
Runtime Tools

version 1.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 Runtime Tools Reference Manual 1

1.1 runtime tools (Application) . 4

1.2 dbg (Module) . 5

iRuntime Tools

ii Runtime Tools

Runtime Tools Reference

Manual

Short Summaries

� Application runtime tools [page 4] – The Runtime tools Application

� Erlang Module dbg [page 5] – The Text Based Trace Facility

runtime tools

No functions are exported.

dbg

The following functions are exported:

� h() -> ok
[page 5] Gives a list of available help items on standard output.

� h(Item) -> ok
[page 5] Gives brief help for an item.

� p(Item) -> fok, MatchDescg | ferror, term()g
[page 5] Traces messages to and from Item.

� p(Item, Flags) -> fok, MatchDescg | ferror, term()g
[page 5] Traces Item according to Flags.

� c(Mod, Fun, Args)
[page 6] Evaluates apply(M,F,Args) with all trace flags set.

� c(Mod, Fun, Args, Flags)
[page 6] Evaluates apply(M,F,Args) with Flags trace flags set.

� i() -> ok
[page 7] Displays information about all traced processes.

� tp(Module,MatchSpec)
[page 7] Same as tp(fModule, ’ ’, ’ ’g, MatchSpec)

� tp(Module,Function,MatchSpec)
[page 7] Same as tp(fModule, Function, ’ ’g, MatchSpec)

1Runtime Tools

Runtime Tools Reference Manual

� tp(Module, Function, Arity, MatchSpec)
[page 7] Same as tp(fModule, Function, Arityg, MatchSpec)

� tp(fModule, Function, Arityg, MatchSpec) -> fok, MatchDescg |
ferror, term()g
[page 7] Set pattern for traced global function calls.

� tpl(Module,MatchSpec)
[page 8] Same as tpl(fModule, ’ ’, ’ ’g, MatchSpec)

� tpl(Module,Function,MatchSpec)
[page 8] Same as tpl(fModule, Function, ’ ’g, MatchSpec)

� tpl(Module, Function, Arity, MatchSpec)
[page 8] Same as tpl(fModule, Function, Arityg, MatchSpec)

� tpl(fModule, Function, Arityg, MatchSpec) -> fok, MatchDescg |
ferror, term()g
[page 8] Set pattern for traced local (as well as global) function calls.

� ctp(Module)
[page 8] Same as ctp(fModule, ’ ’, ’ ’g)

� ctp(Module, Function)
[page 8] Same as ctp(fModule, Function, ’ ’g)

� ctp(Module, Function, Arity)
[page 8] Same as ctp(fModule, Function, Arityg)

� ctp(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g
[page 8] Clear call trace pattern for the specified functions

� ctpl(Module)
[page 8] Same as ctpl(fModule, ’ ’, ’ ’g)

� ctpl(Module, Function)
[page 9] Same as ctpl(fModule, Function, ’ ’g)

� ctpl(Module, Function, Arity)
[page 9] Same as ctpl(fModule, Function, Arityg)

� ctpl(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g
[page 9] Clear call trace pattern for the specified functions

� ctpg(Module)
[page 9] Same as ctpg(fModule, ’ ’, ’ ’g)

� ctpg(Module, Function)
[page 9] Same as ctpg(fModule, Function, ’ ’g)

� ctpg(Module, Function, Arity)
[page 9] Same as ctpg(fModule, Function, Arityg)

� ctpg(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g
[page 9] Clear call trace pattern for the specified functions

� ltp() -> ok
[page 9] Lists saved match spec’s on the console.

� dtp() -> ok
[page 9] Deletes all saved match spec’s.

� dtp(N) -> ok
[page 9] Deletes a specific saved match spec.

� wtp(Name) -> ok | ferror, IOErrorg
[page 9] Writes all saved match spec’s to a file

2 Runtime Tools

Runtime Tools Reference Manual

� rtp(Name) -> ok | ferror, Errorg
[page 10] Read saved match specifications from file.

