
Orber Application

version 3.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 Orber User’s Guide 1

1.1 The Orber Application . 2

Content Overview . 2

Brief description of the User’s Guide . 2

1.2 Introduction to Orber . 4

Overview . 4

1.3 The Orber Application . 7

ORB kernel and IIOP . 7

The Object Request Broker (ORB) . 7

Internet Inter-Object Protocol (IIOP) . 9

1.4 Interface Repository . 10

Interface Repository(IFR) . 10

1.5 Installing Orber . 11

Installation Process . 11

Configuration . 13

1.6 OMG IDL Mapping . 15

OMG IDL Mapping - Overview . 15

OMG IDL mapping elements . 15

Basic OMG IDL types . 16

Constructed OMG IDL types . 16

References to constants . 17

References to objects defined in OMG IDL . 18

Invocations of operations . 18

Exceptions . 19

Access to attributes . 19

Typecode, Identity and Name access functions. 19

Type Code representation . 20

Scoped names . 21

1.7 CosNaming Service . 25

Overview of the CosNaming Service . 25

The Basic Use-cases of the Naming Service . 27

iOrber Application

Interoperable Naming Service . 29

1.8 How to use security in Orber . 32

Security in Orber . 32

1.9 Orber Examples . 34

A tutorial on how to create a simple service . 34

A tutorial on how to start Orber as lightweight . 43

1.10 Orber Stubs/Skeletons . 45

Orber stubs and skeletons description. 45

1.11 Orber Release Notes . 50

Orber 3.1.8, Release Notes . 50

Orber 3.1.7, Release Notes . 50

Orber 3.1.6, Release Notes . 51

Orber 3.1.5, Release Notes . 52

Orber 3.1.4, Release Notes . 52

Orber 3.1.3, Release Notes . 53

Orber 3.1.2, Release Notes . 53

Orber 3.1.1, Release Notes . 54

Orber 3.1, Release Notes . 55

Orber 3.0.1, Release Notes . 55

Orber 3.0, Release Notes . 56

Orber 2.2.2, Release Notes . 57

Orber 2.2.1, Release Notes . 57

Orber 2.2, Release Notes . 58

Orber 2.1, Release Notes . 59

Orber 2.0.2, Release Notes . 60

Orber 2.0.1, Release Notes . 61

orber 2.0, Release Notes . 62

Orber 1.0.3, Release Notes . 64

Orber 1.0.2, Release Notes . 65

Orber 1.0.1, Release Notes . 67

Orber 1.0, Release Notes . 67

ii Orber Application

2 Orber Reference Manual 71

2.1 CosNaming (Module) . 83

2.2 CosNaming BindingIterator (Module) . 86

2.3 CosNaming NamingContext (Module) . 88

2.4 CosNaming NamingContextExt (Module) . 91

2.5 Module Interface (Module) . 93

2.6 any (Module) . 99

2.7 corba (Module) . 101

2.8 corba object (Module) . 105

2.9 lname (Module) . 107

2.10 lname component (Module) . 109

2.11 orber (Module) . 111

2.12 orber ifr (Module) . 117

2.13 orber tc (Module) . 131

List of Figures 135

List of Tables 137

Glossary 139

iiiOrber Application

iv Orber Application

Chapter 1

Orber User's Guide

The Orber application is an Erlang implementation of a CORBA Object Request Broker.

1Orber Application

1.1 The Orber Application

Content Overview

The Orber documentation is divided into three sections:

� PART ONE - The User’s Guide
Description of the Orber Application including IDL-to-Erlang language mapping, services and a
small tutorial demonstrating the development of a simple service.

� PART TWO - Release Notes
A concise history of Orber.

� PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in Orber.

Brief description of the User's Guide

The User’s Guide contains the following parts:

� ORB kernel and IIOP support

� Interface Repository

� IDL to Erlang mapping

� CosNaming Service

� Resolving initial reference from Java or C++

� Tutorial - creating a simple service

ORB kernel and IIOP support

The ORB kernel which has IIOP support will allow the creation of persistent server objects in Erlang.
These objects can also be accessed via Erlang and Java environments. For the moment a Java enabled
ORB is needed to generate Java from IDL to use Java server objects (this has been tested using
OrbixWeb).

Interface Repository

The IFR is an interface repository used for some type-checking when coding/decoding IIOP. The IFR is
capable of storing all interfaces and declarations of OMG IDL.

IDL to Erlang mapping

The OMG IDL mapping for Erlang, which is necessary to access the functionality of Orber, is
described, The mapping structure is included as the basic and the constructed OMG IDL types
references, invocations and Erlang characteristics. An example is also provided.

2 Orber Application

1.1: The Orber Application

CosNaming Service

Orber contains a CosNaming compliant service.

Resolving initial references from Java or C++

A couple of classes are added to Orber to simplify initial reference access from Java or C++.

Resolving initial reference from Java
A class with only one method which returns an IOR on the external string format to the INIT object
(see “Interoperable Naming Service” specification).

Resolving initial reference from C++
A class (and header file) with only one method which returns an IOR on the external string format to
the INIT object (see “Interoperable Naming Service” specification).

Orber stub/skeleton

An example which describes the API and behavior of Orber stubs and skeletons.

3Orber Application

1.2 Introduction to Orber

Overview

The Orber application is a CORBA compliant Object Request Brokers (ORB), which provides CORBA
functionality in an Erlang environment. Essentially, the ORB channels communication or transactions
between nodes in a heterogeneous environment.

CORBA (Common Object Request Broker Architecture) provides an interface definition language
allowing efficient system integration and also supplies standard specifications for some services.

The Orber application contains the following parts:

� ORB kernel and IIOP support

� Interface Repository

� Interface Definition Language Mapping for Erlang

� CosNaming Service

Benefits

Orber provides CORBA functionality in an Erlang environment that enables:

� Platform interoperability and transparency
Orber enables communication between OTP applications or Erlang environment applications and
other platforms; for example, Windows NT, Solaris etc, allowing platform transparency. This is
especially helpful in situations where there are many users with different platforms. For example,
booking airline tickets would require the airline database and hundreds of travel agents (who may
not have the same platform) to book seats on flights.

� Application level interoperability and transparency
As Orber is a CORBA compliant application, its purpose is to provide interoperability and
transparency on the application level. Orber simplifies the distributed system software by defining
the environment as objects, which in effect, views everything as identical regardless of
programming languages.
Previously, time-consuming programming was required to facilitate communication between
different languages. However, with CORBA compliant Orber the Application Programmer is
relieved of this task. This makes communication on an application level relatively transparent to
the user.

Purpose and Dependencies

The system architecture and OTP dependencies of Orber are illustrated in figure 1 below:

4 Orber Application

1.2: Introduction to Orber

Figure 1.1: Figure 1: Orber Dependencies and Structure.

Orber is dependent on Mnesia (see the Mnesia documentation) - an Erlang database management
application used to store object information.

Note:
Although Orber does not have a run-time application dependency to IC (an IDL compiler for
Erlang), it is necessary when building services and applications. See the IC documentation for further
details.

5Orber Application

Chapter 1: Orber User's Guide

Figure 1.2: Figure 2: ORB interface between Java and Erlang Environment Nodes.

This simplified illustration in figure 2 demonstrates how Orber can facilitate communication in a
heterogeneous environment. The Erlang Nodes running OTP and the other Node running applications
written in Java can communicate via an ORB (Object Request Broker). Using Orber means that
CORBA functions can be used to achive this communication.

For example, if one of the above nodes requests an object, it does not need to know if that object is
located on the same, or different, Erlang or Java nodes. The ORB will channel the information creating
platform and application transparency for the user.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is
familiar with distributed programming and CORBA (Common Object Request Broker Architecture).

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom
Platform Documentation Set. It is also helpful to have read Concurrent Programming in Erlang.

6 Orber Application

1.3 The Orber Application

ORB kernel and IIOP

This chapter gives a brief overview of the ORB and its relation to objects in a distributed environment
and the usage of Domains in Orber. Also Internet-Inter ORB Protocol (IIOP) is discussed and how
this protocol facilitates communication between ORBs to allow the accessory of persistent server
objects in Erlang.

The Object Request Broker (ORB)

An ORB kernel can be best described as the middle-ware, which creates relationships between clients
and servers, but is defined by its interfaces. This allows transparency for the user, as they do not have to
be aware of where the requested object is located. Thus, the programmer can work with any other
platform provided that an IDL mapping and interfaces exist.

The IDL mapping which is described in a later chapter is the translator between other platforms, and
languages. However, it is the ORB, which provides objects with a structure by which they can
communicate with other objects.

ORBs intercept and direct messages from one object, pass this message using IIOP to another ORB,
which then directs the message to the indicated object.

An ORB is the base on which interfaces, communication stubs and mapping can be built to enable
communication between objects. Orber uses domains to group objects of different nodes

How the ORB provides communication is shown very simply in figure 1 below:

7Orber Application

Chapter 1: Orber User's Guide

Figure 1.3: Figure 1: How the Object Request Broker works.

The domain in Orber gives an extra aspect to the distributed object environment as each domain has
one ORB, but it is distributed over a number of object in different nodes. The domain binds objects on
nodes more closely than distributed objects in different domains. The advantage of a domain is that a
faster communication exists between nodes and objects of the same domain. An internal
communication protocol (other than IIOP) allows a more efficient communication between these
objects.

Note:
Unlike objects, domains can only have one name so that no communication ambiguities exist
between domains.

8 Orber Application

1.3: The Orber Application

Internet Inter-Object Protocol (IIOP)

IIOP is a communication protocol developed by the OMG to facilitate communication in a distributed
object-oriented environment.

Figure 2 below demonstrates how IIOP works between objects:

Figure 1.4: Figure 2: IIOP communication between domains and objects.

Note:
Within the Orber domains the objects communicate without using the IIOP. However, the user is
unaware of the difference in protocols, as this difference is not visible.

9Orber Application

1.4 Interface Repository

Interface Repository(IFR)

The IFR is an interface repository built on the Mnesia application. Orber uses the IFR for some
type-checking when coding/decoding IIOP. The IFR is capable of storing all interfaces and declarations
of OMG IDL.

The interface repository is mainly used for dynamical interfaces, and as none are currently supported
this function is only really used for retrieving information about interfaces.

Functions relating to the manipulation of the IFR including, initialization of the IFR, as well as, locating,
creating and destroying initial references are detailed further in the Manual Pages.

10 Orber Application

1.5 Installing Orber

Installation Process

This chapter describes how to install Orber in an Erlang Environment.

Preparation

Before beginning the installation process for Orber, a Mnesia database schema must exist. This schema
will contain information about the location of the Erlang nodes where Orber is planned to be run.

The Mnesia schema can be created by calling the following code in an Erlang shell:
Mnesia:create schema(NodeList)

NodeList is the list of Erlang node names.

Installing Orber

The next step is to actually install Orber. When the installation is completed Orber will automatically
create a few Orber specific Mnesia tables and load them with data.

The installation process will differ slightly depending on whether Orber is running on one or many
nodes or if Mnesia is currently running.

Functions to choose from are:

� orber:install(NodeList).

� orber:install(NodeList, Options).

Installation Options is a choice between multi-node or single node installation.

Note:
When starting Orber as lightweight, mnesia and orber:install/* are not required. You must,
however, use the configuration parameter lightweight.

11Orber Application

Chapter 1: Orber User's Guide

Single Node Installation Single node (non-Distributed) installation means that Orber processes will
be installed and started on only one node.

In this case, Orber still facilitates external communication with other ORBs through the IIOP protocol.

Single node installation of Orber is suitable in cases where:

� Capacity is greater than load (volume of traffic)

� Distributed system architecture requires an Orber installation on only one node.

Below, is an example of a one node installation where Mnesia is not installed. It is not necessary to have
Mnesia running when installing Orber on a single node, as Orber will start Mnesia automatically.

Open an Erlang shell and install the application by typing:

1> mnesia:create_schema([]).

2> orber:install([]).

Note:
In the above example the node list is empty, as the default option is the current node.

Multi-node installation For a multi-node installation there are two extra steps. All nodes must be
started and Mnesia must be running.

Below is an example of a multi-node installation where Mnesia is installed:

1> orber:install([a@machine1, b@machine2]).

Running Java clients against Orber. If you intend to run Java clients, a specific

<OTP_INSTALLPATH>/lib/orber-<current-version>/priv

must be added to your CLASSPATH variable to allow Orber support for the initial references.

12 Orber Application

1.5: Installing Orber

Configuration

The following configuration parameters exist:

� domain - default is “ORBER”. The value is a string. As Orber domains must have unique names,
problems can arise if two domains have the same name.

� iiop port - default 4001. The value is an integer.
Note:On a UNIX system it is preferable to have a IIOP port higher than 1023, since it is not
recommended to run Erlang as a root user.

� bootstrap port - It is used for fetching initial service references and has the IIOP port as the default
setting. The value is an integer.

� orber nodes - default is the current Erlang node (this must be set if Orber shall execute on more
than one Erlang node). The value is a list of Erlang node names.

� ip address - default is all interfaces. This option is used if orber only should listen on a specific ip
interface on a multiinterface host. The value is the ip address as a string or a tuple of four integers.

� objectkeys gc time - default is infinity. This option is should be set if objects are started using the
option fpersistent, trueg. The value is, integer(), seconds. four integers.

� giop version - default is IIOP 1.1. IIOP Version 1.0 is still usable but you have to this configuration
variable, e.g., erl -orber giop version "f1,0g"

� iiop connection timeout - default is infinity. The value is an integer (timeout in seconds between 0
and 1000000) or the atom infinity. This option is only valid for client object connections, i.e., will
have no effect on server connections. Setting this options will cause client connections to be
terminated, if and only if, there are no pending requests. If there are a client still waiting for a
reply, Orber will try again after the given seceonds have passed.

� iiop timeout - default is infinity. The value is an integer (timeout in seconds between 0 and
1000000) or the atom infinity. This option is only valid on the client side. Setting this option,
cause all intra-ORB requests to timeout and raise the COMM FAILURE system exception if no replies
are delivered within the given time limit.

� lightweight - default is false. This option must be set if Orber is supposed to be started as
lightweight. The value is a list of RemoteModifiers, equal to the
orber:resolve initial references remote/2 argument. The list must contain Orber nodes
addresses, to which we have access and are not started as lightweight.

� orbInitRef - default is undefined. Setting this option, e.g., erl -orber orbInitRef
\"NameService=corbaloc::host.com/NameService\" or erl -orber orbInitRef
\"IOR:1234567890...\", will alter the location from where
orber:resolve initial references(Key) tries to find an object matching the given Key. This
variable overrides orbDefaultInitRef

� orbDefaultInitRef - default is undefined. If a matching Key for orbInitRef is not found, and this
variable is set, it determines the location from where orber:resolve initial references(Key)
tries to find an object matching the given Key. Usage: erl -orber orbDefaultInitRef
\"corbaloc::host.com\"

IC supply the compile option ic:gen(IdlFile, [ftimeout,"module::interface"g]), which allow
the user to add an extra timeout parameter, e.g., module interface(ObjRef, Timeout, ...
Arguments ...), instead of module interface(ObjRef, ... Arguments ...). If, a stub is compiled
with the timeout option, the extra Timeout argument will override the configuration parameter
iiop timeout. It is, however, not possible to use infinity to override the Timeout parameter. The
Timeout option is also valid for objects which resides within the same Orber domain .

13Orber Application

Chapter 1: Orber User's Guide

IIOP communication only occurs between different Orber domains and therefore, if IIOP
communication is required between two Orber domains their domain names must be set to different
values.

The following options are the possible configurations when using Orber with secure IIOP. Orber
currently only supports security with the help of SSL and not SECIOP. To get more information about
the SSL read the SSL application manual. The security chapter later in this manual describes how to
get security in Orber and how the options are used.

� secure - default is no security. The values are currently just the atoms ssl and no.

� ssl server certfile - The value is a file path to a server side certificate.

� ssl server verify - The value is an integer less or equal than two.

� ssl server depth - The value is an integer.

� ssl client certfile - The value is a file path to a client side certificate.

� ssl client verify - The value is an integer less or equal than two.

� ssl client depth - The value is an integer.

To change these settings in the configuration file, the -config flag must be added to the erl command.
See the Reference Manual config(4) for further information. The values can also be sent separately as
options to the Erlang node when it is started, see the Reference Manual erl(1) for further information.

14 Orber Application

1.6 OMG IDL Mapping

OMG IDL Mapping - Overview

The purpose of OMG IDL mapping is to act as translator between platforms and languages.

CORBA is independent of the programming language used to construct clients or implementations. In
order to use the ORB, it is necessary for programmers to know how to access ORB functionality from
their programming languages. It translates different IDL constructs to a specific programming language.
This chapter describes the mapping of OMG IDL constructs to the Erlang programming language.

OMG IDL mapping elements

A complete language mapping will allow the programmer to have access to all ORB functionality in a
way that is convenient for a specified programming language.

All mapping must define the following elements:

� All OMG IDL basic and constructed types

� References to constants defined in OMG IDL

� References to objects defined in OMG IDL

� Invocations of operations, including passing of parameters and receiving of results

� Exceptions, including what happens when an operation raises an exception and how the
exception parameters are accessed

� Access to attributes

� Signatures for operations defined by the ORB, such as dynamic invocation interface, the object
adapters etc.

� Scopes; OMG IDL has several levels of scopes, which are mapped to Erlang’s two scopes. The
scopes, and the files they produce, are described.

Reserved compiler names

The use of some names is strongly discouraged due to ambiguities. However, the use of some names is
prohibited when using the Erlang mapping , as they are strictly reserved for IC.

IC reserves all identifiers starting with OE and oe for internal use.

Note also, that an identifier in IDL can contain alphabetic, digits and underscore characters, but the first
character must be alphabetic.

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It
is advisable to avoid the use of underscores in identifiers.

Refer to the IC documentation for further details.

15Orber Application

Chapter 1: Orber User's Guide

Basic OMG IDL types

The OMG IDL mapping is strongly typed and (even if you have a good knowledge of CORBA types), it
is essential to read carefully the following mapping to Erlang types.

The mapping of basic types is straightforward. Note that the OMG IDL double type is mapped to an
Erlang float which does not support the full double value range.

OMG IDL type Erlang type Note

float Erlang float

double Erlang float value range not supported

short Erlang integer

unsigned short Erlang integer

long Erlang integer

long long Erlang integer

unsigned long Erlang integer

unsigned long long Erlang integer

char Erlang integer

wchar Erlang integer

boolean Erlang atoms true or false

octet Erlang integer

any Erlang record #anyftypecode, valueg

long double Not supported

Object Orber object reference

void Erlang atom ok

Table 1.1: OMG IDL basic types

The any value is written as a record with the field typecode which contains the Type Code
representation, see also the Type Code table [page 20], and the value field itself.

Functions with return type void will return the atom ok.

Constructed OMG IDL types

Constructed types all have native mappings as shown in the table below.

16 Orber Application

1.6: OMG IDL Mapping

string Erlang string

wstring Erlang list of Integers

struct Erlang record

union Erlang record

enum Erlang atom

sequence Erlang list

array Erlang tuple

Table 1.2: OMG IDL constructed types

Below are examples of values of constructed types.

Type IDL code Erlang code

string typedef string S; void op(in S a); ok = op(Obj, ”Hello World”),

struct struct S flong a; short b;g; void op(in S a); ok = op(Obj, #’S’fa=300, b=127g),

union union S switch(long) f case 1: long a;g; void
op(in S a);

ok = op(Obj, #’S’flabel=1, value=66g),

enum enum S fone, twog; void op(in S a); ok = op(Obj, one),

sequence typedef sequence<long, 3> S; void op(in S a); ok = op(Obj, [1, 2, 3]),

array typedef string S[2]; void op(in S a); ok = op(Obj, f”one”, ”two”g),

Table 1.3: Typical values

References to constants

Constants are generated as Erlang functions, and are accessed by a single function call. The functions
are put in the file corresponding to the scope where they are defined. There is no need for an object to
be started to access a constant.

Example:

// IDL
module M {

const long c1 = 99;
};

Would result in the following conceptual code:

-module(’M’).
-export([c1/0]).

c1() -> 99.

17Orber Application

Chapter 1: Orber User's Guide

References to objects defined in OMG IDL

Objects are accessed by object references. An object reference is an opaque Erlang term created and
maintained by the ORB.

Objects are implemented by providing implementations for all operations and attributes of the Object,
see operation implementation [page 18].

Invocations of operations

A function call will invoke an operation. The first parameter of the function should be the object
reference and then all in and inout parameters follow in the same order as specified in the IDL
specification. The result will be a return value unless the function has inout or out parameters
specified; in which case, a tuple of the return value, followed by the parameters will be returned.

Example:

// IDL
interface i1 {

long op1(in short a);
long op2(in char c, inout string s, out long count);

};

Is used in Erlang as :

%% Erlang
f() ->

...
Obj = ... %% get object reference
R1 = i1:op1(Obj, 55),
{R2, S, Count} = i1:op2(Obj, $a, "hello"),
...

Note how the inout parameter is passed and returned. There is no way to use a single occurrence of a
variable for this in Erlang.

Operation implementation

A standard Erlang gen server behavior is used for object implementation. The gen server state is
then used as the object internal state. Implementation of the object function is achieved by
implementing its methods and attribute operations. These functions will usually have the internal state
as their first parameter, followed by any in and inout parameters.

Do not confuse the object internal state with its object reference. The object internal state is an Erlang
term which has a format defined by the user.

Note:
It is is not always the case that the internal state will be the first parameter, as stubs can use their own
object reference as the first parameter (see the IC documentation).

18 Orber Application

1.6: OMG IDL Mapping

The special function init/1 is called at object start time and is expected to return the tuple fok,
InitialInternalStateg.

See also the stack example. [page 22]

Exceptions

Exceptions are handled as Erlang catch and throws. Exceptions are translated to messages over an IIOP
bridge but converted back to a throw on the receiving side. Object implementations that invoke
operations on other objects must be aware of the possibility of a non-local return. This includes
invocation of ORB and IFR services.

Exception parameters are mapped as an Erlang record and accessed as such.

An object implementation that raises an exception will use the corba:raise/1 function, passing the
exception record as parameter.

Access to attributes

Attributes are accessed through their access functions. An attribute implicitly defines the get and set
operations. The get operation is defined as a read only attribute. These operations are handled in the
same way as normal operations.

Typecode, Identity and Name access functions.

As mentioned in a previous section, struct,union and exception types yield to record definitions and
access code for that record. For struct,union,exception,array and sequence types, a special file is
generated that hold access functions for TypeCode, Identity and Name. These functions are put in the
file corresponding to the scope where they are defined :

� tc - returns the type code for the record.

� id - returns the identity of the record.

� name - returns the name of the record.

For example:

// IDL
module m {

struct s {
long x;
long y;
};

};

Would result in the following code on file m s.erl:

19Orber Application

Chapter 1: Orber User's Guide

-module(m_s).

-include("m.hrl").

-export([tc/0,id/0,name/0]).

%% returns type code
tc() -> {tk_struct,"IDL:m/s:1.0","s",[{"x",tk_long},{"y",tk_long}]}.

