
Mesh

version 1.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 Mesh User’s Guide 1

1.1 Introduction . 2

Architecture . 2

1.2 Services . 3

Services Offered by the Measurement Handler . 3

Basic Concepts . 4

Implementation of Measurement Objects . 5

MRP Models . 6

Working with the Measurement Handler . 9

Revival of Measurement Objects . 18

Measurement Object Operation and Measurement Value Reporting 19

Threshold and Tide-mark Support . 19

The Watchdog . 21

Alarms, Events and Logs . 22

1.3 Mesh SNMP Interface . 25

Mesh SNMP adaptation . 25

1.4 Mesh Release Notes . 36

Mesh - Measurement Handler v1.1.0 . 36

Mesh - Measurement Handler v1.0.1 . 36

Mesh - Measurement Handler v1.0.0 . 37

2 Mesh Reference Manual 39

2.1 mesh (Application) . 44

2.2 mesh (Module) . 45

2.3 mesh lib (Module) . 68

2.4 mesh snmp (Module) . 72

List of Figures 75

Glossary 77

iMesh

ii Mesh

Chapter 1

Mesh User's Guide

The measurement handler Mesh is an Operation and Maintenance application. It contains support for
applications to register measurement types and create measurement objects, which in turn perform
measurements and report them to Mesh.

Mesh handles common tasks, such as threshold checking and some of the supervision. Mesh also
provides manager functions for logging measurement reports and controlling the measurement types
and objects.

Mesh is a management protocol independent application that needs protocol adaptations to
communicate with a remote manager. Currently, an SNMP adaptation is included in the Mesh
application.

1Mesh

1.1 Introduction

The operation and maintenance support in OTP consists of a generic model for management
subsystems in OTP and some components to be used in these subsystems. The model that this support
is based upon, is described in “OAM Principles”.

This document describes one of these components, the measurement handler Mesh. Mesh consists of
functions, which support, create and control measurement types and objects, and associated logs.

Mesh uses the applications SASL, Mnesia, and EVA.

Architecture

Mesh is designed to work as a distributed application, which means that it always executes on one node,
but will be restarted on a standby node if the current node goes down. Mesh should run on the same
node as other operation and maintenance applications, specifically the management protocol
termination application, to minimize internal network traffic.

Mesh is designed to be protocol independent, and may be used with different management protocols.
For each such protocol, a Mesh adaptation must be written. Currently, an SNMP adaptation is
included, and other adaptations (e.g., HTTP, CORBA) may follow in the future.

The Measurement Handler system can run in both server mode and in client mode. In client mode, no
processes are running, but the code implementing the API is loaded. There must always be one Mesh
server running on a node in a network of Erlang nodes.

For Mesh, all involved nodes are seen as one (distributed) system. This means for example that there is
one active alarm list (in EVA) for the entire system.

2 Mesh

1.2 Services

The purpose of this document is to give an understanding of how the Measurement Handler works, and
how to build applications to interact with Mesh. The intention is not to give all details about the
functions making up the Mesh API. For a complete description of this API, please see the mesh
Reference Manual.

For a description of the statistical functions that are available through the Measurement Handler
application, please see the mesh lib Reference Manual.

The main purpose of the Measurement Handler is to provide the user with a simplified and uniform
way of handling measurement data, as well as managing the applications and processes generating the
data. To accomplish this, the Measurement Handler application takes care of common tasks, such as
creation and control of measurement applications/processes, node and measurement application
supervision, threshold checking and notification, tide-mark handling, and so on. A model is available to
the user for implementing the applications and processes performing the actual measurements.

Services Offered by the Measurement Handler

The following is a complete list of the services the Measurement handler currently offers:

� measurement type registration

� book-keeping of measurement types

� administration of measurement types (i.e., locking, unlocking and shutting down)

� supervision of measurement types

� control of the total number of measurement types (reporting to EVA)

� creation of measurement objects

� book-keeping of measurement objects

� administration of measurement object (i.e., starting and stopping them)

� resetting of measurement objects

� supervision of measurement objects (at least part of the supervision scheme

� revival of disabled measurement objects, using the last known settings

� control of the total number of measurement objects (reporting to EVA)

� control of the number of measurement objects belonging to the same measurement type
(reporting to EVA)

� supervision of nodes used by measurement types and objects

� storage and logging of measurement reports received from measurement objects

� threshold support for measurement objects

� threshold administration (i.e., enabling and disabling specified thresholds)

� tide-mark support for measurement objects

� logging of events and alarms generated

� support for statistical handling of measurement samples

� implementation models for measurement types and objects

3Mesh

Chapter 1: Mesh User's Guide

Basic Concepts

A Measurement Object is a user provided application or process collecting and filtering measurement
samples provided by one or more resource objects, see below. Measurement objects are grouped
together in Measurement Types.

A Measurement Type may be regarded as a container, holding all the code needed when dealing with
the associated measurement objects. Specifically, the measurement type shall provide an interface,
which is used by the Measurement Handler to create, delete, and control the measurement objects.

A Resource Object is a user or operating system provided application or device producing measurement
samples.

Measurement types and objects exhibit three groups of states that are supported by the Measurement
Handler:

� operability states: whether or not the type/object is physically installed and working.
A measurement object may be in one of the following states:

– enabled: it has been created and is working as intended.

– disabled: it has been created but no longer works, e.g., due to a crash.

A measurement type may only be in an enabled state.

� usage states: whether or not the type/object is actively in use, and if so, whether or not it has spare
capacity for additional users.
A measurement type may be in one of the states below:

– idle: no measurement objects have been created.

– active: some measurement objects have been created, but one or more objects may still be
created.

– busy: the maximum number of measurement objects allowed (set during measurement type
registration) has been reached.

A measurement object may only be in a busy state.

� administration states: permission to use or prohibition against using the type/object, imposed
through the management service.
A measurement type may be in one of the following states:

– locked: the type can currently not be used. Existing measurement objects will immediately
be deleted.

– shutting down: use of the type is permitted to already existing measurement objects only.
Once all objects have been deleted, the type will automatically enter state locked.

– unlocked: no restrictions. new measurement objects may freely be created (provided the
usage state does not hinder this).

A measurement object may be in one of the following states:

– stopped: the object is idle.

– started: the object is running, performing its duties.

4 Mesh

1.2: Services

Implementation of Measurement Objects

Basically a measurement object consists of a server, polling one or more resource objects for
measurement samples, which are filtered and reported to the Measurement Handler. However,if
supervision is desired, parts of the supervision scheme have to be implemented by the user. This leads
us to the concept of Measurement Responsible Processes, MRPs.

A Measurement Responsible Process may be regarded as the gateway between the measurement type
interface and the individual measurement objects (belonging to that specific measurement type). There
may be many measurement objects, but we want to access all of them with the same function in the
measurement type interface, meaning that we have to provide the (state-less) interface with information
about how to contact a certain measurement object. There are basically two ways of doing this:

� we provide the interface with the address (the process identifier) to each measurement object we
are interested in. In this case we say that the measurement object is its own MRP.

� we provide the measurement interface with the address (the process identifier) to a server, which
in turn keeps track of the existing measurement objects and forwards the order/request to the
correct measurement object. Using this design we may address the measurement objects using
logical names, letting the server translate the name to a process identifier. In this case the server is
the MRP.

The above alternatives are a matter of choice, depending on the supervision required; this is explained
in greater detail below. Mesh supports both alternatives, provided the user follows some basic rules.
The first one is to ensure that the MRP fulfills the following four requirements:

� it shall supervise one or more measurement objects.

� it shall map the measurement object identifier to the correct process identifier, thereby enabling
communication with measurement objects.

� it shall keep track of the available resources, mapping new measurement objects to the correct
resource.

� it shall by its mere existence ensure Mesh that the user supplied supervision scheme is still
working. That is, Mesh only supervises the MRP (and the node it resides on); the MRP has to
supervise every individual measurement object, reporting to Mesh whenever one gets disabled
(and order revival, if that is desired).
Note: should the MRP not report measurement object termination to Mesh, the operation of the
Measurement Handler is by no means guaranteed - most probably it will fail!!!

Secondly, should an MRP terminate, Mesh assumes that the corresponding measurement objects also
terminates! In short, an MRP has to be very robust, i.e., it has to trap exits, even internally (for example
by letting the inner loop be surrounded by a catch-statement, where run-time errors may be caught and
the inner loop re-entered).

Finally, when Mesh calls functions in the measurement type interface, the MRP process identifier
should be supplied as one of the arguments. The measurement type interface forwards the order to the
MRP, e.g., by sending a message to the MRP, which in turn performs the order, or forwards it to the
correct measurement object. For this to work, it is required that the measurement type interface (when
the creation of a new measurement object is ordered), returns the process identifier to the MRP
responsible for the new object.

Three suggested MRP models are described extensively below, in section “MRP Models”.

5Mesh

Chapter 1: Mesh User's Guide

MRP Models

As seen previously, in the section “Implementation of Measurement Objects”, it is required that all
measurement objects are linked to a Measurement Responsible Process. The Measurement Responsible
Process must also fulfill some requirements.

There are three main implementation cases:

Figure 1.1: MRP Models. (R=Resource Object, SV=Supervisor, MO=Measurement Object)

Each of the three cases is described in depth below.

Case I - applications and OTP supervision

In this case the measurement objects are part of an application. The OTP mechanisms for supervision
are fully used, and the OTP mechanisms for changing code in runtime may be used.

When the application is started, it registers the corresponding measurement type in Mesh. This causes
Mesh to call the init function in the measurement type interface; this function will return (to Mesh)
the Process Identifier of the MRP (it may even start the MRP).

6 Mesh

1.2: Services

Note:
A registered name is not adequate, since Mesh uses the PID to get the node where the MRP resides!

Now that the measurement type has been registered, measurement objects may be created. This causes
Mesh to call the create measurement function in the measurement type interface. It is required that
this function returns the process identifier of the associated MRP (the one mentioned above), which
Mesh will supervise. Mesh will also supervise the node where the MRP is residing.

When Mesh wants to communicate with any measurement object, using the measurement type
interface, it is the responsibility of the MRP to map the measurement object identifier to the process
identifier in question, and to forward the order/message to that process. (The MRP may for example
internally keep a list of tuples fMeasurementID, PIDg.

Should a measurement object terminate, the MRP will notify Mesh (and also decide if it should request
revival of the object).

Should the MRP itself terminate, e.g., due to a node crash, Mesh will use EVA to notify the manager
about the disabled measurement objects (or unconnected, depending on the type of crash). Mesh will
then wait for the node to be restarted. If just the connection to the node was lost Mesh will try to
re-connect to the MRP. If the attempt is successful, the manager will be informed (via EVA) about the
measurement type and the measurement objects being reconnected, otherwise Mesh will wait for the
application to be restarted, the type re-registered and the measurement objects revived.

Should the application restart, it will once again try to register the measurement type, whereupon it
will be informed (using the return value of the registration function) by Mesh that the type has already
been registered. The application may now choose to ask Mesh to restart the measurement objects it is
aware of (i.e., those measurement objects that have not been explicitly deleted by the manager or the
application). It shall be noted that the registration attempt will cause Mesh to once again call the init
function in the measurement interface, since it has to get the process identifier of the new MRP!

Case II - no applications, and simplified supervision

In this case the measurement objects are not part of an application, and the OTP mechanisms for
supervision are not fully utilized. Instead, the MRP supervises the measurement objects it has started,
restarting them (or requesting Mesh to restart them) when necessary. MRP itself is not supervised by
any other process than Mesh. Mesh, in turn, only notifies the manager if the MRP terminates.
Therefore, the MRP is not restarted unless the manager explicitly orders Mesh to re-register the
measurement type (more about this below).

A process, or the manager, registers the measurement type in Mesh. As previous, this will cause Mesh
to call the init function in the measurement type interface; this function will return the process
identifier of the MRP.

Now that the measurement type has been registered, measurement objects may be created. Mesh will
then call the create measurement function in the measurement type interface. This function returns
the process identifier of the associated MRP (the one mentioned above), which Mesh will supervise.
Mesh will also supervise the node where the MRP is residing.

As in the previous case, the MRP will handle the mapping of measurement object identifiers to the
correct corresponding process identifier, forwarding messages and orders to the correct recipient.
Should a measurement object terminate, MRP shall notify Mesh, and decide if Mesh should revive the
measurement object.

Should the MRP itself terminate, for example, due to a node crash, Mesh will use EVA to notify the
manager about the corresponding measurement objects being disabled (or unconnected, depending on
the type of crash). Mesh will then wait for the node to be started again. In instances where only the

7Mesh

Chapter 1: Mesh User's Guide

connection to the node is lost Mesh will try to re-connect to the MRP. Should the attempt succeed, the
manager will (via EVA) be informed about the measurement type and the measurement objects being
reconnected. Otherwise Mesh will wait for the application to be restarted, the measurement type
re-registered and the measurement objects revived.

Note:
Should the manager directly order revival of the measurement objects (mesh:revive measurement),
the attempt will fail and the return value will inform the manager the cause of the previous
termination of the MRP.

When re-registration has been ordered and completed, Mesh may be ordered to revive the objects it is
aware of (i.e., those measurement objects that have not been explicitly deleted by the manager or the
application).

Note:
Even in this case the registration attempt will again causes Mesh to call the init function in the
measurement interface, since it has to get the process identifier of the new MRP!

It should be noted that the OTP mechanisms for changing code in runtime cannot be used in this case.

Case III - each measurement object is its own MRP

In this case each measurement object also functions as an MRP. This means that if the measurement
objects are terminated they will not be restarted, unless Mesh is explicitly ordered by the manager to
revive them.

A process, or the manager, will register the measurement type in Mesh. This causes Mesh to call the
init function in the measurement type interface; unlike Case I and II, this function will return the
atom undefined (since there is no common MRP here).

Now measurement objects may be created. As above, this results in the create measurement function
in the measurement type interface being called. It is required that this function returns the MRP PID
associated with the measurement object, i.e., the PID of the measurement object itself! Mesh will
supervise this process, and also the node where it is residing.

Should a measurement object terminate, Mesh will, using EVA, notify the manager of this, whereupon
Mesh will wait for further orders. Provided the node in question is up, the manager may order Mesh to
revive the measurement objects. Once again, when the create measurement function in the
measurement type interface is called, and will return the PID of the MRP/measurement object.

Should it be unclear whether a measurement object/MRP has actually terminated (for example, if the
connection to a node has been lost), MRP will wait for the node to be connected once again. Mesh will
then check whether or not the measurement object/MRP still exists. If it does, the manager will be
informed (via EVA) that it still exists or that the the measurement object has been disabled.

It should be noted that the OTP mechanisms for changing code in runtime cannot be used in this case.

8 Mesh

1.2: Services

Working with the Measurement Handler

In the following example we will take a close look at how to start and work with the Measurement
Handler. This example demonstrates the functionality of the Measurement Handler, it is run on only
one node and is extremely simplified and therefore may not show the optimal way to configure the
system and the different applications required.

We will be using the simple interface module below, diversity.erl. This module uses the “Case II”
model described in section “MRP Models”, as described in the previous chapter.

-module(diversity).

%% Necessary type interface functions!
-export([init/1,

terminate/1,
create_measurement/5,
delete_measurement/3,
start_measurement/3,
stop_measurement/2,
reset_measurement/3]).

-export([mrp/0,
meas/2]).

%% A simple measurement type interface.

init(TypeName) ->
spawn(?MODULE, mrp, []).

terminate(undefined) ->
ok;

terminate(MRP) ->
MRP ! terminate,
ok.

create_measurement(undefined, _Type, _Meas, _Res, _Args) ->
{error, no_mrp};

create_measurement(MrpInit, TypeName, MeasName, ResId, InitArgs) ->
MrpInit ! {create_measurement, self(), MeasName, InitArgs},
receive

{Pid,MrpInit} ->
MrpInit

end.

start_measurement(MRP, MeasName, Args) ->
MRP ! {start, MeasName, Args},
ok.

stop_measurement(MRP, MeasName) ->
MRP ! {stop, MeasName},
ok.

