
Pman

version 2.4

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 Pman User’s Guide 1

1.1 Pman . 2

Introduction . 2

Getting Started with Pman . 2

The Main Window . 2

Trace Windows . 5

The Options Dialog . 7

2 Pman Reference Manual 9

2.1 pman (Module) . 10

List of Figures 13

iPman

ii Pman

Chapter 1

Pman User's Guide

The process manager Pman is a tool which allows software developers to inspect the state of an Erlang
system, as well as tracing events in the individual processes; either locally or on remote nodes.

1Pman

1.1 Pman

Introduction

The process manager Pman is a tool for viewing executing processes in a local or distributed Erlang
system. Its main purpose is to locate erroneous code by inspecting the state of the processes and by
tracing events. Bottlenecks, unread messages, and bad memory handling are some of the problems that
can be solved with Pman.

Processes may be inspected individually in a process trace window. There the user may dynamically
follow the execution of a process by getting trace output for sent and received messages as well as for
called functions and some other process events. Information about sorce code modules executed by the
processes is also accessible. Note that Pman has some effect on the real time behavior of a running
system.

Getting Started with Pman

Start Pman from the Toolbar, or by calling the start function from the shell as in the example below:

(foo@heering.du.etx.ericsson.se)2> pman:start().
<0.34.0>

If you wish to trace a specific process without viewing the process overview window, you can use the
pman:proc/1 function as in the example below:

(foo@heering.du.etx.ericsson.se)5> pman:proc(list to pid("<0.32.0>")).
<0.37.0>

pman:proc(Process) allows you to trace a specified process without having to go through the process
overview window and its menus. Process can be a process identifier or the name of a registered process.

The Main Window

When starting Pman, the Main window [page 2] is displayed.

2 Pman

1.1: Pman

Figure 1.1: The Main Window of Pman showing a process overview.

All currently running processes are displayed in the window. The following information is displayed for
each separate process:

� the process identifier (Pid)

� the current module, function and arity (Current Function)

� the name of the process, if it is a registered process (Name)

� the number of messages in the queue (Msgs)

� the number of reductions performed (Reds)

� the size of the process, in words, calculated by adding the stack size and the heap size.(Size).

The Main Window is automatically updated every 5 seconds. There is also a Refresh function for
manual updates.

In the figure illustrating the Main Window [page 2] the process <0.5.0> is highlighted, this process is
selected. Some commands on the View and the Trace menus operate on a specified process, and thus
requires that a process is selected. To select a process, click on it in the window. The arrow keys can be
used to change selection to the process above or below the currently selected.

At the bottom of the window the following functions and information can be found:

Hide System Processes This check button controls the display of system processes. If it is selected,
system processes will not be shown in the process overview, unless they are explicitly shown.
The definition of system process is currently somewhat vague and ad hoc. Please experiment with
the button to find out its exact effect on the display.

Auto-hide New This check button cotrols the treatment of newly created processes. If it is selected,
processes created since the previous automatic or manual refresh will not be shown in the process
overview.

3Pman

Chapter 1: Pman User's Guide

Hidden This label displays the number of processes currently executing that are not shown in the
process overview.

The File Menu

Default Options... This menu item opens a dialog that allows the user to set the default options for
trace windows that are opened.

Save Options The options that are set using the File->Default Options... are saved using this menu
item. The options are automatically loaded the next time Pman is started.
The options are stored under the user’s home directory, in a separate subdirectory named
.erlang tools, in the file pman.opts.

Exit Closes all windows and exits the application.

The View menu

This menu mainly contains functions for controlling what to display in the Main Window.

A process may be explicitly hidden, or explicitly shown, or neither.

Explicitly hidden processes are never shown, but can become explicitly shown by issuing any of the
Show-functions in the View Menu.

Explicitly shown processes are always shown, but can become explicitly hidden by issuing any of the
Hide-functions in the View Menu.

Processes that are neither explicitly hidden, or explicitly shown, are shown or hidden depending on the
state of the two radio buttons at the bottom of the window.

Hide All Processes All visible processes are moved to the set of explicitly hidden processes, and as
such, they are not shown.

Hide Modules... Opens a dialog the lets the user select a set of modules. The process overview will not
show any processes running code from those modules.

