
Open DataBase Connectivity (ODBC)

version 0.8

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 ODBC User’s Guide 1

1.1 Introduction . 2

Introduction . 2

Prerequisites . 2

1.2 Installation . 3

Installation . 3

1.3 Overview . 4

Interfaces . 4

1.4 ODBC Examples . 7

Example Introduction . 7

1.5 ODBC Release Notes . 13

ODBC 0.8 . 13

Incompatibilities . 13

Known bugs and problems . 13

2 ODBC Reference Manual 15

2.1 odbc (Module) . 19

iOpen DataBase Connectivity (ODBC)

ii Open DataBase Connectivity (ODBC)

Chapter 1

ODBC User's Guide

ODBC is written in Erlang and intended to be used from Erlang applications.

The ODBC application enables access to foreign SQL DBMSs from Erlang.

1Open DataBase Connectivity (ODBC)

1.1 Introduction

Introduction

This book describes the ODBC (Open DataBase Connectivity) Application. It is an interface to various
SQL databases to and it is a part of the Open Telecom Platform (OTP).

ODBC is written in Erlang and C and is intended to be used in conjunction with Erlang applications.
To use the ODBC application it is necessary to install one or more ODBC Drivers written in C. ODBC
is a ’pure ODBC 3.0 application’, and it is defined in Reference 1. This implies that the application
would not work with ODBC 2.x (or earlier) Drivers.

The ODBC application implements a subset of the Core level functionality as specified by the ODBC
standard.

Before using the ODBC application it is necessary to install it properly. This includes compiling it with
the proper include files, and dynamically linking to libraries of the ODBC Driver.

Prerequisites

Readers of this manual are assumed to be familiar with the Erlang programming language in general.

2 Open DataBase Connectivity (ODBC)

1.2 Installation

Installation

Before using the ODBC application it needs to be properly installed. The reason why it is not
completely installed, with the rest of Erlang/OTP, is that it is necessary to have access to the include
files, and dynamic libraries, of the ODBC software it will be working with.

To install the ODBC module you need to:

� Install your ODBC software package (ODBC Driver Manager and Driver).

� Edit the Makefile in the src directory of the odbc application. The Makefile may need to be
adapted to use correct paths and compiler command and options.

� Run the Makefile.

Before you can use the ODBC application you also need to install a database.

3Open DataBase Connectivity (ODBC)

1.3 Overview

Interfaces

The interface of the ODBC application is divided into three parts:

� Functions for starting and stopping ODBC servers.

� The Basic API which is almost identical to that defined by the ODBC standard.

� TheUtility API which supplies a few easy-to-use functions for database access with little control
over details.

An ODBC serving process can be compared to an Erlang port. It allows you to make function calls,
from Erlang, to an ODBC Driver (or in reality a Driver Manager, which talks to a Driver). The Driver
communicates with the database, which it is built for. The serving process also plays the role of a server
and will be referred to as the server in this text.

When you start ODBC you get a new server, which handles requests by passing them on to an ODBC
Driver. Requests are handled sequentially and the server cannot be connected to more than one
database at any time.

Note:
An ODBC server can only be started on a named node with a cookie (start Erlang with one of the
-name <nodename> or -sname <nodename> options and possibly with the -setcookie <cookie>
option).

The server links to the process that starts it (the client). Should the client terminate, the server
terminates too. The server is dedicated to the client process just like an Erlang port, but there are two
important differences: an ODBC server accepts requests from any process (ports accept messages from
the connected process only), and it does not send messages spontaneously (or deliver them from the
ODBC Driver) – the ODBC server is passive.

Utility API

Using the Utility API is easy. Follow the steps below:

1. Start the server.

2. Initialise the ODBC environment by calling init env/[1, 2], where [1, 2] marks the possible
arities of the function

3. Connect to the database with one of connect/[3, 4, 5, 6]

4. Submit SQL statements to the database by calling exec stmt/[3, 4].

5. Disconnect by calling disconnect/[2, 3]. At this point it is possible to connect to another
database by calling connect/[3, 4, 5, 6] again, or you may wish to terminate the environment
by calling terminate env/[2, 3].

6. The server process dies when stop/[1, 2] is called.

4 Open DataBase Connectivity (ODBC)

1.3: Overview

Basic API

To be able to make full use of the Basic API it is necessary to be familiar with the ODBC standard.
Here is a typical way to use it for a SELECT statement though:

1. Allocate an environment handle: sql alloc handle/[3, 4] .

2. Set the ODBC version environment attribute: sql set env attr/[5, 6].

3. Allocate a database connection handle: sql alloc handle/[3, 4].

4. Connect to the database: sql connect/[5, 6] or sql driver connect/[5, 6].

5. Set connection attributes (if you’re not happy with the default values):
sql set connect attr/[5, 6].

6. Allocate a statement handle: sql alloc handle/[3, 4].

7. Execute an SQL statement: sql exec direct/[3, 4]

8. Check if the statement generated a result set (or table), which SELECT statements do:
sql num result cols/[2, 3] returns a value greater than zero.

9. Retrieve data about the buffer size needed for one of the returned columns of the table:
sql describe col/[4, 5] and display size/2.

10. Allocate a buffer for the column at hand: alloc buffer/[3, 4].

11. Bind the buffer to the column: sql bind col/[4, 5].

12. Repeat steps 9 through 11 for each desired column (not necessarily all columns in the table).

13. Retrieve the first/next column into the buffers: sql fetch/[2, 3].

14. Read the buffer values: read buffer/[2, 3].

15. Repeat steps 13 through 14 until all rows in the table have been retrieved.

16. Close the cursor on the statement: sql close cursor/[2, 3].

17. Start over with step 7 to execute a new statement or free the statement handle:
sql free handle/[3, 4].

18. Disconnect from the database: sql disconnect/[2, 3].

19. Start over with step 4 to connect to another database or free the database connection handle:
sql free handle/[3, 4].

20. Free the environment handle: sql free handle/[3, 4].

Here is a typical way to use the Basic API for an INSERT statement:

� Follow steps 1 through 8 above.

� Check how many rows were affected by the statement: sql row count/[2, 3].

� Commmit or rollback the statement: sql end tran/[4, 5].
Note:
This is only necessary if the connection attribute SQL ATTR AUTOCOMMIT has been changed
from the default value to SQL AUTOCOMMIT OFF. Otherwise the transaction is automatically
committed.

� Follow steps 17 through 19 above.

You may use the Basic API and the Utility API intermittently, but remember that certain operations
performed in the Basic API (like setting different attributes defined by the ODBC standard) may affect
the behaviour of the Utility API.

5Open DataBase Connectivity (ODBC)

Chapter 1: ODBC User's Guide

Choice of API

When to use which API? The Utility API can be used when none of the following is true:

� It is necessary to set an attribute. This can only be done through the Basic API. You may however
use the Basic API just for setting attributes, and the Utility API for all other tasks.

� The table resulting from a SELECT statement is very big. In this case using the Utility API would
consume a huge amount of memory, since the whole table is returned in one chunk. You can get
around this problem by using the Basic API by retrieving fewer rows at a time, or by using smaller
buffers for large columns (which causes data to be truncated).

� You consider ODBC Driver warnings to be serious. The Utility API ignores warnings (when the
ODBC Driver returns the code SQL SUCCESS WITH INFO).