9Mesh

Chapter 1: Mesh User's Guide

reset_measurement(MRP, MeasName, Args) ->
MRP ! {reset, MeasName, Args},
ok.

delete_measurement(MRP, MeasName, Args) ->
MRP ! {delete_measurement, MeasName, Args},
ok.

%% The code implementing a Measurement Responsible Process.

mrp() ->
process_flag(trap_exit, true),
catch mrp_loop([]),
mrp().

mrp_loop(MeasList) ->
receive

{create_measurement, Sender, MeasId, InitArgs} ->
Pid = spawn_link(?MODULE, meas, [self(), MeasId]),
Sender ! {Pid, self()},
mrp_loop([{MeasId, Pid} | MeasList]);

{delete_measurement, MeasId, InitArgs} ->
case lists:keysearch(MeasId, 1, MeasList) of

false ->
done;

{value, {MeasId,Pid}} ->
exit(Pid, kill)

end,
% We remove the measurement from the list when the
% exit signal is received.

mrp_loop(MeasList);
{start, MeasId, Args} ->

send_to_meas(MeasId, MeasList, {start,Args}),
mrp_loop(MeasList);

{stop, MeasId} ->
send_to_meas(MeasId, MeasList, stop),
mrp_loop(MeasList);

{reset, MeasId, Args} ->
send_to_meas(MeasId, MeasList, {reset,Args}),
mrp_loop(MeasList);

{’EXIT’, Pid, Reason} ->
case lists:keysearch(Pid, 2, MeasList) of

false ->
mrp_loop(MeasList);

{value, {MeasId,Pid}} ->
mesh:measurement_terminated(MeasId, Reason),
mrp_loop(lists:keydelete(Pid, 2, MeasList))

end;
Other ->

mrp_loop(MeasList)
end.

10 Mesh

1.2: Services

send_to_meas(MeasName, MeasList, Msg) ->
case lists:keysearch(MeasName, 1, MeasList) of

false ->
done;

{value,{Meas,Pid}} ->
Pid ! Msg

end.

%% The code implementing a measurement object.

meas(MRP, Name) ->
process_flag(trap_exit, true),
meas_loop(MRP, Name, []).

meas_loop(MRP, Name, Args) ->
% A simple measurement object loop where we ignore
% start, stop and reset orders!

receive
{start,NewArgs} ->

meas_loop(MRP, Name, NewArgs);
stop ->

meas_loop(MRP, Name, Args);
{reset,NewArgs} ->

meas_loop(MRP, Name, NewArgs);
{’EXIT’, MRP, Reason} ->

done;
_Other ->

meas_loop(MRP, Name, Args)
end.

Preparation and Start of Mesh

In order to start Mesh the applications Mesh requires must first be started:

� SASL

� Mnesia

� EVA

First we make sure SASL is started:

1> application:start(sasl).
ok

Next, we prepare for and start Mnesia (running on a single node only). Mnesia is used by Mesh to
persistently store data about measurement types and measurement objects, see chapter for
further information.
First of all, a schema must be created on each node where the Mesh application may run (in this
example - one node).

11Mesh

Chapter 1: Mesh User's Guide

2> mnesia:create schema([]).
ok

3> application:start(mnesia).
ok

We now proceed by preparing for and starting EVA, which is used by Mesh to send and log events and
alarms. It should be noted that Mesh does not supervise EVA, meaning that normally this has to be
taken care of by the client application programmer.
It should also be noted that in the most cases, when EVA runs on the same node as Mesh internal
communication is reduced improving performance.
The first step in the EVA preparations consists of creating the Mnesia tables needed by the basic EVA
service and the EVA log service, on each of the nodes where the Mesh application is supposed to be
running.

4> eva sup:create tables log([]).
ok

5> disk log:open([fname,"default log"g,fformat,internalg,ftype,wrapg,
fsize,f10000,10gg]).

fok,"default log"g

6> eva sup:start link log("default log").
fok,<0.153.0>g

7> application:start(eva).
ok

NOTE: If we intend to use the Mesh SNMP adaptation, the previous commands shall instead be:

4> eva sup:create tables log snmp([]).
ok

5> disk log:open([fname,"default log"g,fformat,internalg,ftype,wrapg,
fsize,f10000,10gg]).

fok,"default log"g

6> eva sup:start link log snmp("default log", LogDir, MaxDirSize)
fok,<0.153.0>g

7> application:start(eva).
ok

We may now finally start Mesh. Firstly, we must create the Mnesia tables needed by Mesh. (Currently
two tables are used by Mesh, mesh type and mesh meas. They are replicated to disk and RAM on each
node that may run the Mesh application.)

12 Mesh

1.2: Services

8> mesh:create tables([]).
ok

9> application:start(mesh).
ok

Note:
if we want the Mesh SNMP adaptation to be started, the environment variable snmp adapted must
be set to true!

Registering Measurement Types

Now all preparations are finished, and we can start registering measurement types. We begin by
registering a type called diversity1, using the diversity interface module. Specify the number of
measurement objects, belonging to this type, that may be created (up to ten). The argument containing
any optional description of the type should be set to the string “A simple measurement type”.

10> mesh:register type(diversity1,"A simple measurement type",diversity,5).
fregistered,diversity1g

We register one more type, from which it may be possible to create 10 measurement objects:

11> mesh:register type(diversity2,"Another measurement type",diversity,10).
fregistered,diversity2g

When we register a type, Mesh will call the init function in the interface module. In our example, this
function spawns an MRP process, and returns the process identifier. Mesh links itself to the new MRP,
and stores the PID for further usage - it will be used whenever operations are performed on, or
associated with, the measurement type.

We may ask the Measurement handler for types currently registered:

12> mesh:list types().
[fdiversity1,[fextra,"A simple measurement type"g,

finterface mod,diversityg,
finstances,0g,
fmax instances,5g,
fadministrative state,unlockedg]g,

fdiversity2,[fextra,"Another measurement type"g,
finterface mod,diversityg,
finstances,0g,
fmax instances,10g,
fadministrative state,unlockedg]g]

In the listing we see that the administrative state of both types is unlocked, and that the number of
instances, i.e., the number of measurement objects created, is zero.

13Mesh

Chapter 1: Mesh User's Guide

Creating Measurement Objects

Now that we have registered measurement types, we may start creating measurement objects. We call
this first measurement object div11, specifying it belongs to the type diversity1. Since we do not have
any resource objects in this example, we may let the resource argument contain a zero. The argument
containing any optional description of the measurement object should be set to the string “A simple
measurement object”. We set the original administrative state to started, and specify the initial
arguments to be the list [1,2,3].

13> mesh:create measurement(div11,diversity1,"A simple measurement object",
0,started,[1,2,3]).

fcreated,div11g

When we create a measurement object, Mesh will call the create measurement function in the
interface module. However, in this example the two measurement types diversity1 and diversity2 share
the same interface module.

Note:
It is possible to have unique types sharing the same module.

As shown above each type has a corresponding MRP - and when Mesh calls the create measurement
function, one of the arguments is the process identifier of the correct MRP. The interface forwards the
create order to this MRP, which in turn spawns a process implementing the measurement object div11.
When the type interface finally returns, the return value shall contain the process identifier of the
process (ie. Measurement Responsible Process for div11). From now on, when managing div11, every
function call Mesh does will contain the MRP PID returned when div11 was created. This is illustrated
in the code above.

In Cases I & II the MRP PID must return the same value as when registering the type. In Case III a PID
value will be returned which cannot be the same as the returned value (undefined) when registering the
type. In all cases, the only requirement is that the MRP fulfills the responsibilities that were listed
previously
Mesh will ensure that it is linked to the MRP, and store the PID for further usage. As mentioned above,
it will be used whenever we want to use the measurement object.

At any time it is possible to ask the Measurement Handler for a list of the measurement objects created:

17> mesh:list measurements(diversity1).
[fdiv11,[fextra,"A simple measurement object"g,

fresources,0g,
finitial arguments,[1,2,3]g,
foperability state,enabledg,
fadministrative state,startedg]g]

14 Mesh

1.2: Services

Measurement Type and Object Administration

This section outlines how the registered measurement types and the created measurement objects may
be controlled.

Measurement objects may be started, stopped and reset. Each time we start or reset a measurement
object, we may specify a new list of arguments, manipulating the internal state of the measurement
object. It is important that these argument lists have the same format as the argument list specified
when the measurement object was created. This is due to the revival procedure, which will use the last
known argument list when re-creating the measurement object; we will take a closer look at this later
on in this document.

18> mesh:stop measurement(div11).
fstopped,div11g

19> mesh:list measurements(diversity1).
[fdiv11,[fextra,"A simple measurement object"g,

fresources,0g,
finitial arguments,[1,2,3]g,
foperability state,enabledg,
fadministrative state,stoppedg]g]

20> mesh:start measurement(div11, [4,5,6]).
fstarted,div11g

21> mesh:list measurements(diversity1).
[fdiv11,[fextra,"A simple measurement object"g,

fresources,0g,
finitial arguments,[4,5,6]g,
foperability state,enabledg,
fadministrative state,startedg]g]

22> mesh:reset measurement(div11,[7,8,9]).
freset,div11g

23> mesh:list measurements(diversity1).
[fdiv11,[fextra,"A simple measurement object"g,

fresources,0g,
finitial arguments,[7,8,9]g,
foperability state,enabledg,
fadministrative state,startedg]g]

For each of these orders, Mesh calls the corresponding function in the measurement type interface, with
one argument being the PID of the MRP associated with measurement object div11. It should be noted,
that it is the measurement type interface, via the MRP, that actually performs the orders, while Mesh in
this case has a book-keeping functionality.
In the list of functions above, we can also see that the initialization arguments Mesh keeps record of
changes when we reset and start the measurement object. (Mesh itself does not interpret this list of
arguments, that is up to the measurement object itself to do.)

When a measurement object is reset, Mesh will internally reset the measurement reports received from
the object, as well as the tide-marks associated with the object. If there are any thresholds set, they will
remain set, but in such a way that triggered thresholds may once again be triggered (i.e. through the
reset operation they become UT-triggered).

15Mesh

Chapter 1: Mesh User's Guide

The measurement object is also ordered to reset itself, via the measurement type interface function
reset measurement, using the supplied arguments mentioned above (see also the section regarding
thresholds and tide-marks).

Measurement types may be locked, unlocked and shut down. Below the locking capabilities and
consequences are illustrated:

24> mesh:lock type(diversity1).
flocked,diversity1g

25> mesh:list types().
[fdiversity1,[fextra,"A simple measurement type"g,

finterface mod,diversityg,
finstances,0g,
fmax instances,5g,
fadministrative state,lockedg]g,

fdiversity2,[fextra,"Another measurement type"g,
finterface mod,diversityg,
finstances,0g,
fmax instances,10g,
fadministrative state,unlockedg]g]

26> mesh:list measurements(diversity1).
[]

27> mesh:create measurement(div11,diversity1,"",0).
ferror,ftype locked,diversity1gg

The locking of a measurement type results in the deletion of all existing measurement objects belonging
to that very same type, as shown above. We also see that it is impossible to create a new measurement
object, since the administrative state of the measurement type does not allow this operation.

We now unlock the measurement object:

28> mesh:unlock type(diversity1).
funlocked,diversity1g

29> mesh:create measurement(div11, diversity1, "", 0).
fcreated,div11g

30> mesh:create measurement(div12, diversity1, "", 0).
fcreated,div12g

Having unlocked the measurement type we may once again create measurement objects.

Finally, let us take a look at the third administrative state, shutting down:

28> mesh:shut down type(diversity1).
fshutting down,diversity1g

29> mesh:list types().
[fdiversity1,[fextra,"A simple measurement type"g,

16 Mesh

1.2: Services

finterface mod,diversityg,
finstances,2g,
fmax instances,5g,
fadministrative state,shutting downg]g,

fdiversity2,[fextra,"Another measurement type"g,
finterface mod,diversityg,
finstances,0g,
fmax instances,10g,
fadministrative state,unlockedg]g]

30> mesh:create measurement(div13, diversity1, "", 0).
ferror,ftype shutting down,diversity1gg

31> mesh:delete measurement(div12).
fdeleted,div12g

32> mesh:create measurement(div12, diversity1, "", 0).
ferror,ftype shutting down,diversity1gg

33> mesh:delete measurement(div11).
fdeleted,div11g

34> mesh:list types().
[fdiversity1,[fextra,"A simple measurement type"g,

finterface mod,diversityg,
finstances,0g,
fmax instances,5g,
fadministrative state,lockedg]g,

fdiversity2,[fextra,"Another measurement type"g,
finterface mod,diversityg,
finstances,0g,
fmax instances,10g,
fadministrative state,unlockedg]g]

Note that all existing measurement objects continue to exist when shut down has been ordered, but
that no new measurement objects may be created. Also, old measurement objects may not be
re-created, once they have been deleted.
When the last measurement object, belonging to the type in question, has been deleted, the
measurement type automatically enters state locked.

Deleting Measurement Objects

A measurement object is regarded as “existing” (ie. the Measurement Handler is aware of it), until it is
explicitly deleted. Should the process/application implementing the measurement object crash, Mesh
regards the object as being disabled - but it still exists.
Below is an example of this, assume there is a previously created a measurement object div11, that
unfortunately has crashed (i.e., the process implementing div11 has crashed).

35> mesh:list measurements(diversity1).
[fdiv11,[fextra,[]g,

fresources,0g,

17Mesh

Chapter 1: Mesh User's Guide

finitial arguments,[]g,
foperability state,disabledg,
fadministrative state,startedg]g]

36> mesh:create measurement(div11, diversity1, "", 0).
ferror,falready created,div11gg

37> mesh:delete measurement(div11, [4,5]).
fdeleted,div11g

38> mesh:list measurements(diversity1).
[]

When deleting a measurement object, Mesh will call the delete measurement function in the interface
module. The stop arguments specified in the call to Mesh (in our example, the list [4,5]) will be
forwarded to this function. This enables a controlled and graceful termination of the measurement
object (eg.leaving no open files).

Unregistering Measurement Types

Measurement types are unregistered in the following way:

39> mesh:unregister type(diversity1, [4,5]).
funregistered,diversity1g

Any existing measurement objects will be deleted, following the scheme described in the section above,
“Deleting Measurement Objects”. In this case, to enable a controlled termination of measurement
objects, stop arguments must be specified, for example [4,5]. These arguments will only be forwarded
to the delete measurement function in the measurement type interface.

Once all measurement objects are deleted, the terminate function in the measurement type interface
is called, enabling a graceful and complete clean-up, should that be desired. This function shall
terminate the MRP (if there is any), but may also be used to free common resources used by the
measurement type and objects.
After this process is complete the user is free to re-use the measurement type name/identifier to
associate it with another interface module.

Revival of Measurement Objects

If a measurement object becomes disabled, e.g., due to a crash in the process/application implementing
it, the user may request the object revival, using the function revive measurement. Mesh will then
order the measurement type interface to once again create the measurement function.
Thecreate measurement function in the measurement type interface will be called. The arguments
will be implemented according to the information Mesh previously stored about the measurement
object in question. The previously stored information will include the last known administration state,
the last known start argument list, the resources used, the thresholds set, and so on. Provided the
creation does not fail, the measurement object revived will be as close as possible to a copy of the old
measurement object, prior to it disabling.