� n(Nodename) -> fok, Nodenameg | ferror, Reasong
[page 10] Adds a node to the list of traced nodes

� cn(Nodename) -> ok
[page 10] Clears a node from the list of traced nodes.

� ln() -> ok
[page 11] Shows the list of traced nodes on the console.

� tracer() -> fok, pid()g | ferror, already startedg
[page 11] Starts a tracer server that handles trace messages.

� tracer(Type, Data) -> fok, pid()g | ferror, Errorg
[page 11] Starts a tracer server with additional parameters

� trace port(Type, Parameters) -> fun()
[page 11] Creates and returns a trace port generating fun

� flush trace port() -> ok | ferror, Reasong
[page 12] Flushes internal data buffers in a trace driver.

� trace client(Type, Parameters) -> pid()
[page 12] Starts a trace client that reads messages created by a trace port driver

� trace client(Type, Parameters, HandlerSpec) -> pid()
[page 13] Starts a trace client that reads messages created by a trace port driver,
with a user defined handler

� stop trace client(Pid) -> ok
[page 14] Stops a trace client gracefully.

� get tracer() -> fok, Tracerg
[page 14] Returns the process or port to which all trace messages are sent.

� stop() -> stopped
[page 14] Stops the dbg server and the tracing of all processes.

3Runtime Tools

runtime tools (Application) Runtime Tools Reference Manual

runtime tools (Application)

This chapter describes the runtime tools application in OTP, which provides low
footprint tracing/debugging tools suitable for inclusion in a production system.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO

application(3)

4 Runtime Tools

Runtime Tools Reference Manual dbg (Module)

dbg (Module)

This module implements a text based interface to the trace/3 and the trace pattern/2
BIF’s. It makes it possible to trace functions, processes, and messages on text based
terminals. It can be used instead of, or as complement to, the pman module.

The utilities are suitable to use in system testing on large systems, where other tools
have too much impact on the system performance. Some primitive support for
sequential tracing is also included, see the advanced topics [page 14] section.

Exports

h() -> ok

Gives a list of items for brief online help.

h(Item) -> ok

Types:

� Item = atom()

Gives a brief help text for functions in the dbg module. The available items can be
listed with dbg:h/0

p(Item) -> fok, MatchDescg | ferror, term()g

Equivalent to p(Item, [m]).

p(Item, Flags) -> fok, MatchDescg | ferror, term()g

Types:

� MatchDesc = [MatchNum]
� MatchNum = fmatched, integer()g | fmatched, node(), integer()g | fmatched,

node(), 0, RPCErrorg
� RPCError = term()

Traces Item in accordance to the value specified by Flags. The variation of Item is
listed below:

� If the Item is a pid(), the corresponding process is traced. If no trace port is used,
the process may be a remote process (on another Erlang node). The node must be
on the list of traced nodes (see [page 10] n/1).

� If the Item is the atom all, all processes in the system as well as all processes
created hereafter are to be traced. This also affects all nodes added with the n/1
function.

5Runtime Tools

dbg (Module) Runtime Tools Reference Manual

� If the Item is the atom new, no currently existing processes are affected, but every
process created after the call is.This also affects all nodes added with the n/1
function.

� If the Item is the atom existing, all existing processes are traced, but new
processes will not be affected.This also affects all nodes added with the n/1
function.

� If the Item is an atom other than all, new or existing, the process with the
corresponding registered name is traced.

� If the Item is an integer, the process <Item.1> is traced.

� If the Item is a tuple fX, Y, Zg, the process <X.Y.Z> is traced.

Flags can be a single atom, or a list of flags. The available flags are:

s (send) Traces the messages the process sends.

r (receive) Traces the messages the process receives.

m (messages) Traces the messages the process receives and sends.

c (call) Traces global function calls for the process according to the trace patterns set
in the system (see tp/2).

p (proc) Traces process related events to the process.

sos (set on spawn) Lets all processes created by the traced process inherit the trace
flags of the traced process.

sol (set on link) Lets another process, P2, inherit the trace flags of the traced
process whenever the traced process links to P2.

sofs (set on first spawn) This is the same as sos, but only for the first process
spawned by the traced process.

sofl (set on first link) This is the same as sol, but only for the first call to
link/1 by the traced process.

all Sets all flags.

clear Clears all flags.