6 Open DataBase Connectivity (ODBC)

1.4 ODBC Examples

Example Introduction

In this and the following chapter two examples of the usage of the ODBC interface will be introduced.

The examples contain some basic operations, creating tables, writing and reading data, and dropping
tables. They do the same things using the two different interface parts: the Utility API and the Basic
API. The SQL used in the example is supported by Oracle8 and Intersolv’s DataDirect ODBC Oracle8
Driver, but it may not work with other DBMSs/Drivers. The strings used to connect to the database
depend on how your ODBC Driver is configured.

Utility API

A database has been created in the RDBMS at hand. We will now create a new table, insert data into it,
select the data, and finally delete the table. The ODBC application has been started on a named node
with some cookie.

%% ‘‘The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.’’
%%
%% Id
%%
-module(utility).

-export([start/0]).

% This string depends on how your ODBC Driver is configured.
% You need to fill in your own value.
%-define(ConnectStr, "DSN=Oracle8;UID=myself;PWD=secret").

%% Note that the SQL syntax is database and ODBC Driver dependent.
%%
start() ->

% Start a new ODBC server. The application must already be started.

7Open DataBase Connectivity (ODBC)

Chapter 1: ODBC User's Guide

{ok, _Pid} = odbc:start_link({local, odbc1}, [], []),

% Initialise the environment (also loads the Driver Manager).
{ok, EnvHandle} = odbc:init_env(odbc1, infinity),

% Load the Driver and connect to the database.
{ok, ConnectionHandle} = odbc:connect(odbc1, EnvHandle, ?ConnectStr, infinity),

% Create a new table.
% By default, all transactions are automatically committed.
CreateStmt = "CREATE TABLE TAB1 (ID number(3), DATA char(10))",
{updated, NAffectedRows1} =

odbc:execute_stmt(odbc1, ConnectionHandle, CreateStmt, infinity),
ok = io:format("Create: Number of affected rows: ~p~n", [NAffectedRows1]),

% Insert a row.
InsertStmt = "INSERT INTO TAB1 VALUES (1, ’a1a2a3a4a5’)",
{updated, NAffectedRows2} =

odbc:execute_stmt(odbc1, ConnectionHandle, InsertStmt, infinity),
ok = io:format("Insert: Number of affected rows: ~p~n", [NAffectedRows2]),

% Select all rows.
SelectStmt = "SELECT * FROM TAB1",
{selected, ColumnNames, Rows} =

odbc:execute_stmt(odbc1, ConnectionHandle, SelectStmt, infinity),
ok = io:format("Select: Column names: ~p, Rows: ~p~n", [ColumnNames, Rows]),

% Delete the table.
DropStmt = "DROP TABLE TAB1",
{updated, NAffectedRows3} =

odbc:execute_stmt(odbc1, ConnectionHandle, DropStmt, infinity),
ok = io:format("Delete: Number of affected rows: ~p~n", [NAffectedRows3]),

% Disconnect.
ok = odbc:disconnect(odbc1, ConnectionHandle, infinity),

% Terminate the environment.
ok = odbc:terminate_env(odbc1, EnvHandle, infinity),

% Stop the server.
ok = odbc:stop(odbc1, infinity).

Basic API

A database has been created in the RDBMS at hand. We will now create a new table, insert data into it,
select the data, and finally delete the table. The ODBC application has been started on a named node
with some cookie. In this example we will not use the autocommit mode, meaning that we have to
commit changes explicitly. The example does not include any error handling.

%% ‘‘The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the

8 Open DataBase Connectivity (ODBC)

1.4: ODBC Examples

%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.’’
%%
%% Id
%%
-module(basic).

-export([start/0]).

% Contains macros defined by the ODBC standard.
-include("/clearcase/otp/libraries/odbc/include/odbc.hrl").

% These strings depend on how your ODBC Driver is configured.
% You need to fill in your own values.
%-define(DSN, "Oracle8").
%-define(UID, "myself").
%-define(PWD, "secret").

% The maximum length for column names + 1.
% The 1 is there to allow room for a null-termination character.
-define(BufLenColName, 64).

%% The maximum length of table data + 1.
-define(MaxDataBufLen, 1024).

%% Note that the SQL syntax is database and ODBC Driver dependent.
%% Error handling is not covered by the example.
%%
start() ->

% Start a new ODBC server. The application must already be started.
{ok, _Pid} = odbc:start_link({local, odbc1}, [], []),

% Allocate an environment handle (also loads the Driver Manager).
{?SQL_SUCCESS, EnvHandle} =
odbc:sql_alloc_handle(odbc1, ?SQL_HANDLE_ENV, ?SQL_NULL_HANDLE, infinity),

% Set the ODBC version attribute to tell the Driver we’re a 3.0 application.
?SQL_SUCCESS =
odbc:sql_set_env_attr(odbc1,

EnvHandle,
?SQL_ATTR_ODBC_VERSION,

9Open DataBase Connectivity (ODBC)

Chapter 1: ODBC User's Guide

?SQL_OV_ODBC3,
?SQL_C_ULONG,
infinity),

% Allocate a connection handle.
{?SQL_SUCCESS, ConnectionHandle} =
odbc:sql_alloc_handle(odbc1, ?SQL_HANDLE_DBC, EnvHandle, infinity),

% Connect to the database (also loads the Driver).
?SQL_SUCCESS =
odbc:sql_connect(odbc1, ConnectionHandle, ?DSN, ?UID, ?PWD, infinity),

% Turn the autocommit mode off (if you don’t want it).
?SQL_SUCCESS = odbc:sql_set_connect_attr(odbc1,

ConnectionHandle,
?SQL_ATTR_AUTOCOMMIT,
?SQL_AUTOCOMMIT_OFF,
?SQL_C_ULONG,
infinity),

% Allocate a statement handle.
{?SQL_SUCCESS, StmtHandle} =
odbc:sql_alloc_handle(odbc1, ?SQL_HANDLE_STMT, ConnectionHandle,

infinity),

% Create a new table.
CreateStmt = "CREATE TABLE TAB1 (ID number(3), DATA char(10))",
?SQL_SUCCESS = odbc:sql_exec_direct(odbc1, StmtHandle, CreateStmt,

infinity),

% Print how many rows were affected by the statement.
{?SQL_SUCCESS, NAffectedRows1} = odbc:sql_row_count(odbc1, StmtHandle,

infinity),
ok = io:format("Create: Number of affected rows: ~p~n", [NAffectedRows1]),

% Commit the transaction.
?SQL_SUCCESS =
odbc:sql_end_tran(odbc1,

?SQL_HANDLE_DBC,
ConnectionHandle,
?SQL_COMMIT,
infinity),

% Insert a new row.
InsertStmt = "INSERT INTO TAB1 VALUES (1, ’a1a2a3a4a5’)",
?SQL_SUCCESS = odbc:sql_exec_direct(odbc1, StmtHandle, InsertStmt,

infinity),

% Print how many rows were affected by the statement.
{?SQL_SUCCESS, NAffectedRows2} =
odbc:sql_row_count(odbc1, StmtHandle, infinity),

ok = io:format("Insert: Number of affected rows: ~p~n", [NAffectedRows2]),

10 Open DataBase Connectivity (ODBC)

1.4: ODBC Examples

% Commit the transaction.
?SQL_SUCCESS =
odbc:sql_end_tran(odbc1,

?SQL_HANDLE_DBC,
ConnectionHandle,
?SQL_COMMIT,
infinity),

% Select the DATA column from all rows.
SelectStmt = "SELECT DATA FROM TAB1",
?SQL_SUCCESS = odbc:sql_exec_direct(odbc1, StmtHandle, SelectStmt, infinity),