%% returns id
id() -> "IDL:m/s:1.0".

%% returns name
name() -> m_s.

Type Code representation

Type Codes are used in any values. The table below corresponds to the table on page 12-11 in the
OMG CORBA specification.

Type Code Example

tk null

tk void

tk short

tk long

tk longlong

tk ushort

tk ulong

tk ulonglong

tk float

tk double

tk boolean

tk char

tk wchar

tk octet

tk any

tk TypeCode

continued ...

20 Orber Application

1.6: OMG IDL Mapping

... continued

tk Principal

ftk objref, IFRId, Nameg ftk objref, ”IDL:M1\I1:1.0”, ”I1”g

ftk struct, IFRId, Name, [fElemName,
ElemTCg]g

ftk struct, ”IDL:M1\S1:1.0”, ”S1”, [f”a”, tk longg,
f”b”, tk charg]g

ftk union, IFRId, Name, DiscrTC, De-
faultNr, [fLabel, ElemName, ElemTCg]g
Note: DefaultNr tells which of tuples in the
case list that is default, or -1 if no default

ftk union, ”IDL:U1:1.0”, ”U1”, tk long, 1, [f1, ”a”,
tk longg, fdefault, ”b”, tk charg]g

ftk enum, IFRId, Name, [ElemName]g ftk enum, ”IDL:E1:1.0”, ”E1”, [”a1”, ”a2”]g

ftk string, Lengthg ftk string, 5g

ftk wstring, Lengthg ftk wstring, 7g

ftk sequence, ElemTC, Lengthg ftk sequence, tk long, 4g

ftk array, ElemTC, Lengthg ftk array, tk char, 9g

ftk alias, IFRId, Name, TCg ftk alias, ”IDL:T1:1.0”, ”T1”, tk shortg

ftk except, IFRId, Name, [fElemName,
ElemTCg]g

ftk except, ”IDL:Exc1:1.0”, ”Exc1”, [f”a”, tk longg,
f”b”, ftk string, 0gg]g

Table 1.4: Type Code tuples

Scoped names

Various scopes exist in OMG IDL. Modules, interfaces and types define scopes. However, Erlang has
only two levels of scope, module and function:

� Function Scope:
used for constants, operations and attributes.

� Erlang Module Scope:
The Erlang module scope handles the remaining OMG IDL scopes.

Syntax Specific structures for scoped names

An Erlang module, corresponding to an IDL global name,is derived by converting occurencies of “::” to
underscore, and eliminating the leading “::”.

For example, an operation op1 defined in interface I1 which is defined in module M1 would be written
in IDL as M1::I1::op1 and as ’M1 I1’:op1 in Erlang, where op1 is the function name and ’M1 I1’ is
the name of the Erlang module.

Files

Several files can be generated for each scope.

� An Erlang source code file (.erl) is generated for top level scope as well as the Erlang header file.

� An Erlang header file (.hrl) will be generated for each scope. The header file will contain record
definitions for all struct,union and exception types in that scope.

21Orber Application

Chapter 1: Orber User's Guide

� Modules that contain at least one constant definition, will produce Erlang source code files (.erl).
That Erlang file will contain constant functions for that scope. Modules that contain no constant
definitions are considered empty and no code will be produced for them, but only for their
included modules/interfaces.

� Interfaces will produce Erlang source code files (.erl), this code will contain all operation stub
code and implementation functions.

� In addition to the scope-related files, an Erlang source file will be generated for each definition of
the types struct, union and exception (these are the types that will be represented in Erlang as
records). This file will contain special access functions for that record.

� The top level scope will produce two files, one header file (.hrl) and one Erlang source file
(.erl). These files are named as the IDL file, prefixed with oe .

Example:

// IDL, in the file "spec.idl"
module m {

struct s {
long x;
long y;

};

interface i {

void foo(in s a, out short b);

};

};

This will produce the following files:

� oe spec.hrl and oe spec.erl for the top scope level.

� m.hrl for the module m.

� m i.hrl and m i.erl for the interface i.

� m s.erl for the structure s in module m.

A mapping example

This is a small example of a simple stack. There are two operations on the stack, push and pop. The
example shows all generated files as well as conceptual usage of a stack object.

// The source IDL file

interface stack {
exception overflow {};
void push(in long val);
long pop() raises (overflow);

};

22 Orber Application

1.6: OMG IDL Mapping

When this file is compiled it produces four files, two for the top scope and two for the stack interface
scope. The generated Erlang code for the stack object server is shown below:

-module(stack).
-export([push/2, pop/1]).

init(Env) ->
stack_impl:init(Env).

%% This is the stub code used by clients
push(THIS, Val) ->

corba:call(THIS, push, [Val]).

pop(THIS) ->
corba:call(THIS, pop, []).

%% gen_server handle_calls
handle_call({THIS, push, [Val]}, From, State) ->

case catch stack_impl:push(State, Val) of
{’EXCEPTION’, E} ->

{reply, {’EXCEPTION’, E}, State};
{reply, Reply, NewState} ->

{reply, Reply, NewState}
end;

handle_call({THIS, pop, []}, From, State) ->
case catch stack_impl:pop(State) of
{’EXCEPTION, E} ->

{reply, {’EXCEPTION’, E}, State};
{reply, Reply, NewState} ->

{reply, Reply, NewState}
end.

The Erlang code has been simplified but is conceptually correct. The generated stack module is the
Erlang representation of the stack interface. Note that the variable THIS is the object reference and the
variable State is the internal state of the object.

So far the example only deals with interfaces and call chains. It is now time to implement the stack.
The example represents the stack as a simple list. The push operation then is just to add a value on to
the front of the list and the pop operation is then to return the head of the list.

In this simple representation the internal state of the object becomes just a list. The initial value for the
state is the empty list as shown in the init/1 function below.

The implementation is put into a file called stack impl.erl.

-module(stack_impl).

-include("stack.hrl").

-export([push/2, pop/1, init/1]).

init(_) ->
{ok, []}.

23Orber Application

Chapter 1: Orber User's Guide

push(Stack, Val) ->
{reply, ok, [Val | Stack]}.

pop([Val | Stack]) ->
{reply, Val, Stack};

pop([]) ->
corba:raise(#stack_overflow{}).

The stack object can be accessed client code. This example shows a typical add function from a
calculator class:

-module(calc_impl).

-export([add/1]).

add({Stack, Memory}) ->
Sum = stack:pop(Stack)+stack:pop(Stack),
stack:push(Stack, Sum),
{ok, {Stack, Memory}}.

Note that the Stack variable above is an object reference and not the internal state of the stack.

24 Orber Application

1.7 CosNaming Service

Overview of the CosNaming Service

The CosNaming Service is a service developed to help users and programmers identify objects by
human readable names rather than by a reference. By binding a name to a naming context (another
object), a contextual reference is formed. This is helpful when navigating in the object space. In
addition, identifying objects by name allows you to evolve and/or relocate objects without client code
modification.

The CosNaming service has some concepts that are important:

� name binding - a name to object association.

� naming context - is an object that contains a set of name bindings in which each name is unique.
Different names can be bound to the same object.

� to bind a name - is to create a name binding in a given context.

� to resolve a name - is to determine the object associated with the name in a given context.

A name is allways resolved in a context, there no absolute names exist. Because a context is like any
other object, it can also be bound to a name in a naming context. This will result in a naming graph (a
directive graph with notes and labeled edges). The graph allows more complex names to refer to an
object. Given a context, you can use a sequence to reference an object. This sequence is henceforth
refered to as name and the individual elements in the sequence as name components. All but the last
name component are bound to naming contexts.

The diagram in figure 1 illustrates how the Naming Service provides a contextual relationship between
objects, NamingContexts and NameBindings to create an object locality,as the object itself, has no
name.

25Orber Application

Chapter 1: Orber User's Guide

Figure 1.5: Figure 1: Contextual object relationships using the Naming Service.

The naming contexts provide a directory of contextual reference and naming for objects (an object can
appear to have more than one name).

In figure 1 the object to the right can either be called alpha from one context or gamma from another.

The Naming Service has an initial naming context, which is shown in the diagram as the top-most
object in the naming graph. It has two names beta and epsilon, which are bound to other naming
contexts. The initial naming context is a well known location used to share a common name space

26 Orber Application

1.7: CosNaming Service

between multiple programs. You can traverse the naming graph until you reach a name, which is bound
to an object, which is not a naming context.

We recommend reading chapter 12, CORBA Fundamentals and Programming, for detailed information
regarding the Naming Service.

The Basic Use-cases of the Naming Service

The basic use-cases of the Naming Service are:

� Fetch initial reference to the naming service.

� Creating a naming context.

� Binding and unbinding names to objects.

� Resolving a name to an object.

� Listing the bindings of a naming context.

� Destroying a naming context.

Fetch initial reference to the naming service

In order to use the naming service you have to fetch an initial reference to it. This is done with:

NS = corba:resolve_initial_reference("NameService").

Note:
NS in the other use-cases refers to this initial reference.

Creating a naming context

There are two functions for creating a naming context. The first function, which only creates a naming
context object is:

NC = ’CosNaming_NamingContext’:new_context(NS).

The other function creates a naming context and binds it to a name in an already existing naming
context (the initial context in this example):

NC = ’CosNaming_NamingContext’:bind_new_context(NS, lname:new(["new"])).

27Orber Application

Chapter 1: Orber User's Guide

Binding and unbinding names to objects

The following steps illustrate how to bind/unbind an object reference to/from a name. For the example
below, assume that the NamingContexts in the path are already bound to the name
/workgroup/services, and that reference to the services context are in the variable Sc.

1. Use the naming library functions to create a name

Name = lname:new(["object"]).

2. Use CosNaming::NamingContext::bind() to bind a name to an object

’CosNaming_NamingContext’:bind(Sc, Name, Object).

3. Use CosNaming::NamingContext::unbind() to remove the NameBinding from an object

’CosNaming_NamingContext’:unbind(Sc, Name).

Note:
Objects can have more than one name, to indicate different paths to the same object.

Resolving a name to an object

The following steps show how to retrieve the object reference to the service context above
(/workgroup/services).

1. Use the naming library functions to create a name path:

Name = lname:new(["workgroup", "services"]).

2. Use CosNaming::NamingContext::resolve() to to resolve the name to an object

Sc = ’CosNaming_NamingContext’:resolve(NS, Name).

Listing the bindings in a NamingContext

1. Use CosNaming::NamingContext::list() to list all the bindings in a context
The following code retrieves and lists up to 10 bindings from a context.

{BList, BIterator} = ’CosNaming_NamingContext’:list(Sc, 10).

lists:foreach(fun({{Id, Kind},BindingType}) -> case BindingType of
nobject ->

io:format("id: %s, kind: %s, type: object~n", [Id, Kind]);
_ ->

io:format("id: %s, kind: %s, type: ncontext~n", [Id, Kind])
end end,
Blist).

Note:
Normally a BindingIterator is helpful in situations where you have a large number of objects in a list,
as the programmer then can traverse it more easily. In Erlang it is not needed, because lists are easily
handled in the language itself.

28 Orber Application

1.7: CosNaming Service

Warning:
Remember that the BindingIterator (BIterator in the example) is an object and therefore must be
removed otherwise dangling processes will occur. Use CosNaming::BindingIterator::destroy() to
remove it.

’CosNaming_NamingContext’:destroy(BIterator).

Destroying a naming context

The naming contexts are persistent and must be explicitly removed. (they are also removed if all Orber
nodes in the domain are stopped).

1. Use CosNaming::NamingContext::destroy() to remove a NamingContext

’CosNaming_NamingContext’:destroy(Sc).

Interoperable Naming Service

The OMG specifies URL schemes, which represent a CORBA object and a CORBA object bound in a
NamingContext, for resolving references from other ORB:s. As of today, three schemes are defined:

� IOR

� corbaloc

� corbaname

IOR

A stringified IOR is a valid URL format but difficult for humans to handle through non-electronic
means. This URL format does not depeend on a specific Name Service and, thus, is robust and insulates
the client from the encapsulated transport information and object key used to reference the object.

corbaloc

The notation of this scheme is similar to the more well known URL http, and the full corbaloc BNF is:

<corbaloc> = "corbaloc:"<obj_addr_list>["/"<key_string>]
<obj_addr_list> = [<obj_addr>","]*<obj_addr>
<obj_addr> = <prot_addr> | <future_prot_addr>
<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>
<rir_prot_addr> = <rir_prot_token>":"
<rir_prot_token> = rir
<future_prot_addr> = <future_prot_id><future_prot_addr>
<future_prot_id> = <future_prot_token>":"
<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = <iiop_default> | <iiop_prot_token>":"
<iiop_default> = ":"
<iiop_prot_token> = "iiop"
<iiop_addr> = <version><host>[":"<port>]

29Orber Application

Chapter 1: Orber User's Guide

<host> = DNS-style Host Name | ip_address
<version> = <major>"."<minor>"@" | empty_string
<port> = number
<major> = number
<minor> = number

The corbaloc scheme consists of 3 parts:

� Protocol - as of today iiop or rir is supported. Using rir means that we will resolve the given
Key locally, i.e., the same as using corba:resolve initial references("NameService").

� IIOP address - this address can be divided into Version, Host and Port. If the version or port are
left out they will be set to the default values 1.0 and 2089 respectively.

� KeyString - a stringified object key, e.g., “NameService”. If no Key is supplied the default value
“NAmeService” will be used.

A corbaloc can be passed used together with
corba:string to object("corbaloc::1.0@erlang.org:4001/NameService") or set as the
configuration variables orbInitilRef or orbDefaultInitilRef and calling
corba:resolve initial references("NameService"). For more information see the Orber
installation chapter. corbaloc can also be used together with corbaname to gain an easy access to a
Name Service.

corbaname

The corbaname URL scheme is an extension of the corbaloc scheme, and the full corbaname BNF is:

<corbaname> = "corbaname:"<corbaloc>["#"<string_name>]
<corbaloc> = as described above.

The string name, concatenated to the corbaloc string, identifies a binding in a naming context. A
name component consists of two parts, i.e., id and kind, which is represented as follows:

String Name Name Sequence Comment

”id1/./id3.kind3” [f”id1”,””g,f””,””g,f”id3”,”kind3”g] The first component has no kind de-
fined while the second component’s
both fields are empty.

”id1//id3.kind3” ERROR Not allowed, must insert a ’.’ between
the ’//’.

”id1.kind1/.” [f”id1”,”kind1”g,f””,””g] The first component’s fields are both
set while the second component’s both
fields are empty.

”id1.kind1/id2.” ERROR An Id with a trailing ’.’ is not allowed.

”i\\/d1/i\\.d2” [f”i/d1”,””g,f”i.d2”,””g] Since ’.’ and ’/’ are used to separate the
components, these tokens must be es-
caped to be correctly converted.

Table 1.5: Table 1: Stringified Name represenation

30 Orber Application

1.7: CosNaming Service

After creating a stringified Name we can either use:

NameStr = "org.erlang",
NS = corba:resolve_initial_references("NameService"),
Obj = ’CosNaming_NamingContextExt’:resolve_str(NS, NameStr),

or concatenate the Name String using:

NameStr = "Swedish/Soccer/Champions",
Address = "corbaname:iiop:1.0@www.aik.se:2000/NameService",
NS = corba:resolve_initial_references("NameService"),
URLStr = ’CosNaming_NamingContextExt’:to_url(NS, Address, NameStr),
Obj = corba:string_to_object(URLStr),

Using the first alternative, the configuration variables orbInitilRef and orbDefaultInitilRef, will
determine which other ORB’s or the local Name Service Orber will try to resolve the given string from.
The second alternative allows us to override any settings of the configuration variables.

The function to url/3 will perform any necessary escapes compliant with IETF/RFC 2396. US-ASCII
alphanumeric characters and "," | "/" | ":" | "?" | "@" | "&" | "=" | "+" | "$" | ";" |
"-" | " " | "." | "!" | "~" | "*" | "’" | "(" | ")" are not escaped.

31Orber Application

1.8 How to use security in Orber

Security in Orber

Introduction

Orber SSL provides authentication, privacy and integrity for your Erlang applications. Based on the
Secure Sockets Layer protocol, the Orber SSL ensures that your Orber clients and servers can
communicate securely over any network. This is done by tunneling IIOP through an SSL connection.
To get the node secure you will also need to have a firewall which only lets through connections to
certain ports.

Enable usage of secure connections

To enable a secure Orber domain you have to set the configuration variable secure which currently only
can have one of two values; no if no security for IIOP should be used and ssl if secure connections is
needed (ssl is currently the only supported security mechanism).

The default is no security.

Setting of a CA certificate file with an option does not work due to weaknesses in the SSLeay package.
A work-around in the ssl application is to set the OS environment variable SSL CERT FILE before SSL
is started. However, then the CA certificate file will be global for all connections (both incomming and
outgoing calls).

Configurations when Orber is used on the server side

The following three configuration variables can be used to configure Orber’s SSL behavior on the server
side.

� ssl server certfile which is a path to a file containing a chain of PEM encoded certificates for the
Orber domain as server.

� ssl server verify which specifies type of verification: 0 = do not verify peer; 1 = verify peer, verify
client once, 2 = verify peer, verify client once, fail if no peer certificate. The default value is 0.

� ssl server depth which specifies verification depth, i.e. how far in a chain of certificates the
verification process shall proceed before the verification is considered successful. The default
value is 1.

There also exist a number of API functions for accessing the values of these variables:

� orber:ssl server certfile/0

� orber:ssl server verify/0

� orber:ssl server depth/0

32 Orber Application

1.8: How to use security in Orber

Configurations when Orber is used on the client side

When the Orber enabled application is the client side in the secure connection the different
configurations can be set per client process instead and not for the whole domain as for incoming calls.

One can use configuration variables to set default values for the domain but they can be changed per
client process. Below is the list of client configuration variables.

� ssl client certfile which is a path to a file containing a chain of PEM encoded certificates used in
outgoing calls in the current process.

� ssl client verify which specifies type of verification: 0 = do not verify peer; 1 = verify peer, verify
client once, 2 = verify peer, verify client once, fail if no peer certificate. The default value is 0.

� ssl client depth which specifies verification depth, i.e. how far in a chain of certificates the
verification process shall proceed before the verification is considered successful. The default
value is 1.

There also exist a number of API functions for accessing and changing the values of this variables in the
client processes.

Access functions:

� orber:ssl client certfile/0

� orber:ssl client verify/0

� orber:ssl client depth/0

Modify functions:

� orber:set ssl client certfile/1

� orber:set ssl client verify/1

� orber:set ssl client depth/1

33Orber Application

1.9 Orber Examples

A tutorial on how to create a simple service

Interface design

This example uses a very simple stack server. The specification contains two interfaces: the first is the
Stack itself and the other is the StackFactory which is used to create new stacks. The specification is in
the file stack.idl.

#ifndef _STACK_IDL
#define _STACK_IDL

module StackModule {

exception EmptyStack {};

interface Stack {

long pop() raises(StackModule::EmptyStack);

void push(in long value);

void empty();

};

interface StackFactory {

StackModule::Stack create_stack();
void destroy_stack(in StackModule::Stack s);

};

};

#endif

Generating Erlang code

Run the IDL compiler on this file by calling the ic:gen/1 function

1> ic:gen("stack").

This will produce the client stub and server skeleton. Among other files a stack API module named
StackModule Stack.erl will be produced. This will produce among other files a stack API module
called StackModule Stack.erl which contains the client stub and the server skeleton.

34 Orber Application

1.9: Orber Examples

Implementation of interface

After generating the API stubs and the server skeletons it is time to implement the servers and if no
special options are sent to the IDl compiler the file name should be <global interface
name> impl.erl, in our case StackModule Stack impl.erl.

%% <!--
%% ‘‘The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.’’
%%
%% Id
%%--> StackModule_Stack_impl example file.

-module(’StackModule_Stack_impl’).
-include_lib("orber/include/corba.hrl").
-include_lib("orber/examples/Stack/StackModule.hrl").
-export([pop/1, push/2, empty/1, init/1, terminate/2]).

init(Env) ->
{ok, []}.

terminate(From, Reason) ->
ok.

push(Stack, Val) ->
{reply, ok, [Val | Stack]}.

pop([Val | Stack]) ->
{reply, Val, Stack};

pop([]) ->
corba:raise(#’StackModule_EmptyStack’{}).

empty(_) ->
{reply, ok, []}.

We also have the factory interface which is used to create new stacks and that implementation is in the
file StackModule StackFactory impl.erl.

%% <!--
%% ‘‘The contents of this file are subject to the Erlang Public License,

35Orber Application

Chapter 1: Orber User's Guide

%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.’’
%%
%% Id
%%--> StackModule_StackFactory_impl example file.

-module(’StackModule_StackFactory_impl’).
-include_lib("orber/include/corba.hrl").
-export([create_stack/1, destroy_stack/2, init/1, terminate/2]).

init(Env) ->
{ok, []}.

terminate(From, Reason) ->
ok.

create_stack(State) ->
%% Just a create we don’t want a link.
{reply, ’StackModule_Stack’:oe_create(), State}.

destroy_stack(State, Stack) ->
{reply, corba:dispose(Stack), State}.

To start the factory server one executes the function StackModule StackFactory:oe create/0 which
in this example is done in the module stack factory.erl where the started service is also registered in
the name service.

%% <!--
%% ‘‘The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings

36 Orber Application

1.9: Orber Examples

%% AB. All Rights Reserved.’’
%%
%% Id
%%--> stack_factory example file.

-module(’stack_factory’).
-include_lib("orber/include/corba.hrl").
-include_lib("orber/COSS/CosNaming/CosNaming.hrl").
-include_lib("orber/COSS/CosNaming/lname.hrl").

-export([start/0]).

start() ->
SFok = ’StackModule_StackFactory’:oe_create(),
NS = corba:resolve_initial_references("NameService"),
NC = lname_component:set_id(lname_component:create(), "StackFactory"),
N = lname:insert_component(lname:create(), 1, NC),
’CosNaming_NamingContext’:bind(NS, N, SFok).

Writing a client in Erlang

At last we will write a client to access our service.

%% <!--
%% ‘‘The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.’’
%%
%% Id
%%--> stack_client example file.

-module(’stack_client’).
-include_lib("orber/include/corba.hrl").
-include_lib("orber/COSS/CosNaming/CosNaming.hrl").
-include_lib("orber/COSS/CosNaming/lname.hrl").

-export([run/0, run/1]).

run() ->
NS = corba:resolve_initial_references("NameService"),

37Orber Application

Chapter 1: Orber User's Guide

run_1(NS).

run(HostRef) ->
NS = corba:resolve_initial_references_remote("NameService", HostRef),
run_1(NS).

run_1(NS) ->
NC = lname_component:set_id(lname_component:create(), "StackFactory"),
N = lname:insert_component(lname:create(), 1, NC),
case catch ’CosNaming_NamingContext’:resolve(NS, N) of

{’EXCEPTION’, E} ->
io:format("The stack factory server is not registered~n",[]);

SF ->
%% Create the stack
SS = ’StackModule_StackFactory’:create_stack(SF),

%% io:format("SS pid ~w~n",[iop_ior:get_key(SS)]),
’StackModule_Stack’:push(SS, 4),
’StackModule_Stack’:push(SS, 7),
’StackModule_Stack’:push(SS, 1),
’StackModule_Stack’:push(SS, 1),
Res = ’StackModule_Stack’:pop(SS),
io:format("~w~n", [Res]),
Res1 = ’StackModule_Stack’:pop(SS),
io:format("~w~n", [Res1]),
Res2 = ’StackModule_Stack’:pop(SS),
io:format("~w~n", [Res2]),
Res3 = ’StackModule_Stack’:pop(SS),
io:format("~w~n", [Res3]),

%% Remove the stack
’StackModule_StackFactory’:destroy_stack(SF, SS)

end.