18 Mesh

1.2: Services

Note:
The revival procedure is finished with an explicit order, issued by Mesh itself, to reset the
measurement object. This is to ensure identical states in the Measurement Handler and the
measurement object. Even thresholds and tide-marks are reset, see description of the reset procedure.

Should revival, using the settings stored in Mesh, not be wanted, the user may choose to first delete the
measurement object, and then create a completely new object, using the old measurement object
identifier.

Measurement Object Operation and Measurement Value

Reporting

Generally, a measurement object collects a number of samples, from one or more resources and samples
which later one shall be filtered using an algorithm (presumably one found in the mesh lib support
library). It is the sole responsibility of the user to decide when each sample shall be collected.

The start arguments make it possible to specify when creating, starting and resetting of measurement
objects may be used to tell the measurement object when to start sampling, and the sampling interval.

In some situations it may also be desirable to dynamically tell the measurement object which filtering
algorithm shall be used. However, whatever the start arguments are used for, the onus is on the user to
decide how the list of arguments shall be interpreted by the measurement object.

When the measurement object has obtained a filtered measurement value, a value is reported to the
Measurement Handler, using the measurement report function. When the Measurement Handler
receives such a measurement value report, it compares the received value with the thresholds set,
sending an alarm to EVA if any threshold is triggered. It also updates the tide-marks associated with the
measurement object, stores the measurement value internally, and finally sends a
meshMeasurementReport event to EVA. This event containing the measurement value is received among
other measurement specific information. (All measurement report events are recorded in a log of their
own. The user/manager may later on check this log to find out the history of a certain measurement.
The user may also, using the get measurement report function, ask Mesh for the last measurement
value received from a certain measurement).

A measurement object may also choose to report to Mesh only in certain circumstances, e.g., if the user
wants to specify a measurement object that just supervises a critical threshold value; this case is
described in more detail below, in the section “Threshold and Tide-mark Support”.

The log used to log meshMeasurementReport events (and also the other logs used by Mesh) is described
below, in the section “Alarms, Events and Logs”.

Threshold and Tide-mark Support

Thresholds

The Measurement Handler supports threshold setting and control. Thresholds are a mechanism used
for generation notifications, caused by changes in measured values. To avoid repeated triggering of
notifications, there should be small oscillations around a threshold value, the Measurement Handler
supports a so-called hysteresis mechanism.

19Mesh

Chapter 1: Mesh User's Guide

Figure 1.2: An upper threshold.

From the Measurement Handler point of view, there are two kinds of thresholds: upper thresholds and
lower thresholds, the difference being whether the notification shall be triggered when the measurement
value exceeds the threshold value or when it falls below the threshold value.

Regardless of type, each threshold consists of two values, in this document they are denoted Thresh1
and Thresh2. On a time-scale, Thresh1 shall be the value first encountered, as seen in the figure above.

For each measurement object, an infinite number of thresholds may be set. To distinguish between
different thresholds within a given measurement object, each threshold has to have a unique identifier,
assigned by the user. (An identifier may be re-used for another measurement object, and it is only
within the measurement object the identifier has to be unique!)

When setting a threshold, the user may decide whether it shall be disabled or enabled. Only enabled
thresholds can generate threshold notifications.

When the Measurement Handler receives a measurement value report, it compares the measurement
value to each set threshold value. If the received value exceeds (or falls below, in the lower threshold
case) the Thresh1 value, an alarm is sent to EVA.
Should the received value fall below (or exceed, in the lower threshold case) the Thresh2 value, and
this threshold previously has generated an alarm, this alarm in EVA will be cleared.

When reseting a measurement object, all threshold alarms (concerning this measurement object) sent to
EVA will be cleared; the next received measurement value will then be compared to the thresholds set,
according to the above description.

The user may also choose to personally implement the threshold handling. For that purpose, all
threshold handling functions (with the exception of the list thresholds function) will cause Mesh to
call a corresponding function in the measurement type interface (see the mesh Reference Manual for
complete details) and forward the same information it received. The user may then choose to silently
compare measurement values to the thresholds set internally in the measurement object, and not take
any action until a threshold has been triggered. The measurement object may then either send a
notification directly to the manager, or just send a measurement report to Mesh. The same threshold
will then be triggered in Mesh, resulting in an alarm being sent to EVA.

20 Mesh

1.2: Services

Tide-marks

A tide-mark is a mechanism that records the maximum or minimum value reached during a
measurement period. A tide-mark is read-only, however it may be reset, as we will see below.

There are two kinds of tide-marks:

� the maximum tide-mark, which changes (increases) only when the associated measurement value
increases beyond the current tide-mark value. The measurement value then becomes the new
tide-mark value.

� the minimum tide-marks, which changes (decreases) only when the associated measurement
value falls below the current tide-mark value. The measurement value then becomes the new
tide-mark value.

The Measurement Handler supports, for each measurement object, both a maximum and a minimum
tide-mark.

There are three components in each tide-mark:

� the current value. The original value is the atom undefined.

� the previous current value, i.e., the current value immediately prior to the last reset. The
original value is the atom undefined.

� the reset time, i.e., the time of the last reset. The original value is the atom undefined.

If reset of a measurement object is ordered, both the maximum and minimum tide-mark associated
with the measurement object will be reset. This is done in the following way:

� the previous current value is assigned the current value.

� the current value is assigned the atom undefined.

� the reset time is set to the current time and date (using the Universal Coordinated Time, UTC;
sometimes called GMT).

The tide-marks may be read using the report tidemarks function.

The Watchdog

The Measurement Handler supports a “watchdog”, that supervises the total number of measurement
types registered, and the total number of created measurement objects. If any of these numbers exceed
the maximum allowed number, a meshTooManyTypes or meshTooManyMeasurements alarm is sent to
EVA (see also below).

Initially an infinite number of measurement types and measurement objects are allowed, but the user
may alter this, using the set watchdog function, see the mesh Reference Manual for complete details.

21Mesh

Chapter 1: Mesh User's Guide

Alarms, Events and Logs

Alarms

The following alarms may be sent to EVA:

� meshThresholdTriggered. This alarm, belongs to the class qos and having severity indeterminate,
is sent when a threshold has been triggered. The fields of interest in the alarm are as follows:

Field Value
----- -----
sender mesh server
cause fupper threshold triggered, fvalue, number()gg |

flower threshold triggered, fvalue, number()gg
extra ffmeas, MeasIdg, fid, ThreshIdgg

Once the threshold gets untriggered the alarm is cleared.

� meshTooManyTypes , This alarm, belongs to the class processing and having severity warning, is
sent when the total number of measurement types exceeds the allowed number. The fields of
interest in the alarm are as follows:

Field Value
----- -----
sender mesh server
cause ffallowed,number()g,fcurrently,number()gg
extra ""

Once the current number of registered types falls below the allowed number (or the allowed
number exceeds the current number) the alarm is cleared.

� meshTooManyMeasurements. This alarm, belongs to the class processing and having severity
warning, is sent when the total number of measurement objects exceeds the allowed number.
The fields of interest in the alarm are as follows:

Field Value
----- -----
sender mesh server
cause ffallowed,number()g, fcurrently,number()gg
extra ""

Once the current number of measurement objects falls below the allowed number (or the allowed
number exceeds the current number) the alarm is cleared.

� meshTypeCapacityExceeded. This alarm, belongs to the class processing and having severity
warning, is sent when the number of measurement objects exceeds the number allowed for the
measurement type they belong to (due to a capacity decrease for the measurement type in
question). The fields of interest in the alarm is as follows:

Field Value
----- -----
sender mesh server
cause fftype,TypeIdg, fallowed,number()g, fcurrently,number()gg
extra "Capacity decreased"

22 Mesh

1.2: Services

Once the capacity is sufficiently increased, or a sufficient number of measurement objects have
been deleted, the alarm will cleared.

Events

The following events may be sent to EVA:

� meshTypeFailure. This event is sent when an MRP associated with a measurement type (a common
MRP) has terminated. The extra field in the event will contain the following information:
fMeasId, FailureReason, FailureTimeg.

� meshMeasurementTerminated. This event is sent when a measurement object has terminated. The
extra field in the event will contain the following information:
fMeasId, TypeId, TerminationReason, TerminationTimeg.

� meshNodeUp. This event is sent when a crashed node, known to have had at least one MRP, is
connected again. The extra field in the event will contain the following information:
fNodeName, ConnectionTimeg.

� meshNodeDown. This event is sent when a node, having at least one MRP, has crashed. The extra
field in the event will contain the following information:
fNodeName, CrashTimeg.

� meshTypeUnconnected. This event is sent when a node connection with (at least) one MRP, has
been lost, but the status of the MRP is yet unknown. The extra field in the event will contain the
following information:
fTypeId, nodedown, Timeg.

� meshMeasurementUnconnected. This event is sent when the node connection, with (at least) one
measurement object, has been lost but the status of the measurement object is yet unknown. The
extra field in the event will contain the following information:
fMeasId, TypeId, nodedown, Timeg.

� meshTypeConnected. This event is sent when the connection to a node has been restored, and the
MRP is found to still exist. The extra field in the event will contain the following information:
fTypeId, nodeup, ConnectionTimeg.

� meshMeasurementConnected. This event is sent when the connection to a node has been restored,
and the measurement object is found to still exist. The extra field in the event will contain the
following information:
fMeasId, TypeId, nodeup, ConnectionTimeg.

� meshMeasurementReport. This event is sent when the Measurement Handler has received a
measurement report from a measurement object. The extra field in the event will contain the
following information:
ffname,MeasIdg, fvalue,number()g, ftime,Timeg, finfo,MeasInfogg.

Logs

The following logs are used by the Measurement Handler:

� mesh alarms. In this log all alarms sent, by Mesh to EVA, are logged.

� mesh events. In this log all events sent, by Mesh to EVA, are logged. The only exception is the
meshMeasurementReport events, which are recorded in their own log, see below.

� mesh measurements. In this log all meshMeasurementReport events are logged.

23Mesh

Chapter 1: Mesh User's Guide

Should any of the logs mentioned above not be available, the default log (that EVA is started with) will
be used instead.

By default, each log has a filter that ensures that only the required elements are logged. MESH supports
the switching of logs, should the user want to use their own filter function (for extended functionality).
The functions available are set alarm filter, set event filter and set measurement filter,
please see the mesh Reference Manual for further details. We recommend cross referencing with the
eva Reference Manual.
(Should the user decide later to reset the filters to the original settings, the functions
reset alarm filter, reset event filter and reset measurement filter are available.)

24 Mesh

1.3 Mesh SNMP Interface

This chapter describes a Mesh adaptation for SNMP.

There is one MIB defined: OTP-MESH-MIB. This MIB can be found in the mibs directory in the Mesh
distribution. It is more closely described in the following sections.

Mesh SNMP adaptation

The Mesh SNMP adaptation consists of functionality for translating the Mesh events and alarms to
SNMP traps, an SNMP MIB used to interface the Mesh application remotely, and an API to be used
when modifying the adaptation in a desired way.

OTP-MESH-MIB

This MIB implements managed objects for the basic Mesh service in OTP. It consists of five tables, five
variables, and a number of trap definitions.
The OTP-MESH-MIB is written according to SNMPv2.

The typeTable The typeTable has one entry for every measurement type known to the system.

The typeTable consists of measurement type attributes that are both readable and writable. Through
this table the manager may register measurement types, unregister them, and change their
administrative state.

The table has the following attributes:

� typeName

� typeInfo

� typeCallbackMod

� typeAdminState

� typeMeasArgs

� typeMaxInst

� typeStatus

Each measurement type has a unique index, typeName, which remains constant as long as the
measurement type entry is not explicitly destroyed. This index is a DisplayString, which will be
translated to an atom inside the Mesh SNMP adaptation. That is, all measurement type names have to
be atoms, should the Mesh SNMP adaptation be used!

The typeInfo attribute may contain any information describing the measurement type.
The default value of this attribute is the empty list (“”).

The typeCallbackMod attribute defines the interface type module to use when communicating with
the measurement type in question.

The typeAdminState defines the current administrative state of the measurement type, i.e., whether it
shall be locked, unlocked or shutting down. These values are enumerated: 1 == unlocked, 2 ==
shutting down and 3 == locked.

25Mesh

Chapter 1: Mesh User's Guide

The default value is unlocked.

The typeMeasArgs specifies the arguments that, when the type is locked, shall be forwarded to the
(active) measurement objects belonging to the specified measurement type. It shall be noted that these
arguments are ONLY used when the type is locked, never else!
The arguments are given as an DisplayString, which is translated by the Mesh SNMP adaptation to an
Erlang term. That is, if one wants the list [1,2,3,4] to be forwarded to the measurement objects, this
attribute shall be set to "[1,2,3,4]".
The default value is the empty list ([]).

The typeMaxInst specifies the number of measurement objects that are allowed within this type.
The default value is 50.

The typeStatus attribute is used to create new entrys (i.e., to register measurement types), and to
change the state of existing entries.
It shall be noted that only active entries corresponds to registered measurement types!

Examples We assume the system is up and running, and that the Mesh SNMP has been started
according to the description found in the earlier chapter “Services”. We also assume we have started an
SNMP agent and a manager, and that we have loaded the OTP-MESH-MIB in both of them, as well as
the MIBs EVA requires.
Now assume we want to register a measurement type called diversity1, which uses the interface
module diversity. The original administrative state shall be unlocked, and we allow 5 measurement
objects to be started within this type:

1> snmp mgr:s([f[typeInfo | "diversity1"],"A simple measurement type"g,
f[typeCallbackMod | "diversity1"],"diversity"g,
f[typeAdminState | "diversity1"], 1g,
f[typeMaxInst | "diversity1"],5g,
f[typeStatus | "diversity1"], 4g]).

ok
* Got PDU:
Response, Request Id:209647922
[typeInfo,100,105,118,101,114,115,105,116,121,49] = "A simple measurement type"
[typeCallbackMod,100,105,118,101,114,115,105,116,121,49] = "diversity"
[typeAdminState,100,105,118,101,114,115,105,116,121,49] = 1
[typeMaxInst,100,105,118,101,114,115,105,116,121,49] = 5
[typeStatus,100,105,118,101,114,115,105,116,121,49] = 4

And if we now look at this new entry:

2> snmp mgr:gn([[typeName,""]]).
ok
* Got PDU:
Response, Request Id:223586022
[typeInfo,100,105,118,101,114,115,105,116,121,49] = "A simple measurement type"

3> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:66538327
[typeCallbackMod,100,105,118,101,114,115,105,116,121,49] = "diversity"

26 Mesh

1.3: Mesh SNMP Interface

4> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:166382073
[typeAdminState,100,105,118,101,114,115,105,116,121,49] = 1

5> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:118759047
[typeMeasArgs,100,105,118,101,114,115,105,116,121,49] = []

6> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:215999470
[typeMaxInst,100,105,118,101,114,115,105,116,121,49] = 5

7> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:254918516
[typeStatus,100,105,118,101,114,115,105,116,121,49] = 1

We may also decide to set the administrative state to locked:

8> snmp mgr:s([f[typeAdminState | "diversity1"], 3g]).
ok
* Got PDU:
Response, Request Id:14458468
[typeAdminState,100,105,118,101,114,115,105,116,121,49] = 3

And if we want to unregister the type and remove it from the system:

9> snmp mgr:s([f[typeStatus | "diversity1"], 6g]).
ok
* Got PDU:
Response, Request Id:186830689
[typeStatus,100,105,118,101,114,115,105,116,121,49] = 6

The typeInfoTable The typeInfoTable has one entry for every measurement type known to the
system.

The typeInfoTable consists of measurement type attributes that are readable only.

The table has the following attributes:

� typeInfoName

� typeInfoCurrInst

27Mesh

Chapter 1: Mesh User's Guide

The typeInfoName is the index field; each measurement type corresponds to one entry. This index
remains constant as long as the measurement type entry is not explicitly destroyed. This index is a
DisplayString, which will be translated to an atom inside the Mesh SNMP adaptation.