The list can also include any of the flags allowed in erlang:trace/3

The function returns either an error tuple or a tuple fok, Listg. The List consists of
specifications of how many processes that matched (in the case of a pure pid() exactly
1). The specification of matched processes can be either fmatched, Ng, when only local
processes matched, or fmatched, Node, Ng in the case of tracing a remote node (as
well as the local). If the remote processor call,rpc, to a remote node fails, the rpc error
message is delivered as a fourth argument and the number of matched processes are 0.
Note that the result fok, Listg may contain a list where rpc calls to one or more nodes
failed. The ok only means that some processes matched and are traced.

c(Mod, Fun, Args)

Equivalent to c(Mod, Fun, Args, all).

c(Mod, Fun, Args, Flags)

Evaluates the expression apply(Mod, Fun, Args) with the trace flags in Flags set.
This is a convenient way to trace processes from the Erlang shell.

6 Runtime Tools

Runtime Tools Reference Manual dbg (Module)

i() -> ok

Displays information about all traced processes.

tp(Module,MatchSpec)

Same as tp(fModule, ’ ’, ’ ’g, MatchSpec)

tp(Module,Function,MatchSpec)

Same as tp(fModule, Function, ’ ’g, MatchSpec)

tp(Module, Function, Arity, MatchSpec)

Same as tp(fModule, Function, Arityg, MatchSpec)

tp(fModule, Function, Arityg, MatchSpec) -> fok, MatchDescg | ferror, term()g

Types:

� Module = atom() | ’ ’
� Function = atom() | ’ ’
� Arity = integer() |’ ’
� MatchSpec = integer() | [] | match spec()
� MatchDesc = [MatchInfo]
� MatchInfo = fsaved, integer()g | MatchNum <V>MatchNum = fmatched,

integer()g | fmatched, node(), integer()g | fmatched, node(), 0, RPCErrorg

This function enables call trace for one or more functions. All exported functions
matching the fModule, Function, Arityg argument will be concerned, but the
match spec() may further narrow down the set of function calls generating trace
messages.

For a description of the match spec() syntax, please turn to the User’s guide part of the
online documentation for the runtime system (erts). The chapter Match Specification in
Erlang explains the general match specification “language”.

The Module, Function and/or Arity parts of the tuple may be specified as the atom ’ ’
which is a “wild-card” matching all modules/functions/arities. Note, if the Module is
specified as ’ ’, the Function and Arity parts have to be specified as ’ ’ too. The same
holds for the Functions relation to the Arity.

All nodes added with n/1 will be affected by this call, and if Module is not ’ ’ the
module will be loaded on all nodes.

The function returns either an error tuple or a tuple fok, Listg. The List consists of
specifications of how many functions that matched, in the same way as the processes are
presented in the return value of p/2.

There may be a tuple fsaved, Ng in the return value, if the MatchSpec is other than [].
The integer N may then be used in subsequent calls to this function and will stand as an
“alias” for the given expression (see also ltp/0 below).

If an error is returned, it can be due to errors in compilation of the match specification.
Such errors are presented as a list of tuples ferror, string()g where the string is a
textual explanation of the compilation error. An example:

7Runtime Tools

dbg (Module) Runtime Tools Reference Manual

(x@y)4> dbg:tp({dbg,ltp,0},[{[],[],[{message, two, arguments}, {noexist}]}]).
{error,
[{error,"Special form ’message’ called with wrong number of

arguments in {message,two,arguments}."},
{error,"Function noexist/1 does_not_exist."}]}

tpl(Module,MatchSpec)

Same as tpl(fModule, ’ ’, ’ ’g, MatchSpec)

tpl(Module,Function,MatchSpec)

Same as tpl(fModule, Function, ’ ’g, MatchSpec)

tpl(Module, Function, Arity, MatchSpec)

Same as tpl(fModule, Function, Arityg, MatchSpec)

tpl(fModule, Function, Arityg, MatchSpec) -> fok, MatchDescg | ferror, term()g

This function works as tp/2, but enables tracing for loacl calls (and local functions) as
well as for global calls (and functions).