Writing a client in Java

To write a Java client for Orber you must have another ORB that uses IIOP for client-server
communication and supports a Java language mapping. It must also have support for
IDL:CosNaming/NamingContext or IDL:CosNaming/NamingContextExt. If the client ORB support
Interoperable Naming Service the Java Client can look like:

/*
* Stack example using Interoperable Naming Service.
*/

package StackModule;
import org.omg.CORBA.*;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.ORB.*;

38 Orber Application

1.9: Orber Examples

public class StackClient
{
public static void main(String args[])
{
org.omg.CORBA.Object objRef;
StackFactory sfRef = null;
Stack sRef = null;
// The argument can look like
// "corbaname::host:4001/#StackFactory"
String corbaName = new String(args[0]);
try{

ORB orb = ORB.init(args, null);

objRef = orb.string_to_object(corbaName);
sfRef = StackFactoryHelper.narrow(objRef);
sRef = sfRef.create_stack();

sRef.push(4);
sRef.push(7);
sRef.push(1);
sRef.push(1);

try{
System.out.println(sRef.pop());
System.out.println(sRef.pop());
System.out.println(sRef.pop());
System.out.println(sRef.pop());
// The following operation shall
// return an EmptyStack exception
System.out.println(sRef.pop());

}
catch(EmptyStack es) {

System.out.println("Empty stack");
};

sfRef.destroy_stack(sRef);
}

catch(SystemException se)
{
System.out.println("Unexpected exception: " + se.toString());
return;

}
}

}

If the Client ORB does not support Interoperable Naming Service, a Java package named Orber is
included with our product. It contains just one class, InitialReference which can be used to get the
initial reference to Orber’s naming service. The Java client will then look like this:

/*
* Stack example.
*/

39Orber Application

Chapter 1: Orber User's Guide

package StackModule;
import org.omg.CosNaming.*;
import org.omg.CORBA.*;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.ORB.*;

public class StackClient
{
public static void main(String args[])

{
NamingContext nsContext;
org.omg.CORBA.Object objRef;
StackFactory sfRef = null;
Stack sRef = null;
org.omg.CORBA.Object nsRef, initRef;
NameComponent[] name = new NameComponent[1];
Orber.InitialReference ir = new Orber.InitialReference();
Orber.InitialReferences init;
String srvHost = new String(args[0]);
Integer srvPort = new Integer(args[1]);

try
{
ORB orb = ORB.init(args, null);

// Create Initial reference (objectkey "INIT").
String s = ir.stringified_ior(srvHost, srvPort.intValue());
initRef = orb.string_to_object(s);
init = Orber.InitialReferencesHelper.narrow(initRef);

// Fetch name service reference.
nsRef = init.get("NameService");
nsContext = NamingContextHelper.narrow(nsRef);
// Create a name
name[0] = new NameComponent("StackFactory", "");

try
{
objRef = nsContext.resolve(name);

}
catch(Exception n)
{
System.out.println("Unexpected exception: " + n.toString());
return;

}

sfRef = StackFactoryHelper.narrow(objRef);
sRef = sfRef.create_stack();

sRef.push(4);
sRef.push(7);
sRef.push(1);
sRef.push(1);

40 Orber Application

1.9: Orber Examples

try
{
System.out.println(sRef.pop());
System.out.println(sRef.pop());
System.out.println(sRef.pop());
System.out.println(sRef.pop());
// The following operation shall return an EmptyStack exception
System.out.println(sRef.pop());

}
catch(EmptyStack es)
{
System.out.println("Empty stack");

};

sfRef.destroy_stack(sRef);

}
catch(SystemException se)

{
System.out.println("Unexpected exception: " + se.toString());
return;

}
}

}

Note:
If an ORB does not support CosNaming at all the cos naming.idl file must be compiled and
imported.

Building the example

To build the example for access from a Java client you need a Java enabled ORB. The build log below,
using OrbixWeb’s IDL compiler, describes the scenario where the Client ORB does not support
Naming Service.

fingolfin 127> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(stack).
Erlang IDL compiler version 20
ok
2> make:all().
Recompile: oe_stack
Recompile: StackModule_StackFactory
Recompile: StackModule_Stack
Recompile: StackModule
Recompile: stack_client

41Orber Application

Chapter 1: Orber User's Guide

Recompile: stack_factory
Recompile: StackModule_StackFactory_impl
Recompile: StackModule_Stack_impl
up_to_date
3>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded

(v)ersion (k)ill (D)b-tables (d)istribution
a

fingolfin 128> idl stack.idl
fingolfin 129> idl InitialReferences.idl
fingolfin 130> idl <OTP_INSTALLATIONPATH>/lib/orber-<Orber Version>/COSS/

CosNaming/cos_naming.idl
fingolfin 131>
fingolfin 132> cd java_output/
fingolfin 133> javac *.java
fingolfin 134> cd CosNaming/
fingolfin 135> javac *.java
fingolfin 136> cd ../_NamingContext/
fingolfin 137> cd javac *.java../_NamingContext/
fingolfin 138> cd ../../CORBA/
fingolfin 139> javac *.java
fingolfin 140> cd ../StackModule/
fingolfin 141> javac *.java
fingolfin 142> cd ../..
fingolfin 143> javac *.java
fingolfin 144> cp StackClient.class java_output/StackModule/.

How to run everything

Below is a short transcript on how to run Orber. The commands for starting the new socket
communication package will not be necessary when it is used as default in OTP R3A. In R2 it is only
available unsupported, and without documentation but Orber uses this for better IIOP performance.
An example .inetrc can also be found in Orber’s example directory and is named inetrc (without the
starting .).

fingolfin 143> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> mnesia:create_schema([]).
ok
2> orber:install([]).
ok
3> orber:start().
ok
4> oe_stack:oe_register().
ok
5> stack_factory:start().
ok
6> stack_client:run().
1

42 Orber Application

1.9: Orber Examples

1
7
4
ok
7>

Before testing the Java part of this example generate and compile Java classes for
orber/examples/stack.idl, orber/examples/InitialReferences.idl and
orber/COSS/CosNaming/cos naming.idl as seen in the build example. We have tested with
OrbixWeb.

To run the Java client use the following command (the second parameter is the port number for the
bootstrap port):

fingolfin 38> java StackModule.StackClient fingolfin 4001
[New Connection (fingolfin,4001, null,null,pid=0)]
[New Connection (fingolfin.du.etx.ericsson.se,4001, null,null,pid=0)]
1
1
7
4
Empty stack
fingolfin 39>

A tutorial on how to start Orber as lightweight

Preparation

When starting Erlang the configuration parameter lightweight must be used. The value is set to a list
of remote modifiers, equal to the orber:resolve initial references remote/2 argument, i.e.,
“iiop://host:port”. On these given nodes, all necessary oe X:oe register() calls must be done before
running a Orber lightweight.

Lightweight Orber do not allow us to:

� Create objects locally

� Accept incoming requests

� Access local NameService

� Register data in the IFR

With lightweight Orber we do not:

� Start Mnesia

� Run orber:install/1

To be able to start objects we must supply a factory on a non-lightweight node(s) which can start
necessary objects. One way to accomplish this is:

43Orber Application

Chapter 1: Orber User's Guide

smaug 125> erl -orber domain "ORBER_MAIN"
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> mnesia:create_schema([]).
2> orber:install([]).
3> orber:start().
4> oe_MyFactory:oe_register().
5> oe_MyObjects:oe_register(). %% Do this for all objects necessary.
6> Factory=MyFactory_Creater:oe_create().
7> NS=orber:resolve_initial_references("NameService").
8> NC=lname_component:set_id(lname_component:create(), "myFactory").
9> N =lname:insert_component(lname:create(), 1, NC).
10> ’CosNaming_NamingContext’:bind(NS, N, Factory)).

Now we have a factory we can access from, hence, we can now start a lightweight Orber:

fingolfin 14> erl -orber lightweight [\"iiop://host1:port\", \"iiop://host2:port\"]
-orber domain "ORBER_LIGHT"

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> orber:start_lightweight().
2> NS=orber:resolve_initial_references_remote("NameService", ["iiop://hostX:port"]).
3> NC=lname_component:set_id(lname_component:create(), "myFactory").
4> N =lname:insert_component(lname:create(), 1, NC).
5> Factory=’CosNaming_NamingContext’:resolve(NS, N)).
6> Obj=MyFactory_Creater:MyObject(Factory, Args).
7> MyObject:myFunction(Obj,Args2).

It is not necessary to start both Orber types using the configuration parameter domain, but at least one
of them.

44 Orber Application

1.10 Orber Stubs/Skeletons

Orber stubs and skeletons description.

This example describes the API and behavior of Orber stubs and skeletons.

Server start

Orber servers can be started in several ways. The chosen start functions determines how the server can
be accessed and its behavior.

Using Module Interface:oe create() or oe create link():

� No initial data can be passed.

� Cannot be used as a supervisor child start function.

� Only accessible through the object reference returned by the start function. The object reference
is no longer valid if the server dies and is restarted.

Using Module Interface:oe create(Env) or oe create link(Env):

� Initial data can be passed using Env.

� Cannot be used as a supervisor child start function.

� Only accessible through the object reference returned by the start function. The object reference
is no longer valid if the server dies and is restarted.

Using Module Interface:oe create(Env, Options):

� Initial data can be passed using Env.

� Cannot be used as a supervisor child start function.

� Accessible through the object reference returned by the start function. If the option fregname,
RegNameg is used the object reference stays valid even if the server has been restarted.

� If the options fpersistent, trueg and fregname, fglobal, Namegg is used, the result from an
object invocation will be the exception ’OBJECT NOT EXIST’ only if the object has terminated
with reason normal or shutdown. If the object is in the process of restarting, the result will be
ferror, Reasong or the exception ’COMM FAILURE’.

� The option fpseudo, trueg makes it possible to start create non-server objects. There are,
however, some limitations, which are further described in the Pseudo objects section.

Using Module Interface:oe create link(Env, Options):

� Initial data can be passed using Env.

� Can be used as a supervisor child start function if the option fsup child, trueg used.

� Accessible through the object reference returned by the start function. If the option fregname,
RegNameg is used the object reference stays valid even if the server has been restarted.

� If the options fpersistent, trueg and fregname, fglobal, Namegg is used, the result from an
object invocation will be the exception ’OBJECT NOT EXIST’ only if the object has terminated
with reason normal or shutdown. If the object is in the process of restarting, the result will be
ferror, Reasong or the exception ’COMM FAILURE’.

45Orber Application

Chapter 1: Orber User's Guide

� For starting a server as a supervisor child you should use the options [fpersistent, trueg,
fregname, fglobal, Namegg, fsup child, trueg] and of type transient. This configuration
allows you to delegate restarts to the supervisor and still be able to use the same object reference
and be able to see if the server is permanently terminated. Please note you must use
supervisor/stdlib-1.7 or later and that the it returns fok, Pid, Objectg instead of just Object.

� Using the option fpseudo, trueg have the same effect as using oe create/2.

Warning:
To avoid flooding Orber with old object references start erlang using the flag -orber objectkeys gc time
Time, which will remove all object references related to servers being dead for Time seconds. To
avoid extra overhead, i.e., performing garbage collect if no persistent objects are started, the
objectkeys gc time default value is infinity. For more information, see the orber and corba
documentation.

Warning:
Orber still allow oe create(Env, fType,RegNameg) and oe create link(Env, fType,RegNameg)
to be used, but may not in future releases.

Pseudo objects

This section describes Orber pseudo objects.

The Orber stub can be used to start a pseudo object, which will create a non-server implementation.
A pseudo object introduce some limitations:

� The functions oe create link/2 is equal to oe create/2, i.e., no link can or will be created.

� The BIF:s self() and process flag(trap exit,true) behaves incorrectly.

� The IC option ffimpl, "M::I"g, "other impl"g has no effect. The call-back functions must be
implemented in a file called M I impl.erl

� The call-back functions must be implemented as if the IC option fthis, "M::I"g was used.

� The gen server State changes have no effect. The user can provide information via the Env start
parameter and the State returned from init/2 will be the State passed in following invocations.

� The gen server reply Timeout have no effect.

� The option fpseudo, trueg overrides all other start options.

� Only the functions, besides own definitions, init/2 (called via oe create*/2) and terminate/2
(called via corba:dispose/1) must be implemented.

By adopting the rules for pseudo objects described above we can use oe create/2 to create server or
pseudo objects, by excluding or including the option fpseudo, trueg, without changing the call-back
module.

To create a pseudo object do the following:

46 Orber Application

1.10: Orber Stubs/Skeletons

fingolfin 127> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(myDefinition, [{this, "MyModule::MyInterface"}]).
Erlang IDL compiler version 20
ok
2> make:all().
Recompile: oe_MyDefinition
Recompile: MyModule_MyInterface
Recompile: MyModule_MyInterface_impl
up_to_date
3> PseudoObj = MyModule_MyInterface:oe_create(Env, [{pseudo, true}]).

The call-back functions must be implemented as MyFunction(OE THIS, State, Args), and called by
MyModule MyInterface:MyFunction(PseudoObj, Args).

Call-back module

This section provides an example of how a call-back module may be implemented.

Note:
Arguments and Replies are determined by the IDL-code and, hence, not further described here.

%%%---
%%% File : Module_Interface_impl.erl
%%% Author :
%%% Purpose :
%%% Created :
%%%---

-module(’Module_Interface_impl’).

%%--------------- INCLUDES -----------------------------------
-include_lib("orber/include/corba.hrl").
-include_lib(".. ..").

%%--------------- EXPORTS-------------------------------------
%% Arity depends on IC configuration parameters and the IDL
%% specification.
-export([own_function/X]).

%%--------------- gen_server specific ------------------------
-export([init/1, terminate/2, code_change/3, handle_info/2]).

%%--
%% function : server specific
%%--
init(InitialData) ->

47Orber Application

Chapter 1: Orber User's Guide

%% ’trap_exit’ optional (have no effect if pseudo object).
process_flag(trap_exit,true),

%%--- Possible replies ---
%% Reply and await next request
{ok, State}.

%% Reply and if no more requests within Time the special
%% timeout message should be handled in the
%% Module_Interface_impl:handle_info/2 call-back function (use the
%% IC option {{handle_info, "Module::Interface"}, true}).
{ok, State, Timeout}

%% Return ignore in order to inform the parent, especially if it is a
%% supervisor, that the server, as an example, did not start in
%% accordance with the configuration data.
ignore
%% If the initializing procedure fails, the reason
%% is supplied as StopReason.
{stop, StopReason}

terminate(Reason, State) ->
ok.

code_change(OldVsn, State, Extra) ->
{ok, NewState}.

%% If use IC option {{handle_info, "Module::Interface"}, true}.
%% (have no effect if pseudo object).
handle_info(Info, State) ->

%%--- Possible replies ---
%% Await the next invocation.
{noreply, State}.
%% Stop with Reason.
{stop, Reason, State}.

%%--- two-way --
%% If use IC option {this, "Module:Interface"}
%% (Required for pseudo objects)
own_function(This, State, .. Arguments ..) ->

%% If not use IC option {this, "Module:Interface"}
own_function(State, .. Arguments ..) ->

%%--- Possible replies ---
%% Reply and await next request
{reply, Reply, State}

%% Reply and if no more requests within Time the special
%% timeout message should be handled in the
%% Module_Interface_impl:handle_info/2 call-back function (use the
%% IC option {{handle_info, "Module::Interface"}, true}).
{reply, Reply, State, Timeout}

48 Orber Application

1.10: Orber Stubs/Skeletons

%% Stop the server and send Reply to invoking object.
{stop, StopReason, Reply, State}

%% Stop the server and send no reply to invoking object.
{stop, StopReason, State}

%% Raise exception. Any changes to the internal State is lost.
corba:raise(Exception).

%%--- one-way --
%% If use IC option {this, "Module:Interface"}
%% (Required for pseudo objects)
own_function(This, State, .. Arguments ..) ->

%% If not use IC option {this, "Module:Interface"}
own_function(State, .. Arguments ..) ->

%%--- Possible results ---
{noreply, State}

%% Release and if no more requests within Time the special
%% timeout message should be handled in the
%% Module_Interface_impl:handle_info/2 call-back function (use the
%% IC option {{handle_info, "Module::Interface"}, true}).
{noreply, State, Timeout}

%% Stop the server with StopReason.
{stop, StopReason, State}

%%--------------- END OF MODULE ------------------------------

49Orber Application

1.11 Orber Release Notes

Orber 3.1.8, Release Notes

Improvements and new features

� Orber now accepts Indirection/Repeated CORBA::TypeCode as input and/or return value when
communicating via IIOP.
Own id: -

Fixed bugs and malfunctions

� When another ORB replied with location forward Orber failed to decode this. Now fixed.
Own id: OTP-3709

� Orber failed to encode CORBA::TypeCode containing tk alias, e.g., sending an #anyfg which
encapsulates data defined by typedef.
Own id: OTP-3689

Incompatibilities

-

Known bugs and problems

� The same as in last release.

Orber 3.1.7, Release Notes

Improvements and new features

� Earlier, Orber did not use the IIOP/GIOP version specified in an external object key when
invoking an intra-ORB request.
Own id: OTP-3663

� The OMG standard now support an Interoperable Naming Service. Initially there where two
proposals of which Orber earlier supported one of them. Now both standards are supported.
Own id: OTP-3664

� The OMG have redefined the operator, used when encoding requests via IIOP, for the function
corba object:non existent/1. CORBA version 2.0 and 2.2 compliant ORB:s is supposed to
support the old definition, while later versions, i.e., 2.3, is supposed to use the new operator
(non existent instead of not existent). Orber accepts both versions.
Own id: OTP-3679

50 Orber Application

1.11: Orber Release Notes

Fixed bugs and malfunctions

� If an Orber node crashed and was restarted the object keys could point to other processes than it
should, which may cause problems if, for example, the other process termiantes due to it does not
handle unknown messages. Now Orber GC object keys for objects residing on the crashed node.
If Orber is started as a multi-node ORB of which one or more nodes runs an older Orber version
they can still communicate but with an increased overhead. Hence, all nodes should be upgraded
during a relatively short time. If Orber is stopped, i.e., orber:stop() or a shutdown is generated,
objects residing on that node will be terminated.
Own id: OTP-3678

� If an IDL-file contains two interfaces of which the first one contains an exception and the second
interface, which inherits the first one, contain an operation which raises this exception the IFR
failed since multiple references where found when invoking orber ifr:lookup id/2. Now fixed.
Own id: OTP-3665

Incompatibilities

� To be able to start Orber as lightweight the mnesia application cannot be listed in the “orber.app”
file. You might find it necessary to add ’mnesia’ to the applications-list. For example, you cannot
upgrade an older version of Orber (not started as lightweight) to this version without adding
mnesia to the application dependencies list.
Own id: OTP-3666

� The function corba object:non existent/1 have been updated to follow the CORBA 2.3
standard. Hence, Intra-ORB communication with ORB:s not supporting this standard will fail.
The operation corba object:not existent/1 allow users to use the old standard. Consult the
ORB vendor’s documentation to decide which functio to use.
Own id: OTP-3679

Known bugs and problems

� The same as in last release.

Orber 3.1.6, Release Notes

Improvements and new features

� Cosmetic update of internal functions.
Own id: -

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

� The same as in last release.

51Orber Application

Chapter 1: Orber User's Guide

Orber 3.1.5, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� When decoding TypeCode for an object reference, e.g., as a part of an #anyfg, Orber failed. This
is no longer the case.
Own id: OTP-3631

Incompatibilities

-

Known bugs and problems

� The same as in last release.

Orber 3.1.4, Release Notes

Improvements and new features

� The function start lightweight/1 have been added to the orber module. This function allow
us to start orber as lightweight without, or override, the configuration parameter -orber
lightweight.
Own id: -

� A new configuration parameter, ’iiop connection timeout Secs’, is now available. This
parameter’s purpose, is to terminate the socket connection on the client side if a timespan of Secs
seconds have passed. The connection will, however, NOT be terminated if a client still waits for a
reply. For the last scenario to happen, the client have been configured to use a larger timeout
value than the configuration parameter ’iiop connection timeout’ have been set to.
Own id: -

� Up until now, invoking an an operation with an extra Timeout parameter (using the IC option:
ic:gen(IdlFile, [ftimeout,“module::interface”g])), only applied to local Objects. Now, using the IC
option above, when compiling the stubs, and adding the extra Timeout parameter, a timeout will
also be triggered when calling Objects residing on other ORB:s. The return value, after a timeout
has been triggered, have changed from an EXIT message to raising the system exception
COMM FAILURE. For more information, about how this feature interacts with the configuration
parameter ’iiop timeout’, consult the documentation.
Own id: -

� When using invalid intra-ORB configuration, i.e., incorrect Port/IP-address, when trying to
connect to another ORB, a CRASH REPORT was generated if the configuration parameter ’-boot
start sasl’ was used. This behaviour has now changed.
Own id: -

52 Orber Application

1.11: Orber Release Notes

Fixed bugs and malfunctions

� If a client-side ORB terminated the IIOP connection immediately there was a possibility that the
server responsible detecting this did not.
Own id: OTP-3593

� Setting the configuration parameter ’iiop timeout’ did not result in a correct behaviour, i.e., no
timeout triggered.
Own id: OTP-3555

Incompatibilities

� When using the IC option, ic:gen(IdlFile, [ftimeout,“module::interface”g]), an EXIT was the
timeout result. Now, the system exception COMM FAILURE is raised.

Known bugs and problems

� The same as in last release.

Orber 3.1.3, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� Orber did not ignore unrecognized TaggedProfiles. Other vendors may have registered own
TAG’s with the OMG. These TAG’s are valid but not necessarily handled by other vendors.
Own id: OTP-3514

� When passing Object references over IIOP, decoding local references could fail. Now fixed.
Own id: OTP-3515

Incompatibilities

-

Known bugs and problems

� The same as in last release.

Orber 3.1.2, Release Notes

Improvements and new features

-

53Orber Application

Chapter 1: Orber User's Guide

Fixed bugs and malfunctions

� Previously the OMG have published two suggestions for Interoperable Name Service, of
which, the CORBA 3 specify orbos/98-10-11 to be implemented. Unfortunately, the
Interoperable Name Service Orber supports, is the one not chosen. Hence, the
InitialReferences.idlwill not be according to the future standard. The modules name is now
changed from CORBA to Orber. This will affect code which are using this interface. The idl
specification must be recompiled and then CORBA must be changed to Orber in the client.
Own id: OTP-3468, OTP-3155

� Now possible to run oe unregister when the IDL-specification contains exceptions correctly.
Own Id: OTP-3447

� Now possible to run oe unregister when the IDL-specification contains attributes.
Own Id: OTP-3439

Incompatibilities

The change in InitialReferences.idl to clash with the Corba standard implies changes in code that
use this interface. See the OTP-3468 and OTP-3155 in the Fixed bugs and malfunctions chapter
above.

