling_process/2, 128
listen/2, 128
recv/2, 128
recv/3, 128
send/2, 129

gen udp
close/1, 130
controlling_process/2, 130
open/1, 130
open/2, 130
recv/2, 131
recv/3, 131
send/4, 131

get/0
erlang , 78

get/1
erlang , 78

get_all_env/0
application , 31

get_all_env/1
application , 31

get_all_key/0
application , 31

get_all_key/1
application , 31

get_application/0
application , 32

get_application/1
application , 32

get_args/0
init , 150

get_argument/1
init , 150

get_arguments/0
init , 149

get_closest_pid/1
pg2 , 161

get_cwd/0
file , 115

get_cwd/1

file , 115

get_env/1
application , 32

get_env/2
application , 32

get_file/1
erl prim loader , 68

get_key/1
application , 32

get_key/2
application , 32

get_keys/1
erlang , 78

get_local_members/1
pg2 , 162

get_members/1
pg2 , 162

get_object_code/1
code , 46

get_path/0
code , 42
erl prim loader , 69

get_plain_arguments/0
init , 150

get_status/0
init , 151

get_system_tracer/0
seq trace , 169

get_token/0
seq trace , 168

get_token/1
seq trace , 168

getaddr/2
inet , 144

getenv/0
os , 158

getenv/1
os , 159

gethostbyaddr/1
inet , 142

gethostbyname/1
inet , 142

gethostbyname/2

188 Kernel Application (KERNEL)

Index

inet , 143

gethostname/0
inet , 143

getpid/0
os , 159

global
del_lock/1, 132
del_lock/2, 132
notify_all_name/3, 133
random_exit_name/3, 133
random_notify_name/3, 133
re_register_name/2, 134
re_register_name/3, 134
register_name/2, 133
register_name/3, 133
registered_names/0, 133
send/2, 134
set_lock/1, 134
set_lock/2, 134
set_lock/3, 134
start/0, 135
start_link/0, 135
stop/0, 135
sync/0, 135
trans/2, 135
trans/3, 135
trans/4, 135
unregister_name/1, 135
whereis_name/1, 135

global group
global_groups/0, 137
info/0, 137
monitor_nodes/1, 137
own_nodes/0, 137
registered_names/2, 137
send/2, 138
send/4, 138
start/0, 139
start_link/0, 139
stop/0, 139
sync/0, 138
whereis_name/1, 138
whereis_name/3, 138

global_groups/0
global group , 137

group_leader/0
erlang , 79

group_leader/2
erlang , 79

halt/0
erlang , 79

halt/1
erlang , 79

hd/1
erlang , 80

heart
clear_cmd/0, 141
set_cmd/1, 141
start/0, 140

host_file/0
net adm , 154

inc_wrap_file/1
disk log , 55

inet
close/1, 143
format_error/1, 142
getaddr/2, 144
gethostbyaddr/1, 142
gethostbyname/1, 142
gethostbyname/2, 143
gethostname/0, 143
peername/1, 143
port/1, 143
setopts/2, 144
sockname/1, 143

info/0
global group , 137

info/1
disk log , 55

info_msg/1
error logger , 110

info_msg/2
error logger , 110

info_report/1
error logger , 109

info_report/2
error logger , 109

init
boot/1, 149
get_args/0, 150
get_argument/1, 150
get_arguments/0, 149
get_plain_arguments/0, 150
get_status/0, 151
reboot/0, 150

189Kernel Application (KERNEL)