ctp(Module)

Same as ctp(fModule, ’ ’, ’ ’g)

ctp(Module, Function)

Same as ctp(fModule, Function, ’ ’g)

ctp(Module, Function, Arity)

Same as ctp(fModule, Function, Arityg)

ctp(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g

Types:

� Module = atom() | ’ ’
� Function = atom() | ’ ’
� Arity = integer() | ’ ’
� MatchDesc = [MatchNum]
� MatchNum = fmatched, integer()g | fmatched, node(), integer()g | fmatched,

node(), 0, RPCErrorg

This function disables call tracing on the specified functions. The semantics of the
parameter is the same as for the corresponding function specification in tp/2 or tpl/2.
Both local and global call trace is disabled.

The return value reflects how many functions that matched, and is constructed as
described in tp/2. No tuple fsaved, Ng is however ever returned (for obvious reasons).

ctpl(Module)

Same as ctpl(fModule, ’ ’, ’ ’g)

8 Runtime Tools

Runtime Tools Reference Manual dbg (Module)

ctpl(Module, Function)

Same as ctpl(fModule, Function, ’ ’g)

ctpl(Module, Function, Arity)

Same as ctpl(fModule, Function, Arityg)

ctpl(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g

This function works as ctp/1, but only disables tracing set up with tpl/2 (not with
tp/2).

ctpg(Module)

Same as ctpg(fModule, ’ ’, ’ ’g)

ctpg(Module, Function)

Same as ctpg(fModule, Function, ’ ’g)

ctpg(Module, Function, Arity)

Same as ctpg(fModule, Function, Arityg)

ctpg(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g

This function works as ctp/1, but only disables tracing set up with tp/2 (not with
tpl/2).

ltp() -> ok

Use this function to recall all match spec’s previously used in the session (i. e.
previously saved during calls to tp/2. This is very useful, as a complicated match spec
can be quite awkward to write. Note that the match spec’s are lost if stop/0 is called.

Match specifications used can be saved in a file (if a read-write file system is present) for
use in later debugging sessions, see wtp/1 and rtp/1

dtp() -> ok

Use this function to “forget” all match specifications saved during calls to tp/2. This is
useful when one wants to restore other match specifications from a file with rtp/1. Use
dtp/1 to delete specific saved match specifications.

dtp(N) -> ok

Types:

� N = integer()

Use this function to “forget” a specific match specification saved during calls to tp/2.

wtp(Name) -> ok | ferror, IOErrorg

Types:

� Name = string()
� IOError = term()

9Runtime Tools

dbg (Module) Runtime Tools Reference Manual

This function will save all match specifications saved during the session (during calls to
tp/2) in a text file with the name designated by Name. The format of the file is textual,
why it can be edited with an ordinary text editor, and then restored with rtp/1.

Each match spec in the file ends with a full stop (.) and new (syntactically correct)
match specifications can be added to the file manually.

The function returns ok or an error tuple where the second element contains the I/O
error that made the writing impossible.

rtp(Name) -> ok | ferror, Errorg

Types:

� Name = string()
� Error = term()

This function reads match specifications from a file (possibly) generated by the wtp/1
function. It checks the syntax of all match specifications and verifies that they are
correct. The error handling principle is “all or nothing”, i. e. if some of the match
specifications are wrong, none of the specifications are added to the list of saved match
specifications for the running system.

The match specifications in the file are merged with the current match specifications, so
that no duplicates are generated. Use ltp/0 to see what numbers were assigned to the
specifications from the file.

The function will return an error, either due to I/O problems (like a non existing or non
readable file) or due to file format problems. The errors from a bad format file are in a
more or less textual format, which will give a hint to what’s causing the problem.

n(Nodename) -> fok, Nodenameg | ferror, Reasong

Types:

� Nodename = atom()
� Reason = term()

The dbg server keeps a list of nodes where tracing should be performed. Whenever a
tp/2 call or a p/2 call is made, it is executed for all nodes in this list as well as the local
node (except for p/2 with a specific pid() as first argument, in which case the
command is executed only on the node where the designated process resides.).