Known bugs and problems

� The same as in last release.

Orber 3.1.1, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� When introducing the configuration parameter ip address it was no longer possible to have the
same default behaviour as before. Now fixed.
Own Id: OTP-3431

� The internal request number handling never checked if maximum reached. Now the counter
restart at 0 after reaching max.
Own Id: OTP-3415

� Orber did not handle locate-requests correctly, i.e., not able to recognize the new internal
representation of object references.
Own Id: OTP-3414

Incompatibilities

-

Known bugs and problems

� The same as in last release.

54 Orber Application

1.11: Orber Release Notes

Orber 3.1, Release Notes

Improvements and new features

� It is now possible to start Orber as lightweight.
Own Id: -

� It is now possible to create pseudo objects, i.e., not server objects.
Own Id: -

� One new system exception introduced; ’BAD QOS’.
Own Id: -

� Orber now supports the types ’long long’ and ’unsigned long long’
Own Id: -

Fixed bugs and malfunctions

� Encoding typecode for complex exceptions (non-empty body) was not done correctly.
Own Id: OTP-3390

� orber iiop pm crashed when it received an ’EXIT’. Now fixed.
Own Id: OTP-3391

Incompatibilities

-

Known bugs and problems

� The same as in last release.

Orber 3.0.1, Release Notes

Improvements and new features

� Orber is now able to handle upgrade properly.
Own Id: -

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

� The same as in last release.

55Orber Application

Chapter 1: Orber User's Guide

Orber 3.0, Release Notes

Improvements and new features

� It is now possible to use secure IIOP connections to and from Orber. Orber currently only
supports security with the help of SSL and not SECIOP.
Own Id: OTP-1510

� It is now possible to start Orber objects as supervisor childs using
Module Interface:oe create link/2 or corba:create link/4 as the start function.
Own Id: -

� It is now possible to start a Orber object and be able to tell apart if it is in the process of being
restarted or has permanently terminated. This is also the reason for introducing
objectkeys gc time configuration parameter.
Own Id: -

� The service CosEvent has been removed from orber and become its own application, called
cosEvent.
Own Id: -

� The service CosTransactions is now available as a separate application, called cosTransactions.
Own Id: OTP-1741

� Three new system exceptions, ’TRANSACTION REQUIRED’,
’TRANSACTION ROLLEDBACK’ and ’INVALID TRANSACTION’, introduced. Required by
the cosTransactions application.
Own Id: -

� An configuration variable ip address has been added, so it’s possible to listen on a specific ip
interface on a multi interface host. The value is the ip address as a string or a tuple of four
integers, default value is all interfaces.
Own Id: OTP-3294

Fixed bugs and malfunctions

� set- and get-operations for the ’any’-module now behaves properly.
Own Id: OTP-3355

� Orber can now handle IORs which contain more than one “Tagged Profile”.
Own Id: OTP-3266

Incompatibilities

� CosEvent include paths have changed since it is now a separate application, called cosEvent.

� The internal representation of object references have changed. Orber do, however, recognize the
old representation. But object references (created by Orber 2.2.2 or older) stored and used
through several Orber upgrades may not be supported.

� The functions oe create/2 and oe create link/2 now take an options list as its second argument.
Orber still allow oe create*(Env, fType,RegNameg) to be used, but may not in future releases.

Known bugs and problems

� The same as in last release.

56 Orber Application

1.11: Orber Release Notes

Orber 2.2.2, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� Allignment error in the IIOP decoding/encoding of doubles fixed.
Own Id: OTP-3185

� Removed a to strict guard on float/double cdr encoding.
Own Id: OTP-3186

� Orber now accepts parallell requests on the same socket.
Own Id: OTP-3198

Incompatibilities

-

Known bugs and problems

� The same as in last release.

Orber 2.2.1, Release Notes

Improvements and new features

� In this version of Orber we have added orber:add node/2 and orber:remove node/1\n to make it
possible to add/remove an Orber node to/from a set of running Orber nodes.
Own Id: OTP-3103

� A global timeout on outgoing IIOP calls have been added as a configuration variable to Orber. It
has the name iiop timeout and can be set to a value in seconds. If not set it will have the value
infinity.
Own Id: OTP-3151

Fixed bugs and malfunctions

� An error when decoding locate requests from IIOP is fixed.
Own Id: OTP-3149

� There was always a negative response for a locate request on the initial reference (INIT) because
of an error in the existence check function. This is now fixed.
Own Id: OTP-3150

� InitialReferences.idl was not according to the standard. The modules name is now changed
from Orber to CORBA. This will affect code which are using this interface. The idl specification
must be recompiled and then Orber must be changed to CORBA in the client.
Own Id: OTP-3155

57Orber Application

Chapter 1: Orber User's Guide

Incompatibilities

The change in InitialReferences.idl to follow the Corba standard implies changes in code that use
this interface. See the OTP-3155 in the Fixed bugs and malfunctions chapter above.

Known bugs and problems

ORB

� The CORBA dynamic interfaces (DII and DSI) are not supported.

� Orber only supports persistent object startup behaviour.

� There are a number of functions in the BOA and CORBA interfaces that are not implemented
but are mostly used only when implementing the ORB, and generating IDL compiler stubs and
skeletons. These functions are not used by application designers.

Interface Repository

� For the moment, the Interface Repository cannot be used from another ORB.

� IFR will register corruption when trying to register on already defined IDs. This is a problem that
appears when trying to call the registration function without unregistering old IFR-objects with
the same ID.

Resolving initial reference from C++ The returned IOR is the same for both C++ and Java.
However, we have only tested on a client implemented in C++. That is an Orbix C++ client accessing
an Orber server.

Orber 2.2, Release Notes

Improvements and new features

� In this version of Orber we have added IIOP 1.1 as default protocol to other ORB’s. IIOP 1.0 is
still usable but you have to set a configuration variable giop version to get it. We don’t support all
the new IIOP types because the IDL compiler is not updated yet, but all the headers are updated
so the protocol works.
Own Id: OTP-3092

� The omg.org prefix has been added to CosNaming and CosEvent specifications. This means that
the IDL types for these two services now have changed and are incompatible but the names are
now according to the CORBA standard.
Own Id: OTP-3093

� A couple of name creation functions have been added to the naming library. These are not in the
CosNaming standard but they are easier to use in the Erlang environment. It doesn’t matter that
they’re not standard because the objects in the naming library are just pseodo objects and are
never sent to other ORB’s. The changes are in the modules lname and lname component and the
functions are described in the reference manual.
Own Id: OTP-3094

58 Orber Application

1.11: Orber Release Notes

Fixed bugs and malfunctions

-

Incompatibilities

� IIOP 1.1 is now default protocol version but orber can be configured to run 1.0.

� The omg.org prefix which all standard IDL specification must have has been added. This means
that CosEvent and CosNaming now have new type names for all their definitions.

Known bugs and problems

ORB

� The CORBA dynamic interfaces (DII and DSI) are not supported.

� Orber only supports persistent object startup behaviour.

� There are a number of functions in the BOA and CORBA interfaces that are not implemented
but are mostly used only when implementing the ORB, and generating IDL compiler stubs and
skeletons. These functions are not used by application designers.

Interface Repository

� For the moment, the Interface Repository cannot be used from another ORB.

� IFR will register corruption when trying to register on already defined IDs. This is a problem that
appears when trying to call the registration function without unregistering old IFR-objects with
the same ID.

Resolving initial reference from C++ The returned IOR is the same for both C++ and Java.
However, we have only tested on a client implemented in C++ ie.an Orbix C++ client accessing an
Orber server.

Orber 2.1, Release Notes

Improvements and new features

In this version of Orber we have added IIOP 1.1, not all types but the protocol headers should be
handled correct. IIOP 1.0 is still the default protocol so orber is fully compatible with previous version,
but in OTP R5A IIOP 1.1 will be default protocol (it will be possible to configure the system for 1.0).

Fixed bugs and malfunctions

� Orber now handles the functions is a and not existent over IIOP.
Own Id: OTP-2230

� A new function orber:uninstall/0 is added so one can clean up an orber installation.
Own Id: OTP-3027

� Orber has an improved error message if orber:start is run before orber:install.
Own Id: OTP-3028

59Orber Application

Chapter 1: Orber User's Guide

Incompatibilities

-

Known bugs and problems

ORB

� The CORBA dynamic interfaces (DII and DSI) are not supported.

� Orber only supports persistent object startup behaviour.

� There are a number of functions in the BOA and CORBA interfaces that are not implemented
but are mostly used only when implementing the ORB,and generating IDL compiler stubs and
skeletons. These functions are not used by application designers.

Interface Repository

� For the moment, the Interface Repository cannot be used from another ORB.

� IFR will register corruption when trying to register on already defined IDs. This is a problem that
appears when trying to call the registration function without unregistering old IFR-objects with
the same ID.

Resolving initial reference from C++ The returned IOR is the same for both C++ and Java.
However, we have only tested on a client implemented in C++ ie.an Orbix C++ client accessing an
Orber server.

Orber 2.0.2, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� Communication problems under NT, caused by erranous closing of a socket when using long
version of hostname when accessing a remote NameService.
Own Id: OTP-2757

� Hangings related to orber usage, caused by erranous closing of a socket when using long version of
hostname when accessing a remote NameService.
Own Id: OTP-2758

� Private fields - CORBA objects. This was just an error in the example code for the stack client.
Own Id: OTP-2859

Incompatibilities

-

60 Orber Application

1.11: Orber Release Notes

Known bugs and problems

ORB

� The CORBA dynamicinterfaces (DII and DSI) are not supported.

� Orber only supports persistent object startup behaviour.

� There are a number of functions in the BOA and CORBA interfaces that are not implemented
but are mostly used only when implementing the ORB,and generating IDL compiler stubs and
skeletons. These functions are not used by application designers.

Interface Repository

� For the moment, the Interface Repository cannot be used from another ORB.

� IFR will register corruption when trying to register on already defined IDs. This is a problem that
appears when trying to call the registration function without unregistering old IFR-objects with
the same ID.

Resolving initial reference from C++ The returned IOR is the same for both C++ and Java.
However, we have only tested on a client implemented in C++ ie.an Orbix C++ client accessing an
Orber server.

Orber 2.0.1, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� The application environment variable domain in orber can now be sent as an atom when starting
the Erlang node. Example: erl -orber domain Name
Own Id: OTP-2745

� An error in Orber iwhich resulted in a crash when an exception was sent over IIOP is fixed.
Own Id: OTP-2931

� Problems in C++ with narrow of initial reference returned by the InitialReference class fixed.
Both the C++ and Java implementations of the InitialReference class used the ‘ old module name
ORBER instead of Orber. OrbixWeb (java) worked anyway but Orbix (C++) got an exception.
Own Id: OTP-2935

Incompatibilities

-

61Orber Application

Chapter 1: Orber User's Guide

Known bugs and problems

ORB

� The dynamic interfaces are not supported and won’t be in the first release of Orber.

� Orber only supports persistent object startup behaviour.

� There are a number of functions in the BOA and CORBA interfaces that are not implemented
but are mostly used only when implementing the ORB,and generating IDL compiler stubs and
skeletons. These functions are not used by application designers.

Interface Repository

� For the moment, the Interface Repository cannot be used from another ORB.

� IFR will register corruption when trying to register on already defined IDs. This is a problem that
appears when trying to call the registration function without unregistering old IFR-objects with
the same ID.

Resolving initial reference from C++ The returned IOR is the same for both C++ and Java.
However, we have only tested on a client implemented in C++ ie.an Orbix C++ client accessing an
Orber server.

orber 2.0, Release Notes

Improvements and new features

� It is now possible to start an corba object with a registered name, this can be a local name known
only in the same Erlang node or a global name which can be seen in the whole system. This
functionality is useful when one is designing application which will be restarted on other nodes
when one the first node is going down.
Own Id: OTP-2486

� It is now possible to install orber so the Interface Repository uses RAM base mnesia tables instead
of disc based.
Own Id: OTP-2484

� The IDL compiler has been removed from orber and become its own application, called ic.
Own Id: OTP-2483

� It Is now possible to have different Orber nodes talking to each other with IIOP instead of just
Erlang distribution. This is solved through a configuration parameter called domain. If the server
objects object key has a domain name that differs from the senders domain name IIOP is used.
Own Id: OTP-2397

� There is now a possibility to have sub objects in an orber object. These sub objects are not
distinguishable from ordinary objects from the outside. This functionality can be useful when one
just wants one process to handle a number of objects of the same type.
Own Id: OTP-2396

� Performance tuning, the calls internal in an Erlang node to an orber object is now more efficient.
The overhead that Corba adds is minimised so it will especially visible on calls with a small
amount of data.
Own Id: OTP-2111

62 Orber Application

1.11: Orber Release Notes

Fixed bugs and malfunctions

� A bug in orber ifr:lookup/2 have been fixed.
Own Id: OTP-2172

� The encoding problem with arrays in IIOP is now fixed.
Own Id: OTP-2367

� A Marshalling error in the IIOP encoding of any objects corrected. It existed for all the complex
types, tk objref, tk struct, tk union, tk enum, tk array, tk sequence tk alias and tk exception.
Own Id: OTP-2391

� A crash under IFR registration and unregistration when modules with inherited interfaces is now
fixed.
Own Id: OTP-2254

Incompatibilities

� There are a number of modules which now are prefixed, but object.erl is the only one which is
included in the external interface (it is changed to corba object.erl). The data type “any” is the
only module without prefix now.
Own Id: OTP-2305

� A hidden field which contains the IFR id in the record definitions will be removed. This will
require a regeneration of all IDL specs.
Own Id: OTP-2480

� The any type is now represented as a record and not just a two tuple which makes it possible to
check the type in guards. The two tuple f<TypeCode>, <Value>g is now defined as:
-record(any,ftypecode, valueg).
Own Id: OTP-2480

� IDL unions are represented as Erlang records in the same manner as IDL structs which makes it
possible to use the names in guards.
Own Id: OTP-2481

� The prefix OE which has been used on some modules and functions have been changed to oe .
Own Id: OTP-2440

� The corba:create function is renamed to corba:create link and a new corba:create function have
been added. This means that corba:create have changed its semantics a bit and if the old
behaviour is wanted corba:create link should be used. These functions are now the corba similar
to gen server:start and gen server:start link in behaviour.
The IDL compiler now also generates create functions (oe create and oe create link with different
number of parameters) in the api module which are more convenient to call than the create
functions in the corba module because they have less parameters but does the same thing.
Own Id: OTP-2442

Known bugs and problems

ORB

� The dynamic interfaces are not supported and won’t be in the first release of Orber.

� Orber only support the persistent object startup behaviour.

� There are a number of function in the boa and corba interfaces that not are implemented but they
are mostly used when implementing the ORB and in the stubs and skeletons generated by the
IDL compiler and not used by application designers.

63Orber Application

Chapter 1: Orber User's Guide

Interface Repository

� The Interface Repository cannot be used from another ORB for the moment.

� IFR register corruption when trying to register on already defined id’s. This is a problem that
appears when trying to call the registration function without unregistering old ifr-objects with the
same id’s.

Resolving initial reference from C++ The returned IOR is correct and the same as for the java
implementation but we have for the moment just tested with a client implemented in C++, ie an Orbix
C++ client accessing an Orber server.

Orber 1.0.3, Release Notes

Fixed bugs and malfunctions

� Inherited interfaces are now registered correctly in the Interface Repository. This means that
object:get interface/1 now work properly.
Own Id: OTP-2134

� The generated function which unregisters IDL specifications from the Interface repository crashed
when when modules contained interfaces which inherited other interfaces.
Own Id: OTP-2254

Incompatibilities

One needs to recompile the IDL files to get the inherited interfaces correctly in the IFR
register/unregister functions.

Known bugs and problems

ORB

� The dynamic interfaces are not supported and won’t be in the first release of Orber.

� Orber only support the persistent object startup behaviour.

� There are a number of function in the boa and corba interfaces that not are implemented but they
are mostly used when implementing the ORB and in the stubs and skeletons generated by the
IDL compiler and not used by application designers.

IDL compiler

� Defining interface repository identifiers by the use of compiler pragmas is not supported. The ID,
version or prefix compiler pragmas are not supported. This is an add on to the standard.

� No checks are made to ensure reference integrity. IDL specifies that identifiers must have one and
only one meaning in each scope.

� Files are not closed properly when the compiler has detected errors. This may result in an
emfiles error code from the Erlang runtime system when the maximum number of open files
have been exceeded. The solution is to restart the Erlang emulator when the file error occurs.

64 Orber Application

1.11: Orber Release Notes

� If inline enumerator discriminator types are used, then the name of the enumeration is on the
same scope as the name of the union type. This does not apply to the case where the
discriminator type is written using a type reference.

� The IFR registration of interface operations does not register any raised exceptions.

� When running the type code registration functions (OE register) for the IFR and have included
files the specifications must be registered in the correct order. There is for the moment no check if
that have been done which can give some bad registrations, but an unregistered followed by a
register of the superior specification will solve it.

Interface Repository

� The Interface Repository cannot be used from another ORB for the moment.

Resolving initial reference from C++ The returned IOR is correct and the same as for the java
implementation but we have for the moment just tested with a client implemented in C++, ie an Orbix
C++ client accessing an Orber server.

Orber 1.0.2, Release Notes

Fixed bugs and malfunctions

� The idl compiler generated wrong type registration code for the IFR when an IDL specification
included another IDL specification. One could get exceptions from the IFR for trying to double
register something (for example a module or interface).
Own Id: OTP-2133

� Two type errors in internal IDL specified interfaces corrected.
Own Id: OTP-2121, OTP-2122

� object:get interface/1 didn’t work properly.
Own Id: OTP-2025

� IDL compiler: Error in handle call code generation in server stub. The compiler stopped
generating handle call clauses when there was a ONEWAY function. In the example below there
was no code generated for the function h. If the oneway functions were last in the interface
definition all worked fine.

interface i {
short f();
oneway void g(in char c);
long h();

}

Own Id: OTP-2057

� Badly choosen module name in the IDL example file InitialReferences.idl, the module name is
changed from ORBER to Orber.
Own Id: OTP-2069

� Documentation error in the description of the IDL mapping to Erlang. The example in chapter
2.7 was wrong.
Own Id: OTP-2108

65Orber Application

Chapter 1: Orber User's Guide

� pull() function in ProxyPullSupplier interface had a wrong return vaue of fValue, BOOLg instead
of Value.
Own Id: OTP-2150

� ’Disconnected’ exceptions were missing from calls to ProxyPullSupplier:pull(),
ProxyPullSupplier:try pull() and ProxyPushConsumer:push(). This exception should be thrown
in case if communication has been disconnected.
Own Id: OTP-2151

Incompatibilities

One needs to recompile the IDL files to get the corrections in some cases.

There are one incompatibility, the package name for the Java InitialReferences class has been changed.
see bugfix id OTP-2069 above.

Known bugs and problems

ORB

� The dynamic interfaces are not supported and won’t be in the first release of Orber.

� Orber only support the persistent object startup behaviour.

� There are a number of function in the boa and corba interfaces that not are implemented but they
are mostly used when implementing the ORB and in the stubs and skeletons generated by the
IDL compiler and not used by application designers.

IDL compiler

� Defining interface repository identifiers by the use of compiler pragmas is not supported. The ID,
version or prefix compiler pragmas are not supported. This is an add on to the standard.

� No checks are made to ensure reference integrity. IDL specifies that identifiers must have one and
only one meaning in each scope.

� Files are not closed properly when the compiler has detected errors. This may result in an
emfiles error code from the Erlang runtime system when the maximum number of open files
have been exceeded. The solution is to restart the Erlang emulator when the file error occurs.

� If inline enumerator discriminator types are used, then the name of the enumeration is on the
same scope as the name of the union type. This does not apply to the case where the
discriminator type is written using a type reference.

� The IFR registration of interface operations does not registerany raised exceptions.

� When running the type code registration funcctions (OE register) for the IFR and have included
files the specifications must be registered in the correct order. There is for the moment no check if
that have been done which can give some bad registrations, but an unregistered followed by a
register of the superior specification will solve it.

Interface Repository

� The Interface Repository cannot be used from another ORB for the moment.

66 Orber Application

1.11: Orber Release Notes

Resolving initial reference from C++ The returned IOR is correct and the same as for the java
implementation but we have for the moment just tested with a client implemented in C++, ie an Orbix
C++ client accessing an Orber server.

Orber 1.0.1, Release Notes

Fixed bugs and malfunctions

� Default count in the Type Kind structs where always -1.
Own Id: OTP-2007

� CosNaming::NamingContext::list() returned wrong return value and bad format of out
parameters.
Own Id: OTP-2023

� corba::string to object previously returned an internal structure. This has been remedied and the
function now returns an object reference.
Own Id: OTP-2024

Orber 1.0, Release Notes

Improvements and new features

Orber is a new application which allows OTP applications to interact with other programs written in
other languages through the CORBA standard.

The orber release contains the following parts:

� Orb kernel and IIOP support

� IDL compiler

� Interface Repository

� Orber CosNaming Service

� Orber CosEvent Service (only untyped events)

� Resolving initial reference from Java

� Resolving initial reference from C++

� A small example

Implemented work packages are: OTP-1508, OTP-1509 (not typed event).

Orb kernel and IIOP support There is an ORB kernel with IIOP support which allows creating
persistent server objects in Erlang and access them from Erlang and java. For the moment one need a
java enabled Orb to generate java from idl and use java server objects (we have tested with OrbixWeb).

IDL compiler The IDL compiler generates server behaviours and client stubs according to the IDL to
Erlang mapping. Interface inheritance is supported. The idl compiler requires gcc because it’s used as
preprocessor. (It’s possible to run the compiler without preprocessor if for example you don’t use
include statements)

67Orber Application

Chapter 1: Orber User's Guide

Interface Repository The Interface Repository (IFR) is fully implemented. The module orber ifr is
the interface to it. The IFR is used for some type checking when coding/decoding IIOP and therefore all
interfaces must be registered in the IFR.

Orber CosNaming service This is the first version of the CosNaming compliant service which also
includes two modules lname and lname component which supports the naming library interface in
erlang.

Orber CosEvent Service Orber contains an Event Service that is compliant with the untyped part of
the CosEvent service specification.

Resolving initial reference from Java A class with just one method which returns an IOR on the
external string format to the INIT object (see “Interoperable Naming Service” specification).

Resolving initial reference from C++ A class (and header file) with just one method which returns
an IOR on the external string format to the INIT object (see “Interoperable Naming Service”
specification).

A small example A small programming example is contributed which shows how Orber can be used.
It is an implementation of a Stack service which shows how Erlang services can be accessed from both
Erlang and java.