% Print how many columns there are in the table resulting from the
% statement.
{?SQL_SUCCESS, NSelectedCols} =
odbc:sql_num_result_cols(odbc1, StmtHandle, infinity),

ok = io:format("Select: Number of columns: ~p~n", [NSelectedCols]),

% Describe the column(s) of the resulting table.
{?SQL_SUCCESS, {ColName, _LenColName}, SqlType, ColSize, _DecDigits,

_Nullable} =
odbc:sql_describe_col(odbc1, StmtHandle, 1, ?BufLenColName, infinity),

% Calculate the size of the buffer(s) we’re going to use to retrieve data.
% Make sure you protect yourself from trying to allocate huge amounts of
% memory.
DispSize = odbc:display_size(SqlType, ColSize),
BufSz =

if
ColSize > ?MaxDataBufLen ->

?MaxDataBufLen;
true ->

DispSize
end,

% Allocate data buffer(s).
{ok, Buf} =
odbc:alloc_buffer(odbc1, ?SQL_C_CHAR, BufSz, infinity),

% Bind the buffer(s) to the column.
?SQL_SUCCESS = odbc:sql_bind_col(odbc1, StmtHandle, 1, Buf, infinity),

% Fetch the first row into the bound buffer(s) (only one buffer bound here).
?SQL_SUCCESS = odbc:sql_fetch(odbc1, StmtHandle, infinity),

% Read the value from the buffer(s).
{ok, {ColValue, _LenColValue}} =
odbc:read_buffer(odbc1, Buf, infinity),

io:format("Select: Column name: ~p, Data: ~p~n", [ColName, ColValue]),

% Check that there are no more rows to fetch.
?SQL_NO_DATA = odbc:sql_fetch(odbc1, StmtHandle, infinity),

11Open DataBase Connectivity (ODBC)

Chapter 1: ODBC User's Guide

% Close the cursor on the statement.
?SQL_SUCCESS = odbc:sql_close_cursor(odbc1, StmtHandle, infinity),

% Deallocate the buffer(s).
ok = odbc:dealloc_buffer(odbc1, Buf, infinity),

% Delete the table.
DropStmt = "DROP TABLE TAB1",
?SQL_SUCCESS = odbc:sql_exec_direct(odbc1, StmtHandle, DropStmt, infinity),

% Print how many rows were affected by the statement.
{?SQL_SUCCESS, NAffectedRows3} = odbc:sql_row_count(odbc1, StmtHandle,

infinity),
ok = io:format("Delete: Number of affected rows: ~p~n", [NAffectedRows3]),

% Commit the transaction.
?SQL_SUCCESS =
odbc:sql_end_tran(odbc1,

?SQL_HANDLE_DBC,
ConnectionHandle,
?SQL_COMMIT,
infinity),

% Free the statement handle.
?SQL_SUCCESS =

odbc:sql_free_handle(odbc1, ?SQL_HANDLE_STMT, StmtHandle, infinity),

% Disconnect from the database.
?SQL_SUCCESS = odbc:sql_disconnect(odbc1, ConnectionHandle, infinity),

% Free the connection handle.
?SQL_SUCCESS =
odbc:sql_free_handle(odbc1, ?SQL_HANDLE_DBC, ConnectionHandle, infinity),

% Free the environment handle.
?SQL_SUCCESS =
odbc:sql_free_handle(odbc1, ?SQL_HANDLE_ENV, EnvHandle, infinity),

% Stop the server.
ok = odbc:stop(odbc1).

12 Open DataBase Connectivity (ODBC)

1.5 ODBC Release Notes

This document describes the changes made to the ODBC application. The intention of this document
is to list all incompatibilities as well as all enhancements and bug-fixes for each and every release of
ODBC. Each release of ODBC constitutes one section in this document. The title of each section is the
version number of ODBC.

ODBC 0.8

ODBC is a application, which allows client applications to access SQL databases.

Improvements and new features

� Functions for starting and stopping ODBC servers.

� The Basic API which is almost identical to that defined by the ODBC standard.

� The Utility API which supplies a few easy-to-use functions for database access with little control
over details.

Fixed Bugs and malfunctions

Version 0.8.2 is the source code of ODBC in the directory
<OTP INSTALLATIONPATH>/lib/odbc-<OdbcVersion>/src.

Incompatibilities

N.A.

Known bugs and problems

� The documentation is not ready.

Any comments regarding the ODBC application would be appreciated.

13Open DataBase Connectivity (ODBC)

14 Open DataBase Connectivity (ODBC)

ODBC Reference Manual

Short Summaries

� Erlang Module odbc [page 19] – Open Data Base Connectivity

odbc

The following functions are exported:

� start link(Args, Options) ->
[page 19] Starts a new ODBC server process.

� start link(ServerName, Args, Options) -> Result
[page 19] Starts a new ODBC server process.

� stop(Server) ->
[page 20]

� stop(Server, Timeout) -> ok
[page 20]

� init env(Server) ->
[page 21]

� init env(Server, Timeout) -> fok, RefEnvHandleg | ferror, fFcn,
[Reason]gg
[page 21]

� connect(Server, RefEnvHandle, ConnectStr) ->
[page 22]

� connect(Server, RefEnvHandle, ConnectStr, Timeout) ->
[page 22]

� connect(Server, RefEnvHandle, DSN, UID, PWD) ->
[page 22]

� connect(Server, RefEnvHandle, DSN, UID, PWD, Timeout) -> fok,
RefConnHandleg | ferror, fFcn, [Reason]gg
[page 22]

� execute stmt(Server, RefConnHandle, Stmt) ->
[page 23]

� execute stmt(Server, RefConnHandle, Stmt, Timeout) -> fupdated,
NRowsg | fselected, [ColName], [Row]g ferror, fFcn, [Reason]gg
[page 23]

15Open DataBase Connectivity (ODBC)

ODBC Reference Manual

� disconnect(Server, RefConnHandle) ->
[page 24]

� disconnect(Server, RefConnHandle, Timeout) -> ok | ferror, fFcn,
[Reason]gg
[page 24]

� terminate env(Server, RefEnvHandle) ->
[page 24]

� terminate env(Server, RefEnvHandle, Timeout) -> ok | ferror, fFcn,
[Reason]gg
[page 24]

� sql alloc handle(Server, HandleType, RefInputHandle) ->
[page 25]

� sql alloc handle(Server, HandleType, RefInputHandle, Timeout) ->
fResult, RefOutputHandleg
[page 25]

� sql bind col(Server, RefStmtHandle, ColNum, RefBuf) ->
[page 26]

� sql bind col(Server, RefStmtHandle, ColNum, RefBuf, Timeout) ->
Result
[page 26]

� sql close cursor(Server, RefStmtHandle) ->
[page 27]

� sql close cursor(Server, RefStmtHandle, Timeout) -> Result
[page 27]