The typeInfoCurrInst attribute contains the current number of active measurement objects belonging
to this specific measurement type.

The measTable The measTable has one entry for every measurement object known to the system.

The measTable consists of measurement object attributes that are both readable and writable. Through
this table the manager may create measurement objects, delete them, and change their administrative
state (i.e., start and stop them).

The table has the following attributes:

� measId

� measType

� measInfo

� measResId

� measAdminState

� measArgs

� measStatus

Each measurement object has a unique index, measId, which remains constant as long as the
measurement object entry is not explicitly destroyed. This index is a DisplayString, which will be
translated to an atom inside the Mesh SNMP adaptation. That is, all measurement object names have to
be atoms, should the Mesh SNMP adaptation be used!

The measType attribute specifies the measurement type the measurement object belongs to. This
attribute is also given as a DisplayString, which will be translated to an atom inside the Mesh SNMP
adaptation.
Note that the specified measurement type has to be registered, otherwise the create operation will fail!

The measInfo attribute may contain any information describing the measurement object.
The default value of this attribute is the empty list (“”).

The measResId attribute is a DisplayString specifying the resources the measurement object is
assumed to use. This string will be translated to an Erlang term inside the Mesh SNMP adaptation.

The measAdminState defines the current administrative state of the measurement object, i.e., whether
it shall be started or stopped. These values are enumerated: 1 == started and 2 == stopped.
The default value is started.

The measArgs specifies the arguments that, when the mesurement object is created, deleted, started,
stopped, or reset, shall be forwarded to it. It shall be noted that these arguments are NOT used when
the type is locked; in that case the argument list specified in the typeTable is used instead! The
arguments are given as an DisplayString, which is translated by the Mesh SNMP adaptation to an
Erlang term. That is, if one wants the list [1,2,3,4] to be forwarded to the measurement object, this
attribute shall be set to "[1,2,3,4]".
The default value is the empty list ([]).

The measStatus attribute is used to create new entrys (i.e., to create new measurement objects), and to
change the state of existing entries.
It shall be noted that only active entries correspond to created measurement objects!

28 Mesh

1.3: Mesh SNMP Interface

Examples We assume the same system state as in the previous example, and also that we have
registered a measurement type “diversity1”.
Now assume we want to create a measurement object called div11. This object shall use a resource
identified with the integer 0 (zero), the original administrative state shall be started, and the initial
arguments shall be the list [1,2,3]:

10> snmp mgr:s([f[measType | "div11"],"diversity1"g,
f[measInfo | "div11"],"A simple measurement object"g,
f[measResId | "div11"],"0"g,
f[measAdminState | "div11"],1g,
f[measArgs | "div11"],"[1,2,3]"g,
f[measStatus | "div11"],4g]).

ok
* Got PDU:
Response, Request Id:12669132
[measType,100,105,118,49,49] = "diversity1"
[measInfo,100,105,118,49,49] = "A simple measurement object"
[measResId,100,105,118,49,49] = "0"
[measAdminState,100,105,118,49,49] = 1
[measArgs,100,105,118,49,49] = "[1,2,3]"
[measStatus,100,105,118,49,49] = 4

And if we now look at this new entry:

11> snmp mgr:gn([[measId,""]]).
ok
* Got PDU:
Response, Request Id:115469191
[measType,100,105,118,49,49] = "diversity1"

12> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:139112371
[measInfo,100,105,118,49,49] = "A simple measurement object"

13> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:164740948
[measResId,100,105,118,49,49] = "0"

14> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:76656359
[measAdminState,100,105,118,49,49] = 1

15> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:105654964

29Mesh

Chapter 1: Mesh User's Guide

[measArgs,100,105,118,49,49] = [1,2,3]

16> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:59931249
[measStatus,100,105,118,49,49] = 1

We may also look at the updated measurement type information:

17> snmp mgr:g([[typeInfoCurrInst | "diversity1"]]).
ok
* Got PDU:
Response, Request Id:252519077
[typeInfoCurrInst,100,105,118,101,114,115,105,116,121,49] = 1

We may stop the measurement object:

18> snmp mgr:s([f[measAdminState | "div11"],2g]).
ok
* Got PDU:
Response, Request Id:262901542
[measAdminState,100,105,118,49,49] = 2

And we may start the object again, with some new arguments:

19> snmp mgr:s([f[measAdminState | "div11"],1g,f[measArgs | "div11"],"[4,5,6]"g]).
ok
* Got PDU:
Response, Request Id:257409456
[measAdminState,100,105,118,49,49] = 1
[measArgs,100,105,118,49,49] = "[4,5,6]"

And finally we may also delete our measurement object, supplying the string “free resources” as
terminating arguments (remember that this string will be interpreted as an Erlang term in the Mesh
SNMP adaptation - in this case as an atom!):

20> snmp mgr:s([f[measArgs | "div11"],"free resources"g,f[measStatus | "div11"], 6g]).
ok
* Got PDU:
Response, Request Id:152978686
[measArgs,100,105,118,49,49] = "free resources"
[measStatus,100,105,118,49,49] = 6

To convince ourselves that the measurement object has disappeared, we may look at the current
number of instances belonging to measurement type diversity1:

30 Mesh

1.3: Mesh SNMP Interface

21> snmp mgr:g([[typeInfoCurrInst | "diversity1"]]).
ok
* Got PDU:
Response, Request Id:136894792
[typeInfoCurrInst,100,105,118,101,114,115,105,116,121,49] = 0

The measInfoTable The measInfoTable has one entry for every measurement object known to the
system.

The typeInfoTable consists of measurement object attributes that are readable only.

The table has the following attributes:

� measInfoId

� measInfoLastVal

� measInfoLastValTime

� measInfoLastValInfo

� measInfoMaxTideCurr

� measInfoMaxTidePrev

� measInfoMinTideCurr

� measInfoMinTidePrev

� measInfoLastReset

The MeasInfoId is the index field; each measurement object corresponds to one entry. This index
remains constant as long as the measurement object entry is not explicitly destroyed. This index is a
DisplayString, which will be translated to an atom inside the Mesh SNMP adaptation.

The measInfoLastVal attribute contains, as a DisplayString, the last measurement value the
Measurement Handler has received from the specified measurement object.

The measInfoLastValTime attribute contains, as a DisplayString, the time the last measurement
value was obtained by the measurement object.

The measInfoLastValInfo attribute contains, as a DisplayString, additional information about the
the last measurement value the Measurement Handler has received.

The measInfoMaxTideCurr attribute contains, as a DisplayString, the current value in the
maximum tidemark associated with the specified measurement object.

The measInfoMaxTidePrev attribute contains, as a DisplayString, the previous value in the
maximum tidemark associated with the specified measurement object.

The measInfoMinTideCurr attribute contains, as a DisplayString, the current value in the minimum
tidemark associated with the specified measurement object.

The measInfoMinTidePrev attribute contains, as a DisplayString, the previous value in the
minimum tidemark associated with the specified measurement object.

The measInfoLastReset attribute contains, using the DateAndTime format (see MIB SNMPv2-TC),
the date and time of the last reset.

Note:
If the measurement object never has been reset, the list [0,0,0,0,0,0,0,0]will be returned.

31Mesh

Chapter 1: Mesh User's Guide

Examples We assume that we have the measurement object div11 (see previous example) running,
that is, reporting measurement values, and also that this measurement object has been reset once.

22> snmp mgr:gn([[measInfoId, ""]]).
ok
* Got PDU:
Response, Request Id:256037314
[measInfoLastVal,100,105,118,49,49] = "100"

23> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:244235445
[measInfoLastValTime,100,105,118,49,49] = "f19,52,37g"

24> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:141582032
[measInfoLastValInfo,100,105,118,49,49] = []

25> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:182241904
[measInfoMaxTideCurr,100,105,118,49,49] = "100"

26> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:211213648
[measInfoMaxTidePrev,100,105,118,49,49] = "100"

27> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:210013650
[measInfoMinTideCurr,100,105,118,49,49] = "0"

28> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:2594486
[measInfoMinTidePrev,100,105,118,49,49] = "0"

29> snmp mgr:gn().
ok
* Got PDU:
Response, Request Id:46299549
[measInfoLastReset,100,105,118,49,49] = [19,98,7,8,17,52,33,0]

32 Mesh

1.3: Mesh SNMP Interface

The threshTable The threshTable has one entry for every threshold known to the system.

The threshTable consists of threshold attributes that are both readable and writable. Through this
table the manager may set upper and lower thresholds, remove them, and change their administrative
state (i.e., enable and disable them).

The table has the following attributes:

� threshMeasId

� threshId

� threshType

� threshVal1

� threshVal2

� threshAdminState

� threshStatus

The threshMeasId and the threshId fields are the indices; this is due to the fact that a threshold is
identified uniquely by the threshold identifier together with the measurement object it belongs to. Each
threshold in the system corresponds to one entry. The two indices remain constant as long as the
threshold entry is not explicitly destroyed.
The threshMeasId index field is a DisplayString, which will be translated to an atom inside the Mesh
SNMP adaptation. The threshId index field is an integer.

Note:
NOTE: All threshold identifiers have to be integers, should the Mesh SNMP adaptation be used!

The threshType attribute decides whether the threshold is an upper threshold or a lower one. These
two types are enumerated: 1 == upper and 2 == lower.
The default value is upper.

The threshVal1 attributes sets the threshold value that triggers the threshold. The value is given as a
DisplayString, which is converted to an Erlang term in the Mesh SNMP adaptation.
The default value is “0” (zero).

The threshVal2 attributes sets the threshold value that un-triggers the threshold. The value is given as
a DisplayString, which is converted to an Erlang term in the Mesh SNMP adaptation.
The default value is the one that threshVal1 was set to.

The threshAdminState tells whether the threshold shall be enabled or disabled. These states are
enumerated: 1 == enabled and 2 == disabled. The default value is enabled.

The threshStatus attribute is used to create new entrys (i.e., to set new thresholds), and to change the
state of existing entries.
It shall be noted that only active entries correspond to set thresholds!

33Mesh

Chapter 1: Mesh User's Guide

Examples We assume that we have the same measurement object div11 as in the previous example.
We want to set an upper threshold, having the integer 1 as identifier, and with original administrative
state enabled. After the creation we disable it, enable it again, and finally deletes it:

30> snmp mgr:s([f[threshType | "div11" ++ [1]], 1g,
f[threshVal1 | "div11" ++ [1]], "90"g,
f[threshVal2 | "div11" ++ [1]], "85"g,
f[threshAdminState | "div11" ++ [1]], 1g,
f[threshStatus | "div11" ++ [1]], 4g]).

ok
* Got PDU:
Response, Request Id:124268928
[threshType,100,105,118,49,49,1] = 1
[threshVal1,100,105,118,49,49,1] = "90"
[threshVal2,100,105,118,49,49,1] = "85"
[threshAdminState,100,105,118,49,49,1] = 1
[threshStatus,100,105,118,49,49,1] = 4

31> snmp mgr:s([f[threshAdminState | "div11" ++ [1]], 2g]).
ok
* Got PDU:
Response, Request Id:165662114
[threshAdminState,100,105,118,49,49,1] = 2

32> snmp mgr:s([f[threshAdminState | "div11" ++ [1]], 1g]).
ok
* Got PDU:
Response, Request Id:225312294
[threshAdminState,100,105,118,49,49,1] = 1

33> snmp mgr:s([f[threshStatus | "div11" ++ [1]], 6g]).
ok
* Got PDU:
Response, Request Id:153618962
[threshStatus,100,105,118,49,49,1] = 6

The watchdogNofTypes variable This variable is used to set the allowed (total) number of
measurement types that are allowed in the system.

The watchdogNofMeas variable This variable is used to set the allowed (total) number of
measurement objects that are allowed in the system.

The currentNofTypes variable This variable is used to read the current (total) number of
measurement types in the system.

The currentNofMeas variable This variable is used to read the current (total) number of
measurement objects in the system.

34 Mesh

1.3: Mesh SNMP Interface

The currentNofMeas variable This variable is used to reset measurement objects. The measurement
object is entered as a DisplayString, which is interpreted as an atom inside the Mesh SNMP
adaptation. Reset arguments are taken from the corresponding measArgs field in the measTable. That
is, the measArgs field has to be set to the desired value BEFORE this variable is set!

Note:
The reset operation is allowed in all measTable row/measurement object states, as long as the row
exists, but the operation is only meaningful (i.e., will only have any real effect) when the row state is
’active’.

Note:
This variable is intended to be write-only; however, this is not allowed in SNMP, meaning the
variable has to be read-write. If the user tries to read the current value, it shall be noted that it is only
the last reset request made using SNMP that is shown! That is, measurement
objects/applications/supervisors may, in the managed system, have ordered reset themselves - these
reset orders are NOT visible through this variable!

35Mesh

1.4 Mesh Release Notes

This document describes the changes made to the Mesh application.

Mesh - Measurement Handler v1.1.0

Improvements and New Features

� An SNMP adaptation has been added.

Fixed Bugs and Malfunctions

-

Incompatibilities With Measurement Handler v1.0.1

� If the SNMP adaptation shall be used, measurement types and measurement objects shall be
identified using atoms, and thresholds using an integer.

Known Bugs and Problems

-

Mesh - Measurement Handler v1.0.1

Improvements and New Features

� A config change function has been added to the application callback module.

Fixed Bugs and Malfunctions

-

Incompatibilities With Measurement Handler v1.0.0

-

Known Bugs and Problems

-

36 Mesh

Mesh - Measurement Handler v1.0.0

New application.

37Mesh

38 Mesh

Mesh Reference Manual

Short Summaries

� Application mesh [page 44] – Mesh

� Erlang Module mesh [page 45] – Client API for Mesh.

� Erlang Module mesh lib [page 68] – Measurement Handler library functions.

� Erlang Module mesh snmp [page 72] – An SNMP Adaptation to Mesh

mesh

No functions are exported.

mesh

The following functions are exported:

� create tables(NodeList) -> Result
[page 50] Creates the Mnesia tables the Mesh application needs.

� register type(TypeId, Extra, InterfaceMod, NofInst) -> Result
[page 51] Registers a measurement type in the Mesh application.

� register type(TypeId, Extra, InterfaceMod, NofInst, AdminState) ->
Result
[page 51] Registers a measurement type in the Mesh application.

� unregister type(TypeId) -> Result
[page 51] Unregisters a measurement type in the Mesh application.

� unregister type(TypeId, StopArgs) -> Result
[page 51] Unregisters a measurement type in the Mesh application.

� list types() -> Result
[page 52] Returns all types currently registered, as well as info about each type.

� lock type(TypeId) -> Result
[page 52] Locks the specified measurement type, ie. sets its administrative state to
locked.

39Mesh

Mesh Reference Manual

� lock type(TypeId, StopArgs) -> Result
[page 52] Locks the specified measurement type, ie. sets its administrative state to
locked.

� unlock type(TypeId) -> Result
[page 52] Unlocks the specified measurement type, ie. sets its administrative state
to unlocked.

� shut down type(TypeId) -> Result
[page 53] Shuts down the specified measurement type, ie. sets its administrative
state to shutting down.

� create measurement(MeasId, TypeId, Extra, ResId) -> Result
[page 53] Creates a new measurement object, belonging to the specified
measurement type.

� create measurement(MeasId, TypeId, Extra, ResId, AdminState) ->
Result
[page 53] Creates a new measurement object, belonging to the specified
measurement type.

� create measurement(MeasId, TypeId, Extra, ResId, AdminState,
StartArgs) -> Result
[page 53] Creates a new measurement object, belonging to the specified
measurement type.

