
System Application Support Libraries
(SASL)

version 1.9

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 SASL User’s Guide 1

1.1 About this document . 2

2 SASL Error Logging 3

2.1 Supervisor Report . 4

2.2 Progress Report . 5

2.3 Crash Report . 6

An Example . 6

2.4 Multi-File Error Report Logging . 8

2.5 Report Browser . 9

Starting the Report Browser . 9

On-line Help . 9

List Reports in the Server . 9

Show Reports . 10

Search the Reports . 11

3 The Release Structure 13

3.1 Naming of Modules, Applications and Releases . 14

3.2 Release Tools . 16

3.3 Release Directories . 17

Disk-less and/or Read-Only Clients . 18

3.4 Example . 19

Making the Start Script . 21

Changing an Application . 21

Making a Release Package . 23

iSystem Application Support Libraries (SASL)

4 Release Handling 25

4.1 Introduction . 26

4.2 Administering Releases . 27

4.3 File Structure . 28

4.4 Release Installation Files . 29

ReleaseFileName.rel . 29

relup . 29

start.boot . 30

sys.config . 30

4.5 Release Handling Principles . 31

Erlang Code . 31

Port Programs . 34

Application Specification and Configuration Parameters 34

Mnesia Data or Schema Changes . 34

Upgrade vs. Downgrade . 34

4.6 Release Handling Instructions . 36

High-level Instructions . 36

Low-level instructions . 37

4.7 Release Handling Examples . 40

Update of Erlang Code . 40

Update of Port Programs . 53

5 SASL Reference Manual 57

5.1 sasl (Application) . 61

5.2 alarm handler (Module) . 64

5.3 overload (Module) . 66

5.4 rb (Module) . 68

5.5 release handler (Module) . 70

5.6 systools (Module) . 75

5.7 appup (File) . 81

5.8 rel (File) . 82

5.9 relup (File) . 84

5.10 script (File) . 86

ii System Application Support Libraries (SASL)

Chapter 1

SASL User's Guide

1System Application Support Libraries (SASL)

1.1 About this document

The SASL application provides support for:

� error logging

� alarm handling

� overload regulation

� release handling

� report browsing.

In addition to this introductory part, the User’s Guide includes the following chapters:

� Chapter 2: “SASL Error Logging” describes the error handler which produces the supervisor,
progress, and crash reports which can be written to screen, or to a specified file. It also describes
the report browser rb server.

� Chapter 3: “The Release Structure” provides an overview of the Erlang release tools and processes.

� Chapter 4: “Release Handling” describes the administration and principles of release handling in
detail.

2 System Application Support Libraries (SASL)

Chapter 2

SASL Error Logging

The SASL application introduces three types of reports:

� supervisor report

� progress report

� crash report.

When the SASL application is started, it adds a handler that formats and writes these reports, as
specified in the configuration parameters for sasl, i.e the environment variables in the SASL application
specification, which is found in the .app file of SASL. See sasl(Application) [page 61], and app(File) in
the Kernel Reference Manual for the details.

3System Application Support Libraries (SASL)

2.1 Supervisor Report

A supervisor report is issued when a supervised child terminates in an unexpected way. A supervisor
report contains the following items:

Supervisor. The name of the reporting supervisor.

Context. Indicates in which phase the child terminated from the supervisor’s point of view. This can
be start error, child terminated, or shutdown error.

Reason. The termination reason.

Offender. The start specification for the child.

4 System Application Support Libraries (SASL)

2.2 Progress Report

A progress report is issued whenever a supervisor starts or restarts. A progress report contains the
following items:

Supervisor. The name of the reporting supervisor.

Started. The start specification for the successfully started child.

5System Application Support Libraries (SASL)

2.3 Crash Report

Processes started with the proc lib:spawn or proc lib:spawn link functions are wrapped within a
catch. A crash report is issued whenever such a process terminates with an unexpected reason, which
is any reason other than normal or shutdown. Processes using the gen server and gen fsm behaviours
are examples of such processes. A crash report contains the following items:

Crasher. Information about the crashing process is reported, such as initial function call, exit reason,
and message queue.

Neighbours. Information about processes which are linked to the crashing process and do not trap
exits. These processes are the neighbours which will terminate because of this process crash. The
information gathered is the same as the information for Crasher, shown in the previous item.

An Example

The following example shows the reports which are generated when a process crashes. The example
process is an permanent process supervised by the test sup supervisor. A division by zero is executed
and the error is first reported by the faulty process. A crash report is generated as the process was
started using the proc lib:spawn/3 function. The supervisor generates a supervisor report showing the
process that has crashed, and then a progress report is generated when the process is finally re-started.

=ERROR REPORT==== 27-May-1996::13:38:56 ===
<0.63.0>: Divide by zero !