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

General

� Operation attribute oneway is implemented but not tested.

ORB

� The dynamic interfaces are not supported and won’t be in the first release of Orber.

� Orber only support the persistent object startup behaviour.

� There are a number of function in the boa and corba interfaces that not are implemented but they
are mostly used when implementing the ORB and in the stubs and skeletons generated by the
IDL compiler and not used by application designers.

68 Orber Application

IDL compiler

� Defining interface repository identifiers by the use of compiler pragmas is not supported. The ID,
version or prefix compiler pragmas are not supported. This is an add on to the standard.

� No checks are made to ensure reference integrity. IDL specifies that identifiers must have one and
only one meaning in each scope.

� Files are not closed properly when the compiler has detected errors. This may result in an
emfiles error code from the Erlang runtime system when the maximum number of open files
have been exceeded. The solution is to restart the Erlang emulator when the file error occurs.

� If inline enumerator discriminator types are used, then the name of the enumeration is on the
same scope as the name of the union type. This does not apply to the case where the
discriminator type is written using a type reference.

� The IFR registration of interface operations does not registerany raised exceptions.

Interface Repository

� The Interface Repository cannot be used from another ORB for the moment.

Resolving initial reference from C++ The returned IOR is correct and the same as for the java
implementation but we have for the moment just tested with a client implemented in C++, ie an Orbix
C++ client accessing an Orber server.

69Orber Application

70 Orber Application

Orber Reference Manual

Short Summaries

� Erlang Module CosNaming [page 83] – The CosNaming service is a collection of
interfaces that together define the naming service.

� Erlang Module CosNaming BindingIterator [page 86] – This interface supports
iteration over a name binding list.

� Erlang Module CosNaming NamingContext [page 88] – This interface supports
different bind and access functions for names in a context.

� Erlang Module CosNaming NamingContextExt [page 91] – This interface
contains operation for converting a Name sequence to a string and back.

� Erlang Module Module Interface [page 93] – Orber generated stubs/skeletons.

� Erlang Module any [page 99] – the corba any type

� Erlang Module corba [page 101] – The functions on CORBA module level

� Erlang Module corba object [page 105] – The Corba Object interface functions

� Erlang Module lname [page 107] – Interface that supports the name
pseudo-objects.

� Erlang Module lname component [page 109] – Interface that supports the name
pseudo-objects.

� Erlang Module orber [page 111] – The main module of the Orber application

� Erlang Module orber ifr [page 117] – The Interface Repository stores
representations of IDL information

� Erlang Module orber tc [page 131] – help functions for IDL typecodes

CosNaming

No functions are exported.

CosNaming BindingIterator

The following functions are exported:

71Orber Application

Orber Reference Manual

� next one(BindinIterator) -> Return
[page 86] Returns a binding

� next n(BindinIterator, HowMany) -> Return
[page 86] Returns a binding list

� destroy(BindingIterator) -> Return
[page 86] destroys the iterator object

CosNaming NamingContext

The following functions are exported:

� bind(NamingContext, Name, Object) -> Return
[page 89] Bind a Name to an Object

� rebind(NamingContext, Name, Object) -> Return
[page 89] Bind an Object to the Name even if the Name already is bound

� bind context(NamingContext1, Name, NamingContex2) -> Return
[page 89] Bind a Name to an NamingContext

� rebind context(NamingContext1, Name, NamingContex2) -> Return
[page 89] Bind an NamingContext to the Name even if the Name already is bound

� resolve(NamingContext, Name) -> Return
[page 89] Retrieve an Object bound to Name

� unbind(NamingContext, Name) -> Return
[page 90] Remove the binding for a Name

� new context(NamingContext) -> Return
[page 90] Create a new NamingContext

� bind new context(NamingContext, Name) -> Return
[page 90] Create a new NamingContext and bind it to a Name

� destroy(NamingContext) -> Return
[page 90] Destroy a NamingContext

� list(NamingContext, HowMany) -> Return
[page 90] List returns a all bindings in the context

CosNaming NamingContextExt

The following functions are exported:

� to string(NamingContext, Name) -> Return
[page 91]

� to name(NamingContext, NameString) -> Return
[page 91]

� to url(NamingContext, AddressString, NameString) -> Return
[page 91]

� resolve str(NamingContext, NameString) -> Return
[page 91]

72 Orber Application

Orber Reference Manual

Module Interface

The following functions are exported:

� typeID() -> TypeId
[page 94] Returns the Type ID related to this stub/skeleton

� oe create() -> ObjRef
[page 94] Start a Orber server.

� oe create link() -> ObjRef
[page 94] Start a linked Orber server.

� oe create(Env) -> ObjRef
[page 94] Start a Orber server.

� oe create link(Env) -> ObjRef
[page 94] Start a linked Orber server.

� oe create(Env, Options) -> ObjRef
[page 94] Start a Orber stub/skeleton

� oe create link(Env, Options) -> Return
[page 95] Start a Orber stub/skeleton

� Module Interface:own functions(ObjRef, Arg1, ..., ArgN) -> Reply
[page 95]

� Module Interface:own functions(ObjRef, Timeout, Arg1, ..., ArgN) ->
Reply
[page 95]

� Module Interface impl:init(Env) -> CallReply
[page 96]

� Module Interface impl:terminate(Reason, State) -> ok
[page 96]

� Module Interface impl:code change(OldVsn, State, Extra) -> CallReply
[page 96] Update the internal State.

� Module Interface impl:handle info(Info, State) -> CallReply
[page 96]

� Module Interface impl:own functions(This, State, Arg1, ..., ArgN) ->
CallReply
[page 97]

� Module Interface impl:own functions(State, Arg1, ..., ArgN) ->
CallReply
[page 97]

� Module Interface impl:own functions(This, State, Arg1, ..., ArgN) ->
CallReply
[page 97]

� Module Interface impl:own functions(State, Arg1, ..., ArgN) ->
CallReply
[page 97]

73Orber Application

Orber Reference Manual

any

The following functions are exported:

� create() -> Result
[page 99] creates an any record

� create(Typecode, Value) -> Result
[page 99] creates an any record

� set typecode(A, Typecode) -> Result
[page 99] sets the typecode field

� get typecode(A) -> Result
[page 99] fetches the typecode

� set value(A, Value) -> Result
[page 100] sets the value field

� get value(A) -> Result
[page 100] fetches the value

corba

The following functions are exported:

� create(Module, TypeID) -> Object
[page 101] create and start a new server object

� create(Module, TypeID, Env) -> Object
[page 101] create and start a new server object

� create(Module, TypeID, Env, Optons1) -> Object
[page 101] create and start a new server object

� create link(Module, TypeID) -> Object
[page 101] create and start a new server object

� create link(Module, TypeID, Env) -> Object
[page 101] create and start a new server object

� create link(Module, TypeID, Env, Options2) -> Reply
[page 101] create and start a new server object

� dispose(Object) -> ok
[page 102] stops a server object

� create subobject key(Object, Key) -> Result
[page 102] adds an Erlang term to a private key field

� get subobject key(Object) -> Result
[page 102] fetch the contents of the private key field

� get pid(Object) -> Result
[page 103] get the process id from an object key

� raise(Exception)
[page 103] generates an Erlang throw

� resolve initial references(ObjectId) -> Object
[page 103] returns the object reference for the given object id

74 Orber Application

Orber Reference Manual

� list initial services() -> [ObjectId]
[page 103] returns a list of supported object id’s

� resolve initial references remote(ObjectId, Address) -> Object
[page 103] returns the object reference for the given object id

� list initial services remote(Address) -> [ObjectId]
[page 103] returns a list of supported object id’s

� object to string(Object) -> IOR string
[page 104] converts the object reference to the external string representation

� string to object(IOR string) -> Object
[page 104] converts the external string representation to an object reference

corba object

The following functions are exported:

� get interface(Object) -> InterfaceDef
[page 105] Fetch the interface description

� is nil(Object) -> boolean()
[page 105]

� is a(Object, Logical type id) -> Return
[page 105]

� is remote(Object) -> boolean()
[page 105] Determines whether or not an object reference is remote.

� non existent(Object) -> Return
[page 106]

� not existent(Object) -> Return
[page 106]

� is equivalent(Object, OtherObject) -> boolean()
[page 106]

� hash(Object, Maximum) -> int()
[page 106]

lname

The following functions are exported:

� create() -> Return
[page 107] creates a new name

� insert component(Name, N, NameComponent) -> Return
[page 107] inserts a new name component in a name

� get component(Name, N) -> Return
[page 107] get a name component from a name

� delete component(Name, N) -> Return
[page 108] deletes s name component from a name

75Orber Application

Orber Reference Manual

� num components(Name) -> Return
[page 108] counts the number of name components in a name

� equal(Name1, Name2) -> Return
[page 108] tests if two names are equal

� less than(Name1, Name2) -> Return
[page 108] tests if one name is lesser than the other

� to idl form(Name) -> Return
[page 108] transforms a pseudo name to an IDL name

� from idl form(Name) -> Return
[page 108] transforms an IDL name to a pseudo name

lname component

The following functions are exported:

� create() -> Return
[page 109] creates a new name component

� get id(NameComponent) -> Return
[page 109] get the id field of a name component

� set id(NameComponent, Id) -> Return
[page 109] set the id field of a name component

� get kind(NameComponent) -> Return
[page 109] get the kind field of a name component

� set kind(NameComponent, Kind) -> Return
[page 110] set the kind field of a name component

orber

The following functions are exported:

� start() -> ok
[page 111] Start the Orber application

� start lightweight() -> ok
[page 111] Start the Orber application as lightweight

� start lightweight(Addresses) -> ok
[page 111] Start the Orber application as lightweight

� stop() -> ok
[page 111] Stops the Orber application

� is lightweight() -> boolean()
[page 112] Is the application started as lightweight?

� get lightweight nodes() -> RemoteModifierList | false
[page 112] Get the Remote Modifier list.

� get ORBInitRef() -> string() | undefined
[page 112] Get the initial reference address.

76 Orber Application

Orber Reference Manual

� get ORBDefaultInitRef() -> string() | undefined
[page 112] Get the initial reference address.

� domain() -> string()
[page 112] Display the Orber domain name

� iiop port() -> int()
[page 112] Display the IIOP port number

� iiop ssl port() -> int()
[page 112] Display the IIOP port number used for secure connections

� iiop timeout() -> int() (milliseconds)
[page 112] Display the IIOP timeout value

� iiop connection timeout() -> int() (milliseconds)
[page 113] Display the IIOP connection timeout value

� secure() -> no | ssl
[page 113] Display the security mode Orber is running in

� ssl server certfile() -> string()
[page 113] Display the path to the server certificate

� ssl client certfile() -> string()
[page 113] Display the path to the client certificate

� set ssl client certfile(Path) -> ok
[page 113] Sets the value of the client certificate

� ssl server verify() -> 0 | 1 | 2
[page 113] Display the SSL verification type for incoming calls

� ssl client verify() -> 0 | 1 | 2
[page 113] Display the SSL verification type for outgoing calls

� set ssl client verify(Value) -> ok
[page 113] Sets the value of the SSL verification type for outgoing calls

� ssl server depth() -> int()
[page 114] Display the SSL verification depth for incoming calls

� ssl client depth() -> int()
[page 114] Display the SSL verification depth for outgoing calls

� set ssl client depth(Depth) -> ok
[page 114] Sets the value of the SSL verification depth for outgoing calls

� objectkeys gc time() -> int() (seconds)
[page 114] Display the Object Keys GC time value

� bootstrap port() -> int()
[page 114] Display the bootstrap protocol port number

� orber nodes() -> RetVal
[page 114] Displays which nodes that this orber domain consist of.

� install(NodeList) -> ok
[page 114] Installs the Orber application

� install(NodeList, Options) -> ok
[page 114] Installs the Orber application

� uninstall() -> ok
[page 115] Uninstall the Orber application

� add node(Node, StorageType) -> RetVal
[page 115] Adds a new node to a group of Orber nodes.

� remove node(Node) -> RetVal
[page 116] Removes a node from a group of Orber nodes.

77Orber Application

Orber Reference Manual

orber ifr

The following functions are exported:

� init(Nodes,Timeout) -> ok
[page 117] Intialize the IFR

� find repository() -> #IFR Repository objref
[page 117]

� get def kind(Objref) -> Return
[page 118]

� destroy(Objref) -> Return
[page 118]

� get id(Objref) -> Return
[page 118]

� set id(Objref,Id) -> ok
[page 118]

� get name(Objref) -> Return
[page 118]

� set name(Objref,Name) -> ok
[page 118]

� get version(Objref) -> Return
[page 119]

� set version(Objref,Version) -> ok
[page 119]

� get defined in(Objref) -> Return
[page 119]

� get absolute name(Objref) -> Return
[page 119]

� get containing repository(Objref) -> Return
[page 119]

� describe(Objref) -> Return
[page 119]

� move(Objref,New container,New name,New version) -> Return
[page 120]

� lookup(Objref,Search name) -> Return
[page 120]

� contents(Objref,Limit type,Exclude inherited) -> Return
[page 120]

� lookup name(Objref,Search name,Levels to search, Limit type,
Exclude inherited) -> Return
[page 120]

�
describe contents(Objref,Limit type,Exclude inherited,Max returned objs)
-> Return
[page 121]

� create module(Objref,Id,Name,Version) -> Return
[page 121]

78 Orber Application

Orber Reference Manual

� create constant(Objref,Id,Name,Version,Type,Value) -> Return
[page 121]

� create struct(Objref,Id,Name,Version,Members) -> Return
[page 121]

� create union(Objref,Id,Name,Version,Discriminator type,Members) ->
Return
[page 122]

� create enum(Objref,Id,Name,Version,Members) -> Return
[page 122]

� create alias(Objref,Id,Name,Version,Original type) -> Return
[page 122]

� create interface(Objref,Id,Name,Version,Base interfaces) -> Return
[page 122]

� create exception(Objref,Id,Name,Version,Members) -> Return
[page 123]

� get type(Objref) -> Return
[page 123]

� lookup id(Objref,Search id) -> Return
[page 123]

� get primitive(Objref,Kind) -> Return
[page 123]

� create string(Objref,Bound) -> Return
[page 123]

� create sequence(Objref,Bound,Element type) -> Return
[page 124]

� create array(Objref,Length,Element type) -> Return
[page 124]

� create idltype(Objref,Typecode) -> Return
[page 124]

� get type def(Objref) -> Return
[page 124]

� set type def(Objref,TypeDef) -> Return
[page 124]

� get value(Objref) -> Return
[page 124]

� set value(Objref,Value) -> Return
[page 125]

� get members(Objref) -> Return
[page 125]

� set members(Objref,Members) -> Return
[page 125]

� get discriminator type(Objref) -> Return
[page 125]

� get discriminator type def(Objref) -> Return
[page 125]

� set discriminator type def(Objref,TypeDef) -> Return
[page 126]

79Orber Application

Orber Reference Manual

� get original type def(Objref) -> Return
[page 126]

� set original type def(Objref,TypeDef) -> Return
[page 126]

� get kind(Objref) -> Return
[page 126]

� get bound(Objref) -> Return
[page 126]

� set bound(Objref,Bound) -> Return
[page 126]

� get element type(Objref) -> Return
[page 127]

� get element type def(Objref) -> Return
[page 127]

� set element type def(Objref,TypeDef) -> Return
[page 127]

� get length(Objref) -> Return
[page 127]

� set length(Objref,Length) -> Return
[page 127]

� get mode(Objref) -> Return
[page 127]

� set mode(Objref,Mode) -> Return
[page 128]

� get result(Objref) -> Return
[page 128]

� get result def(Objref) -> Return
[page 128]

� set result def(Objref,ResultDef) -> Return
[page 128]

� get params(Objref) -> Return
[page 128]

� set params(Objref,Params) -> Return
[page 128]

� get contexts(Objref) -> Return
[page 129]

� set contexts(Objref,Contexts) -> Return
[page 129]

� get exceptions(Objref) -> Return
[page 129]

� set exceptions(Objref,Exceptions) -> Return
[page 129]

� get base interfaces(Objref) -> Return
[page 129]

� set base interfaces(Objref,BaseInterfaces) -> Return
[page 129]

80 Orber Application

Orber Reference Manual

� is a(Objref,Interface id) -> Return
[page 129]

� describe interface(Objref) -> Return
[page 130]

� create attribute(Objref,Id,Name,Version,Type,Mode) -> Return
[page 130]

� create operation(Objref,Id,Name,Version,Result,Mode,Params,
Exceptions,Contexts) -> Return
[page 130]

orber tc

The following functions are exported:

� null() -> TC
[page 131] get the IDL typecode

� void() -> TC
[page 131] get the IDL typecode

� short() -> TC
[page 131] get the IDL typecode

� unsigned short() -> TC
[page 131] get the IDL typecode

� long() -> TC
[page 131] get the IDL typecode

� unsigned long() -> TC
[page 131] get the IDL typecode

� float() -> TC
[page 131] get the IDL typecode

� double() -> TC
[page 131] get the IDL typecode

� boolean() -> TC
[page 131] get the IDL typecode

� char() -> TC
[page 131] get the IDL typecode

� octet() -> TC
[page 131] get the IDL typecode

� any() -> TC
[page 131] get the IDL typecode

� typecode() -> TC
[page 131] get the IDL typecode

� principal() -> TC
[page 131] get the IDL typecode

� object reference(Id, Name) -> TC
[page 131] the object reference IDL typecode

� struct(Id, Name, ElementList) -> TC
[page 131] the struct IDL typecode

81Orber Application

Orber Reference Manual

� union(Id, Name, DiscrTC, Default, ElementList) -> TC
[page 132] the union IDL typecode

� enum(Id, Name, ElementList) -> TC
[page 132] the enum IDL typecode

� string(Length) -> TC
[page 132] the string IDL typecode

� sequence(ElemTC, Length) -> TC
[page 133] the sequence IDL typecode

� array(ElemTC, Length) -> TC
[page 133] the array IDL typecode

� alias(Id, Name, AliasTC) -> TC
[page 133] the alias IDL typecode

� exception(Id, Name, ElementList) -> TC
[page 133] the exception IDL typecode

� get tc(Object) -> TC
[page 133] fetch typecode

� get tc(Id) -> TC
[page 133] fetch typecode

� check(TC) -> boolean()
[page 134] syntax check of an IDL typecode

82 Orber Application

Orber Reference Manual CosNaming (Module)

CosNaming (Module)

The naming service provides the principal mechanism for clients to find objects in an
ORB based world. The naming service provides an initial naming context that functions
as the root context for all names. Given this context clients can navigate in the name
space.

Types that are declared on the CosNaming level are:

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};

typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

To get access to the record definitions for the structs use:
-include lib("orber/COSS/CosNaming.hrl")..

Names are not an ORB object but the can be structured in components as seen by the
definition above. There are no requirements on names so the service can support many
different conventions and standards.

There are two different interfaces supported in the service:

� NamingContext

� BindingIterator

IDL specification for CosNaming:

// Naming Service v1.0 described in CORBAservices:
// Common Object Services Specification, chapter 3
// OMG IDL for CosNaming Module, p 3-6

#pragma prefix "omg.org"

module CosNaming
{
typedef string Istring;
struct NameComponent {

83Orber Application

CosNaming (Module) Orber Reference Manual

Istring id;
Istring kind;

};

typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

interface BindingIterator;
interface NamingContext;

interface NamingContext {

enum NotFoundReason { missing_node, not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed,InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

void destroy()

84 Orber Application

Orber Reference Manual CosNaming (Module)

raises(NotEmpty);
void list (in unsigned long how_many,

out BindingList bl,
out BindingIterator bi);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};
};

85Orber Application

CosNaming BindingIterator (Module) Orber Reference Manual

CosNaming BindingIterator
(Module)

This interface allows a client to iterate over the Bindinglist it has been initiated with.

The type NameComponent used below is defined as:

-record(’CosNaming_NameComponent’, {id, kind=""}).

id and kind are strings.

The type Binding used below is defined as:

-record(’CosNaming_Binding’, {binding_name, binding_type}).

binding name is a Name = [NameComponent] and binding type is an enum which has
the values nobject and ncontext.

Both these records are defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

next one(BindinIterator) -> Return

Types:

� BindingIterator = #objref
� Return = fbool(), Bindingg

This operation returns the next binding. If there are no more bindings it returns false
otherwise true.

next n(BindinIterator, HowMany) -> Return

Types:

� BindingIterator = #objref
� HowMany = int()
� BindingList = [Binding]
� Return = fbool(), BindingListg

This operation returns a binding list with at most HowMany bindings. If there are no
more bindings it returns false otherwise true.

destroy(BindingIterator) -> Return

86 Orber Application

Orber Reference Manual CosNaming BindingIterator (Module)

Types:

� BindingIterator = #objref
� Return = ok

This operation destroys the binding iterator.

87Orber Application

CosNaming NamingContext (Module) Orber Reference Manual

CosNaming NamingContext
(Module)

This is the object that defines name scopes, names must be unique within a naming
context. Objects may have multiple names and may exist in multiple naming contexts.
Name context may be named in other contexts and cycles are permitted.

The type NameComponent used below is defined as:

-record(’CosNaming_NameComponent’, {id, kind=""}).

where id and kind are strings.

The type Binding used below is defined as:

-record(’CosNaming_Binding’, {binding_name, binding_type}).

where binding name ia a Name and binding type is an enum which has the values
nobject and ncontext.

Both these records are defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

There are a number of exceptions that can be returned from functions in this interface.

� NotFound is defined as

-record(’CosNaming_NamingContext_NotFound’,
{rest_of_name, why}).

� CannotProceed is defined as

-record(’CosNaming_NamingContext_CannotProceed’,
{rest_of_name, cxt}).

� InvalidName is defined as

-record(’CosNaming_NamingContext_InvalidName’, {}).

� NotFound is defined as

-record(’CosNaming_NamingContext_NotFound’, {}).

� AlreadyBound is defined as

-record(’CosNaming_NamingContext_AlreadyBound’, {}).

� NotEmpty is defined as

-record(’CosNaming_NamingContext_NotEmpty’, {).

These exceptions are defined in the file CosNaming NamingContext.hrl and it is
included with:

-include_lib("orber/COSS/CosNaming/CosNaming_NamingContext.hrl").