� delete measurement(MeasId) -> Result
[page 54] Deletes a previously created measurement object.

� delete measurement(MeasId, StopArgs) -> Result
[page 54] Deletes a previously created measurement object.

� measurement terminated(MeasId, Reason) -> ok
[page 54] Tells the Mesh application about terminated measurement objects.

� list measurements(TypeId) -> Result
[page 54] Lists all created measurement objects belonging to the specified
measurement type.

� revive measurement(MeasId) -> Result
[page 55] Tries to recreate a previously created but disabled, ie. terminated,
measurement object. The last known settings will be used.

� start measurement(MeasId) -> Result
[page 55] Orders the specified measurement object to start running (ie. sets its
administrative state to unlocked).

� start measurement(MeasId, StartArgs) -> Result
[page 55] Orders the specified measurement object to start running (ie. sets its
administrative state to unlocked).

� stop measurement(MeasId) -> Result
[page 56] Orders the specified measurement object to stop running. (ie. sets its
administrative state to locked).

� reset measurement(MeasId) -> Result
[page 56] Orders the specified measurement object to reset, and also resets
internally everything concerning that very same measurement object.

� reset measurement(MeasId, StartArgs) -> Result
[page 56] Orders the specified measurement object to reset, and also resets
internally everything concerning that very same measurement object.

40 Mesh

Mesh Reference Manual

� measurement report(MeasId, Value, TimeStamp) -> ok
[page 56] A measurement value report, from the specified measurement object, is
sent to the Measurement Handler.

� measurement report(MeasId, Value, TimeStamp, MeasInfo) -> ok
[page 56] A measurement value report, from the specified measurement object, is
sent to the Measurement Handler.

� get measurement report(MeasId) -> Result
[page 57] Retrieves from the Measurement Handler, the last received
measurement value from the specified measurement object.

� set upper threshold(MeasId, ThreshId, Value) -> Result
[page 57] Sets an upper threshold associated with the specified measurement
object.

� set upper threshold(MeasId, ThreshId, Value, Status) -> Result
[page 57] Sets an upper threshold associated with the specified measurement
object.

� set lower threshold(MeasId, ThreshId, Value) -> Result
[page 58] Sets a lower threshold associated with the specified measurement object.

� set lower threshold(MeasId, ThreshId, Value, Status) -> Result
[page 58] Sets a lower threshold associated with the specified measurement object.

� remove threshold(MeasId, ThreshId) -> Result
[page 59] Removes the threshold specified by the threshold identifier, from a
measurement object.

� remove thresholds(MeasId) -> Result
[page 59] Removes all thresholds from specified measurement objects.

� list thresholds(MeasId) -> Result
[page 59] Lists all thresholds set for the specified measurement object.

� enable threshold(MeasId, ThreshId) -> Result
[page 60] Enables a previously set threshold.

� disable threshold(MeasId, ThreshId) -> Result
[page 60] Disables a previously set threshold.

� report tidemarks(MeasId) -> Result
[page 60] Returns the tidemarks associated with the specified measurement object.

� reset tidemarks(MeasId) -> Result
[page 61] Resets the tidemarks associated with a specified measurement object.

� watchdog setup(NofTypes, NofMeas) -> Result
[page 61] Settings for the watchdog supervising the total number of registered
measurement types and created measurement objects.

� set alarm filter(Func) -> Result
[page 62] Sets a new filter to be used when logging alarms in the mesh alarms log.

� set event filter(Func) -> Result
[page 62] Sets a new filter to be used when logging alarms in the mesh events log.

� set measurement filter(Func) -> Result
[page 62] Sets a new filter to be used when logging alarms in the
mesh measurements log.

� reset alarm filter() -> Result
[page 63] Resets the filter to be used, when logging alarms in the mesh alarms log,
to the filter provided by the Mesh application.

41Mesh

Mesh Reference Manual

� reset event filter() -> Result
[page 63] Resets the filter to be used, when logging alarms in the mesh events log,
to the filter provided by the Mesh application.

� reset measurement filter() -> Result
[page 63] Resets the filter to be used, when logging alarms in the
mesh measurements log, to the filter provided by the Mesh application.

� InterfaceMod:init(TypeId) -> Result
[page 64] Initialization function when registering a measurement type.

� InterfaceMod:terminate(MRP) -> Result
[page 64] Termination function, used for clean up purposes when a measurement
type is unregistered.

� InterfaceMod:create measurement(MRP1, TypeId, MeasId, ResId,
StartArgs) -> Result
[page 64] Orders the measurement type interface to create a new measurement
object.

� InterfaceMod:start measurement(MRP, MeasId, StartArgs) -> Result
[page 64] Orders the measurement type interface to start the specified
measurement object.

� InterfaceMod:stop measurement(MRP, MeasId) -> Result
[page 65] Orders the measurement type interface to stop the specified
measurement object.

� InterfaceMod:reset measurement(MRP, MeasId, StartArgs) -> Result
[page 65] Orders the measurement type interface to reset the specified
measurement object.

� InterfaceMod:delete measurement(MRP, MeasId, StopArgs) -> Result
[page 65] Orders the measurement type interface to delete the specified
measurement object.

� InterfaceMod:set upper threshold(MRP, MeasId, ThreshId, Value,
Status) -> Result
[page 65] Orders the measurement type interface to set the specified upper
threshold in the specified measurement object.

� InterfaceMod:set lower threshold(MRP, MeasId, ThreshId, Value,
Status) -> Result
[page 66] Orders the measurement type interface to set the specified lower
threshold in the specified measurement object.

� InterfaceMod:remove threshold(MRP, MeasId, ThreshId) -> Result
[page 66] Orders the measurement type interface to remove the specified
threshold in a measurement object.

� InterfaceMod:enable threshold(MRP, MeasId, ThreshId) -> Result
[page 66] Orders the measurement type interface to enable the specified threshold
in the specified measurement object.

� InterfaceMod:disable threshold(MRP, MeasId, ThreshId) -> Result
[page 67] Orders the measurement type interface to disable the specified threshold
in the specified measurement object.

mesh lib

The following functions are exported:

42 Mesh

Mesh Reference Manual

� sum(SampleList) -> Result
[page 68] Sums a list of samples.

� sum and squaresum(SampleList) -> Result
[page 68] Sums a list of samples, and also sums the square of all samples.

� sample mean(SampleList) -> Result
[page 68] Equates the mean of a list of samples.

� sample variance(SampleList) -> Result
[page 68] Equates the variance of a list of samples.

� sample mean and variance(SampleList) -> Result
[page 69] Equates the mean and the variance of a list of samples.

� mean variance(MeanList) -> Result
[page 69] Equates the variance of a list of estimated means.

� ewma mean(Xnew, Wn, GP, MTP) -> Result
[page 69] Computes the mean of a number of samples using the Exponentially
Weighted Moving Average technique.

� ewma variance(Xnew, Wnew, Sn, GP, SMTP) -> Result
[page 70] Computes the variance of a number of samples using the Exponentially
Weighted Moving Average technique.

� uwma mean(Xnew, SX, Xold, N) -> Result
[page 70] Calculaes the mean of a number of samples using the Uniformly
Weighted Moving Average technique.

� uwma variance(Xnew, SX, SqSX, Xold, N) -> Result
[page 70] Computes the variance of a number of samples using the Uniformly
Weighted Moving Average technique.

mesh snmp

The following functions are exported:

� register alarms(Community) -> void()
[page 72] Registers the alarms used by the Mesh application.

� register events(Community) -> void()
[page 72] Registers the events used by the Mesh application.

43Mesh

mesh (Application) Mesh Reference Manual

mesh (Application)

The measurement handler Mesh is an Operation and Maintenance management
application that firstly, provides support to applications and managers for creation and
control of measurement types and objects, and secondly, allows control of the
associated logs.

Mesh is designed to be a distributed global application, which means that although it
may only be running at one node at a time, with the other nodes as standby nodes,
clients may access the Mesh functionality from any node.

The Mesh API can be used to make management protocol specific interfaces to Mesh,
for example SNMP, CORBA, or HTTP interfaces. Currently, an SNMP interface is
included in the application; others may follow.

Mesh uses the Mnesia DBMS to store data. This means that Mnesia must be running on
all nodes where Mesh may run, and that the tables Mesh uses must be created and
configured correctly. Mesh provides a function that should be called to create tables,
and to define replicas for Mnesia. This function is called create tables, and takes one
parameter, a list of nodes. The Mnesia tables will be replicated on these nodes; some on
disk, and some in RAM. It is important that these nodes are the same as those where
Mesh will run.

Mesh also uses EVA functionality to send and log generated events and alarms. The logs
can be examined by a manager at a later time, however, the configuration and start of
EVA is left to the client application programmer (please see the EVA User’s Guide and
manual pages).

Commonly used statistical functions may be found in the module mesh lib.

Configuration

The following configuration parameters are defined for the Mesh application (for more
information about configuration parameters see application(3)):

snmp adapted = true | false <optional> Specifies whether or not the Mesh
SNMP adaptation shall be started. The default is false, meaning that the
adaptation is not started.

SEE ALSO

mesh(3), mesh lib(3), eva(3), eva sup(3)

44 Mesh

Mesh Reference Manual mesh (Module)

mesh (Module)

This module contains the client API to the Measurement Handler application Mesh.
Mesh is a distributed global application, which means that clients can access the Mesh
functionality from any connected node. There is a globally registered server called
mesh server to which all requests are sent. Currently all functions (except the
measurement report and measurement terminated functions) are synchronous. This
means that the function call fails if no acknowledgment is returned by the server.
Should this happen, the client application has to decide what actions to take. (It may,
for example, wait a few seconds for another node to take over the Mesh application,
and then try again.)

Mesh stores data about measurement types and measurement objects in the Mnesia
tables mesh type and mesh meas, respectively. They are replicated to disk and RAM on
each node that may run the Mesh application.

Mesh uses an EVA functionality to send and to log generated events and alarms. The
logs used can be examined by a manager at a later time.
However, the configuration and start of EVA is left to the client application
programmer, see section Requirements below. Mesh does not supervise EVA, which
essentially means that the client application programmer must be aware of EVA. For
performance reasons, it is desired that EVA runs on the same node as the Measurement
Handler to reduce internal traffic.

Commonly used statistical functions may be found in the module mesh lib.

Starting and Stopping Mesh

The Mesh application is controlled through the application module API; Mesh is
started by the function call application:start(mesh),
and stopped by the function call
application:stop(mesh).

Requirements

The Mesh application requires the following applications to be started:

� SASL

� Mnesia

� EVA

45Mesh

mesh (Module) Mesh Reference Manual

When starting Mnesia, a schema must be created on each of the nodes where the Mesh
application will be running; see for example function mnesia:create schema/1.

Before EVA is started, the Mnesia tables needed by the basic EVA service and the EVA
log service have to be created on each node where the Mesh application will be running;
see example function eva sup:create tables log/1.
Also, EVA should be started with a default log, which first must be created, see for
example functions disk log:open/1 and eva:start link log/1.

Before Mesh is started, the Mnesia tables needed by the Mesh application have to be
created on each of the nodes where the Mesh application is supposed to be will be
running; see example function mesh:create tables/1.

Call back Module Usage

While the Measurement Handler application takes care of common tasks, user
dependent, implementation specific issues are handled through the measurement type
interface modules. These modules are (through the measurement type registration)
associated with a specific measurement type. When Mesh is ordered to perform certain
tasks, concerning a certain measurement type, one or more of the functions in the
associated interface module may be called.

The functions that have to be present in each interface module are (please also see the
section Interface Module Functions):

� init/1

� terminate/1

� create measurement/3

� delete measurement/3

� start measurement/3

� stop measurement/2

� reset measurement/3

The following functions are optional for each interface module:

� set upper threshold/5

� set lower threshold/5

� remove threshold/3

� enable threshold/3

� disable threshold/3

The purpose of these latter functions are to provide the user with the possibility to
implement the threshold supervising functionality. For example, a measurement object
may just supervise a measurement value, reporting nothing until a threshold has been
triggered. The measurement object in question may then report directly to the manager
or EVA. Alternatively, the measurement object can send a normal measurement report
to Mesh, containing the measurement value that triggered the threshold. In the latter
case the threshold set in Mesh will be triggered, and an alarm will be sent to EVA.

46 Mesh

Mesh Reference Manual mesh (Module)

The figure below describes how function calls to Mesh result (or may result) in calls to
the corresponding measurement type interface.

Sometimes a function may be called more than once, for example, the
delete measurement in the interface module is called for each measurement object.
This is not indicated in the figure. Similarly, sometimes a function may not be called,
depending on the context; this is also not indicated.

Mesh Interface Module
---- ----------------

mesh:register type ----> IM:init/1

mesh:unregister type ----> IM:delete measurement
IM:terminate

mesh:lock type ----> IM:delete measurement

mesh:create measurement ----> IM:create measurement

mesh:delete measurement ----> IM:delete measurement

mesh:revive measurement ----> IM:create measurement

mesh start measurement ----> IM:start measurement

mesh:stop measurement ----> IM:stop measurement

mesh:reset measurement ----> IM:reset measurement

mesh:set upper threshold ----> IM:set upper threshold

mesh:set lower threshold ----> IM:set lower threshold

mesh:remove threshold ----> IM:remove threshold

mesh:enable threshold ----> IM:enable threshold

mesh:disable threshold ----> IM:disable threshold

47Mesh

mesh (Module) Mesh Reference Manual

Measurement Responsible Processes

A Measurement Responsible Process (MRP) is one or more processes enabling
communication between the measurement type interface and the actual processes
implementing, eg. measurement objects. Since the measurement type interface is
stateless, it has to be supplied with the identifiers of these processes, which is done by
the Measurement Handler, whenever it calls a measurement type interface function.
The measurement type interface must ensure the correct process is contacted.

Basically, there are two MRP design possibilities:

� each measurement object is its own MRP.

� one process, working as a server, keeps track of one or more measurement objects,
forwarding the messages received to the correct measurement object/process.

Whatever alternative has been chosen, an MRP has the following four responsibilities:

� supervise one or more measurement objects.

� map the measurement object identifier to the correct process identifier, thereby
enabling communication with measurement objects.

� keep track of the available resources, mapping new measurement objects to the
correct resource.

� ensure Mesh that the user supplied supervision scheme is still working. That is,
Mesh only supervises the MRP (and the node it resides on); the MRP will supervise
the individual measurement objects, reporting to Mesh whenever one of them gets
disabled (and order revival, if that is desired).

Should an MRP terminate, Mesh will assume that the corresponding measurement
objects will also terminate. This implies that MRPs have to be very robust, ie. they have
to trap exits, even internally.

Events and Alarms

The alarms that may be sent to EVA are:

� meshThresholdTriggered. This alarm is sent whenever a threshold has been
triggered. The alarm class is qos, and the severity indeterminate. Other fields of
interest in the alarm are:

Field Value
----- -----
sender mesh server
cause fupper threshold triggered, fvalue, number()gg |

flower threshold triggered, fvalue, number()gg
extra ffmeas, MeasIdg, fid, ThreshIdgg

48 Mesh

Mesh Reference Manual mesh (Module)

� meshTooManyTypes. This alarm is sent by the watchdog if the total number of
registered measurement types exceeds the maximum number allowed. The alarm
class is processing, and the severity warning. Other fields of interest in the alarm
are:

Field Value
----- -----
sender mesh server
cause ffallowed,number()g,fcurrently,number()gg
extra ""

� meshTooManyMeasurements. This alarm is sent by the watchdog if the total
number of created measurement objects exceeds the maximum number allowed.
The alarm class is processing, and the severity warning. Other fields of interest in
the alarm are:

Field Value
----- -----
sender mesh server
cause ffallowed,number()g, fcurrently,number()gg
extra ""

� meshTypeCapacityExceeded. This alarm is sent when the number of
measurement objects belonging to a certain measurement type exceeds the
measurement type capacity. The alarm class is processing, and the severity
warning. Other fields of interest in the alarm are:

Field Value
----- -----
sender mesh server
cause fftype,TypeIdg, fallowed,number()g,

fcurrently,number()gg
extra "Capacity decreased"

The events that may be sent to EVA are:

� meshTypeFailure. This event is sent whenever a measurement type MRP has
terminated. The extra field in the event contains the following information:
fMeasId, FailureReason, FailureTimeg.