This function adds a node (Nodename) to the list of nodes where tracing is performed.

Distributed tracing does not work together with trace ports.

The function will return an error if either tracing is currently directed to a trace port
(see trace port/2) or the node Nodename is not reachable.

cn(Nodename) -> ok

Types:

� Nodename = atom()

Clears a node from the list of traced nodes. Subsequent calls to tp/2 and p/2 will not
consider that node, but tracing already activated on the node will continue to be in
effect.

Returns ok, cannot fail.

10 Runtime Tools

Runtime Tools Reference Manual dbg (Module)

ln() -> ok

Shows the list of traced nodes on the console.

tracer() -> fok, pid()g | ferror, already startedg

This function starts a server that will be the recipient of all trace messages. All
subsequent calls to p/2 will result in messages sent to the newly started trace server.

A trace server started in this way will simply display the trace messages in a formatted
way in the Erlang shell (i. e. use io:format). See tracer/2 for a description of how the
trace message handler can be customized.

tracer(Type, Data) -> fok, pid()g | ferror, Errorg

Types:

� Type = port | process
� Data = PortGenerator | HandlerSpec
� HandlerSpec = fHandlerFun, InitialDatag
� HandlerFun = fun() (two arguments)
� InitialData = term()
� PortGenerator = fun() (no arguments)
� Error = term()

This function starts a tracer server with additional parameters. The first parameter, the
Type, indicates if trace messages should be handled by a receiving process (process) or
by a tracer port (port). For a description about tracer ports see trace port/2.

If Type is a process, a message handler function can be specified (HandlerSpec). The
handler function, which should be a fun taking two arguments, will be called for each
trace message, with the first argument containing the message as it is and the second
argument containing the return value from the last invocation of the fun. The initial
value of the second parameter is specified in the InitialData part of the HandlerSpec.
The HandlerFun may chose any appropriate action to take when invoked, and can save
a state for the next invocation by returning it.

If Type is a port, then the second parameter should be a fun which takes no arguments
and returns a newly opened trace port when called. Such a fun is preferably generated
by calling trace port/2.

Note that most dbg functions start the server automatically. Call this function with the
appropriate arguments before calling any other functions in the module. The server can
be stopped with a call to stop/0 if it has been started in the default form by mistake.

If an error is returned, it can either be due to a tracer server already running
(ferror,already startedg) or due to the HandlerFun throwing an exception.

trace port(Type, Parameters) -> fun()

Types:

� Type = ip | file
� Parameters = Filename | IPPortSpec
� Filename = string()
� IpPortSpec = PortNumber | fPortNumber, QueSizeg
� PortNumber = integer()
� QueSize = integer()

11Runtime Tools

dbg (Module) Runtime Tools Reference Manual

This function creates a trace port generating fun. The fun takes no arguments and
returns a newly opened trace port. The return value from this function is suitable as a
second parameter to tracer/2, i. e. dbg:tracer(port, dbg:trace port(ip, 4711)).

A trace port is an Erlang port to a dynamically linked in driver that handles trace
messages directly, without the overhead of sending them as messages in the Erlang
virtual machine.

Two trace drivers are currently implemented, the file and the ip trace drivers. The file
driver sends all trace messages into a binary file, from where they later can be fetched
and processed with the trace client/2 function. The ip driver opens a TCP/IP port
where it listens for connections. When a client (preferably started by calling
trace client/2 on another Erlang node) connects, all trace messages are sent over the
IP network for further processing by the remote client.

Using a trace port significantly lowers the overhead imposed by using tracing.

The file trace driver expects a filename in the native machine format as parameter. The
file is written with a high degree of buffering, why all trace messages are not guaranteed
to be saved in the file in case of a system crash. That is the price to pay for low tracing
overhead.