� sql connect(Server, RefConnHandle, DSN, UID, Auth) ->
[page 27]

� sql connect(Server, RefConnHandle, DSN, UID, Auth, Timeout) ->
Result
[page 27]

� sql describe col(Server, RefStmtHandle, ColNum, BufLenColName) ->
[page 28]

� sql describe col(Server, RefStmtHandle, ColNum, BufLenColName,
Timeout) -> fResult,fColName, LenColNameg, SqlType, ColSize,
DecDigs, Nullableg
[page 28]

� sql disconnect(Server, RefConnHandle) ->
[page 29]

� sql disconnect(Server, RefConnHandle, Timeout) -> Result
[page 29]

� sql driver connect(Server, RefConnHandle, InConnStr,
BufLenOutConnStr, DrvCompletion) ->
[page 29]

� sql driver connect(Server, RefConnHandle, InConnStr,
BufLenOutConnStr, DrvCompletion, Timeout) -> fResult, fOutConnStr,
LenOutConnStrgg
[page 29]

� sql end tran(Server, HandleType, RefHandle, ComplType) ->
[page 30]

16 Open DataBase Connectivity (ODBC)

ODBC Reference Manual

� sql end tran(Server, HandleType, RefHandle, ComplType, Timeout) ->
Result
[page 30]

� sql exec direct(Server, RefStmtHandle, Stmt) ->
[page 31]

� sql exec direct(Server, RefStmtHandle, Stmt, Timeout) -> Result
[page 31]

� sql fetch(Server, RefStmtHandle) ->
[page 31]

� sql fetch(Server, RefStmtHandle, Timeout) -> Result
[page 31]

� sql free handle(Server, HandleType, RefHandle) ->
[page 32]

� sql free handle(Server, HandleType, RefHandle, Timeout) -> Result
[page 32]

� sql get connect attr(Server, RefConnHandle, Attr, BufType) ->
[page 32]

� sql get connect attr(Server, RefConnHandle, Attr, BufType, Timeout)
-> fResult, Valueg
[page 32]

� sql get diag rec(Server, HandleType, RefHandle, RecNum, BufLenErrMsg)
->
[page 33]

� sql get diag rec(Server, HandleType, RefHandle, RecNum, BufLenErrMsg,
Timeout) -> fResult, SqlState, NativeErr, fErrMsg, LenErrMsggg
[page 33]

� sql num result cols(Server, RefStmtHandle) ->
[page 34]

� sql num result cols(Server, RefStmtHandle, Timeout) -> fResult,
ColCountg
[page 34]

� sql row count(Server, RefStmtHandle) ->
[page 35]

� sql row count(Server, RefStmtHandle, Timeout) -> fResult, RowCountg
[page 35]

� sql set connect attr(Server, RefConnHandle, Attr, Value, BufType) ->
[page 35]

� sql set connect attr(Server, RefConnHandle, Attr, Value, BufType,
Timeout) -> Result
[page 35]

� sql set env attr(Server, RefEnvHandle, Attr, Value, BufType) ->
[page 36]

� sql set env attr(Server, RefEnvHandle, Attr, Value, BufType, Timeout)
-> Result
[page 36]

� alloc buffer(Server, BufCType, Size) ->
[page 36]

17Open DataBase Connectivity (ODBC)

ODBC Reference Manual

� alloc buffer(Server, BufCType, Size, Timeout) -> fok, RefBufg
[page 36]

� dealloc buffer(Server, RefBuf) ->
[page 37]

� dealloc buffer(Server, RefBuf, Timeout) -> ok
[page 37]

� read buffer(Server, RefBuf) ->
[page 37]

� read buffer(Server, RefBuf, Timeout) -> fok, fValue, LenIndgg
[page 37]

18 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

odbc (Module)

The ODBC API is divided into three parts:

� Start and Stop
Starts and stops the server process.

� Basic API
Gives access to the IDL Interface functions, which are mapped on ODBC
functions.

� Utility API
Consists of functions that are easier to use than the Basic API. These functions are
on a higher level, do more of the job, but allow less control to the application
programmer.

All functions described are synchronous. The interface supports all ODBC defined SQL
data types except binaries. They are all mapped on Erlang strings. The type string()
is a list() of integers representing ASCII codes. The type boolean() is either the
macro ?SQL TRUE or the macro ?SQL FALSE. The default Timeout for all functions is
5000 ms, unless otherwise stated.

Start and Stop

Exports

start link(Args, Options) ->

start link(ServerName, Args, Options) -> Result

Types:

� Args = [Arg]
� Arg = fbuffer size, integer()g | fmax len data, integer()g| fmax len err msg,

integer()g | fmax len str, integer()g
fbuffer size, integer()g: The initial size of the buffer through which
communication with the C node is done. The value does not limit the amount of
data that can pass in either direction of a function call, since the buffer will grow
dynamically. The default is 32 kb. The minimum is 4 kb.

19Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

�
fmax len data, integer()g: The maximum length, including null-termination, of
table data, returned from ODBC. This value must be chosen with the buffer size in
mind. The default is 8 kb. The argument is used only by the Utility API. NOTE: The
data source or driver may have a lower limit for the maximum size of returned data. This
limit is the value of the optional statement attribute SQL ATTR MAX LENGTH (see
[1]).

�
fmax len err msg, integer()g: The maximum length, including null-termination,
of the message part of ODBC error messages. This value must be chosen with the
buffer size in mind. The default is 1 kb. The argument is used only by the Utility API.

�
fmax len str, integer()g: The maximum length, including null-termination, of
other strings passed from ODBC to the ODBC server (e.g. column names). The
value does not limit the size of returned table values. It must be chosen with the
buffer size in mind. The default is 1 kb. The argument is used only by the Utility API.

� Options = [Opt]
� Opt = ftimeout, integer()g |fdebug, [Dbg]g
timeout: The time in ms allowed for initialisation (see gen server). debug: Debug
options.

� Dbg = trace | log | statistics | flog to file, FileNameg | finstall, fFunc, FuncStategg
See gen server and sys.

� ServerName = flocal, atom()g | fglobal, atom()g
When supplied, causes the server to be registered locally or globally. If the server is
started without a name it can only be called using the returned pid.

� Result = fok, pid()g | ferror, Reasong
The pid of the server or an error tuple.

� Reason = falready started, pid()g | timeout | fno c node, Infog
The server was already started, a timeout has expired, or the C node could not be
started (the program may not have been found or may not have been executable e.g.).

� Info = string()
More information.

Starts a new ODBC server process, registers it with the supervisor, and links it to the
calling process. Opens a unique IDL connection to a new C node on the local host,
using the same cookie as is used by the node of the calling process. Links to the process
on the C node.

Note:
There is no default timeout value. Not using the timeout option is equivalent to
having an infinite timeout value.
An expired timeout is reported as an error here, not an exception.
The debug options are described in the sys module documentation.

stop(Server) ->

stop(Server, Timeout) -> ok

Types:

20 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Max time (ms) for serving the request.

Stops the ODBC server process as soon as all already submitted requests have been
processed. The C node is also stopped.