� meshMeasurementTerminated. This event is sent whenever the Measurement
Handler has noticed that a measurement object has been disabled. The extra field
in the event contains the following information:
fMeasId, TypeId, TerminationReason, TerminationTimeg.

� meshNodeUp. This event is sent whenever a node (where an MRP is residing),
comes up again after having been down. The extra field in the event contains the
following information:
fNodeName, ConnectionTimeg.

� meshNodeDown. This event is sent whenever a node (where an MRP is
residing),goes down. The extra field in the event contains the following
information:
fNodeName, CrashTimeg.

49Mesh

mesh (Module) Mesh Reference Manual

� meshTypeUnconnected. This event is sent when the status of an MRP is
indeterminate, for example when the connection to the corresponding node has
been lost, but no crash report has been received. The extra field in the event
contains the following information:
fTypeId, nodedown, Timeg.

� meshMeasurementUnconnected. This event is sent when the status of a
measurement object is indeterminate, for example when the connection to the
corresponding node has been lost, but no crash report has been received. The
extra field in the event contains the following information:
fMeasId, TypeId, nodedown, Timeg.

� meshTypeConnected. This event is sent when a previously unconnected MRP
reconnects. For example, if the node where the MRP had resided is reconnected,
and the MRP is found to still be present. The extra field in the event contains the
following information:
fTypeId, nodeup, ConnectionTimeg.

� meshMeasurementConnected. This event is sent when a previously unconnected
measurement object reconnects. For example, if the node where the measurement
object resided is reconnected, and the measurement object is found to still be
present. The extra field in the event contains the following information:
fMeasId, TypeId, nodeup, ConnectionTimeg.

� meshMeasurementReport. This event is sent whenever the Measurement Handler
receives a measurement report from any measurement object. The extra field in
the event contains the following information:
ffname,MeasIdg, fvalue,number()g, ftime,Timeg, finfo,MeasInfogg.

Adaptations

The Mesh services are management protocol independent. However, for a manager to
access the Mesh services, a management protocol is required, ie. adaptations must be
written, mapping Mesh services to the desired protocol.

Exports

create tables(NodeList) -> Result

Types:

� NodeList = [NodeName]
� NodeName = atom()
� Result = ok | ferror, Reasong
� Reason = term()

50 Mesh

Mesh Reference Manual mesh (Module)

Creates the Mnesia tables the Mesh application needs, with disc and RAM replicas on
every node specified in NodeList.
This function will only be called once, before starting the Mesh application.

Note: it is important that the schema created is consistent with the specified list of
nodes.

register type(TypeId, Extra, InterfaceMod, NofInst) -> Result

register type(TypeId, Extra, InterfaceMod, NofInst, AdminState) -> Result

Types:

� TypeId = atom()
� Extra = term()
� InterfaceMod = atom()
� NofInst = integer()
� AdminState = unlocked | shutting down | locked
� Result = fregistered, TypeIdg | freregistered, TypeIdg | ferror, Reasong
� Reason = term()

This function registers (or reregisters) a measurement type in the Measurement
Handler. The main purpose of this function is to associate the InterfaceMod interface
module with the TypeId identifier. (It should be noted that the TypeId identifier cannot
be reused, since it solely identifies a measurement type, and therefore must be unique.)
The Extra argument is used for the benefit of the user, ie. it must contain all
information describing the measurement type, but this information will only be used by
the manager and never forwarded to any MRP or measurement object.
The registration function will also call the init/1 function in the interface module,
thereby enabling the user to perform necessary initializations. (The init function may,
for example, start a MRP.)
The NofInst parameter sets the measurement type capacity, i.e., the number of
measurement objects (belonging to the specified measurement type) that may be
created.
The AdminState sets the initial administrative state of the the measurement type.

It is possible to re-register a measurement type, provided that the same interface
module is specified. This allows changes in capacity, e.g., the number of
measurement objects that may be created.
However, in the case of a capacity decrease, no measurement objects will be disabled,
but an alarm will be sent to EVA.
When re-registration has been approved by Mesh, the init/1 function in the interface
module will once again be called to restart possible existing MRPs.

Should the type capacity be exceeded, a meshTypeCapacityExceeded alarm will be sent
to EVA. Once the number of existing measurement objects falls below the type
capacity, the alarm will be cleared.

unregister type(TypeId) -> Result

unregister type(TypeId, StopArgs) -> Result

Types:

� TypeId = atom()
� StopArgs = [term()]
� Result = funregistered, TypeIdg | ferror, Reasong
� Reason = term()

51Mesh

mesh (Module) Mesh Reference Manual

This function unregisters a measurement type in the Measurement Handler. Any
existing measurement objects will be deleted, and the interface module will no longer
be associated with the TypeId identifier. For each existing measurement object, the
delete measurement/3 function in the measurement type interface will be called, with
StopArgs as one of the arguments. Finally, the terminate1 function in the
measurement type interface will be called; this is to enable clean-up actions.
Note: The StopArgs are only passed on to the delete measurement function, not to the
terminate function!

list types() -> Result

Types:

� Result = [TypeInfo] | ferror, Reasong
� TypeInfo = fTypeId, [fextra,Extrag, finterface mod,InterfaceModg,
finstances,CurrNofInstg, fmax instances,MaxNofInstg,
fadministrative state,CurrAdminStateg]g

� TypeId = atom()
� Extra = term()
� InterfaceMod = atom()
� CurrNofInst = integer()
� MaxNofInst = integer()
� CurrAdminState = unlocked | shutting down | locked
� Reason = term()

This function lists all the measurement types currently registered in the Measurement
Handler, including information about settings and the current state of each of the types.

lock type(TypeId) -> Result

lock type(TypeId, StopArgs) -> Result

Types:

� TypeId = atom()
� StopArgs = [term()]
� Result = flocked, TypeIdg | ferror, Reasong
� Reason = term()

This function locks the specified measurement type, ie. prevents further usage until it
becomes unlocked. After locking the measurement type, it will be impossible to create
any new measurement objects, and existing measurement objects will be deleted, using
the delete measurement/3 function in the measurement type interface; the StopArgs
will be passed on to this latter function, thereby enabling soft measurement object
termination. (Unless otherwise stated, StopArgs will be set to the empty list.)

unlock type(TypeId) -> Result

Types:

� TypeId = atom()
� Result = funlocked, TypeIdg | ferror, Reasong
� Reason = term()

This function unlocks the specified measurement type. Once activated, it is possible to
create measurement objects (provided that the type capacity is not exceeded).

52 Mesh

Mesh Reference Manual mesh (Module)

shut down type(TypeId) -> Result

Types:

� TypeId = atom()
� Result = fshutting down, TypeIdg | flocked, TypeIdg | ferror, Reasong
� Reason = term()

This function shuts down the specified measurement type. Once effective, no
measurement objects can be created and measurement objects cannot be revived, once
they have been disabled.
Existing measurement objects are allowed to continue to exist, but once all
measurement objects (belonging to the specified type) have been disabled or deleted,
the measurement type is automatically locked.

create measurement(MeasId, TypeId, Extra, ResId) -> Result

create measurement(MeasId, TypeId, Extra, ResId, AdminState) -> Result

create measurement(MeasId, TypeId, Extra, ResId, AdminState, StartArgs) -> Result

Types:

� MeasId = atom()
� TypeId = atom()
� Extra = term()
� ResId = term()
� AdminState = started | stopped
� StartArgs = [term()]
� Result = fcreated, MeasIdg | ferror, Reasong

This function creates a new measurement object belonging to the specified
measurement type, provided the type capacity is not exceeded. The
create measurement/5 function in the type interface will be called, with some of the
supplied arguments, as a result of this function call. Please see below, and the section
relating to Interface Module Functions.
The MeasId identifier, during the lifetime of the object, is used to uniquely identify the
object. It follows that there can only be one measurement object with a unique
measurement identifier.
The TypeId identifier tells the measurement type which interface module to use when
creating the object and communicating with it; the TypeId identifier is the same as was
given when the measurement type was registered.
The Extra argument is any additional information about the measurement object the
user chooses to supply; this information is not forwarded to the measurement object
itself.
The ResId argument is any term telling the new measurement object which resources
to use; the interpretation of this term is solely a user issue!
The AdminState tells the original administrative state of the new measurement object,
ie. whether it should be started or stopped. The default administrative state is
started.
StartArgs is any list of terms the user wants to forward to the new measurement object
as start arguments, setting the original state, eg. the sampling interval and the algorithm,
to use when evaluating samples are collected. Unless specified by the user, StartArgs
will be set to the empty list when forwarded to the measurement object.

Note: the StartArgs list has to have the same format in the functions
create measurement, start measurement and reset measurement, see the description
of function revive measurement for further information.

53Mesh

mesh (Module) Mesh Reference Manual

delete measurement(MeasId) -> Result

delete measurement(MeasId, StopArgs) -> Result

Types:

� MeasId = atom()
� StopArgs = [term()]
� Result = fdeleted, MeasIdg | ferror, Reasong

This function deletes the specified measurement object. As a result of this function call,
the delete measurement/3 function in the measurement type interface will be called,
with some of the supplied arguments. Please see below and section Interface Module
Functions for further information.
MeasId is the measurement identifier used to identify the measurement object.
StopArgs is any list of terms the user wants to forward to the measurement object,
thereby enabling a soft termination; the default is the empty list.
Note: it is the responsibility of the user to ensure that all resources and applications used
by the measurement object are terminated and/or freed in a controlled manner when an
object is terminated.

measurement terminated(MeasId, Reason) -> ok

Types:

� MeasId = atom()
� Reason = term()

This function is used to inform the Measurement Handler about terminated/disabled
measurement objects. Since the Measurement Handler only supervises the
Measurement Responsible Processes (MRPs), it is strictly necessary that each MRP
reports to Mesh about terminated/disabled measurement objects. The operation of the
Measurement Handler is not guaranteed, should the MRPs neglect this reporting.
Should the measurement object itself be an MRP, not supervising any other
measurement objects, the Measurement Handler will notice automatically (since it is
linked to each MRP) if the measurement object terminates, and no specific reporting is
needed in this case. In all other cases the MRPs must report each measurement object
termination to Mesh, using this function.

list measurements(TypeId) -> Result

Types:

� TypeId = atom()
� Result = [MeasInfo] | ferror, Reasong
� MeasInfo = fMeasId, [fextra,Extrag, fresources,ResIdg,
finitial arguments,StartArgsg, foperability state,CurrOperStateg,
fadministrative state,CurrAdminStateg]g

� MeasId = atom()
� Extra = term()
� ResId = term()
� StartArgs = [term()]
� CurrOperState = enabled | disabled
� CurrAdminState = started | stopped
� Reason = term()

54 Mesh

Mesh Reference Manual mesh (Module)

This function lists all measurement objects belonging to the specified measurement
type. The listing includes information about the resources used, the initial state (ie. the
last known start arguments), the current operability state (ie. whether the measurement
object is enabled or disabled), and the administrative state (ie. whether the
measurement object is started or stopped).

Note: the StartArgs is the list of start arguments as given in any (ie. the latest) of the
functions create measurement, start measurement and reset measurement.

revive measurement(MeasId) -> Result

Types:

� MeasId = atom()
� Result = frevived, MeasIdg | ferror, Reasong
� Reason = term()

This function tries to revive a disabled measurement object, using the last known
settings, including set thresholds.

Please noted that the last known start arguments will be used when trying to revive a
measurement object. These start arguments consist of the latest known StartArgs list;
this list may be specified in any of these three function calls:

� create measurement

� start measurement

� reset measurement

Therefore, the StartArgs list must have the same format in these three functions.

The last step in the revival procedure, resetting the measurement object, is ordered by
Mesh to ensure consistent states in the Measurement Handler and the measurement
object.

start measurement(MeasId) -> Result

start measurement(MeasId, StartArgs) -> Result

Types:

� MeasId = atom()
� StartArgs = [term()]
� Result = fstarted, MeasIdg | ferror, Reasong
� Reason = term()

This function orders a specified measurement object to start running (ie. to enter a
working state). As a result of this function call, the start measurement/3 function in
the measurement type interface will be called, with some of the supplied arguments.
Please see below and section Interface Module Functions for further information.
No resetting takes place, with the exception of thresholds set: if previously triggered,
they are restored to an un-triggered state. (This applies only to the Measurement
Handler, if the user has implemented thresholds in the measurement object, it is their
own responsibility to ensure they are set to a consistent state.)

MeasId is the measurement identifier used to identify the measurement object.
StartArgs is any list of terms the user wants to forward to the measurement object,
thereby changing its internal state. The default is set to the empty list.

55Mesh

mesh (Module) Mesh Reference Manual

Note: the StartArgs list must have the same format in the functions
create measurement, start measurement and reset measurement, see the description
of function revive measurement for further information.

stop measurement(MeasId) -> Result

Types:

� MeasId = atom()
� Result = fstopped, MeasIdg | ferror, Reasong
� Reason = term()

This function orders the specified measurement object to stop running and become idle.
As a result of this function call, the stop measurement/2 function in the measurement
type interface will be called, please see section Interface Module Functions. No
resetting takes place in the Measurement Handler, and all thresholds set remain set.
However, no measurement reports will be accepted from a stopped measurement
object.

MeasId is the measurement identifier used to identify the measurement object.

reset measurement(MeasId) -> Result

reset measurement(MeasId, StartArgs) -> Result

Types:

� MeasId = atom()
� StartArgs = [term()]
� Result = freset, MeasIdg | ferror, Reasong
� Reason = term()

This function orders the specified measurement object to reset its internal state, and
resets in the Measurement Handler all measurement information stored about the
measurement object. All thresholds set will remain set, but if previously triggered, they
are restored to an un-triggered state.
As a result of this function call, the reset measurement/2 function in the measurement
type interface will be called, please see section Interface Module Functions.

MeasId is the measurement identifier used to identify the measurement object.
StartArgs is any list of terms the user wants to forward to the measurement object,
thereby changing its internal state. Default is set to the empty list.
Note: the StartArgs list has to have the same format in the functions
create measurement, start measurement and reset measurement, see the description
of function revive measurement for further information.

measurement report(MeasId, Value, TimeStamp) -> ok

measurement report(MeasId, Value, TimeStamp, MeasInfo) -> ok

Types:

� MeasId = atom()
� Value = number()
� TimeStamp = term()
� MeasInfo = term()

56 Mesh

Mesh Reference Manual mesh (Module)

This function is used to report a measurement value, obtained by any measurement
object, to the Measurement Handler. The Measurement Handler will update the
tidemarks and compare the received value to the thresholds set, and when required,
forward the measurement report to EVA. The measurement value will also be stored
(internally) in the Measurement Handler, until a new measurement report is received
from the same measurement object.

MeasId is the measurement identifier used to identify the measurement object.
Value is the measurement value the measurement object has obtained.
TimeStamp is any (user specified) term describing the time and date the measurement
value and/or report was obtained or sent.
MeasInfo is any (user specified) term describing the measurement report and/or
providing extra information to the manager.

get measurement report(MeasId) -> Result

Types:

� MeasId = atom()
� Result = fMeasId, Value, TimeStamp, MeasInfog | ferror, Reasong
� Value = number()
� TimeStamp = term()
� MeasInfo = term()
� Reason = term

This function gets the most recently reported measurement value from a specified
measurement object.