Index

restart/0, 150
script_id/0, 151
stop/0, 150

integer_to_list/1
erlang , 80

interpret/1
code , 47

interpret_binary/3
code , 47

interpreted/0
code , 48

interpreted/1
code , 48

is_alive/0
erlang , 80

is_auth/1
auth , 39

is_loaded/1
code , 44

is_process_alive/1
erlang , 80

join/2
pg2 , 162

kernel_apply/3
net kernel , 156

lclose/1
disk log , 56

lclose/2
disk log , 56

leave/2
pg2 , 162

length/1
erlang , 80

lib_dir/0
code , 45

lib_dir/1
code , 45

link/1
erlang , 80

list_dir/1
file , 116

list_to_atom/1
erlang , 81

list_to_binary/1
erlang , 81

list_to_float/1
erlang , 81

list_to_integer/1
erlang , 81

list_to_pid/1
erlang , 81

list_to_tuple/1
erlang , 81

listen/2
gen tcp , 128

load/1
application , 32

load/2
application , 32

load_abs/1
code , 43

load_binary/3
code , 45

load_driver/2
erl ddll , 65

load_file/1
code , 43

loaded_applications/0
application , 33

loaded_drivers/0
erl ddll , 66

localhost/0
net adm , 154

log/2
disk log , 57

log_terms/2
disk log , 57

logfile/1
error logger , 110

make_dir/1
file , 116

make_link/2
file , 116

190 Kernel Application (KERNEL)

Index

make_ref/0
erlang , 83

make_symlink/2
file , 116

make_tuple/2
erlang , 83

Module:config_change/3
application , 36

Module:prep_stop/1
application , 37

Module:start/2
application , 36

Module:start_phase/3
application , 36

Module:stop/1
application , 37

monitor_node/2
erlang , 84

monitor_nodes/1
global group , 137
net kernel , 156

multi_server_call/2
rpc , 165

multi_server_call/3
rpc , 165

multicall/3
rpc , 164

multicall/4
rpc , 165

names/0
net adm , 154

nb_yield/1
rpc , 166

nb_yield/2
rpc , 166

net adm
dns_hostname/1, 154
host_file/0, 154
localhost/0, 154
names/0, 154
ping/1, 154
world/0, 154
world_list/2, 154

net kernel

allow/1, 156
connect_node/1, 157
kernel_apply/3, 156
monitor_nodes/1, 156

node/0
erlang , 85

node/1
erlang , 85

node_cookie/2
auth , 39, 40

nodes/0
erlang , 85

notify_all_name/3
global , 133

now/0
erlang , 85

objfile_extension/0
code , 46

open/1
auth , 39
disk log , 58
gen udp , 130
wrap log reader , 177

open/2
file , 117
gen udp , 130
wrap log reader , 177

open_port/2
erlang , 85

os
cmd/1, 158
find_executable/1, 158
find_executable/2, 158
getenv/0, 158
getenv/1, 159
getpid/0, 159
putenv/2, 159
type/0, 159
version/0, 159

own_nodes/0
global group , 137

parallel_eval/1
rpc , 166

path_consult/2
file , 118

191Kernel Application (KERNEL)

Index

path_eval/2
file , 118

path_open/3
file , 118

peername/1
inet , 143

permit/2
application , 33

pg2
create/1, 161
delete/1, 161
get_closest_pid/1, 161
get_local_members/1, 162
get_members/1, 162
join/2, 162
leave/2, 162
start/0, 162
start_link/0, 162
which_groups/0, 162

pid_to_list/1
erlang , 87

pinfo/1
rpc , 166

pinfo/2
rpc , 166

ping/1
net adm , 154

pmap/4
rpc , 166

port/1
inet , 143

port_close/2
erlang , 88

port_command/2
erlang , 88

port_connect/2
erlang , 88

port_control/3
erlang , 89

position/2
file , 118

pread/3
file , 119

print/1
seq trace , 168

priv_dir/1
code , 46

process_flag/2
erlang , 90

process_flag/3
erlang , 91

process_info/1
erlang , 91

process_info/2
erlang , 92

processes/0
erlang , 93

purge/1
code , 44

put/2
erlang , 93

putenv/2
os , 159

pwrite/3
file , 119

random_exit_name/3
global , 133

random_notify_name/3
global , 133

re_register_name/2
global , 134

re_register_name/3
global , 134

read/2
file , 119

read_file/1
file , 119

read_file_info/1
file , 120

read_link/1
file , 121

read_link_info/1
file , 121

reboot/0
init , 150

recv/2
gen tcp , 128
gen udp , 131

192 Kernel Application (KERNEL)

Index

recv/3
gen tcp , 128
gen udp , 131

register/2
erlang , 94

register_name/2
global , 133

register_name/3
global , 133

registered/0
erlang , 94

registered_names/0
global , 133

registered_names/2
global group , 137

rename/2
file , 121

reopen/2
disk log , 60

reopen/3
disk log , 61

replace_path/2
code , 43

reset_trace/0
seq trace , 169

restart/0
init , 150

root_dir/0
code , 45

round/1
erlang , 94

rpc
abcast/2, 164
abcast/3, 164
async_call/4, 166
block_call/4, 163
call/4, 163
cast/4, 163
eval_everywhere/3, 164
eval_everywhere/4, 164
multi_server_call/2, 165
multi_server_call/3, 165
multicall/3, 164
multicall/4, 165
nb_yield/1, 166
nb_yield/2, 166