The ip trace driver has a queue of QueSize messages waiting to be delivered. If the
driver cannot deliver messages as fast as they are produced by the runtime system, a
special message is sent, which indicates how many messages that are dropped. That
message will arrive at the handler function specified in trace client/3 as the tuple
fdrop, Ng where N is the number of consecutive messages dropped. In case of heavy
tracing, drop’s are likely to occur, and they surely occur if no client is reading the trace
messages.

Note that processes on other nodes cannot be traced using a trace port.

flush trace port() -> ok | ferror, Reasong

This function is used to flush internal buffers held by a trace port driver. Currently only
the file trace driver supports this operation.

Returns ok if the operation was successful, or an error if the current tracer is a process
or it is a port not supporting the flush operation (i.e. a ip trace port).

trace client(Type, Parameters) -> pid()

Types:

� Type = ip | file | follow file
� Parameters = Filename | IPClientPortSpec
� Filename = string()
� IpClientPortSpec = PortNumber | fHostname, PortNumberg
� PortNumber = integer()
� Hostname = string()

12 Runtime Tools

Runtime Tools Reference Manual dbg (Module)

This function starts a trace client that reads the output created by a trace port driver and
handles it in mostly the same way as a tracer process created by the tracer/0 function.

If Type is file, the client reads all trace messages stored in the file named Filename
(the second argument) and let’s the default handler function format the messages on the
console. This is one way to interpret the data stored in a file by the file trace port driver.

If Type is follow file, the client behaves as in the file case, but keeps trying to read
(and process) more data from the file until stopped by stop trace client/1.

If Type is ip, the client connects to the TCP/IP port PortNumber on the host Hostname,
from where it reads trace messages until the TCP/IP connection is closed. If no
Hostname is specified, the local host is assumed.

As an example, one can let trace messages be sent over the network to another Erlang
node (preferably not distributed), where the formatting occurs:

On the node stack there’s an Erlang node ant@stack, in the shell, type the following:

ant@stack> dbg:tracer(port, dbg:trace_port(ip,4711)).
<0.17.0>
ant@stack> dbg:p(self(), send).
{ok, 1}

All trace messages are now sent to the trace port driver, which in turn listens for
connections on the TCP/IP port 4711. If we want to see the messages on another node,
preferably on another host, we do like this:

-> dbg:trace_client(ip, {"stack", 4711}).
<0.42.0>

If we now send a message from the shell on the node ant@stack, where all sends from
the shell are traced:

ant@stack> self() ! hello.
hello

The following will appear at the console on the node that started the trace client:

(<0.23.0>) <0.23.0> ! hello
(<0.23.0>) <0.22.0> ! {shell_rep,<0.23.0>,{value,hello,[],[]}}

The last line is generated due to internal message passing in the Erlang shell. The
process id’s will vary.

trace client(Type, Parameters, HandlerSpec) -> pid()

Types:

� Type = ip | file
� Parameters = Filename | IPClientPortSpec
� Filename = string()
� IpClientPortSpec = PortNumber | fHostname, PortNumberg
� PortNumber = integer()
� Hostname = string()
� HandlerSpec = fHandlerFun, InitialDatag
� HandlerFun = fun() (two arguments)
� InitialData = term()

13Runtime Tools

dbg (Module) Runtime Tools Reference Manual

This function works exactly as trace client/2, but allows you to write your own
handler function. The handler function works mostly as the one described in tracer/2,
but will also have to be prepared to handle trace messages of the form fdrop, Ng,
where N is the number of dropped messages. This pseudo trace message will only occur
if the ip trace driver is used.

stop trace client(Pid) -> ok

Types:

� Pid = pid()

This function shuts down a previously started trace client. The Pid argument is the
process id returned from the trace client/2 or trace client/3 call.

get tracer() -> fok, Tracerg

Types:

� Tracer = port() | pid()

Returns the process or port to which all trace messages are sent.

stop() -> stopped

Stops the dbg server and clears all trace flags for all processes. Also shuts down all trace
clients and closes all trace ports.

Advanced topics - combining with seq trace

The dbg module is primarily targeted towards tracing through the erlang:trace/3
function. It is sometimes desired to trace messages in a more delicate way, which can be
done with the help of the seq trace module.