MeasId is the measurement identifier used to identify the measurement object.
Value is the measurement value reported by the measurement object.
TimeStamp is any (user specified) term describing the time and date the measurement
value and/or report was obtained or sent.
MeasInfo is any (user specified) term describing the measurement report and/or
providing extra information to the manager.

set upper threshold(MeasId, ThreshId, Value) -> Result

set upper threshold(MeasId, ThreshId, Value, Status) -> Result

Types:

� MeasId = atom()
� ThreshId = atom()
� Value = number() | fValueHi, ValueLog
� ValueHi = ValueLo = number()
� Status = enabled | disabled
� Result = fthreshold set, fMeasId,ThreshIdgg | ferror, Reasong
� Reason = term()

This function sets an upper threshold in the Measurement Handler. Thus, when a
threshold has been exceeded an alarm will be triggered. The specified measurement
object also receives the threshold information, using the measurement type interface
function set upper threshold/5, to allow the user to implement the threshold
functionality on their own. However, it should be noted that the set upper threshold
function in the measurement type interface is purely optional. The Measurement
Handler will not crash, should the function not be present, because, Mesh will not
check the return value.

57Mesh

mesh (Module) Mesh Reference Manual

MeasId is the measurement identifier used to identify the measurement object.
ThreshId is the threshold identifier, which is used together with the measurement
identifier to uniquely identify a threshold. Therefore, two different measurement
objects may use the same threshold identifier.
Value is a single number or a pair of numbers, specifying the threshold level. In the case
of a pair of numbers, the first one is assumed to specify the level (value) any
measurement value has to exceed in order for the threshold to be triggered. The second
number is the value any measurement value has to fall below in order for a previously
triggered threshold to be cleared (untriggered).
If only one value is given, the two levels are assumed to be the same.
Status specifies whether the threshold will be enabled or disabled when created. Only
enabled thresholds can be triggered.

A triggered threshold will issue a meshThresholdTriggered alarm to EVA. When the
threshold becomes untriggered, the alarm is cleared.

set lower threshold(MeasId, ThreshId, Value) -> Result

set lower threshold(MeasId, ThreshId, Value, Status) -> Result

Types:

� MeasId = atom()
� ThreshId = atom()
� Value = number() | fValueLo, ValueHig
� ValueHi = ValueLo = number()
� Status = enabled | disabled
� Result = fthreshold set, fMeasId,ThreshIdgg | ferror, Reasong
� Reason = term()

This function sets a lower threshold in the Measurement Handler. Therefore, an
obtained measurement value must fall below the lower threshold in order for the
threshold alarm to be triggered. The specified measurement object also receives the
threshold information, using the measurement type interface function
set lower threshold/5, should the user want to implement the threshold
functionality on their own. However, it should be noted that the set lower threshold
function in the measurement type interface is purely optional. The Measurement
Handler will not crash, should the function not be present, because, Mesh does not
check the return value.

MeasId is the measurement identifier used to identify the measurement object.
ThreshId is the threshold identifier, which is used together with the measurement
identifier to uniquely identify a threshold. Thus, two different measurement objects
may use the same threshold identifier.
Value is a single number or a pair of numbers, specifying the threshold level. In the case
of a pair of numbers, the first one is assumed to specify the level (value) any
measurement value has to fall below in order for the threshold to be triggered. The
second number is the value any measurement value has to exceed in order for a
previously triggered threshold to be cleared (untriggered).
If only one value is given, the two levels are assumed to be the same.
Status specifies whether the threshold will be enabled or disabled when created. Only
enabled thresholds can be triggered.

A triggered threshold will activate a meshThresholdTriggered alarm to EVA. When
the threshold becomes untriggered, the alarm is cleared.

58 Mesh

Mesh Reference Manual mesh (Module)

remove threshold(MeasId, ThreshId) -> Result

Types:

� MeasId = atom()
� ThreshId = atom()
� Result = fthreshold removed, fMeasId,ThreshIdgg | ferror, Reasong
� Reason = term()

This function removes a specified threshold from the specified measurement object.
The specified measurement object also receives the threshold removal order, via the
measurement type interface function remove threshold/3, should the user want to
implement the threshold functionality on his own. However, it should be noted that
the remove threshold function in the measurement type interface is purely optional.
The Measurement Handler will not crash, should the function not be present because,
Mesh does not check the return value.

MeasId is the measurement identifier used to identify the measurement object.
ThreshId is the threshold identifier, which is used together with the measurement
identifier to uniquely identify a threshold.

remove thresholds(MeasId) -> Result

Types:

� MeasId = atom()
� Result = fthresholds removed, MeasIdg | ferror, Reasong
� Reason = term()

This function removes all existing thresholds from the specified measurement object.
The specified measurement object also receives the threshold removal order, via
(repetitive calls to) the measurement type interface function remove threshold/3,
should the user want to implement the threshold functionality on their own. However,
it should be noted that the remove threshold function in the measurement type
interface is purely optional. The Measurement Handler will not crash, should the
function not be present because, Mesh will not even check the return value.

MeasId is the measurement identifier used to identify the measurement object.

list thresholds(MeasId) -> Result

Types:

� MeasId = atom()
� Result = fMeasId, fupper thresholds,[ThreshInfo]g,
flower thresholds,[ThreshInfo]gg | ferror, Reasong

� ThreshInfo = fThreshId, Status, Valueg
� ThreshId = atom()
� Status = enabled | disabled
� Value = number() | fnumber(), number()g
� Reason = term()

This function lists all existing thresholds set for the specified measurement object. The
thresholds are divided into the two categories upper thresholds and lower
thresholds. For each threshold, the current status is specified (enabled or disabled),
as well as the threshold value(s) set.

MeasId is the measurement identifier used to identify the measurement object.

59Mesh

mesh (Module) Mesh Reference Manual

enable threshold(MeasId, ThreshId) -> Result

Types:

� MeasId = atom()
� ThreshId = atom()
� Result = fthreshold enabled, fMeasId,ThreshIdgg | ferror, Reasong
� Reason = term()

This function enables the specified threshold. Only enabled thresholds may be
triggered. The specified measurement object also receives the enable threshold order,
via the measurement type interface function enable threshold/3, should the user
want to implement the threshold functionality on his own. However, it should be noted
that the enable threshold function in the measurement type interface is purely
optional. The Measurement Handler will not crash, should the function not be present
because, Mesh will not even check the return value.

MeasId is the measurement identifier used to identify the measurement object.
ThreshId is the threshold identifier, which is used together with the measurement
identifier to uniquely identify a threshold.

disable threshold(MeasId, ThreshId) -> Result

Types:

� MeasId = atom()
� ThreshId = atom()
� Result = fthreshold disabled, fMeasId,ThreshIdgg | ferror, Reasong
� Reason = term()

This function disables a specified threshold. Disabled thresholds cannot be triggered.
The specified measurement object also receives the disable threshold order, via the
measurement type interface function disable threshold/3, should the user want to
implement the threshold functionality on his own. However, it should be noted that
the disable threshold function in the measurement type interface is purely optional
The Measurement Handler will not crash, should the function not be present because,
Mesh will not even check the return value.

MeasId is the measurement identifier used to identify the measurement object.
ThreshId is the threshold identifier, which is used together with the measurement
identifier to uniquely identify a threshold.

report tidemarks(MeasId) -> Result

Types:

� MeasId = atom()
� Result = fMeasId, TypeId, MaxTideMark, MinTideMarkg | ferror, Reasong
� TypeId = atom()
� MaxTideMark = fmax tidemark, [fcurrent,CurrValueg, fprevious,PrevValueg,
freset,ResetTimeg]g

� MinTideMark = fmin tidemark, [fcurrent,CurrValueg, fprevious,PrevValueg,
freset,ResetTimeg]g

� CurrValue = PrevValue = number()
� ResetTime = fDate, Timeg
� Date = fYear, Month, Dayg

60 Mesh

Mesh Reference Manual mesh (Module)

� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()
� Reason = term()

This function reports the current values of the maximum and minimum tide-marks
associated with the specified measurement object.
Each tide-mark contains the maximum (or minimum) value reached since the last time
the tide-mark was reset, and also the maximum (or minimum) value reached in the
period prior to the last reset.

MeasId is the measurement identifier used to identify the measurement object.
TypeId is the measurement type identifier.

Note: the time is given using the Universal Coordinated Time time zone (sometimes
denoted Greenwich Mean Time or GMT).

reset tidemarks(MeasId) -> Result

Types:

� MeasId = atom()
� Result = ftidemarks reset, MeasIdg | ferror, Reasong
� Reason = term()

This function resets the maximum and minimum tide-marks associated with a specified
measurement object. Resetting consists of storing the current value as the previous
current value, replacing the current value with the atom ’undefined’, and noting the
reset time.

MeasId is the measurement identifier used to identify the measurement object.

watchdog setup(NofTypes, NofMeas) -> Result

Types:

� NofTypes = NofMeas = int()
� Result = ok | ferror, Reasong
� Reason = term()

This functions handles the set-up of the Measurement Handler watchdog. The purpose
of the watchdog is to keep track of the total number of measurement types registered,
as well as the total number of measurement objects created. Should the number of
types exceed the number specified using this function, the alarm meshTooManyTypes is
sent to EVA, however, the alarm meshTooManyMeasurements is sent if the number of
allowed measurement objects is exceeded.
It should be noted that the alarms issued are just warnings and it is still possible to
register new measurement types, and also to create new measurement objects (provided
that the associated measurement type capacity is not exceeded).

61Mesh

mesh (Module) Mesh Reference Manual

Functions used to control the various logs

Mesh uses three logs:

� alarms are logged in the mesh alarms log.

� events are logged in the mesh events log.

� measurement reports are logged in the mesh measurements log.

The user may freely choose to replace the filter function used by each log, using a user
defined filter function instead, or to restore the original filter function.

Exports

set alarm filter(Func) -> Result

Types:

� Func = fMod, Fcn, Argsg
� Mod = Fcn = atom()
� Args = [term()]
� Result = ok | ferror, Reasong
� Reason = term()

This function replaces the default filter with the user specified. (The default filter
ensures that only alarms are recorded in this log, but does not perform any other action.)

set event filter(Func) -> Result

Types:

� Func = fMod, Fcn, Argsg
� Mod = Fcn = atom()
� Args = [term()]
� Result = ok | ferror, Reasong
� Reason = term()

This function replaces the default filter with a user specified filter. The default filter
ensures that only events, with the exception of measurement report events, are logged
in this log, but will not perform any other action.

set measurement filter(Func) -> Result

Types:

� Func = fMod, Fcn, Argsg
� Mod = Fcn = atom()
� Args = [term()]
� Result = ok | ferror, Reasong
� Reason = term()

62 Mesh

Mesh Reference Manual mesh (Module)

This function replaces the default filter with the user specified filter. The default filter
ensures that only measurement report events are recorded in this log, but will not
perform any other action.

reset alarm filter() -> Result

Types:

� Result = ok | ferror, Reasong
� Reason = term()

This function restores the filter used to the default one.

reset event filter() -> Result

Types:

� Result = ok | ferror, Reasong
� Reason = term()

This function restores the filter used to the default one.

reset measurement filter() -> Result

Types:

� Result = ok | ferror, Reasong
� Reason = term()

This function restores the filter used to the default one.

Interface Module Functions

The Measurement Handler application calls a number of functions in each measurement
type interface module. Only if explicitly stated below is it optional to export a
specific function.
The absence of a required function will not cause the Measurement Handler to crash,
but it will severely limit the possibilities when handling the corresponding measurement
types and measurement objects.

63Mesh

mesh (Module) Mesh Reference Manual

Exports

InterfaceMod:init(TypeId) -> Result

Types:

� TypeId = atom()
� Result = MRP | ferror, Reasong
� MRP = pid() | undefined
� Reason = term()

This function takes care of the user application specific initialization. Should there be
an MRP responsible for a number of measurement objects, it has to be started by this
function, in which case the PID of the MRP will have the return value of the function.
If no MRP is started, the atom ’undefined’ will be returned.

InterfaceMod:terminate(MRP) -> Result

Types:

� MRP = pid() | undefined
� Result = ok | ferror, Reasong
� Reason = term()

This function is responsible for user specific termination and clean-up. If resources have
to be freed, and/or applications terminated, this function has to handle it.

The MRP argument is the identifier once returned from the InterfaceMod:init
function.

InterfaceMod:create measurement(MRP1, TypeId, MeasId, ResId, StartArgs) -> Result

Types:

� MRP1 = pid() | undefined
� TypeId = atom()
� MeasId = atom()
� ResId = term()
� StartArgs = [term()]
� Result = MRP2 | ferror, Reasong
� MRP2 = pid()
� Reason = term()

This function handles the actual creation of a measurement object. It is the user’s
responsibility to make sure that the created object uses the correct resources, and
performs measurements as intended.

The MRP1 argument is the identifier once returned from the InterfaceMod:init
function. This identifier may be a pid, or it may be the atom ’undefined’. However, the
return value of the function has to be a PID, namely the process identifier of the process
supervising the measurement object (which actually may be the measurement object
itself).

InterfaceMod:start measurement(MRP, MeasId, StartArgs) -> Result

Types:

64 Mesh

Mesh Reference Manual mesh (Module)

� MRP = pid()
� MeasId = atom()
� StartArgs = [term()]
� Result = ok | ferror, Reasong
� Reason = term()

This function handles a measurement object start.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

InterfaceMod:stop measurement(MRP, MeasId) -> Result

Types:

� MRP = pid()
� MeasId = atom()
� Result = ok | ferror, Reasong
� Reason = term()

This function handles a measurement object stop.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

InterfaceMod:reset measurement(MRP, MeasId, StartArgs) -> Result

Types:

� MRP = pid()
� MeasId = atom()
� StartArgs = [term()]
� Result = ok | ferror, Reasong
� Reason = term()

This function is responsible for the resetting of a measurement object.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

InterfaceMod:delete measurement(MRP, MeasId, StopArgs) -> Result

Types:

� MRP = pid()
� MeasId = atom()
� StopArgs = [term()]
� Result = ok | ferror, Reasong
� Reason = term()

This function deletes the specified measurement object.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

InterfaceMod:set upper threshold(MRP, MeasId, ThreshId, Value, Status) -> Result

Types:

� MRP = pid()

65Mesh

mesh (Module) Mesh Reference Manual

� MeasId = atom()
� ThreshId = atom()
� Value = number() | fValueHi, ValueLog
� ValueHi = ValueLo = number()
� Status = enabled | disabled
� Result = ok | ferror, Reasong
� Reason = term()

This function sets an upper threshold in a measurement object.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

Note: the existence of this function is optional!

InterfaceMod:set lower threshold(MRP, MeasId, ThreshId, Value, Status) -> Result

Types:

� MRP = pid()
� MeasId = atom()
� ThreshId = atom()
� Value = number() | fValueLo, ValueHig
� ValueLo = ValueHi = number()
� Status = enabled | disabled
� Result = ok | ferror, Reasong
� Reason = term()

This function sets a lower threshold in a measurement object.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

Note: the existence of this function is optional.

InterfaceMod:remove threshold(MRP, MeasId, ThreshId) -> Result

Types:

� MRP = pid()
� MeasId = atom()
� ThreshId = atom()
� Result = ok | ferror, Reasong
� Reason = term()

This function removes a specified threshold in a measurement object.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

Note: the existence of this function is optional.

InterfaceMod:enable threshold(MRP, MeasId, ThreshId) -> Result

Types:

� MRP = pid()
� MeasId = atom()
� ThreshId = atom()

66 Mesh

Mesh Reference Manual mesh (Module)

� Result = ok | ferror, Reasong
� Reason = term()

This function enables a specified threshold in a measurement object.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

Note: the existence of this function is optional.