Hide Selected Processs The selected process is moved to the set of explicitly hidden processes, and as
such, it is not shown.

Module Info Opens a window showing information about the module the selected process is currently
executing code from.

Refresh The process overview is updated. Normally this is automatically performed every 5 seconds.

Show All Processes All running processes are moved to the set of explicitly shown processes.

Show Processes... Opens a dialog that prompts the user to select a set of currently hidden processes to
move to the explicitly shown set.

The Trace Menu

Kill Terminates the selected process by calling exit(Pid,kill) where Pid is the PID of the selected
process.

Selected Process Opens a Trace Window for the selected process. Tracing will start immediately with
the default trace flags set from the Main Window.

Shell Process Opens a Trace Window for the shell process on the node Pman is running on. If the shell
process dies, the opened Trace Window will find the PID of the automatically started new shell
process, and continue to trace that process.

4 Pman

1.1: Pman

The Nodes menu

The Nodes menu contains one entry for each known node in a distributed Erlang system. This menu
will not appear if the Erlang runtime system executing Pman is not a part of a distributed system.

By selecting a node from the Nodes menu, the process overview window will change its view, and
display the processes running on that node.

Note:
The menu item Trace->Shell Process will not attempt to trace the shell process on the displayed node,
it always operates on the node on which Pman is running.

Trace Windows

A Trace Window continuously outputs trace information for a traced process. A Trace Window
automatically uses the trace options set in the Main Window, but it is also possible to change the
options for each Trace Window individually.

Figure 1.2: A Trace Window

5Pman

Chapter 1: Pman User's Guide

There is no limit to how many Trace Windows can be open at the same time. However, notice that if
more processes are traced, the performance degradation of the system will be more noticeable.

Window contents

The process window is used to display information about a specific process. The process window
displays the following information, where applicable:

� initial call

� current function

� messages

� dictionary

� heap size

� stack size

� reductions

� links

� trap exits.

Also use this window to display ordered trace messages. The type of trace messages which you may
want to display include function calls, sent and received messages, etc.

First in each trace message will be the PID of the process being traced. Note that if the inheritance flags
for tracing are set, the trace messages of the spawned/linked processes will be shown in the same
window as the spawning/linking process.

Each trace message also has a menmonic tag to help you follow the execution of a process:

! This tag indicates that a message has been sent. Following the To: tag will be a PID or the name of a
registered process. Next, following the Msg: tag will be the sent message.

rec This tag indicates that a message has been received. Following this will be the received message.

call This tag indicates a call to function (only available for trace compiled code). Following this will be
the actual call, with all the arguments.

link This tag indicates that a link between the traced process and another process has been created.

spawn This tag indicates that the traced process has spawned another process. Following this will be
the PID of the spawned process.

exit This tag indicates that traced process has exited. Following this will be the EXIT reason.

The File Menu

Options... Opens a dialog that prompts the user to enter trace options for this specific Trace Window.

Save Buffer... Opens a dialog that prompts the user for a file name to save the current Trace Window
contents in.

Close Stops tracing of the process, and closes the Trace WIndow.

The View Menu

Clear Buffer Clears the contents of the Trace Window.

Module Info Opens a window with module information for the module the process is currently
executing code from.

6 Pman

1.1: Pman

The Trace Menu

All Linked Processes Opens a Trace Window for each of the processes linked to the process being
traced in the current Trace Window.

Linked Process -> The Linked Process submenu has one entry for each process linked to the process
being traced in the current Trace Window. Select one of the processes to open a new Trace
Window for that process.

Kill Terminates the process being traced in the current Trace Window by calling exit(Pid,kill)
where Pid is the PID of the traced process.

The Options Dialog

The Options Dialog allows the user to specify the amount of output, and the destination of output for
traced processes.

Figure 1.3: The Options Dialog

In the upper left corner of the dialog, there are check buttons for determining what to output in the
Trace Window:

7Pman

Trace send Select this check button if you wish to display messages sent from the process.

Trace receive Select this check button if you wish to display received messages.

Trace functions Select this check button if you want to see all calls to funtions. Note that this option
will have no effect, unless the process is running code that has been compiled with the trace
option.

Trace events Select this check button if you want to see process events, such as spawn, link and exit.