Utility API

The Utility API uses three maximum string length parameters: the maximum data
string length (max len data), the maximum error message length (max len err msg),
and the maximum length of ’other strings’ (e.g. column names) passed from ODBC
(max len str). These can be set in the call to start link/[2, 3], but there are default
values. Errors reported by the ODBC API are returned in lists. The relative order of
these errors is the same as specified in [1]. Warnings are always ignored and execution
proceeds. Should an error occur, execution stops.

Exports

init env(Server) ->

init env(Server, Timeout) -> fok, RefEnvHandleg | ferror, fFcn, [Reason]gg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Max time (ms) for serving the request.

� RefEnvHandle = term()
Reference to the initialised environment.

� Fcn = atom()
The originating function.

� Reason = fSqlState, MoreInfog
An ODBC error tuple.

� SqlState = string()
The SQL state, see [1].

� MoreInfo = fNativeCode, Msg, LenMsgg
More error info.

� NativeCode = string()
Data source specific error code.

� Msg = string()
Error message.

21Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

� LenMsg = integer()
Length of Msg before truncation.

Initialises the ODBC environment on the C node.

connect(Server, RefEnvHandle, ConnectStr) ->

connect(Server, RefEnvHandle, ConnectStr, Timeout) ->

connect(Server, RefEnvHandle, DSN, UID, PWD) ->

connect(Server, RefEnvHandle, DSN, UID, PWD, Timeout) -> fok, RefConnHandleg |
ferror, fFcn, [Reason]gg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefEnvHandle = term()
Reference to the environment. Returned by init env/[1,2].

� ConnectStr = string()
Connection string. For syntax see SQLDriverConnect in [1].

� DSN = string()
Name of the data source.

� UID = string()
User ID.

� PWD = string()
Password.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� RefConnHandle = term()
Reference to the opened connection.

� Fcn = atom()
The originating function.

� Reason = fSqlState, MoreInfog
An ODBC error tuple.

� SqlState = string()
The SQL state, see [1].

� MoreInfo = fNativeCode, Msg, LenMsgg
More error info.

� NativeCode = string()
Data source specific error code.

� Msg = string()
Error message.

� LenMsg = integer()
Length of Msg before truncation.

Opens a connection to a data source. There can be only one open data source
connection per server. connect/[3, 4] is used when the information that can be
supplied through connect/[5, 6] does not suffice.

22 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

Note:
The syntax to be used for ConnectStr is described under SQLDriverConnect in [1].
The ConnectStr must be complete.

execute stmt(Server, RefConnHandle, Stmt) ->

execute stmt(Server, RefConnHandle, Stmt, Timeout) -> fupdated, NRowsg | fselected,
[ColName], [Row]g ferror, fFcn, [Reason]gg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefConnHandle = term()
Reference to an open connection. Returned by connect/[3,4,5,6].

� Stmt = string()
SQL statement to execute.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� NRows = integer()
The number of updated rows for UPDATE, INSERT, or DELETE statements, or -1
if the number is not available. For other statement types the value is driver defined,
see [1].

� ColName = string()
The name of a column in the resulting table.

� Row = [Value]
One row of the resulting table.

� Value = string() | null
One value in a row.

� Fcn = atom()
The originating function.

� Reason = fSqlState, MoreInfog
An ODBC error tuple.

� SqlState = string()
The SQL state, see [1].

� MoreInfo = fNativeCode, Msg, LenMsgg
More error info.

� NativeCode = string()
Data source specific error code.

� Msg = string()
Error message.

� LenMsg = integer()
Length of Msg before truncation.

Executes a single SQL statement. All changes to the data source are, by default,
automatically committed if successful. Data that is returned for SELECT statements is
in string form.

23Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

Note:
fupdated, 0g or fupdated, -1g is returned when a statement that does not select
or update any rows is successfully executed.

The ColNames are ordered the same way as the Values in the Rows (the first ColName
is associated with the first Value of each Row etc.). The Rows have no defined order
since they represent a set.

Column names will be truncated if they are longer than the maximum string length
(see option to start link/[2, 3]). Table values will be truncated if they are longer
than the maximum data length, or longer than the value of the statement attribute
SQL ATTR MAX LENGTH. If the amount of memory needed to retrieve a table
value from a data source can not be determined, the default maximum data length
(see start link/[2, 3]) is used.

disconnect(Server, RefConnHandle) ->

disconnect(Server, RefConnHandle, Timeout) -> ok | ferror, fFcn, [Reason]gg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefConnHandle = term()
Reference to an open connection. Returned by connect/[3,4,5,6].

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Fcn = atom()
The originating function.

� Reason = fSqlState, MoreInfog
An ODBC error tuple.

� SqlState = string()
The SQL state, see [1].

� MoreInfo = fNativeCode, Msg, LenMsgg
More error info.

� NativeCode = string()
Data source specific error code.

� Msg = string()
Error message.

� LenMsg = integer()
Length of Msg before truncation.

Closes the connection to a data source.

terminate env(Server, RefEnvHandle) ->

terminate env(Server, RefEnvHandle, Timeout) -> ok | ferror, fFcn, [Reason]gg

Types:

24 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefEnvHandle = term()
Reference to the environment. Returned by init env/[1,2].

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Fcn = atom()
The originating function.

� Reason = fSqlState, MoreInfog
An ODBC error tuple.

� SqlState = string()
The SQL state, see [1].

� MoreInfo = fNativeCode, Msg, LenMsgg
More error info.

� NativeCode = string()
Data source specific error code.

� Msg = string()
Error message.

� LenMsg = integer()
Length of Msg before truncation.

Cleans up the ODBC environment on the C node.

Basic API

To use the Basic API it is necessary to gain a comprehensive understandingof ODBC by
studying [1]. ODBC defines the concept of deferred buffers. A deferred buffer is one
that exists longer than one function call, so it can be used in several calls. Deferred
buffers come in pairs: one data buffer and one length/indicator buffer. The
length/indicator buffer is used for communicating the length of data in the data buffer,
or to indicate something about the data (e.g. that it is a null-value). The Basic API
handles these buffers accordingly: they are allocated, deallocated, read, and written
pair-wise.

Exports

sql alloc handle(Server, HandleType, RefInputHandle) ->

sql alloc handle(Server, HandleType, RefInputHandle, Timeout) -> fResult,
RefOutputHandleg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

25Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

� HandleType = ?SQL HANDLE ENV | ?SQL HANDLE DBC |
?SQL HANDLE STMT
Macros that determine which type of handle to allocate.

� RefInputHandle = term() | ?SQL NULL HANDLE
The context in which the new handle is to be allocated. When allocating an
environment handle, use ?SQL NULL HANDLE. When allocating a connection handle
the argument must be an environment handle and when allocating a statement
handle it must be a connection handle.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

� RefOutputHandle = term() | ?SQL NULL HENV | ?SQL NULL HDBC |
?SQL NULL HSTMT
Reference to the allocated handle, or a value representing an error.

Allocates memory for an environment, connection, or statement handle. See
SQLAllocHandle in [1].

Differences from the ODBC Function:

Allocation of descriptor handles is not supported. The parameters Server and Timeout
have been added. The ODBC output parameter OutputHandlePtr has been changed
into the returned value RefOutputHandle. Connection pooling is not supported.

sql bind col(Server, RefStmtHandle, ColNum, RefBuf) ->

sql bind col(Server, RefStmtHandle, ColNum, RefBuf, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefStmtHandle = term()
Reference to the statement handle.