InterfaceMod:disable threshold(MRP, MeasId, ThreshId) -> Result

Types:

� MRP = pid()
� MeasId = atom()
� ThreshId = atom()
� Result = ok | ferror, Reasong
� Reason = term()

This function disables a specified threshold in a measurement object.

The MRP argument is the identifier returned from the
InterfaceMod:create measurement function.

Note: the existence of this function is optional.

SEE ALSO

mesh lib(3), mesh snmp(3), application(3), disk log(3), eva(3), eva log(3), eva sup(3),
mnesia(3)

67Mesh

mesh lib (Module) Mesh Reference Manual

mesh lib (Module)

This module contains the Measurement Handler library functions. The purpose of the
library is to provide the user with commonly used statistical functions.

Exports

sum(SampleList) -> Result

Types:

� SampleList = [number()]
� Result = SampleSum | ferror, Reasong
� SampleSum = number()
� Reason = term()

This function adds up a list of measurement samples.

sum and squaresum(SampleList) -> Result

Types:

� SampleList = [number()]
� Result = fSampleSum, SampleSquareSumg | ferror, Reasong
� SampleSum = SampleSquareSum = number()
� Reason = term()

This function adds up a list of measurement samples, and also sums the square of each
sample.

sample mean(SampleList) -> Result

Types:

� SampleList = [number()]
� Result = EstimatedSampleMean | ferror, Reasong
� EstimatedSampleMean = number()
� Reason = term()

Suppose that [X1, X2, X3, ..., Xn] are random variables (observations) with finite
population mean u.
The sample mean estimation m(n) = (X1 + X2 + X3 + ... +Xn) / n

sample variance(SampleList) -> Result

Types:

68 Mesh

Mesh Reference Manual mesh lib (Module)

� SampleList = [number()]
� Result = EstimatedSampleVariance | ferror, Reasong
� EstimatedSampleVariance = number()
� Reason = term()

Suppose that [X1, X2, X3, ..., Xn] are random variables (observations) with finite
population mean u and finite population variance V, and sample mean estimate m(n).
The sample variance estimation S^2(n) = ((X1 - m(n))^2 + (X2 - m(n))^2 + ... + (Xn -
m(n))^2) / (n - 1) =
= (X1^2 + X2^2 + ... + Xn^2 - (n * m(n)^2)) / (n - 1)

sample mean and variance(SampleList) -> Result

Types:

� SampleList = [number()]
� Result = fEstimatedSampleMean, EstimatedSampleVarianceg | ferror, Reasong
� EstimatedSampleMean = EstimatedSampleVariance = number()
� Reason = term()

Suppose that [X1, X2, X3, ..., Xn] are random variables (observations) with a finite
population mean u with a finite population variance V, and a sample mean estimate
m(n). The sample mean estimation m(n) = (X1 + X2 + X3 + ... +Xn) / n The sample
variance estimation S^2(n) = ((X1 - m(n))^2 + (X2 - m(n))^2 + ... + (Xn - m(n))^2) /
(n - 1) =
= (X1^2 + X2^2 + ... + Xn^2 - (n * m(n)^2)) / (n - 1)

mean variance(MeanList) -> Result

Types:

� MeanList = [EstimatedMeans]
� EstimatedMeans = number()
� Result = MeanVariance | ferror, Reasong
� MeanVariance = number()
� Reason = term()

Suppose that [X1, X2, X3, ..., Xn] are independent random variables with a finite
population mean u, a finite population variance V, and a sample mean estimate m(n).
The variance of the estimated mean may be equated through the formula Var(m(n)) =
S^2(n) / n NOTE: This formula is valid only if all Xi’s are independent (uncorrelated)!!!
This is normally not the case in simulations.

ewma mean(Xnew, Wn, GP, MTP) -> Result

Types:

� Xnew = Wn = GP = MTP = number()
� Result = EstimatedMean | ferror, Reason
� EstimatedMean = number()
� Reason = term()

69Mesh

mesh lib (Module) Mesh Reference Manual

This function computes the mean of a number of samples using the Exponentially
Weighted Moving Average technique. Suppose that [X1, X2, X3, ..., Xn] are random
variables (observations) with finite population mean u. Assume we have previously
equated a mean value estimate Wn (where W0 may have been simply estimated). Let
GP denote the granularity period, ie., the time elapsed between any two successive
sample measurements, and let MTP denote the moving time period, ie., the time within
which samples are considered. (For example, let GP be 5 ms, and MTP 1 s, which
means that the EWMA mean will be based on 200 samples.) When we receive a new
sample Xnew, the new estimate of the mean will be Wnew = f * Xnew + (1 - f) * Wn,
where f = 2 * GP / (GP + MTP)

ewma variance(Xnew, Wnew, Sn, GP, SMTP) -> Result

Types:

� Xnew = Wnew = Sn = GP = SMTP = number()
� Result = EstimatedVariance | ferror, Reason
� EstimatedVariance = number()
� Reason = term()

This function computes the variance of a number of samples using the Exponentially
Weighted Moving Average technique. Suppose that [X1, X2, X3, ..., Xn] are random
variables (observations) with a finite population mean u. Also assume we have
previously computed a variance value estimate Sn (where S0 may have been simply
calculated). Let GP denote the granularity period, ie., the time elapsed between any
two successive sample measurements. Also, let SMTP denote the second moving time
period, ie., the effective time interval over which values are scanned to calculate an
estimate of the variance. When we receive a new sample Xnew, the new estimate of
the mean will be Snew = g * (Xnew - Wnew)^2 + (1 - g) * Sn, where g = 2 * GP / (GP +
SMTP) NOTE: the bias can be shown to be u = 2*(1-f)^2/(2-f), times the variance of
Xnew - Wnew (where f is taken from the ewma mean formula). This may be used to
reduce the bias in the calculations, using the formula S’n = Sn / u. The manager may
decide whether to reduce the bias or ignore it.

uwma mean(Xnew, SX, Xold, N) -> Result

Types:

� Xnew = SX = Xold = N = number()
� Result = fEstimatedMean, SampleSumg | ferror, Reason
� EstimatedMean = SampleSum = number()
� Reason = term()

This function computes the variance of a number of samples using the Uniformly
Weighted Moving Average technique. Suppose that [X1, X2, X3, ..., Xn] are random
variables (observations) with finite population mean u, and sample sum SX. When we
receive a new sample Xnew, the new estimate of the mean will be Wnew = Xnew +
(SX - Xold) / N, where Xold is the oldest sample used in the calculation of SX (ie., the
sample that will be replaced by Xnew when calculating Wnew), and N is the number of
samples the calculation of Wnew is based on.

uwma variance(Xnew, SX, SqSX, Xold, N) -> Result

Types:

� Xnew = SX = SqSX = Xold = N = number()

70 Mesh

Mesh Reference Manual mesh lib (Module)

� Result = fEstimatedVariance, SampleSum, SampleSquareSumg | ferror, Reason
� EstimatedVariance = SampleSum = SampleSquareSum = number()
� Reason = term()

This function computes the variance of a number of samples using the Uniformaly
Weighted Moving Average technique. Suppose that [X1, X2, X3, ..., Xn] are random
variables (observations) with finite population mean u and finite population variance V,
and sample sum SX, and sample square sum SqSX, When we receive a new sample
Xnew, the new estimate of the variance will be Snew = ((Xnew^2 + SqSX - Xold^2) -
(Xnew + SX - Xold)^2 / N) / (N - 1), where Xold is the oldest sample used in the
calculation of SX (ie., the sample that will be replaced by Xnew when calculating
Snew), and N is the number of samples the calculation of Snew is based on.

SEE ALSO

mesh(3)

71Mesh

mesh snmp (Module) Mesh Reference Manual

mesh snmp (Module)

This module implements an SNMP adaptation to basic Mesh. The MIB implemented
by this adaptation is OTP-MESH-MIB, which is located in the directory mibs in the
distribution.

The Mesh SNMP adaptation is started if the environment variable snmp adapted is set
to true when the Mesh application is started.

The Mesh SNMP adaptation requires that the EVA SNMP adaptation is started (and
still running). The events and alarms generated by Mesh is converted to traps using the
API provided by the EVA SNMP adaptation. The traps are normally sent to community
“standard trap”; the user has the possibility to change this.

Exports

register alarms(Community) -> void()

Types:

� Community = string()

This function registers all alarms, used by the Mesh application, in the EVA SNMP
adaptation. This means that each alarm generated will cause a trap to be sent to the
Community.

If this function is not called by the user, the traps are automatically sent to community
“standard trap”.

register events(Community) -> void()

Types:

� Community = string()

This function registers all events, used by the Mesh application, in the EVA SNMP
adaptation. This means that each event generated will cause a trap to be sent to the
Community.

If this function is not called by the user, the traps are automatically sent to community
“standard trap”.

72 Mesh

SEE ALSO

mesh(3), mesh lib(3), eva snmp adatation(3), snmp(3)

73Mesh

74 Mesh

List of Figures

Chapter 1: Mesh User’s Guide
1.1 MRP Models. (R=Resource Object, SV=Supervisor, MO=Measurement Object) 6

1.2 An upper threshold. 20

75Mesh

List of Figures

76 Mesh

Glossary

Measurement Object

A user installed and configured application or process collecting and filtering measurement samples
provided by one or more resource objects.
Local for chapter 1.

Measurement Responsible Process

A gateway between the measurement type interface and the individual measurement objects. A
Measurement Responsible Process supervises one or more measurement objects, maps the
measurement object identifier to the correct process identifier, thereby enabling communication with
measurement objects. It also keeps track of the available resources, mapping new measurement objects
to the correct resource and by its existence ensures Mesh that the user supplied supervision scheme is
still working. Mesh only supervises the MRP (and the node it resides on), whereas the MRP has to
supervise every individual measurement object, reporting to Mesh whenever one becomes disable, and
order revival, if required.
Local for chapter 1.

Measurement Type

A container, holding all the code needed when dealing with the associated measurement objects.
Specifically, the measurement type will provide an interface, which is used by the Measurement
Handler to create, delete, and control the measurement objects.
Local for chapter 1.

Mesh adaptation

Provides a mapping from the generic Mesh support to a specific management protocol.
Local for chapter 1.

77Mesh

Glossary

Resource Object

A user or operating system installed and configured application or device producing measurement
samples.
Local for chapter 1.

78 Mesh

Index

Modules are typed in this way.
Functions are typed in this way.

create_measurement/4
mesh , 53

create_measurement/5
mesh , 53

create_measurement/6
mesh , 53

create_tables/1
mesh , 50

delete_measurement/1
mesh , 54

delete_measurement/2
mesh , 54

disable_threshold/2
mesh , 60

enable_threshold/2
mesh , 60

ewma_mean/4
mesh lib , 69

ewma_variance/5
mesh lib , 70

get_measurement_report/1
mesh , 57

InterfaceMod:create_measurement/5
mesh , 64

InterfaceMod:delete_measurement/3
mesh , 65

InterfaceMod:disable_threshold/3
mesh , 67

InterfaceMod:enable_threshold/3
mesh , 66

InterfaceMod:init/1

mesh , 64

InterfaceMod:remove_threshold/3
mesh , 66

InterfaceMod:reset_measurement/3
mesh , 65

InterfaceMod:set_lower_threshold/5
mesh , 66

InterfaceMod:set_upper_threshold/5
mesh , 65

InterfaceMod:start_measurement/3
mesh , 64

InterfaceMod:stop_measurement/2
mesh , 65

InterfaceMod:terminate/1
mesh , 64

list_measurements/1
mesh , 54

list_thresholds/1
mesh , 59

list_types/0
mesh , 52

lock_type/1
mesh , 52

lock_type/2
mesh , 52

mean_variance/1
mesh lib , 69

measurement_report/3
mesh , 56

measurement_report/4
mesh , 56

measurement_terminated/2

79Mesh

Index

mesh , 54

mesh
create_measurement/4, 53
create_measurement/5, 53
create_measurement/6, 53
create_tables/1, 50
delete_measurement/1, 54
delete_measurement/2, 54
disable_threshold/2, 60
enable_threshold/2, 60
get_measurement_report/1, 57
InterfaceMod:create_measurement/5,

64
InterfaceMod:delete_measurement/3,

65
InterfaceMod:disable_threshold/3, 67
InterfaceMod:enable_threshold/3, 66
InterfaceMod:init/1, 64
InterfaceMod:remove_threshold/3, 66
InterfaceMod:reset_measurement/3, 65
InterfaceMod:set_lower_threshold/5,

66
InterfaceMod:set_upper_threshold/5,

65
InterfaceMod:start_measurement/3, 64
InterfaceMod:stop_measurement/2, 65
InterfaceMod:terminate/1, 64
list_measurements/1, 54
list_thresholds/1, 59
list_types/0, 52
lock_type/1, 52
lock_type/2, 52
measurement_report/3, 56
measurement_report/4, 56
measurement_terminated/2, 54
register_type/4, 51
register_type/5, 51
remove_threshold/2, 59
remove_thresholds/1, 59
report_tidemarks/1, 60
reset_alarm_filter/0, 63
reset_event_filter/0, 63
reset_measurement/1, 56
reset_measurement/2, 56
reset_measurement_filter/0, 63
reset_tidemarks/1, 61
revive_measurement/1, 55
set_alarm_filter/1, 62
set_event_filter/1, 62
set_lower_threshold/3, 58
set_lower_threshold/4, 58
set_measurement_filter/1, 62

set_upper_threshold/3, 57
set_upper_threshold/4, 57
shut_down_type/1, 53
start_measurement/1, 55
start_measurement/2, 55
stop_measurement/1, 56
unlock_type/1, 52
unregister_type/1, 51
unregister_type/2, 51
watchdog_setup/2, 61

mesh lib
ewma_mean/4, 69
ewma_variance/5, 70
mean_variance/1, 69
sample_mean/1, 68
sample_mean_and_variance/1, 69
sample_variance/1, 68
sum/1, 68
sum_and_squaresum/1, 68
uwma_mean/4, 70
uwma_variance/5, 70

mesh snmp
register_alarms/1, 72
register_events/1, 72

register_alarms/1
mesh snmp , 72

register_events/1
mesh snmp , 72

register_type/4
mesh , 51

register_type/5
mesh , 51

remove_threshold/2
mesh , 59

remove_thresholds/1
mesh , 59

report_tidemarks/1
mesh , 60

reset_alarm_filter/0
mesh , 63

reset_event_filter/0
mesh , 63

reset_measurement/1
mesh , 56

reset_measurement/2
mesh , 56

80 Mesh

Index

reset_measurement_filter/0
mesh , 63

reset_tidemarks/1
mesh , 61

revive_measurement/1
mesh , 55

sample_mean/1
mesh lib , 68

sample_mean_and_variance/1
mesh lib , 69

sample_variance/1
mesh lib , 68

set_alarm_filter/1
mesh , 62

set_event_filter/1
mesh , 62

set_lower_threshold/3
mesh , 58

set_lower_threshold/4
mesh , 58

set_measurement_filter/1
mesh , 62

set_upper_threshold/3
mesh , 57

set_upper_threshold/4
mesh , 57

shut_down_type/1
mesh , 53

start_measurement/1
mesh , 55

start_measurement/2
mesh , 55

stop_measurement/1
mesh , 56

sum/1
mesh lib , 68

sum_and_squaresum/1
mesh lib , 68

unlock_type/1
mesh , 52

unregister_type/1
mesh , 51

unregister_type/2
mesh , 51

uwma_mean/4
mesh lib , 70

uwma_variance/5
mesh lib , 70

watchdog_setup/2
mesh , 61

81Mesh