88 Orber Application

Orber Reference Manual CosNaming NamingContext (Module)

Exports

bind(NamingContext, Name, Object) -> Return

Types:

� NameContext = #objref
� Name = [NameComponent]
� Object = #objref
� Return = ok

Creates a binding of a name and an object in the naming context. Naming contexts that
are bound using bind() do not participate in name resolution.

rebind(NamingContext, Name, Object) -> Return

Types:

� NamingContext = #objref
� Name = [NameComponent]
� Object = #objref
� Return = ok

Creates a binding of a name and an object in the naming context even if the name is
already bound. Naming contexts that are bound using rebind() do not participate in
name resolution.

bind context(NamingContext1, Name, NamingContex2) -> Return

Types:

� NamingContext1 = NamingContext2 =#objref
� Name = [NameComponent]
� Return = ok

The bind context function creates a binding of a name and a naming context in the
current context. Naming contexts that are bound using bind context() participate in
name resolution.

rebind context(NamingContext1, Name, NamingContex2) -> Return

Types:

� NamingContext1 = NamingContext2 =#objref
� Name = [NameComponent]
� Return = ok

The rebind context function creates a binding of a name and a naming context in the
current context even if the name already is bound. Naming contexts that are bound
using rebind context() participate in name resolution.

resolve(NamingContext, Name) -> Return

Types:

� NamingContext = #objref
� Name = [NameComponent]

89Orber Application

CosNaming NamingContext (Module) Orber Reference Manual

� Return = Object
� Object = #objref

The resolve function is the way to retrieve an object bound to a name in the naming
context. The given name must match exactly the bound name. The type of the object is
not returned, clients are responsible for narrowing the object to the correct type.

unbind(NamingContext, Name) -> Return

Types:

� NamingContext = #objref
� Name = [NameComponent]
� Return = ok

The unbind operation removes a name binding from the naming context.

new context(NamingContext) -> Return

Types:

� NamingContext = #objref
� Return = #objref

The new context operation creates a new naming context.

bind new context(NamingContext, Name) -> Return

Types:

� NamingContext = #objref
� Name = [NameComponent]
� Return = #objref

The new context operation creates a new naming context and binds it to Name in the
current context.

destroy(NamingContext) -> Return

Types:

� NamingContext = #objref
� Return = ok

The destroy operation disposes the NamingContext object and removes it from the
name server. The context must be empty e.g. not contain any bindings to be removed.

list(NamingContext, HowMany) -> Return

Types:

� NamingContext = #objref
� HowMany = int()
� Return = fok, BindingList, BindingIteratorg
� BindingList = [Binding]
� BindingIterator = #objref

The list operation returns a BindingList with a number of bindings upto HowMany from
the context. It also returns a BindinIterator which can be used to step through the list.

Note that one must remove the BindingIterator with a ’BindingIterator’:destroy() otherwise
one can get dangling objects.

90 Orber Application

Orber Reference Manual CosNaming NamingContextExt (Module)

CosNaming NamingContextExt
(Module)

To get access to the record definitions for the structures use:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

This module also exports the functions described in:

� CosNaming NamingContext [page 88]

Exports

to string(NamingContext, Name) -> Return

Types:

� NameContext = #objref
� Name = [NameComponent]
� Return = string() | f’EXCEPTION’, NamingContext::InvalidNamefgg

Stringifies a Name sequence to a string.

to name(NamingContext, NameString) -> Return

Types:

� NameContext = #objref
� NameString = string()
� Return = [NameComponent] | f’EXCEPTION’, NamingContext::InvalidNamefgg

Converts a stringified Name to a Name sequence.

to url(NamingContext, AddressString, NameString) -> Return

Types:

� NameContext = #objref
� Address = NameString = string()
� Return = URLString | f’EXCEPTION’, NamingContext::InvalidNamefgg |
f’EXCEPTION’, NamingContextExt::InvalidAddressfgg

This operation takes a corbaloc string and a stringified Name sequence as input and
returns a fully formed URL string.

resolve str(NamingContext, NameString) -> Return

91Orber Application

CosNaming NamingContextExt (Module) Orber Reference Manual

Types:

� NameContext = #objref
� NameString = string()
� Return = #objref | f’EXCEPTION’, NamingContext::InvalidNamefgg |
f’EXCEPTION’, NamingContext::NotFoundfwhy, rest of namegg |
f’EXCEPTION’, NamingContext::CannotProceedfcxt, rest of namegg

This operation takes a stringified Name sequence as input and returns the associated, if
any, object.

92 Orber Application

Orber Reference Manual Module Interface (Module)

Module Interface (Module)

This module contains the stub/skeleton functions generated by IC.

Starting a Orber server can be done in three ways:

� Normal - when the server dies Orber forgets all knowledge of the server.

� Supervisor child - adding the configuration parameter fsup child, trueg the
oe create link/2 function returns fok, Pid, ObjRefg which can be handled by
the application supervisor/stdlib-1.7 or later.

� Persistent object reference - adding the configuration parameters fpersistent,
trueg and fregname, fglobal, term()gg Orber will remember the object
reference until the server terminates with reason normal or shutdown. Hence, if the
server is started as a transient supervisor child we do not receive a
’OBJECT NOT EXIST’ exception when it has crashed and is being restarted.

The Orber stub can be used to start a pseudo object, which will create a non-server
implementation. A pseudo object introduce some limitations:

� The functions oe create link/2 is equal to oe create/2, i.e., no link can or will
be created.

� The BIF:s self() and process flag(trap exit,true) behaves incorrectly.

� The IC option ffimpl, "M::I"g, "other impl"g has no effect. The call-back
functions must be implemented in a file called M I impl.erl

� The call-back functions must be implemented as if the IC option fthis, "M::I"g
was used.

� The gen server State changes have no effect. The user can provide information
via the Env start parameter and the State returned from init/2 will be the State
passed in following invocations.

� The gen server reply Timeout have no effect.

� The option fpseudo, trueg overrides all other start options.

� Only the functions, besides own definitions, init/2 (called via oe create*/2) and
terminate/2 (called via corba:dispose/1) must be implemented.

By adopting the rules for pseudo objects described above we can use oe create/2 to
create server or pseudo objects, by excluding or including the option fpseudo, trueg,
without changing the call-back module.

If you start a object without fregname, RegNameg it can only be accessed through the
returned object key. Started with a fregname, RegNameg the name is registered locally
or globally.

93Orber Application

Module Interface (Module) Orber Reference Manual

Warning:
To avoid flooding Orber with old object references start erlang using the flag -orber
objectkeys gc time Time, which will remove all object references related to servers
being dead for Time seconds. To avoid extra overhead, i.e., performing garbage
collect if no persistent objects are started, the objectkeys gc time default value is
infinity. For more information, see the orber and corba documentation.

Exports

typeID() -> TypeId

Types:

� TypeId = string(), e.g., ”IDL:Module/Interface:1.0”

Returns the Type ID related to this stub/skeleton

oe create() -> ObjRef

Types:

� ObjRef = #object reference

Start a Orber server.

oe create link() -> ObjRef

Types:

� ObjRef = #object reference

Start a linked Orber server.

oe create(Env) -> ObjRef

Types:

� Env = term()
� ObjRef = #object reference

Start a Orber server passing Env to init/1.

oe create link(Env) -> ObjRef

Types:

� Env = term()
� ObjRef = #object reference

Start a linked Orber server passing Env to init/1.

oe create(Env, Options) -> ObjRef

Types:

� Env = term()

94 Orber Application

Orber Reference Manual Module Interface (Module)

� ObjRef = #object reference
� Options = [fsup child, falseg | fpersistent, Boolg | fregname, RegNameg | fpseudo,

Boolg]
� Bool = true | false
� RegName = fglobal, term()g | flocal, atom()g

Start a Orber server passing Env to init/1.

If the option fpseudo, trueg is used, all other options are overridden. As default, this
option is set to false.

This function cannot be used for starting a server as supervisor child. If started as
persistent, the options [fpersistent, trueg, fregname, fglobal, term()gg]
must be used and Orber will only forget the object reference if it terminates with reason
normal or shutdown.

oe create link(Env, Options) -> Return

Types:

� Env = term()
� Return = ObjRef | fok, Pid, ObjRefg
� ObjRef = #object reference
� Options = [fsup child, Boolg | fpersistent, Boolg | fregname, RegNameg | fpseudo,

Boolg]
� Bool = true | false
� RegName = fglobal, term()g | flocal, atom()g

Start a linked Orber server passing Env to init/1.

If the option fpseudo, trueg is used, all other options are overridden and no link will
be created. As default, this option is set to false.

This function can be used for starting a server as persistent or supervisor child. At the
moment [fpersistent, trueg, fregname, fglobal, term()gg] must be used to
start a server as persistent, i.e., if a server died and is in the process of being restarted a
call to the server will not raise ’OBJECT NOT EXIST’ exception. Orber will only forget
the object reference if it terminates with reason normal or shutdown, hence, the server
must be started as transient (for more information see the supervisor documentation).

Module Interface:own functions(ObjRef, Arg1, ..., ArgN) -> Reply

Types:

� ObjRef = #object reference
� ArgX = specified in the IDL-code.
� Reply = specified in the IDL-code.

If the configuration parameter ftimeout, “Module::Interface”g is not passed to IC this
function must be called when invoking an operation.

Module Interface:own functions(ObjRef, Timeout, Arg1, ..., ArgN) -> Reply

Types:

� ObjRef = #object reference
� Timeout = int() >= 0 | infinity
� ArgX = specified in the IDL-code.

95Orber Application

Module Interface (Module) Orber Reference Manual

� Reply = specified in the IDL-code.

If the configuration parameter ftimeout, “Module::Interface”g is passed to IC this
function must be called when invoking an operation.

Module Interface impl:init(Env) -> CallReply

Types:

� Env = term()
� CallReply = fok, Stateg | fok, State, Timeoutg | ignore | fstop, StopReasong
� State = term()
� Timeout = int() >= 0 | infinity
� StopReason = term()

Whenever a new server is started, init/1 is the first function called in the specified
call-back module.

Module Interface impl:terminate(Reason, State) -> ok

Types:

� Reason = term()
� State = term()

This call-back function is called whenever the server is about to terminate.

Module Interface impl:code change(OldVsn, State, Extra) -> CallReply

Types:

� OldVsn = undefined | term()
� State = term()
� Extra = term()
� CallReply = fok, NewStateg
� NewState = term()

Update the internal State.

Module Interface impl:handle info(Info, State) -> CallReply

Types:

� Info = term()
� State = term()
� CallReply = fnoreply, Stateg | fnoreply, State, Timeoutg | fstop, StopReason, Stateg
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

96 Orber Application

Orber Reference Manual Module Interface (Module)

If the configuration parameter ffhandle info, “Module::Interface”g, trueg is passed to IC
and process flag(trap exit,true) is set in the init() call-back this function must be
exported.

Note:
To be able to handle the Timeout option in CallReply in the call-back module the
configuration parameter ffhandle info, “Module::Interface”g, trueg must be passed to
IC.

Module Interface impl:own functions(This, State, Arg1, ..., ArgN) -> CallReply

Types:

� This = the servers #object reference
� State = term()
� ArgX = specified in the IDL-code.
� CallReply = freply, Reply, Stateg | freply, Reply, State, Timeoutg | fnoreply, Stateg
| fnoreply, State, Timeoutg | fstop, StopReason, Reply, Stateg | fstop, StopReason,
Stateg

� Reply = specified in the IDL-code.
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

If the configuration parameter fthis, “Module::Interface”g is passed to IC and the
function is defined to be two-way this function must be exported.

Module Interface impl:own functions(State, Arg1, ..., ArgN) -> CallReply

Types:

� State = term()
� CallReply = freply, Reply, Stateg | freply, Reply, State, Timeoutg | fnoreply, Stateg
| fnoreply, State, Timeoutg | fstop, StopReason, Reply, Stateg | fstop, StopReason,
Stateg

� ArgX = specified in the IDL-code.
� Reply = specified in the IDL-code.
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

If the configuration parameter fthis, “Module::Interface”g is not passed to IC and the
function is defined to be two-way this function must be exported.

Module Interface impl:own functions(This, State, Arg1, ..., ArgN) -> CallReply

Types:

� This = the servers #object reference
� State = term()
� CallReply = fnoreply, Stateg | fnoreply, State, Timeoutg | fstop, StopReason, Stateg
� ArgX = specified in the IDL-code.
� Reply = specified in the IDL-code.
� Timeout = int() >= 0 | infinity

97Orber Application

Module Interface (Module) Orber Reference Manual

� StopReason = normal | shutdown | term()

If the configuration parameter fthis, “Module::Interface”g is passed to IC and the
function is defined to be one-way this function must be exported.

Module Interface impl:own functions(State, Arg1, ..., ArgN) -> CallReply

Types:

� State = term()
� CallReply = fnoreply, Stateg | fnoreply, State, Timeoutg | fstop, StopReason, Stateg
� ArgX = specified in the IDL-code.
� Reply = specified in the IDL-code.
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

If the configuration parameter fthis, “Module::Interface”g is not passed to IC and the
function is defined to be one-way this function must be exported.

98 Orber Application

Orber Reference Manual any (Module)

any (Module)

This module contains functions that gives an interface to the Corba any type.

Note that the any interface in orber does not contain a destroy function because the any
type is represented as an Erlang record and therefor will be removed by the garbage
collector when not in use.

The type TC used below describes an IDL type and is a tuple according to the to the
Erlang language mapping.

The type Any used below is defined as:

-record(any, {typecode, value}).

where typecode is a TC tuple and value is an Erlang term of the type defined by the
typecode field.

Exports

create() -> Result

create(Typecode, Value) -> Result

Types:

� Typecode = TC
� Value = term()
� Result = Any

The create/0 function creates an empty any record and the create/2 function creates an
initialized record.

set typecode(A, Typecode) -> Result

Types:

� A = Any
� Typecode = TC
� Result = Any

This function sets the typecode of A and returns a new any record.

get typecode(A) -> Result

Types:

� A = Any
� Result = TC

99Orber Application

any (Module) Orber Reference Manual

This function returns the typecode of A.

set value(A, Value) -> Result

Types:

� A = Any
� Value = term()
� Result = Any

This function sets the value of A and returns a new any record.

get value(A) -> Result

Types:

� A = Any
� Result = term()

This function returns the value of A.

100 Orber Application

Orber Reference Manual corba (Module)

corba (Module)

This module contains functions that are specified on the CORBA module level. It also
contains some functions for creating and disposing objects.

Exports

create(Module, TypeID) -> Object

create(Module, TypeID, Env) -> Object

create(Module, TypeID, Env, Optons1) -> Object

create link(Module, TypeID) -> Object

create link(Module, TypeID, Env) -> Object

create link(Module, TypeID, Env, Options2) -> Reply

Types:

� Module = atom()
� TypeID = string()
� Env = term()
� Options1 = [fpersistent, Boolg | fregname, RegNameg]
� Options2 = [fsup child, Boolg | fpersistent, Boolg | fregname, RegNameg |
fpseudo, Boolg]

� RegName = flocal, atom()g | fglobal, term()g
� Reply = #objref | fok, Pid, #objrefg
� Bool = true | false
� Object = #objref

These functions start a new server object. If you start it without RegName it can only be
accessed through the returned object key. Started with a RegName the name is
registered locally or globally.

TypeID is the repository ID of the server object type and could for example look like
“IDL:StackModule/Stack:1.0”.

Module is the name of the interface API module.

Env is the arguments passed which will be passed to the implementations init call-back
function.

A server started with create/2, create/3 or create/4 does not care about the parent,
which means that the parent is not handled explicitly in the generic process part.

A server started with create link2, create link/3 or create link/4 is initially linked to the
caller, the parent, and it will terminate whenever the parent process terminates, and
with the same reason as the parent. If the server traps exits, the terminate/2 call-back

101Orber Application

corba (Module) Orber Reference Manual

function is called in order to clean up before the termination. These functions should be
used if the server is a worker in a supervision tree.

If you use the option fsup child, trueg create link/4 will return fok, Pid,
#objrefg, otherwise #objref, and make it possible to start a server as a supervisor child
(stdlib-1.7 or later).

If you use the option fpersistent, trueg you also must use the option fregname,
fglobal, Namegg. This combination makes it possible to tell the difference between a
server permanently terminated or in the process of restarting.

The option fpseudo, trueg, allow us to create an object which is not a server. Using
fpseudo, trueg overrides all other start options. For more information see section
Module Interface.

If a server is started using the option fpersistent, trueg the object key will not be
removed unless it terminates with reason normal or shutdown. Hence, if persistent
servers is used as supervisor childs they should be transient and the objectkeys gc time
should be modified (default equals infinity).

Example:

corba:create(’StackModule_Stack’, "IDL:StackModule/Stack:1.0",
{10, test})

dispose(Object) -> ok

Types:

� Object = #objref

This function is used for terminating the execution of a server object.

create subobject key(Object, Key) -> Result

Types:

� Object = #objref
� Key = term()
� Result = #objref

This function is used to create a subobject in a server object. It can for example be
useful when one wants unique access to separate rows in a mnesia or an ETS table. The
Result is an object reference that will be seen as a unique reference to the outside world
but will access the same server object where one can use the get subobject key/1 function
to get the private key value.

Key is stored in the object reference Object. If it is a binary it will be stored as is and
otherwise it is converted to a binary before storage.

get subobject key(Object) -> Result

Types:

� Object = #objref
� Result = #binary

This function is used to fetch a subobject key from the object reference Object. The
result is a always a binary, if it was an Erlang term that was stored with
create subobject key/2 one can to do binary to term/1 to get the real value.

102 Orber Application

Orber Reference Manual corba (Module)

get pid(Object) -> Result

Types:

� Object = #objref
� Result = #pid | ferror, Reasong | f’EXCEPTION’,Eg

This function is to get the process id from an object, which is a must when Corba
objects is started/handled in a supervisor tree. The function will throw exceptions if the
key is not found or some other error occurs.

raise(Exception)

Types:

� Exception = record()

This function is used for raising corba exceptions as an Erlang user generated exit signal.
It will throw the tuple f’EXCEPTION’, Exceptiong.

resolve initial references(ObjectId) -> Object

Types:

� ObjectId = string()
� Object = #objref

This function returns the object reference for the object id asked for (just now only the
“NameService”).

list initial services() -> [ObjectId]

Types:

� ObjectId = string()

This function returns a list of allowed object id’s (just now only the “NameService”).

resolve initial references remote(ObjectId, Address) -> Object

Types:

� Address = [RemoteModifier]
� RemoteModifier = string()
� ObjectId = string()
� Object = #objref

This function returns the object reference for the object id asked for (depends on the
orb, for orber it is just the “NameService”). The remote modifier string has the
following format: "iiop://host:port".

list initial services remote(Address) -> [ObjectId]

Types:

� Address = [RemoteModifier]
� RemoteModifier = string()
� ObjectId = string()

103Orber Application

corba (Module) Orber Reference Manual

This function returns a list of allowed object id’s (depends on the orb, for orber it is just
the “NameService”). The remote modifier string has the following format:
"iiop://host:port".

object to string(Object) -> IOR string

Types:

� Object = #objref
� IOR string = string()

This function returns the object reference as the external string representation of an
IOR.

string to object(IOR string) -> Object

Types:

� IOR string = string()
� Object = #objref

This function takes an IOR on the external string representation and returns the object
reference.

104 Orber Application

Orber Reference Manual corba object (Module)

corba object (Module)

This module contains the Corba Object interface functions that can be called for all
objects.

Exports

get interface(Object) -> InterfaceDef

Types:

� Object = #objref
� InterfaceDef = term()

This function returns the full interface description for an object.

is nil(Object) -> boolean()

Types:

� Object = #objref

This function checks if the object reference has a nil object value, which denotes no
object. It is the reference that is test and no object implementation is involved in the
test.

is a(Object, Logical type id) -> Return

Types:

� Object = #objref
� Logical type id = string()

The Logical type id is a string that is a share type identifier (repository id). The function
returns true if the object is an instance of that type or an ancestor of the “most derived”
type of that object.

Note: Other ORB suppliers may not support this function completely according to the
OMG specification. Thus, a is a call may raise an exception or respond unpredictable if
the Object is located on a remote node.

is remote(Object) -> boolean()

Types:

� Object = #objref

This function returns true if an object reference is remote otherwise false.

105Orber Application

corba object (Module) Orber Reference Manual

non existent(Object) -> Return

Types:

� Object = #objref
� Return = boolean() | fEXCEPTION, g

This function can be used to test if the object has been destroyed. It does this without
invoking any application level code. The ORB returns true if it knows that the object is
destroyed otherwise false.

Note: The OMG have specified two different operators, not existent (CORBA
version 2.0 and 2.2) and non existent (CORBA version 2.3), to be used for this
function. It is not mandatory to support both versions. Thus, a non existent call may
raise an exception or respond unpredictable if the Object is located on a remote node.
Depending on which version, ORB:s you intend to communicate with supports, you
can either use this function or not existent/1.

not existent(Object) -> Return

Types:

� Object = #objref
� Return = boolean() | fEXCEPTION, g

This function is implemented due to Interoperable purposes. Behaves as non existent
except the operator not existent is used when communicating with other ORB:s.

is equivalent(Object, OtherObject) -> boolean()

Types:

� Object = #objref
� OtherObject = #objref

This function is used to determine if two object references are equivalent so far the
ORB easily can determine. It returns true if the target object reference is equal to the
other object reference and false otherwise.

hash(Object, Maximum) -> int()

Types:

� Object = #objref
� Maximum = int()

This function returns a hash value based on the object reference that not will change
during the lifetime of the object. The Maximum parameter denotes the upper bound of
the value.

106 Orber Application

Orber Reference Manual lname (Module)

lname (Module)

This interface is a part of the names library which is used to hide the representation of
names. In orbers Erlang mapping the pseodo-object names and the real IDL names have
the same representation but it is desirable that the clients uses the names library so they
will not be dependent of the representation. The lname interface supports handling of
names e.g. adding and removing name components.

Note that the lname interface in orber does not contain a destroy function because the
Names are represented as standard Erlang lists and therefor will be removed by the
garbage collector when not in use.

The type NameComponent used below is defined as:

-record(’CosNaming_NameComponent’, {id, kind=""}).

id and kind are strings.

The record is defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

create() -> Return

Types:

� Return = [NameComponent]

This function returns a new name.

insert component(Name, N, NameComponent) -> Return

Types:

� Name = [NameComponent]
� N = int()
� Return = Name

This function returns a name where the new name component has been inserted as
component N in Name.

get component(Name, N) -> Return

Types:

� Name = [NameComponent]
� N = int()
� Return = NameComponent

107Orber Application

lname (Module) Orber Reference Manual

This function returns the N:th name compnent in Name.

delete component(Name, N) -> Return

Types:

� Name = [NameComponent]
� N = int()
� Return = Name

This function deletes the N:th name component from Name and returns the new name.

num components(Name) -> Return

Types:

� Name = [NameComponent]
� Return = int()

This function returns a the number of name components in Name.

equal(Name1, Name2) -> Return

Types:

� Name1 = Name2 = [NameComponent]
� Return = bool()

This function returns true if the two names are equal and false otherwise.

less than(Name1, Name2) -> Return

Types:

� Name1 = Name2 = [NameComponent]
� Return = bool()

This function returns true if Name1 are lesser than Name2 and false otherwise.

to idl form(Name) -> Return

Types:

� Name = [NameComponent]
� Return = Name

This function just checks if Name is a correct IDL name before returning it because the
name representation is the same for pseudo and IDL names in orber.

from idl form(Name) -> Return

Types:

� Name = [NameComponent]
� Return = Name

This function just returns the Name because the name representation is the same for
pseudo and IDL names in orber.

108 Orber Application

Orber Reference Manual lname component (Module)

lname component (Module)

This interface is a part of the name library, which is used to hide the representation of
names. In orbers Erlang mapping the pseodo-object names and the real IDL names have
the same representation but it is desirable that the clients uses the names library so they
will not be dependent of the representation. The lname component interface supports
handling of name components e.g. set and get of the struct members.