� ColNum = integer()
Column number from left to right starting at 1.

� RefBuf = integer() | ?NULL REF
Reference to the buffer where the column data is placed (and to the associated
length/indicator buffer). ?NULL REF removes the binding between a buffer and a
column.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

Assigns storage and data type for a column in a result set (binds a buffer to a column).
See SQLBindCol in [1]. Buffers/columns can also be unbound.

26 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

Note:
The memory associated with RefBuf has to be allocated already.

Differences from the ODBC Function:
Neither binding of arrays nor the use of binding offsets is supported. It is not possible to
unbind the data buffer without also unbinding the length/indicator buffer. The
parameters Server and Timeout have been added. The input parameters TargetType,
TargetValuePtr, BufferLength, and StrLen or IndPtr of the ODBC function have
been replaced with the RefBuf parameter (which represents the same data).

sql close cursor(Server, RefStmtHandle) ->

sql close cursor(Server, RefStmtHandle, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefStmtHandle = term()
Reference to the statement handle.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

Closes a cursor that has been opened on a statement and discards pending results. See
SQLCloseCursor in [1].

Differences from the ODBC Function:

The parameters Server and Timeout have been added.

sql connect(Server, RefConnHandle, DSN, UID, Auth) ->

sql connect(Server, RefConnHandle, DSN, UID, Auth, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefConnHandle = term()
Reference to the connection handle.

� DSN = string()
The name of the data source.

� UID = string()
The user ID

� Auth = string()
The user’s password for the data source.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

27Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

Establishes a connection to a driver and a data source. See SQLConnect in [1].
Differences from the ODBC Function:

Connection pooling is not supported. The parameters Server and Timeout have been
added. The input parameters NameLength1, NameLength2, and NameLength3 of the
ODBC function have been excluded.

sql describe col(Server, RefStmtHandle, ColNum, BufLenColName) ->

sql describe col(Server, RefStmtHandle, ColNum, BufLenColName, Timeout) ->
fResult,fColName, LenColNameg, SqlType, ColSize, DecDigs, Nullableg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefStmtHandle = term()
Reference to the statement handle.

� ColNum = integer()
The column number from left to right, starting at 1.

� BufLenColName = integer()
Length (>0) of the ColName buffer. Allow room for null-termination.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

� ColName = string()
The column name.

� LenColName = integer()
The actual length of ColName. An ODBC SQL data type (ODBC supported data
types are supplied through macros).

� SqlType = integer()
An ODBC SQL data type (ODBC supported data types are supplied through
macros) or a driver-specific type (not supplied through macros).

� ColSize = integer()
The precision of the column (see appendix D in [1]). If the precision cannot be
determined, 0 is returned.

� DecDigs = integer()
The scale of the column (see appendix D in [1]). If the scale cannot be determined,
or is not applicable, 0 is returned.

� Nullable = ?SQL NO NULLS | ?SQL NULLABLE |
?SQL NULLABLE UNKNOWN
Indicates whether the column allows null values or not.

Returns the result descriptor – column name, type, column size, decimal digits, and
nullability – for one column in the result set. See SQLDescribeCol in [1]. To decide
the buffer size (how many characters or bytes) needed to retrieve data for the column it
is necessary to calculate the display size (see also appendix D in [1]). The function

28 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

display size(SqlType, ColSize) -> integer() does the calculation. The input
parameters are returned by sql describe col/[4, 5].

Differences from the ODBC Function:

The function does not support retrieval of bookmark column data. The parameters
Server and Timeout have been added. The output parameters ColumnName,
NameLengthPtr, DataTypePtr, ColumnSizePtr, DecimalDigitsPtr, and NullablePtr
of the ODBC function have been changed into the returned values ColName,
LenColName, SqlType, ColSize, DecDigs, and Nullable. BufLenColName must be > 0.

sql disconnect(Server, RefConnHandle) ->

sql disconnect(Server, RefConnHandle, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefConnHandle = term()
Reference to the connection handle.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

Closes the connection associated with a specific connection handle. See SQLDisconnect
in [1].

Differences from the ODBC Function:

Connection pooling is not supported. The parameters Server and Timeout have been
added.

sql driver connect(Server, RefConnHandle, InConnStr, BufLenOutConnStr, DrvCompletion)
->

sql driver connect(Server, RefConnHandle, InConnStr, BufLenOutConnStr, DrvCompletion,
Timeout) -> fResult, fOutConnStr, LenOutConnStrgg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefConnHandle = term()
Reference to the connection handle.

� InConnStr = string()
A complete connection string (enough for connecting anyway).

� BufLenOutConnStr = integer()
Length (>0) of the OutConnStr buffer. Allow room for null-termination.

� DrvCompletion = ?SQL DRIVER NOPROMPT
No prompting with pop-ups.

29Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR | ?SQL NO DATA
Result macro.

� OutConnStr = string()
A complete connection string.

� LenOutConnStr = integer()
The length of OutConnStr before truncation.

Establishes a connection to a driver and a data sourc, which needs more connection
information than SQLConnect offers. See SQLDriverConnect in [1].

Differences from the ODBC Function:

The function does not support prompting with pop-ups, so the connection string
supplied must be complete or, at least, complete enough for connecting. The
parameters Server and Timeout have been added. The input parameters WindowHandle
and StringLength1 of the ODBC function have been excluded. The output
parameters OutConnectionString and StringLength2Ptr have been changed into the
returned values OutConnStr and LenOutConnStr. BufLenOutConnStr must be > 0.

sql end tran(Server, HandleType, RefHandle, ComplType) ->

sql end tran(Server, HandleType, RefHandle, ComplType, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� HandleType = ?SQL HANDLE ENV | ?SQL HANDLE DBC
The type of handle for which to perform the transaction (all connections associated
with an environment or a specific connection).

� RefHandle = term()
Reference to the handle.

� ComplType = ?SQL COMMIT | ?SQL ROLLBACK
Commit operation or rollback operation.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

�

Requests a commit or rollback operation for all active operations on all statement
handles associated with a connection. It can also request that a commit or rollback
operation be performed for all connections associated with the environment handle. See
SQLEndTran in [1].

Note:
Rollback of transactions may be unsupported by core level drivers.

30 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

Differences from the ODBC Function:

The parameters Server and Timeout have been added.

sql exec direct(Server, RefStmtHandle, Stmt) ->

sql exec direct(Server, RefStmtHandle, Stmt, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefStmtHandle = term()
Reference to the statement handle.

� Stmt = string()
An SQL statement.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR | ?SQL NEED DATA |
?SQL NO DATA
Result macro.

Executes a statement. See SQLExecDirect in [1].

Differences from the ODBC Function:

?SQL NO DATA is returned only in connection with positioned updates, which are not
supported. The parameters Server and Timeout have been added. The input
parameter TextLength of the ODBC function has been excluded.

sql fetch(Server, RefStmtHandle) ->

sql fetch(Server, RefStmtHandle, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefStmtHandle = term()
Reference to the statement handle.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR | ?SQL NO DATA
Result macro.

Fetches a row of data from a result set. The driver returns data for all columns that were
bound to storage locations with sql bind col/[4, 5]. See SQLFetch in [1].

Differences from the ODBC Function:

The parameters Server and Timeout have been added.

31Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

sql free handle(Server, HandleType, RefHandle) ->

sql free handle(Server, HandleType, RefHandle, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� HandleType = ?SQL HANDLE ENV | ?SQL HANDLE DBC |
?SQL HANDLE STMT
Macros which define the type of handle to free.

� RefHandle = term()
Reference to the handle.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

Releases a handle and frees all resources associated with it. See SQLFreeHandle in [1].

Differences from the ODBC Function:

The function does not support deallocation of descriptor handles. The parameters
Server and Timeout have been added.

sql get connect attr(Server, RefConnHandle, Attr, BufType) ->

sql get connect attr(Server, RefConnHandle, Attr, BufType, Timeout) -> fResult, Valueg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefConnHandle = term()
Reference to the connection handle.

� Attr = integer()
One of the attributes described below or a driver-specific attribute.

� BufType = f?SQL C CHAR, BufLeng | ?SQL C ULONG | f?SQL C ULONG,
IntTypeg
The buffer type used for retrieving the data. For character type data also the buffer
size. For integer type data that is driver-specific, also a subtype.

� BufLen = integer()
Buffer size (>0) for character type data. Allow room for null-termination

� IntType = ?SQL IS UINTEGER | ?SQL IS INTEGER
Used only for driver-specific attributes. See SQLGetConnectAttr in [1].

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR | ?SQL NO DATA
Result macro.

� Value = fCharValue, LenCharValueg | NumValue
Attribute data.

32 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

� CharValue = string()
The value of the attribute when of character type.

� LenCharValue = integer()
The length of CharValue before truncation.

� NumValue = integer()
The value of the attribute when of numeric type.

Returns the current setting of a connection attribute. See SQLGetConnectAttr in [1].

Differences from the ODBC Function:

Only the following attributes, and their possible values, are supported (through
macros). More information can be found under SQLSetConnectAttr in [1].
Driver-specific attributes are not supported through macros, but can be retrieved, if
they are of character or signed/unsigned long integer types.

� ?SQL ATTR ACCESS MODE

� ?SQL ATTR AUTOCOMMIT

� ?SQL ATTR ODBC CURSORS

� ?SQL ATTR TRACE

� ?SQL ATTR TRACEFILE

� ?SQL ATTR TRANSLATE LIB

� ?SQL ATTR TRANSLATE OPTION

According to [1], BufLen (BufferLength) can be set to ?SQL NTS. This is probably not
correct, since it would make it impossible for the driver to detect that data needs to be
truncated. Hence, the ?SQL NTS value has been disallowed. The function takes a
BufType parameter to distinguish between character type attributes and numeric type
attributes. For character data the maximum string length must be supplied (allow room
for null-termination). For driver-specific numeric type attributes, a subtype must be
supplied. The returned value is either a tuple containing the attribute string and its
length, or an integer, depending on the specified buffer type. The parameters Server
and Timeout have been added. The output parameters ValuePtr and StringLengthPtr
of the ODBC function have been changed into the returned values CharValue and
LenCharValue for character type attributes and NumValue for integer types. The input
parameter BufferLength has been included in the BufType parameter. BufLen must be
> 0.

sql get diag rec(Server, HandleType, RefHandle, RecNum, BufLenErrMsg) ->

sql get diag rec(Server, HandleType, RefHandle, RecNum, BufLenErrMsg, Timeout) ->
fResult, SqlState, NativeErr, fErrMsg, LenErrMsggg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� HandleType = ?SQL HANDLE ENV | ?SQL HANDLE DBC |
?SQL HANDLE STMT
The type of handle for which to retrieve information.

� RefHandle = term()
Reference to the handle.

33Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

� RecNum = integer()
Indicates the status record from which to retrieve information (> 0).

� BufLenErrMsg = integer()
Length of the ErrMsg buffer (>0). Allow room for null-termination.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR | ?SQL NO DATA
Result macro.

� SqlState = string()
The SQL state pertaining to the diagnostic record.

� NativeErr = integer()
Data-source specific error code.

� ErrMsg = string(
Error message.

� LenErrMsg = integer()
The length of ErrMsg before truncation.

Retrieves the current values of multiple fields of a diagnostic record that contains error,
warning, and status information. See SQLGetDiagRec in [1].

Differences from the ODBC Function:

Retrieving information associated with descriptor handles is not supported. The
parameters Server and Timeout have been added. The output parameters SqlState,
NativeErrorPtr, MessageText, and TextLengthPtr of the ODBC function have been
changed into the returned values SqlState, NativeErr, ErrMsg, and LenErrMsg.
BufLenErrMsg must be > 0.

sql num result cols(Server, RefStmtHandle) ->

sql num result cols(Server, RefStmtHandle, Timeout) -> fResult, ColCountg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefStmtHandle = term()
Reference to the statement handle.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

� ColCount = integer()
The number of columns in the result set.

Returns the number of columns in a result set. See SQLNumResultCols in [1].

Differences from the ODBC Function:

The parameters Server and Timeout have been added. The output parameter
ColumnCountPtr of the ODBC function has been changed into the returned value
ColCount.

34 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

sql row count(Server, RefStmtHandle) ->

sql row count(Server, RefStmtHandle, Timeout) -> fResult, RowCountg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefStmtHandle = term()
Reference to the statement handle.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

� RowCount = integer()
The number of affected rows. If the number of affected rows is not available -1 is
returned. For exceptions, see SQLRowCount in [1].

Returns the number of rows affected by an UPDATE, INSERT, or DELETE statement.
See SQLRowCount in [1].

Differences from the ODBC Function:

The parameters Server and Timeout have been added. The output parameter
RowCountPtr of the ODBC function has been changed into the returned value
RowCount.

sql set connect attr(Server, RefConnHandle, Attr, Value, BufType) ->

sql set connect attr(Server, RefConnHandle, Attr, Value, BufType, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefConnHandle = term()
Reference to the connection handle.

� Attr = integer()
One of the attributes described under sql get connect attr/[4, 5] or a
driver-specific attribute. The attributes defined by ODBC are supplied through
macros, but driver-specific attributes are not.

� Value = string() | integer()
The new attribute value.

� BufType = ?SQL C CHAR | ?SQL C ULONG | f?SQL C ULONG, IntTypeg
The buffer type. Either a (null-terminated) string, an ODBC defined attribute of
integer type, or a driver-specific attribute of integer type (which also has a subtype).

� IntType = ?SQL IS UINTEGER | ?SQL IS INTEGER
Subtype for driver-specific integer attributes.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

35Open DataBase Connectivity (ODBC)

odbc (Module) ODBC Reference Manual

Sets attributes that govern aspects of connections. See SQLSetConnectAttr in [1]. The
supported attributes are listed under sql get connect attr/[4, 5]. Driver-specific
attributes are not supported through macros, but can be set if they are strings or
signed/unsigned long integers.

Differences from the ODBC Function:

Only character and signed/unsigned long integer attribute types are supported. The
parameters Server and Timeout have been added. The input parameter StringLength
of the ODBC function has been replaced with the input parameter BufType.

sql set env attr(Server, RefEnvHandle, Attr, Value, BufType) ->

sql set env attr(Server, RefEnvHandle, Attr, Value, BufType, Timeout) -> Result

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefEnvHandle = term()
Reference to the environment handle.