parallel_eval/1, 166
pinfo/1, 166
pinfo/2, 166
pmap/4, 166
safe_multi_server_call/2, 165
safe_multi_server_call/3, 166
sbcast/2, 164
sbcast/3, 164
server_call/4, 164
start/0, 163
stop/0, 163
yield/1, 166

safe_multi_server_call/2
rpc , 165

safe_multi_server_call/3
rpc , 166

sbcast/2
rpc , 164

sbcast/3
rpc , 164

script_id/0
init , 151

self/0
erlang , 94

send/2
gen tcp , 129
global , 134
global group , 138

send/4
gen udp , 131
global group , 138

seq trace
get_system_tracer/0, 169
get_token/0, 168
get_token/1, 168
print/1, 168
reset_trace/0, 169
set_system_tracer/1, 169
set_token/1, 168
set_token/2, 167

server_call/4
rpc , 164

set_cmd/1
heart , 141

set_cwd/1
file , 122

193Kernel Application (KERNEL)

Index

set_lock/1
global , 134

set_lock/2
global , 134

set_lock/3
global , 134

set_path/1
code , 42
erl prim loader , 69

set_system_tracer/1
seq trace , 169

set_token/1
seq trace , 168

set_token/2
seq trace , 167

setelement/3
erlang , 95

setopts/2
inet , 144

size/1
erlang , 95

sockname/1
inet , 143

soft_purge/1
code , 44

spawn/1
erlang , 95

spawn/2
erlang , 95

spawn/3
erlang , 95

spawn/4
erlang , 96

spawn_link/1
erlang , 96

spawn_link/2
erlang , 96

spawn_link/3
erlang , 96

spawn_link/4
erlang , 96

spawn_opt/4
erlang , 96

split_binary/2
erlang , 97

start/0
auth , 39
code , 41
erl ddll , 65
error logger , 108
global , 135
global group , 139
heart , 140
pg2 , 162
rpc , 163
user , 175

start/1
application , 34
code , 41
erl boot server , 63

start/2
application , 34

start/3
erl prim loader , 68

start_link/0
code , 41
erl ddll , 65
error logger , 108
global , 135
global group , 139
pg2 , 162

start_link/1
code , 41
erl boot server , 63

start_type/0
application , 34

statistics/1
erlang , 98

stick_dir/1
code , 46

stop/0
auth , 39
code , 45
erl ddll , 65
global , 135
global group , 139
init , 150
rpc , 163

stop/1
application , 34

194 Kernel Application (KERNEL)

Index

swap_handler/1
error logger , 111

sync/0
global , 135
global group , 138

sync/1
disk log , 61
file , 122

takeover/2
application , 35

term_to_binary/1
erlang , 99

term_to_binary/2
erlang , 99

throw/1
erlang , 100

time/0
erlang , 100

tl/1
erlang , 100

trans/2
global , 135

trans/3
global , 135

trans/4
global , 135

trunc/1
erlang , 104

truncate/1
disk log , 61
file , 122

truncate/2
disk log , 61

tty/1
error logger , 110

tuple_to_list/1
erlang , 104

type/0
os , 159

unblock/1
disk log , 62

undefined_function/3

error handler , 106

undefined_lambda/3
error handler , 106

unlink/1
erlang , 105

unload_driver/1
erl ddll , 65

unregister/1
erlang , 105

unregister_name/1
global , 135

unstick_dir/1
code , 47

user
start/0, 175

version/0
os , 159

whereis/1
erlang , 105

whereis_name/1
global , 135
global group , 138

whereis_name/3
global group , 138

which/1
code , 47

which_applications/0
application , 35

which_groups/0
pg2 , 162

which_slaves/0
erl boot server , 64

world/0
net adm , 154

world_list/2
net adm , 154

wrap log reader
chunk/1, 176
chunk/2, 176
close/1, 177
open/1, 177
open/2, 177

195Kernel Application (KERNEL)

Index

write/2
file , 122

write_file/2
file , 122

write_file_info/2
file , 123

yield/0
erlang , 105

yield/1
rpc , 166

196 Kernel Application (KERNEL)