Note that the lname component interface in orber does not contain a destroy function
because the NameComponents are represented as Erlang records and therefor will be
removed by the garbage collector when not in use.

The type NameComponent used below is defined as:

-record(’CosNaming_NameComponent’, {id, kind=""}).

id and kind are strings.

The record is defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

create() -> Return

Types:

� Return = NameComponent

This function returns a new name component.

get id(NameComponent) -> Return

Types:

� Return = string()

This function returns the id string of a name component.

set id(NameComponent, Id) -> Return

Types:

� Id = string()
� Return = NameComponent

This function sets the id string of a name component and returns the component.

get kind(NameComponent) -> Return

109Orber Application

lname component (Module) Orber Reference Manual

Types:

� Return = string()

This function returns the id string of a name component.

set kind(NameComponent, Kind) -> Return

Types:

� Kind = string()
� Return = NameComponent

This function sets the kind string of a name component and returns the component.

110 Orber Application

Orber Reference Manual orber (Module)

orber (Module)

This module contains the functions for starting and stopping the application. It also has
some utility functions to get some of the configuration information from running
application.

Exports

start() -> ok

Starts the Orber application (it also starts mnesia if it is not running).

start lightweight() -> ok

Starts the Orber application as lightweight.

Preconditions:

� Erlang started on the node using the option -orber lightweight, e.g., erl -orber
lightweight Addresses.

� The Addresses must be a list of RemoteModifiers, equal to the
orber:resolve initial references remote/2 argument. The list must contain
Orber nodes addresses, to which we have access and are not started as lightweight.

start lightweight(Addresses) -> ok

Types:

� Addresses = [Address]
� Address =
� RetVal = ok | exit()

Starts the Orber application as lightweight.

Preconditions:

� If Erlang is started using the configuration parameter -orber lightweight, e.g., erl
-orber lightweight Address, the argument supplied to this function will override
the configuration parameter. Hence, this function must be used carefully.

� The Addresses must be a list of RemoteModifiers, equal to the
orber:resolve initial references remote/2 argument. The list must contain
Orber nodes addresses, to which we have access and are not started as lightweight.

stop() -> ok

111Orber Application

orber (Module) Orber Reference Manual

Stops the Orber application.

is lightweight() -> boolean()

This function returns the true if Orber is started as lightweight, false otherwise.

get lightweight nodes() -> RemoteModifierList | false

This function returns false if Orber is not started as lightweight, otherwise a list of
Remote Modifiers.

get ORBInitRef() -> string() | undefined

This function returns undefined if we will resolve references locally, otherwise a string
describing which host we will contact if the Key given to
corba:resolve initial references/1 matches the Key set in this configuration
variable. For more information see the user’s guide.

get ORBDefaultInitRef() -> string() | undefined

This function returns undefined if we will resolve references locally, otherwise a string
describing which host, or hosts, from which we will try to resolve the Key given to
corba:resolve initial references/1. For more information see the user’s guide.

domain() -> string()

This function returns the domain name of the current Orber domain as a string.

iiop port() -> int()

This function returns the port-number, which is used by the IIOP protocol. It can be
configured by setting the application variable iiop port, if it is not set it will have the
default number 4001.

iiop ssl port() -> int()

This function returns the port-number, which is used by the secure IIOP protocol. It
can be configured by setting the application variable iiop ssl port, if it is not set it will
have the default number 4002 if Orber is to configured to run in secure mode.
Otherwise it returns -1.

iiop timeout() -> int() (milliseconds)

This function returns the timeout value after which outgoing IIOP requests terminate.
It can be configured by setting the application variable iiop timeout TimeVal (seconds), if
it is not set it will have the default value infinity. If a request times out a
COMM FAILURE exception is raised.

Note: the iiop timeout configuration parameter (TimeVal) may only range between 0
and 1000000 seconds. Otherwise, the default value is used.

Note: IC supply the compile option ic:gen(IdlFile,
[ftimeout,"module::interface"g]), which allow the user to add an extra timeout
parameter, e.g., module interface(ObjRef, Timeout, ... Arguments ...),
instead of module interface(ObjRef, ... Arguments ...). If, a stub is compiled
with the timeout option, the extra Timeout argument will override the configuration

112 Orber Application

Orber Reference Manual orber (Module)

parameter iiop timeout. It is, however, not possible to use infinity to override the
Timeout parameter. The Timeout option is also valid for objects which resides within
the same Orber domain.

iiop connection timeout() -> int() (milliseconds)

This function returns the timeout value after which outgoing IIOP connections
terminate. It can be configured by setting the application variable
iiop connection timeout TimeVal (seconds), if it is not set it will have the default value
infinity. The connection will not be terminated if there are pending requests.

Note: the iiop connection timeout configuration parameter (TimeVal) may only range
between 0 and 1000000 seconds. Otherwise, the default value is used.

secure() -> no | ssl

This function returns the security mode Orber is running in, which is either no if it is an
insecure domain or the type of security mechanism used. For the moment the only
security mechanism is ssl. This is configured by setting the application variable secure.

ssl server certfile() -> string()

This function returns a path to a file containing a chain of PEM encoded certificates for
the Orber domain as server. This is configured by setting the application variable
ssl server certfile.

ssl client certfile() -> string()

This function returns a path to a file containing a chain of PEM encoded certificates
used in outgoing calls in the current process. The default value is configured by setting
the application variable ssl client certfile.

set ssl client certfile(Path) -> ok

Types:

� Path = string()

This function takes a path to a file containing a chain of PEM encoded certificates as
parameter and sets it for the current process.

ssl server verify() -> 0 | 1 | 2

This function returns the type of verification used by SSL during authentication of the
other peer for incoming calls. It is configured by setting the application variable
ssl server verify.

ssl client verify() -> 0 | 1 | 2

This function returns the type of verification used by SSL during authentication of the
other peer for outgoing calls. The default value is configured by setting the application
variable ssl client verify.

set ssl client verify(Value) -> ok

Types:

� Value = 0 | 1 | 2

113Orber Application

orber (Module) Orber Reference Manual

This function sets the SSL verification type for the other peer of outgoing calls.

ssl server depth() -> int()

This function returns the SSL verification depth for incoming calls. It is configured by
setting the application variable ssl server depth.

ssl client depth() -> int()

This function returns the SSL verification depth for outgoing calls. The default value is
configured by setting the application variable ssl client depth.

set ssl client depth(Depth) -> ok

Types:

� Depth = int()

This function sets the SSL verification depth for the other peer of outgoing calls.

objectkeys gc time() -> int() (seconds)

This function returns the timeout value after which after which terminated object keys,
related to servers started with the configuration parameter fpersistent, trueg, will
be removed. It can be configured by setting the application variable objectkeys gc time
TimeVal (seconds), if it is not set it will have the default value infinity.

Objects terminating with reason normal or shutdown are removed automatically.

Note: the objectkeys gc time configuration parameter (TimeVal) may only range
between 0 and 1000000 seconds. Otherwise, the default value is used.

bootstrap port() -> int()

This function returns the port-number, which is used by the CORBA bootstrapping
protocol. This protocol is used to fetch an initial reference from another ORB. It can be
configured by setting the application variable bootstrap port, if it is not set it will use the
iiop port.

Note: In the future it will use the port number which is set in the standard (the
suggestion is 900). Because the standard is not ready in this area we in the meantime
uses a port number, which do not require root permissions in Unix.

orber nodes() -> RetVal

Types:

� RetVal = [node()]

This function returns the list of node names that this orber domain consists of.

install(NodeList) -> ok

install(NodeList, Options) -> ok

Types:

� NodeList = [node()]
� Options = [Option]
� Option = finstall timeout, Timeoutg | fifr storage type, TableTypeg

114 Orber Application

Orber Reference Manual orber (Module)

� Timeout = infinity | integer()
� TableType = disc copies | ram copies

This function installs all the necessary mnesia tables and load default data in some of
them. If one or more Orber tables already exists the installation fails. The function
uninstall may be used, if it is safe, i.e., no other application is running Orber.

Preconditions:

� a mnesia schema must exist before the installation

� mnesia is running on the other nodes if the new installation shall be a multi node
domain

Mnesia will be started by the function if it is not already running on the installation
node and if it was started it will be stopped afterwards.

The options that can be sent to the installation program is:

� finstall timeout, Timeoutg - this timeout is how long we will wait for the
tables to be created. The Timeout value can be infinity or an integer number in
milliseconds. Default is infinity.

� fifr storage type, TableTypeg - this option sets the type of tables used for the
interface repository. The TableType can be disc copies or ram copies. Default is
disc copies. (All other tables in Orber are ram copies).

uninstall() -> ok

This function stops the Orber application, terminates all server objects and removes all
Orber related mnesia tables.

Note: Since other applications may be running on the same node using mnesia uninstall
will not stop the mnesia application.

add node(Node, StorageType) -> RetVal

Types:

� Node = node()
� StorageType = disc copies | ram copies
� RetVal = ok | exit()

This function add given node to a existing Orber node group and starts Orber on the
new node. orber:add node is called from a member in the Orber node group.

Preconditions for new node:

� Erlang started on the new node using the option -mnesia extra db nodes, e.g.,
erl -sname new node name -mnesia extra db nodes ConnectToNodes List

� Mnesia is running on the new node (no new schema created).

� If the new node will use disc copies the schema type must be changed using:
mnesia:change table copy type(schema, node(), disc copies)

Orber will be started by the function on the new node.

Fails if:

� Orber already installed on given node

115Orber Application

orber (Module) Orber Reference Manual

� Mnesia not started as described above on the new node

� Impossible to copy data in Mnesia tables to the new node

� Not able to start Orber on the new node.

The function do not remove already copied tables after a failure. Use
orber:remove node to remove these tables.

remove node(Node) -> RetVal

Types:

� Node = node()
� RetVal = ok | exit()

This function removes given node from a Orber node group. The Mnesia application is
not stopped.

116 Orber Application

Orber Reference Manual orber ifr (Module)

orber ifr (Module)

This module contains functions for managing the Interface Repository (IFR). This
documentation should be used in conjunction with the documentation in chapter 6 of
CORBA 2.0. Whenever the term IFR object is used in this manual page, it refers to a
pseudo object used only for interaction with the IFR rather than a CORBA object.

Initialisation of the IFR

The following functions are used to initialise the Interface Repository and to obtain the
initial reference to the repository.

Exports

init(Nodes,Timeout) -> ok

Types:

� Nodes = list()
� Timeout = integer() | infinity

This function should be called to initialise the IFR. It creates the necessary
mnesia-tables. A mnesia schema should exist, and mnesia must be running.

find repository() -> #IFR Repository objref

Find the IFR object reference for the Repository. This reference should be used when
adding objects to the IFR, and when extracting information from the IFR. The first time
this function is called, it will create the repository and all the primitive definitions.

General methods

The following functions are the methods of the IFR. The first argument is always an
#IFR objref, i.e. the IFR (pseudo)object on which to apply this method. These
functions are useful when the type of IFR object is not know, but they are somewhat
slower than the specific functions listed below which only accept a particular type of
IFR object as the first argument.

117Orber Application

orber ifr (Module) Orber Reference Manual

Exports

get def kind(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = atom() (one of dk none, dk all, dk Attribute, dk Constant, dk Exception,

dk Interface, dk Module, dk Operation, dk Typedef, dk Alias, dk Struct, dk Union,
dk Enum, dk Primitive, dk String, dk Sequence, dk Array, dk Repository)

Objref is an IFR object of any kind. Returns the definition kind of the IFR object.

destroy(Objref) -> Return

Types:

� Objref = #IFR object
� Return = tuple()

Objref is an IFR object of any kind except IRObject, Contained and Container. Destroys
that object and its contents (if any). Returns whatever mnesia:transaction returns.

get id(Objref) -> Return

Types:

� Objref = #IFR object
� Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the repository
id of that object.

set id(Objref,Id) -> ok

Types:

� Objref = #IFR object
� Id = string()

Objref is an IFR object of any kind that inherits from Contained. Sets the repository id
of that object.

get name(Objref) -> Return

Types:

� Objref = #IFR object
� Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the name of
that object.

set name(Objref,Name) -> ok

Types:

� Objref = #IFR object
� Name = string()

118 Orber Application

Orber Reference Manual orber ifr (Module)

Objref is an IFR object of any kind that inherits from Contained. Sets the name of that
object.

get version(Objref) -> Return

Types:

� Objref = #IFR object
� Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the version of
that object.

set version(Objref,Version) -> ok

Types:

� Objref = #IFR object
� Version = string()

Objref is an IFR object of any kind that inherits from Contained. Sets the version of
that object.

get defined in(Objref) -> Return

Types:

� Objref = #IFR object
� Return = #IFR Container objref

Objref is an IFR object of any kind that inherits from Contained. Returns the Container
object that the object is defined in.

get absolute name(Objref) -> Return

Types:

� Objref = #IFR object
� Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the absolute
(scoped) name of that object.

get containing repository(Objref) -> Return

Types:

� Objref = #IFR object
� Return = #IFR Repository objref

Objref is an IFR object of any kind that inherits from Contained. Returns the Repository
that is eventually reached by recursively following the object’s defined in attribute.

describe(Objref) -> Return

Types:

� Objref = #IFR object
� Return = tuple() (a contained description record) | fexception, g

119Orber Application

orber ifr (Module) Orber Reference Manual

Objref is an IFR object of any kind that inherits from Contained. Returns a tuple
describing the object.

move(Objref,New container,New name,New version) -> Return

Types:

� Objref = #IFR objref
� New container = #IFR Container objref
� New name = string()
� New version = string()
� Return = ok | fexception, g

Objref is an IFR object of any kind that inherits from Contained. New container is an
IFR object of any kind that inherits from Container. Removes Objref from its current
Container, and adds it to New container. The name attribute is changed to New name
and the version attribute is changed to New version.

lookup(Objref,Search name) -> Return

Types:

� Objref = #IFR objref
� Search name = string()
� Return = #IFR object

Objref is an IFR object of any kind that inherits from Container. Returns an IFR object
identified by search name (a scoped name).

contents(Objref,Limit type,Exclude inherited) -> Return

Types:

� Objref = #IFR objref
� Limit type = atom() (one of dk none, dk all, dk Attribute, dk Constant,

dk Exception, dk Interface, dk Module, dk Operation, dk Typedef, dk Alias,
dk Struct, dk Union, dk Enum, dk Primitive, dk String, dk Sequence, dk Array,
dk Repository)

� Exclude inherited = atom() (true or false)
� Return = list() (a list of IFR# objects)

Objref is an IFR object of any kind that inherits from Container. Returns the contents
of that IFR object.

lookup name(Objref,Search name,Levels to search, Limit type, Exclude inherited) ->
Return

Types:

� Objref = #IFR objref
� Search name = string()
� Levels to search = integer()
� Limit type = atom() (one of dk none, dk all, dk Attribute, dk Constant,

dk Exception, dk Interface, dk Module, dk Operation, dk Typedef, dk Alias,
dk Struct, dk Union, dk Enum, dk Primitive, dk String, dk Sequence, dk Array,
dk Repository)

� Exclude inherited = atom() (true or false)

120 Orber Application

Orber Reference Manual orber ifr (Module)

� Return = list() (a list of #IFR objects)

Objref is an IFR object of any kind that inherits from Container. Returns a list of
#IFR objects with an id matching Search name.

describe contents(Objref,Limit type,Exclude inherited,Max returned objs) -> Return

Types:

� Objref = #IFR objref
� Limit type = atom() (one of dk none, dk all, dk Attribute, dk Constant,

dk Exception, dk Interface, dk Module, dk Operation, dk Typedef, dk Alias,
dk Struct, dk Union, dk Enum, dk Primitive, dk String, dk Sequence, dk Array,
dk Repository)

� Exclude inherited = atom() (true or false)
� Return = list() (a list of tuples (contained description records) | fexception, g

Objref is an IFR object of any kind that inherits from Container. Returns a list of
descriptions of the IFR objects in this Container’s contents.

create module(Objref,Id,Name,Version) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Return = #IFR ModuleDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type ModuleDef.

create constant(Objref,Id,Name,Version,Type,Value) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Type = #IFR IDLType objref
� Value = any()
� Return = #IFR ConstantDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type ConstantDef.

create struct(Objref,Id,Name,Version,Members) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Members = list() (list of structmember records)

121Orber Application

orber ifr (Module) Orber Reference Manual

� Return = #IFR StructDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type StructDef.

create union(Objref,Id,Name,Version,Discriminator type,Members) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Discriminator type = #IFR IDLType Objref
� Members = list() (list of unionmember records)
� Return = #IFR UnionDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type UnionDef.

create enum(Objref,Id,Name,Version,Members) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Members = list() (list of strings)
� Return = #IFR EnumDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type EnumDef.

create alias(Objref,Id,Name,Version,Original type) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Original type = #IFR IDLType Objref
� Return = #IFR AliasDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type AliasDef.

create interface(Objref,Id,Name,Version,Base interfaces) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()

122 Orber Application

Orber Reference Manual orber ifr (Module)

� Base interfaces = list() (a list of IFR InterfaceDef objrefs that this interface inherits
from

� Return = #IFR InterfaceDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type InterfaceDef.

create exception(Objref,Id,Name,Version,Members) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Members = list() (list of structmember records)
� Return = #IFR ExceptionDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type ExceptionDef.

get type(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = tuple() (a typecode tuple)

Objref is an IFR object of any kind that inherits from IDLType or an IFR object of the
kind ConstantDef, ExceptionDef or AttributeDef. Returns the typecode of the IFR
object.

lookup id(Objref,Search id) -> Return

Types:

� Objref = #IFR Repository objref
� Search id = string()
� Return = #IFR objref

Returns an IFR object matching the Search id.

get primitive(Objref,Kind) -> Return

Types:

� Objref = #IFR Repository objref
� Kind = atom() (one of pk null, pk void, pk short, pk long, pk ushort, pk ulong,

pk float, pk double, pk boolean, pk char, pk octet, pk any, pk TypeCode,
pk Principal, pk string, pk objref)

� Return = #IFR PrimitiveDef objref

Returns a PrimitiveDef of the specified kind.

create string(Objref,Bound) -> Return

Types:

� Objref = #IFR Repository objref

123Orber Application

orber ifr (Module) Orber Reference Manual

� Bound = integer() (unsigned long /= 0)
� Return = #IFR StringDef objref

Creates an IFR objref of the type StringDef.

create sequence(Objref,Bound,Element type) -> Return

Types:

� Objref = #IFR Repository objref
� Bound = integer() (unsigned long)
� Element type = #IFR IDLType objref
� Return = #IFR SequenceDef objref

Creates an IFR objref of the type SequenceDef.

create array(Objref,Length,Element type) -> Return

Types:

� Objref = #IFR Repository objref
� Bound = integer() (unsigned long)
� Element type = #IFR IDLType objref
� Return = #IFR ArrayDef objref

Creates an IFR objref of the type ArrayDef.

create idltype(Objref,Typecode) -> Return

Types:

� Objref = #IFR Repository objref
� Typecode = tuple() (a typecode tuple)
� Return = #IFR IDLType objref

Creates an IFR objref of the type IDLType.

get type def(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = #IFR IDLType objref

Objref is an IFR object of the kind ConstantDef or AttributeDef. Returns an IFR object
of the type IDLType describing the type of the IFR object.

set type def(Objref,TypeDef) -> Return

Types:

� Objref = #IFR objref
� TypeDef = #IFR IDLType objref
� Return = ok | fexception, g

Objref is an IFR object of the kind ConstantDef or AttributeDef. Sets the type def of
the IFR Object.

get value(Objref) -> Return

124 Orber Application

Orber Reference Manual orber ifr (Module)

Types:

� Objref = #IFR ConstantDef objref
� Return = any()

Returns the value attribute of an IFR Object of the type ConstantDef.

set value(Objref,Value) -> Return

Types:

� Objref = #IFR ConstantDef objref
� Value = any()
� Return = ok | fexception, g

Sets the value attribute of an IFR Object of the type ConstantDef.

get members(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = list()

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For
StructDef, UnionDef and ExceptionDef: Returns a list of structmember records that
are the constituent parts of the object. For EnumDef: Returns a list of strings describing
the enumerations.

set members(Objref,Members) -> Return

Types:

� Objref = #IFR objref
� Members = list()
� Return = ok | fexception, g

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For
StructDef, UnionDef and ExceptionDef: Members is a list of structmember records.
For EnumDef: Members is a list of strings describing the enumerations. Sets the
members attribute, which are the constituent parts of the exception.

get discriminator type(Objref) -> Return

Types:

� Objref = #IFR UnionDef objref
� Return = tuple() (a typecode tuple)

Returns the discriminator typecode of an IFR object of the type UnionDef.

get discriminator type def(Objref) -> Return

Types:

� Objref = #IFR UnionDef objref
� Return = #IFR IDLType objref

Returns an IFR object of the type IDLType describing the discriminator type of an IFR
object of the type UnionDef.

125Orber Application

orber ifr (Module) Orber Reference Manual

set discriminator type def(Objref,TypeDef) -> Return

Types:

� Objref = #IFR UnionDef objref
� Return = #IFR IDLType objref

Sets the attribute discriminator type def, an IFR object of the type IDLType describing
the discriminator type of an IFR object of the type UnionDef.

get original type def(Objref) -> Return

Types:

� Objref = #IFR AliasDef objref
� Return = #IFR IDLType objref

Returns an IFR object of the type IDLType describing the original type.

set original type def(Objref,TypeDef) -> Return

Types:

� Objref = #IFR AliasDef objref
� Typedef = #IFR IDLType objref
� Return = ok | fexception, g

Sets the original type def attribute which describes the original type.

get kind(Objref) -> Return

Types:

� Objref = #IFR PrimitiveDef objref
� Return = atom()

Returns an atom describing the primitive type (See CORBA 2.0 p 6-21).

get bound(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = integer (unsigned long)

Objref is an IFR object the kind StringDef or SequenceDef. For StringDef: returns the
maximum number of characters in the string. For SequenceDef: Returns the maximum
number of elements in the sequence. Zero indicates an unbounded sequence.

set bound(Objref,Bound) -> Return

Types:

� Objref = #IFR objref
� Bound = integer (unsigned long)
� Return = ok | fexception, g

Objref is an IFR object the kind StringDef or SequenceDef. For StringDef: Sets the
maximum number of characters in the string. Bound must not be zero. For
SequenceDef: Sets the maximum number of elements in the sequence. Zero indicates
an unbounded sequence.