In the upper right corner of the dialog, there are options for controlling the behaviour of spawned or
linked processes:

Inherit on spawn The user may select if spawned processes shall also be traced. And if so, if all
spawned processes should be traced, or just the first spawned process.
If a spawned process is traced, it will get the same trace options that are set for the spawning
process. And the output will be shown in the same Trace Window as that of the spawning process.
.

Inherit on link The user may select if a process that is being linked to shall be traced. And if so, if all
linked processes shall be traced, or just the first one linked to.
If a linked process is traced, it will get the same trace options that are set for the linking process.
And the output will be shown in the same Trace Window as that of the linked process.

In the lower part of the Options Dialog, the user may select whether the trace information shall be
output to a file,or appear in the trace window.

Sending trace information to a file is much more efficient than displaying it in the Trace Window.
Furthermore, if the amount of trace data is large, it will not be lost if tracing to a file. The trace
information in the Trace Window has an upper limit (approx. 10,000 lines), after which the output
buffer will be cleared .

8 Pman

Pman Reference Manual

Short Summaries

� Erlang Module pman [page 10] – A graphical interface for inspecting running
Erlang processes.

pman

The following functions are exported:

� start() -> Pid
[page 10] Starts the process manager

� start(LIModuleExcluded) -> Pid
[page 10] Starts the process manager

� start notimeout() -> Pid
[page 10] Starts the process manager

� start notimeout(LIModuleExcluded) -> Pid
[page 10] Starts the process manager

� proc(Process) -> Pid
[page 11] Traces a single process

� proc(A,B,C) -> Pid
[page 11] Traces a single process

9Pman

pman (Module) Pman Reference Manual

pman (Module)

The process manager Pman is a tool that provides functionality for inspecting the state
of running processes in an Erlang runtime system.

The user interface provides two main views:

� a node overview showing all running processes on the selected node

� a process trace window for following the execution of one or more selected
processes.

Pman operates either locally or in a distributed Erlang system.

Refer to the Pman User’s Guide for a detailed description of the functionality.

Exports

start() -> Pid

start(LIModuleExcluded) -> Pid

Types:

� Pid = pid()
� LIModuleExcluded = [atom()]

start/0 starts the process manager with the user‘s saved settings, if there are any.

start/1 also starts the process manager, with the difference that it will not show any
processes executing code in any of the modules listed in LIModuleExcluded

start/0 and start/1 return the Pid of Pmans main window process if the start-up
succeeds within 20 seconds, otherwise it will fail with the EXIT reason
fstartup timeout, pmang.

start notimeout() -> Pid

start notimeout(LIModuleExcluded) -> Pid

Types:

� Pid = pid()
� LIModuleExcluded = [atom()]

10 Pman

start notimeout/0 starts the process manager with the user’s saved settings, if there
are any.

start notimeout/1 also starts the process manager, with the difference that it will not
show any processes executing code in any of the modules listed in LIModuleExcluded.

start notimeout/0 and start notimeout/1 return the Pid of Pmans main window
process. It will hang indefinitely waiting for successful start-up.

proc(Process) -> Pid

proc(A,B,C) -> Pid

Types:

� Pid = pid()
� Process = pid() | atom()
� A,B,C = integer()

proc/1 and proc/3 both open a trace window for the specified process. They are
convenience functions for bypassing the process overview window in the graphical user
interface. Process can either be an atom representing a registered process, or a PID.

proc/3 is merely a convenience function that takes three integers as arguments,
representing the three parts of the PID. (To avoid having to use the BIF list to pid/1).

The functions return the PID of the process controlling the trace output window. If
there is a problem they will fail with the EXIT reason undefined.

See Also

Pman in User’s Guide.

11Pman

12 Pman

List of Figures

Chapter 1: Pman User’s Guide
1.1 The Main Window of Pman showing a process overview. 3

1.2 A Trace Window . 5

1.3 The Options Dialog . 7

13Pman

List of Figures

14 Pman

Index

Modules are typed in this way.
Functions are typed in this way.

pman
proc/1, 11
proc/3, 11
start/0, 10
start/1, 10
start_notimeout/0, 10
start_notimeout/1, 10

proc/1
pman , 11

proc/3
pman , 11

start/0
pman , 10

start/1
pman , 10

start_notimeout/0
pman , 10

start_notimeout/1
pman , 10

15Pman