� Attr = integer()
One of the supported attributes described below.

� Value = string() | intiger()
The new attribute value.

� BufType = ?SQL C CHAR | ?SQL C ULONG
The buffer type. Either a (null-terminated) string or an ODBC defined attribute of
integer type.

� Timeout = integer() | infinity
Max time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO |
?SQL INVALID HANDLE | ?SQL ERROR
Result macro.

Sets attributes that govern aspects of environments. The following attributes, and their
possible values, are supported (through macros). More information can be found under
SQLSetEnvAttr in [1]. Other data types than character or unsigned long integer are not
supported.

� ?SQL ATTR ODBC VERSION

Differences from the ODBC Function:

Only character and unsigned long integer attribute types are supported. The parameters
Server and Timeout have been added. The input parameter StringLength of the
ODBC function has been replaced with the input parameter BufType.

alloc buffer(Server, BufCType, Size) ->

alloc buffer(Server, BufCType, Size, Timeout) -> fok, RefBufg

Types:

36 Open DataBase Connectivity (ODBC)

ODBC Reference Manual odbc (Module)

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� BufCType = ?SQL C CHAR | ?SQL C BINARY
The C data type of the buffer.

� Size = integer()
The buffer size (>0). For character data, allow room for null-termination.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� RefBuf = term()
A handle to the buffer.

Allocates a deferred data buffer and an associated length/indicator buffer.

dealloc buffer(Server, RefBuf) ->

dealloc buffer(Server, RefBuf, Timeout) -> ok

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefBuf = term()
A handle to the buffer.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

Deallocates a deferred data buffer and the associated length/indicator buffer.

read buffer(Server, RefBuf) ->

read buffer(Server, RefBuf, Timeout) -> fok, fValue, LenIndgg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� RefBuf = term()
A handle to the buffer.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Value = string()
Contents of the buffer associated with RefBuf.

� LenInd = integer() | ?SQL NULL DATA | ?SQL NO TOTAL
Length/indicator value associated with RefBuf.

Returns the contents of a deferred data buffer and its associated length/indicator buffer.
Used in connection with sql fetch/[2, 3].

37Open DataBase Connectivity (ODBC)

Error Messages and Exceptions

Errors caused by inability to contact the C node, allocate memory, or otherwise call
ODBC functions cause exceptions. Exceptions are common to all functions. Errors
caused by ODBC not being able to execute calls are reported through returned errors.
These exceptions terminate the client only.

� f’EXIT’, fbadarg, M, F, A, ArgNo, Infogg
The argument is of wrong type or out of range.

� f’EXIT’, finternal error, Infogg
Internal error.

� f’EXIT’, GenServerSpecificInfog
Error detected by gen server.

These cause the ODBC server, and the C node, to terminate as well:

� f’EXIT’, ftimeout, Infogg
Timeout expired.

� f’EXIT’, fstopped, Reasongg
The ODBC server died.

References

[1]: Microsoft ODBC 3.0, Programmer’s Reference and SDK Guide

38 Open DataBase Connectivity (ODBC)

Index

Modules are typed in this way.
Functions are typed in this way.

alloc_buffer/3
odbc , 36

alloc_buffer/4
odbc , 36

connect/3
odbc , 22

connect/4
odbc , 22

connect/5
odbc , 22

connect/6
odbc , 22

dealloc_buffer/2
odbc , 37

dealloc_buffer/3
odbc , 37

disconnect/2
odbc , 24

disconnect/3
odbc , 24

execute_stmt/3
odbc , 23

execute_stmt/4
odbc , 23

init_env/1
odbc , 21

init_env/2
odbc , 21

odbc
alloc_buffer/3, 36

alloc_buffer/4, 36
connect/3, 22
connect/4, 22
connect/5, 22
connect/6, 22
dealloc_buffer/2, 37
dealloc_buffer/3, 37
disconnect/2, 24
disconnect/3, 24
execute_stmt/3, 23
execute_stmt/4, 23
init_env/1, 21
init_env/2, 21
read_buffer/2, 37
read_buffer/3, 37
sql_alloc_handle/3, 25
sql_alloc_handle/4, 25
sql_bind_col/4, 26
sql_bind_col/5, 26
sql_close_cursor/2, 27
sql_close_cursor/3, 27
sql_connect/5, 27
sql_connect/6, 27
sql_describe_col/4, 28
sql_describe_col/5, 28
sql_disconnect/2, 29
sql_disconnect/3, 29
sql_driver_connect/5, 29
sql_driver_connect/6, 29
sql_end_tran/4, 30
sql_end_tran/5, 30
sql_exec_direct/3, 31
sql_exec_direct/4, 31
sql_fetch/2, 31
sql_fetch/3, 31
sql_free_handle/3, 32
sql_free_handle/4, 32
sql_get_connect_attr/4, 32
sql_get_connect_attr/5, 32
sql_get_diag_rec/5, 33
sql_get_diag_rec/6, 33

39Open DataBase Connectivity (ODBC)

Index

sql_num_result_cols/2, 34
sql_num_result_cols/3, 34
sql_row_count/2, 35
sql_row_count/3, 35
sql_set_connect_attr/5, 35
sql_set_connect_attr/6, 35
sql_set_env_attr/5, 36
sql_set_env_attr/6, 36
start_link/2, 19
start_link/3, 19
stop/1, 20
stop/2, 20
terminate_env/2, 24
terminate_env/3, 24

read_buffer/2
odbc , 37

read_buffer/3
odbc , 37

sql_alloc_handle/3
odbc , 25

sql_alloc_handle/4
odbc , 25

sql_bind_col/4
odbc , 26

sql_bind_col/5
odbc , 26

sql_close_cursor/2
odbc , 27

sql_close_cursor/3
odbc , 27

sql_connect/5
odbc , 27

sql_connect/6
odbc , 27

sql_describe_col/4
odbc , 28

sql_describe_col/5
odbc , 28

sql_disconnect/2
odbc , 29

sql_disconnect/3
odbc , 29

sql_driver_connect/5
odbc , 29

sql_driver_connect/6
odbc , 29

sql_end_tran/4
odbc , 30

sql_end_tran/5
odbc , 30

sql_exec_direct/3
odbc , 31

sql_exec_direct/4
odbc , 31

sql_fetch/2
odbc , 31

sql_fetch/3
odbc , 31

sql_free_handle/3
odbc , 32

sql_free_handle/4
odbc , 32

sql_get_connect_attr/4
odbc , 32

sql_get_connect_attr/5
odbc , 32

sql_get_diag_rec/5
odbc , 33

sql_get_diag_rec/6
odbc , 33

sql_num_result_cols/2
odbc , 34

sql_num_result_cols/3
odbc , 34

sql_row_count/2
odbc , 35

sql_row_count/3
odbc , 35

sql_set_connect_attr/5
odbc , 35

sql_set_connect_attr/6
odbc , 35

sql_set_env_attr/5
odbc , 36

sql_set_env_attr/6
odbc , 36

start_link/2

40 Open DataBase Connectivity (ODBC)

Index

odbc , 19

start_link/3
odbc , 19

stop/1
odbc , 20

stop/2
odbc , 20

terminate_env/2
odbc , 24

terminate_env/3
odbc , 24

41Open DataBase Connectivity (ODBC)