Seq trace implements sequential tracing (known in the AXE10 world, and sometimes
called “forlopp tracing”). dbg can interpret messages generated from seq trace and the
same tracer function for both types of tracing can be used. The seq trace messages can
even be sent to a trace port for further analysis.

As a match specification can turn on sequential tracing, the combination of dbg and
seq trace can be quite powerful. This brief example shows a session where sequential
tracing is used:

1> dbg:tracer().
{ok,<0.30.0>}
2> {ok, Tracer} = dbg:get_tracer().
{ok,<0.31.0>}
3> seq_trace:set_system_tracer(Tracer).
false
4> dbg:tp(dbg, get_tracer, [{[],[],[{set_seq_token, send, true}]}]).
{ok,[{matched,1},{saved,1}]}
5> dbg:p(all,call).
{ok,[{matched,22}]}
6> dbg:get_tracer(), receive after 1 -> ok end.
(<0.25.0>) call dbg:get_tracer()

14 Runtime Tools

SeqTrace [0]: (<0.25.0>) <0.30.0> ! {<0.25.0>,get_tracer} [Serial: {2,4}]
SeqTrace [0]: (<0.30.0>) <0.25.0> ! {dbg,{ok,<0.31.0>}} [Serial: {4,5}]
ok

This session sets the system tracer to the same process as the ordinary tracer process (i.
e. <0.31.0>) and sets the trace pattern for the function dbg:get tracer to one that
has the action of setting a sequential token. When the function is called by a traced
process (all processes are traced in this case), the process gets “contaminated” by the
token and seq trace messages are sent both for the server request and the response.
The receive after 1 -> ok end after the call clears the seq trace token, why no
messages are sent when the answer propagates via the shell to the console port. The
output would otherwise have been more noisy.

15Runtime Tools

16 Runtime Tools

Index

Modules are typed in this way.
Functions are typed in this way.

c/3
dbg , 6

c/4
dbg , 6

cn/1
dbg , 10

ctp/1
dbg , 8

ctp/2
dbg , 8

ctp/3
dbg , 8

ctpg/1
dbg , 9

ctpg/2
dbg , 9

ctpg/3
dbg , 9

ctpl/1
dbg , 8

ctpl/2
dbg , 9

ctpl/3
dbg , 9

dbg
c/3, 6
c/4, 6
cn/1, 10
ctp/1, 8
ctp/2, 8
ctp/3, 8
ctpg/1, 9
ctpg/2, 9
ctpg/3, 9

ctpl/1, 8
ctpl/2, 9
ctpl/3, 9
dtp/0, 9
dtp/1, 9
flush_trace_port/0, 12
get_tracer/0, 14
h/0, 5
h/1, 5
i/0, 7
ln/0, 11
ltp/0, 9
n/1, 10
p/1, 5
p/2, 5
rtp/1, 10
stop/0, 14
stop_trace_client/1, 14
tp/2, 7
tp/3, 7
tp/4, 7
tpl/2, 8
tpl/3, 8
tpl/4, 8
trace_client/2, 12
trace_client/3, 13
trace_port/2, 11
tracer/0, 11
tracer/2, 11
wtp/1, 9

dtp/0
dbg , 9

dtp/1
dbg , 9

flush_trace_port/0
dbg , 12

get_tracer/0

17Runtime Tools

Index

dbg , 14

h/0
dbg , 5

h/1
dbg , 5

i/0
dbg , 7

ln/0
dbg , 11

ltp/0
dbg , 9

n/1
dbg , 10

p/1
dbg , 5

p/2
dbg , 5

rtp/1
dbg , 10

stop/0
dbg , 14

stop_trace_client/1
dbg , 14

tp/2
dbg , 7

tp/3
dbg , 7

tp/4
dbg , 7

tpl/2
dbg , 8

tpl/3
dbg , 8

tpl/4
dbg , 8

trace_client/2
dbg , 12

trace_client/3

dbg , 13

trace_port/2
dbg , 11

tracer/0
dbg , 11

tracer/2
dbg , 11

wtp/1
dbg , 9

18 Runtime Tools