126 Orber Application

Orber Reference Manual orber ifr (Module)

get element type(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = tuple() (a typecode tuple)

Objref is an IFR object the kind SequenceDef or ArrayDef. Returns the typecode of the
elements in the IFR object.

get element type def(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = #IFR IDLType objref

Objref is an IFR object the kind SequenceDef or ArrayDef. Returns an IFR object of the
type IDLType describing the type of the elements in Objref.

set element type def(Objref,TypeDef) -> Return

Types:

� Objref = #IFR objref
� TypeDef = #IFR IDLType objref
� Return = ok | fexception, g

Objref is an IFR object the kind SequenceDef or ArrayDef. Sets the element type def
attribute, an IFR object of the type IDLType describing the type of the elements in
Objref.

get length(Objref) -> Return

Types:

� Objref = #IFR ArrayDef objref
� Return = integer() (unsigned long)

Returns the number of elements in the array.

set length(Objref,Length) -> Return

Types:

� Objref = #IFR ArrayDef objref
� Length = integer() (unsigned long)

Sets the number of elements in the array.

get mode(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = atom()

Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef:
Return is an atom (’ATTR NORMAL’ or ’ATTR READONLY’) specifying the
read/write access for this attribute. For OperationDef: Return is an atom
(’OP NORMAL’ or ’OP ONEWAY’) specifying the mode of the operation.

127Orber Application

orber ifr (Module) Orber Reference Manual

set mode(Objref,Mode) -> Return

Types:

� Objref = #IFR objref
� Mode = atom()
� Return = ok | fexception, g

Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef: Sets
the read/write access for this attribute. Mode is an atom (’ATTR NORMAL’ or
’ATTR READONLY’). For OperationDef: Sets the mode of the operation. Mode is an
atom (’OP NORMAL’ or ’OP ONEWAY’).

get result(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = tuple() (a typecode tuple)

Returns a typecode describing the type of the value returned by the operation.

get result def(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = #IFR IDLType objref

Returns an IFR object of the type IDLType describing the type of the result.

set result def(Objref,ResultDef) -> Return

Types:

� Objref = #IFR OperationDef objref
� ResultDef = #IFR IDLType objref
� Return = ok | fexception, g

Sets the type def attribute, an IFR Object of the type IDLType describing the result.

get params(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = list() (list of parameter description records)

Returns a list of parameter description records, which describes the parameters of the
OperationDef.

set params(Objref,Params) -> Return

Types:

� Objref = #IFR OperationDef objref
� Params = list() (list of parameterdescription records)
� Return = ok | fexception, g

Sets the params attribute, a list of parameterdescription records.

128 Orber Application

Orber Reference Manual orber ifr (Module)

get contexts(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = list() (list of strings)

Returns a list of context identifiers for the operation.

set contexts(Objref,Contexts) -> Return

Types:

� Objref = #IFR OperationDef objref
� Contexts = list() (list of strings)
� Return = ok | fexception, g

Set the context attribute for the operation.

get exceptions(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = list() (list of #IFR ExceptionDef objrefs)

Returns a list of exception types that can be raised by this operation.

set exceptions(Objref,Exceptions) -> Return

Types:

� Objref = #IFR OperationDef objref
� Exceptions = list() (list of #IFR ExceptionDef objrefs)
� Return = ok | fexception, g

Sets the exceptions attribute for this operation.

get base interfaces(Objref) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� Return = list() (list of #IFR InterfaceDef objrefs)

Returns a list of InterfaceDefs from which this InterfaceDef inherits.

set base interfaces(Objref,BaseInterfaces) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� BaseInterfaces = list() (list of #IFR InterfaceDef objrefs)
� Return = ok | fexception, g

Sets the BaseInterfaces attribute.

is a(Objref,Interface id) -> Return

Types:

� Objref = #IFR InterfaceDef objref

129Orber Application

orber ifr (Module) Orber Reference Manual

� Interface id = #IFR InterfaceDef objref
� Return = atom() (true or false)

Returns true if the InterfaceDef either is identical to or inherits from Interface id.

describe interface(Objref) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� Return = tuple() (a fullinterfacedescription record)

Returns a full inter face description record describing the InterfaceDef.

create attribute(Objref,Id,Name,Version,Type,Mode) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� Id = string()
� Name = string()
� Version = string()
� Type = #IFR IDLType objref
� Mode = atom() (’ATTR NORMAL’ or ’ATTR READONLY’)
� Return = #IFR AttributeDef objref

Creates an IFR object of the type AttributeDef contained in this InterfaceDef.

create operation(Objref,Id,Name,Version,Result,Mode,Params, Exceptions,Contexts) ->
Return

Types:

� Objref = #IFR InterfaceDef objref
� Id = string()
� Name = string()
� Version = string()
� Result = #IFR IDLType objref
� Mode = atom() (’OP NORMAL’ or ’OP ONEWAY’)
� Params = list() (list of parameterdescription records)
� Exceptions = list() (list of #IFR ExceptionDef objrefs)
� Contexts = list() (list of strings)
� Return = #IFR OperationDef objref

Creates an IFR object of the type OperationDef contained in this InterfaceDef.

130 Orber Application

Orber Reference Manual orber tc (Module)

orber tc (Module)

This module contains some functions that gives support in creating IDL typecodes that
can be used in for example the any types typecode field. For the simple types it is
meaningless to use this API but the functions exist to get the interface complete.

The type TC used below describes an IDL type and is a tuple according to the to the
Erlang language mapping.

Exports

null() -> TC

void() -> TC

short() -> TC

unsigned short() -> TC

long() -> TC

unsigned long() -> TC

float() -> TC

double() -> TC

boolean() -> TC

char() -> TC

octet() -> TC

any() -> TC

typecode() -> TC

principal() -> TC

These functions return the IDL typecodes for simple types.

object reference(Id, Name) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the object

Function returns the IDL typecode for object reference.

struct(Id, Name, ElementList) -> TC

Types:

131Orber Application

orber tc (Module) Orber Reference Manual

� Id = string()
the repository ID

� Name = string()
the type name of the struct

� ElementList = [fMemberName, TCg]
a list of the struct elements

� MemberName = string()
the element name

Function returns the IDL typecode for struct.

union(Id, Name, DiscrTC, Default, ElementList) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the union

� DiscrTC = TC
the typecode for the unions discriminant

� Default = integer()
a value that indicates which tuple in the element list that is default (value < 0 means
no default)

� ElementList = [fLabel, MemberName, TCg]
a list of the union elements

� Label = term()
the label value should be of the DiscrTC type

� MemberName = string()
the element name

Function returns the IDL typecode for union.

enum(Id, Name, ElementList) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the enum

� ElementList = [MemberName]
a list of the enums elements

� MemberName = string()
the element name

Function returns the IDL typecode for enum.

string(Length) -> TC

Types:

� Length = integer()
the length of the string (0 means unbounded)

Function returns the IDL typecode for string.

132 Orber Application

Orber Reference Manual orber tc (Module)

sequence(ElemTC, Length) -> TC

Types:

� ElemTC = TC
the typecode for the sequence elements

� Length = integer()
the length of the sequence (0 means unbounded)

Function returns the IDL typecode for sequence.

array(ElemTC, Length) -> TC

Types:

� ElemTC = TC
the typecode for the array elements

� Length = integer()
the length of the array

Function returns the IDL typecode for array.

alias(Id, Name, AliasTC) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the alias

� AliasTC = TC
the typecode for the type which the alias refer to

Function returns the IDL typecode for alias.

exception(Id, Name, ElementList) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the exception

� ElementList = [fMemberName, TCg]
a list of the exception elements

� MemberName = string()
the element name

Function returns the IDL typecode for exception.

get tc(Object) -> TC

get tc(Id) -> TC

Types:

� Object = record()
an IDL specified struct, union or exception

� Id = string()
the repository ID

133Orber Application

If the get tc/1 gets a record that is and IDL specified struct, union or exception as a
parameter it returns the typecode.

If the parameter is a repository ID it uses the Interface Repository to get the typecode.

check(TC) -> boolean()

Function checks the syntax of an IDL typecode.

134 Orber Application

List of Figures

Chapter 1: Orber User’s Guide
1.1 Figure 1: Orber Dependencies and Structure. 5

1.2 Figure 2: ORB interface between Java and Erlang Environment Nodes. 6

1.3 Figure 1: How the Object Request Broker works. 8

1.4 Figure 2: IIOP communication between domains and objects. 9

1.5 Figure 1: Contextual object relationships using the Naming Service. 26

135Orber Application

List of Figures

136 Orber Application

List of Tables

Chapter 1: Orber User’s Guide
1.1 OMG IDL basic types . 16

1.2 OMG IDL constructed types . 17

1.3 Typical values . 17

1.4 Type Code tuples . 21

1.5 Table 1: Stringified Name represenation . 30

137Orber Application

List of Tables

138 Orber Application

Glossary

BindingIterator

The binding iterator (Like a book mark) indicates which objects have been read from the list.
Local for chapter 1.

CORBA

A specification of an architecture for a distributed object system

CORBA

A specification of an architecture for a distributed object system

CORBA

Common Object Request Broker Architecture is a common communication standard developed by the
OMG (Object Management Group)
Local for chapter 1.

CORBA

Common Object Request Broker Architecture is a common communication standard developed by the
OMG (Object Management Group)
Local for chapter 1.

domains

A domain allows a more efficient communication protocol to be used between objects not on the same
node without the need of an ORB
Local for chapter 1.

139Orber Application

Glossary

IDL

Interface Definition Language - IDL is the OMG specified interface definition language, used to define
the CORBA object interfaces.
Local for chapter 1.

IIOP

Internet-Inter ORB Protocol
Local for chapter 1.

IOR

Interoperable Object Reference
Local for chapter 1.

ORB

Object Request Broker - ORB open software bus architecture specified by the OMG which allows
object components to communicate in a heterogeneous environment.
Local for chapter 1.

Orber domain

A domain containing several Erlang nodes, which are communicating by using the Erlang internal
format. An Orber domain looks as one ORB from the environment.
Local for chapter 1.

Orber installation

is the structure of the ORB or ORBs as defined during the install process is called the ”installation”.
Local for chapter 1.

Type Code

Type Code is a full definition of a type
Local for chapter 1.

140 Orber Application

Glossary

Type Codes

Type codes give a complete description of the type including all its components and structure.
Local for chapter 1.

141Orber Application

Glossary

142 Orber Application

Index

Modules are typed in this way.
Functions are typed in this way.

add_node/2
orber , 115

alias/3
orber tc , 133

any
create/0, 99
create/2, 99
get_typecode/1, 99
get_value/1, 100
set_typecode/2, 99
set_value/2, 100

any/0
orber tc , 131

array/2
orber tc , 133

bind/3
CosNaming NamingContext , 89

bind_context/3
CosNaming NamingContext , 89

bind_new_context/2
CosNaming NamingContext , 90

boolean/0
orber tc , 131

bootstrap_port/0
orber , 114

char/0
orber tc , 131

check/1
orber tc , 134

contents/3
orber ifr , 120

corba
create/2, 101

create/3, 101
create/4, 101
create_link/2, 101
create_link/3, 101
create_link/4, 101
create_subobject_key/2, 102
dispose/1, 102
get_pid/1, 103
get_subobject_key/1, 102
list_initial_services/0, 103
list_initial_services_remote/1, 103
object_to_string/1, 104
raise/1, 103
resolve_initial_references/1, 103
resolve_initial_references_remote/2,

103
string_to_object/1, 104

corba object
get_interface/1, 105
hash/2, 106
is_a/2, 105
is_equivalent/2, 106
is_nil/1, 105
is_remote/1, 105
non_existent/1, 106
not_existent/1, 106

CosNaming BindingIterator
destroy/1, 86
next_n/2, 86
next_one/1, 86

CosNaming NamingContext
bind/3, 89
bind_context/3, 89
bind_new_context/2, 90
destroy/1, 90
list/2, 90
new_context/1, 90
rebind/3, 89
rebind_context/3, 89

143Orber Application

Index

resolve/2, 89
unbind/2, 90

CosNaming NamingContextExt
resolve_str/2, 91
to_name/2, 91
to_string/2, 91
to_url/3, 91

create/0
any , 99
lname , 107
lname component , 109

create/2
any , 99
corba , 101

create/3
corba , 101

create/4
corba , 101

create_alias/5
orber ifr , 122

create_array/3
orber ifr , 124

create_attribute/6
orber ifr , 130

create_constant/6
orber ifr , 121

create_enum/5
orber ifr , 122

create_exception/5
orber ifr , 123

create_idltype/2
orber ifr , 124

create_interface/5
orber ifr , 122

create_link/2
corba , 101

create_link/3
corba , 101

create_link/4
corba , 101

create_module/4
orber ifr , 121

create_operation/9
orber ifr , 130

create_sequence/3
orber ifr , 124

create_string/2
orber ifr , 123

create_struct/5
orber ifr , 121

create_subobject_key/2
corba , 102

create_union/6
orber ifr , 122

delete_component/2
lname , 108

describe/1
orber ifr , 119

describe_contents/4
orber ifr , 121

describe_interface/1
orber ifr , 130

destroy/1
CosNaming BindingIterator , 86
CosNaming NamingContext , 90
orber ifr , 118

dispose/1
corba , 102

domain/0
orber , 112

double/0
orber tc , 131

enum/3
orber tc , 132

equal/2
lname , 108

exception/3
orber tc , 133

find_repository/0
orber ifr , 117

float/0
orber tc , 131

from_idl_form/1
lname , 108

get_absolute_name/1

144 Orber Application

Index

orber ifr , 119

get_base_interfaces/1
orber ifr , 129

get_bound/1
orber ifr , 126

get_component/2
lname , 107

get_containing_repository/1
orber ifr , 119

get_contexts/1
orber ifr , 129

get_def_kind/1
orber ifr , 118

get_defined_in/1
orber ifr , 119

get_discriminator_type/1
orber ifr , 125

get_discriminator_type_def/1
orber ifr , 125

get_element_type/1
orber ifr , 127

get_element_type_def/1
orber ifr , 127

get_exceptions/1
orber ifr , 129

get_id/1
lname component , 109
orber ifr , 118

get_interface/1
corba object , 105

get_kind/1
lname component , 109
orber ifr , 126

get_length/1
orber ifr , 127

get_lightweight_nodes/0
orber , 112

get_members/1
orber ifr , 125

get_mode/1
orber ifr , 127

get_name/1
orber ifr , 118

get_ORBDefaultInitRef/0
orber , 112

get_ORBInitRef/0
orber , 112

get_original_type_def/1
orber ifr , 126

get_params/1
orber ifr , 128

get_pid/1
corba , 103

get_primitive/2
orber ifr , 123

get_result/1
orber ifr , 128

get_result_def/1
orber ifr , 128

get_subobject_key/1
corba , 102

get_tc/1
orber tc , 133

get_type/1
orber ifr , 123

get_type_def/1
orber ifr , 124

get_typecode/1
any , 99

get_value/1
any , 100
orber ifr , 124

get_version/1
orber ifr , 119

hash/2
corba object , 106

iiop_connection_timeout/0
orber , 113

iiop_port/0
orber , 112

iiop_ssl_port/0
orber , 112

iiop_timeout/0
orber , 112

init/2

145Orber Application

Index

orber ifr , 117

insert_component/3
lname , 107

install/1
orber , 114

install/2
orber , 114

is_a/2
corba object , 105
orber ifr , 129

is_equivalent/2
corba object , 106

is_lightweight/0
orber , 112

is_nil/1
corba object , 105

is_remote/1
corba object , 105

less_than/2
lname , 108

list/2
CosNaming NamingContext , 90

list_initial_services/0
corba , 103

list_initial_services_remote/1
corba , 103

lname
create/0, 107
delete_component/2, 108
equal/2, 108
from_idl_form/1, 108
get_component/2, 107
insert_component/3, 107
less_than/2, 108
num_components/1, 108
to_idl_form/1, 108

lname component
create/0, 109
get_id/1, 109
get_kind/1, 109
set_id/2, 109
set_kind/2, 110

long/0
orber tc , 131

lookup/2

orber ifr , 120

lookup_id/2
orber ifr , 123

lookup_name/5
orber ifr , 120

Module Interface
Module_Interface:own_functions/4, 95
Module_Interface:own_functions/5, 95
Module_Interface_impl:code_change/3,

96
Module_Interface_impl:handle_info/2,

96
Module_Interface_impl:init/1, 96
Module_Interface_impl:own_functions/4,

97, 98
Module_Interface_impl:own_functions/5,

97
Module_Interface_impl:terminate/2,

96
oe_create/0, 94
oe_create/1, 94
oe_create/2, 94
oe_create_link/0, 94
oe_create_link/1, 94
oe_create_link/2, 95
typeID/0, 94

Module_Interface:own_functions/4
Module Interface , 95

Module_Interface:own_functions/5
Module Interface , 95

Module_Interface_impl:code_change/3
Module Interface , 96

Module_Interface_impl:handle_info/2
Module Interface , 96

Module_Interface_impl:init/1
Module Interface , 96

Module_Interface_impl:own_functions/4
Module Interface , 97, 98

Module_Interface_impl:own_functions/5
Module Interface , 97

Module_Interface_impl:terminate/2
Module Interface , 96

move/4
orber ifr , 120

new_context/1

146 Orber Application

Index

CosNaming NamingContext , 90

next_n/2
CosNaming BindingIterator , 86

next_one/1
CosNaming BindingIterator , 86

non_existent/1
corba object , 106

not_existent/1
corba object , 106

null/0
orber tc , 131

num_components/1
lname , 108

object_reference/2
orber tc , 131

object_to_string/1
corba , 104

objectkeys_gc_time/0
orber , 114

octet/0
orber tc , 131

oe_create/0
Module Interface , 94

oe_create/1
Module Interface , 94

oe_create/2
Module Interface , 94

oe_create_link/0
Module Interface , 94

oe_create_link/1
Module Interface , 94

oe_create_link/2
Module Interface , 95

orber
add_node/2, 115
bootstrap_port/0, 114
domain/0, 112
get_lightweight_nodes/0, 112
get_ORBDefaultInitRef/0, 112
get_ORBInitRef/0, 112
iiop_connection_timeout/0, 113
iiop_port/0, 112
iiop_ssl_port/0, 112
iiop_timeout/0, 112

install/1, 114
install/2, 114
is_lightweight/0, 112
objectkeys_gc_time/0, 114
orber_nodes/0, 114
remove_node/1, 116
secure/0, 113
set_ssl_client_certfile/1, 113
set_ssl_client_depth/1, 114
set_ssl_client_verify/1, 113
ssl_client_certfile/0, 113
ssl_client_depth/0, 114
ssl_client_verify/0, 113
ssl_server_certfile/0, 113
ssl_server_depth/0, 114
ssl_server_verify/0, 113
start/0, 111
start_lightweight/0, 111
start_lightweight/1, 111
stop/0, 111
uninstall/0, 115

orber ifr
contents/3, 120
create_alias/5, 122
create_array/3, 124
create_attribute/6, 130
create_constant/6, 121
create_enum/5, 122
create_exception/5, 123
create_idltype/2, 124
create_interface/5, 122
create_module/4, 121
create_operation/9, 130
create_sequence/3, 124
create_string/2, 123
create_struct/5, 121
create_union/6, 122
describe/1, 119
describe_contents/4, 121
describe_interface/1, 130
destroy/1, 118
find_repository/0, 117
get_absolute_name/1, 119
get_base_interfaces/1, 129
get_bound/1, 126
get_containing_repository/1, 119
get_contexts/1, 129
get_def_kind/1, 118
get_defined_in/1, 119
get_discriminator_type/1, 125
get_discriminator_type_def/1, 125
get_element_type/1, 127

147Orber Application

Index

get_element_type_def/1, 127
get_exceptions/1, 129
get_id/1, 118
get_kind/1, 126
get_length/1, 127
get_members/1, 125
get_mode/1, 127
get_name/1, 118
get_original_type_def/1, 126
get_params/1, 128
get_primitive/2, 123
get_result/1, 128
get_result_def/1, 128
get_type/1, 123
get_type_def/1, 124
get_value/1, 124
get_version/1, 119
init/2, 117
is_a/2, 129
lookup/2, 120
lookup_id/2, 123
lookup_name/5, 120
move/4, 120
set_base_interfaces/2, 129
set_bound/2, 126
set_contexts/2, 129
set_discriminator_type_def/2, 126
set_element_type_def/2, 127
set_exceptions/2, 129
set_id/2, 118
set_length/2, 127
set_members/2, 125
set_mode/2, 128
set_name/2, 118
set_original_type_def/2, 126
set_params/2, 128
set_result_def/2, 128
set_type_def/2, 124
set_value/2, 125
set_version/2, 119

orber_nodes/0
orber , 114

orber tc
alias/3, 133
any/0, 131
array/2, 133
boolean/0, 131
char/0, 131
check/1, 134
double/0, 131
enum/3, 132
exception/3, 133

float/0, 131
get_tc/1, 133
long/0, 131
null/0, 131
object_reference/2, 131
octet/0, 131
principal/0, 131
sequence/2, 133
short/0, 131
string/1, 132
struct/3, 131
typecode/0, 131
union/5, 132
unsigned_long/0, 131
unsigned_short/0, 131
void/0, 131

principal/0
orber tc , 131

raise/1
corba , 103

rebind/3
CosNaming NamingContext , 89

rebind_context/3
CosNaming NamingContext , 89

remove_node/1
orber , 116

resolve/2
CosNaming NamingContext , 89

resolve_initial_references/1
corba , 103

resolve_initial_references_remote/2
corba , 103

resolve_str/2
CosNaming NamingContextExt , 91

secure/0
orber , 113

sequence/2
orber tc , 133

set_base_interfaces/2
orber ifr , 129

set_bound/2
orber ifr , 126

set_contexts/2
orber ifr , 129

148 Orber Application

Index

set_discriminator_type_def/2
orber ifr , 126

set_element_type_def/2
orber ifr , 127

set_exceptions/2
orber ifr , 129

set_id/2
lname component , 109
orber ifr , 118

set_kind/2
lname component , 110

set_length/2
orber ifr , 127

set_members/2
orber ifr , 125

set_mode/2
orber ifr , 128

set_name/2
orber ifr , 118

set_original_type_def/2
orber ifr , 126

set_params/2
orber ifr , 128

set_result_def/2
orber ifr , 128

set_ssl_client_certfile/1
orber , 113

set_ssl_client_depth/1
orber , 114

set_ssl_client_verify/1
orber , 113

set_type_def/2
orber ifr , 124

set_typecode/2
any , 99

set_value/2
any , 100
orber ifr , 125

set_version/2
orber ifr , 119

short/0
orber tc , 131

ssl_client_certfile/0

orber , 113

ssl_client_depth/0
orber , 114

ssl_client_verify/0
orber , 113

ssl_server_certfile/0
orber , 113

ssl_server_depth/0
orber , 114

ssl_server_verify/0
orber , 113

start/0
orber , 111

start_lightweight/0
orber , 111

start_lightweight/1
orber , 111

stop/0
orber , 111

string/1
orber tc , 132

string_to_object/1
corba , 104

struct/3
orber tc , 131

to_idl_form/1
lname , 108

to_name/2
CosNaming NamingContextExt , 91

to_string/2
CosNaming NamingContextExt , 91

to_url/3
CosNaming NamingContextExt , 91

typecode/0
orber tc , 131

typeID/0
Module Interface , 94

unbind/2
CosNaming NamingContext , 90

uninstall/0
orber , 115

149Orber Application

Index

union/5
orber tc , 132

unsigned_long/0
orber tc , 131

unsigned_short/0
orber tc , 131

void/0
orber tc , 131

150 Orber Application