=CRASH REPORT==== 27-May-1996::13:38:56 ===
crasher:
pid: <0.63.0>
registered name: []
error info: fbadarith,ftest,s,[]gg
initial call: ftest,s,[]g
ancestors: [test sup,<0.46.0>]
messages: []
links: [<0.47.0>]
dictionary: []
trap exit: false
status: running
heap size: 128
stack size: 128
reductions: 348
neighbours:

=SUPERVISOR REPORT==== 27-May-1996::13:38:56 ===
Supervisor: flocal,test supg
Context: child terminated
Reason: fbadarith,ftest,s,[]gg
Offender: [fpid,<0.63.0>g,
fname,testg,

6 System Application Support Libraries (SASL)

2.3: Crash Report

fmfa,ftest,t,[]gg,
frestart type,permanentg,
fshutdown,200g,
fchild type,workerg]

=PROGRESS REPORT==== 27-May-1996::13:38:56 ===
Supervisor: flocal,test supg
Started: [fpid,<0.64.0>g,
fname,testg,
fmfa,ftest,t,[]gg,
frestart type,permanentg,
fshutdown,200g,
fchild type,workerg]

7System Application Support Libraries (SASL)

2.4 Multi-File Error Report Logging

Multi-file error report logging is used to store error messages, which are received by the error logger.
The error messages are stored in several files and each file is smaller than a specified amount of
kilobytes, and no more than a specified number of files exist at the same time. The logging is very fast
because each error message is written as a binary term.

Refer to sasl application in the Reference Manual for more details.

8 System Application Support Libraries (SASL)

2.5 Report Browser

The report browser is used to browse and format error reports written by the error logger handler
error logger mf h.

The error logger mf h handler writes all reports to a report logging directory. This directory is
specified when configuring the SASL application.

If the report browser is used off-line, the reports can be copied to another directory which is specified
when starting the browser. If no such direcory is specified, the browser reads reports from the SASL
error logger mf dir.

Starting the Report Browser

Start the rb server with the function rb:start([Options]) as shown in the following example:

5> rb:start([fmax, 20g]).
rb: reading report...done.
rb: reading report...done.
rb: reading report...done.
rb: reading report...done.

On-line Help

Enter the command rb:help(). to access the report browser on-line help system.

List Reports in the Server

The function rb:list() lists all loaded reports:

4> rb:list().
No Type Process Date Time
== ==== ======= ==== ====
20 progress <0.17.0> 1996-10-16 16:14:54
19 progress <0.14.0> 1996-10-16 16:14:55
18 error <0.15.0> 1996-10-16 16:15:02
17 progress <0.14.0> 1996-10-16 16:15:06
16 progress <0.38.0> 1996-10-16 16:15:12
15 progress <0.17.0> 1996-10-16 16:16:14
14 progress <0.17.0> 1996-10-16 16:16:14
13 progress <0.17.0> 1996-10-16 16:16:14
12 progress <0.14.0> 1996-10-16 16:16:14
11 error <0.17.0> 1996-10-16 16:16:21

9System Application Support Libraries (SASL)

Chapter 2: SASL Error Logging

10 error <0.17.0> 1996-10-16 16:16:21
9 crash report release handler 1996-10-16 16:16:21
8 supervisor report <0.17.0> 1996-10-16 16:16:21
7 progress <0.17.0> 1996-10-16 16:16:21
6 progress <0.17.0> 1996-10-16 16:16:36
5 progress <0.17.0> 1996-10-16 16:16:36
4 progress <0.17.0> 1996-10-16 16:16:36
3 progress <0.14.0> 1996-10-16 16:16:36
2 error <0.15.0> 1996-10-16 16:17:04
1 progress <0.14.0> 1996-10-16 16:17:09
ok

Show Reports

To show details of a specific report, use the function rb:show(Number):

10> rb:show(1).
7> rb:show(4).

PROGRESS REPORT <0.20.0> 1996-10-16 16:16:36
===
supervisor flocal,sasl supg
started
[fpid,<0.24.0>g,
fname,release handlerg,
fmfa,frelease handler,start link,[]gg,
frestart type,permanentg,
fshutdown,2000g,
fchild type,workerg]

ok
8> rb:show(9).

CRASH REPORT <0.24.0> 1996-10-16 16:16:21
===
Crashing process
pid <0.24.0>
registered name release handler
error info fundef,frelease handler,mbj func,[]gg
initial call
fgen,init it,
[gen server,
<0.20.0>,
<0.20.0>,
ferlang,registerg,
release handler,
release handler,
[],
[]]g
ancestors [sasl sup,<0.18.0>]

10 System Application Support Libraries (SASL)

2.5: Report Browser

messages []
links [<0.23.0>,<0.20.0>]
dictionary []
trap exit false
status running
heap size 610
stack size 142
reductions 54

ok

Search the Reports

It is possible to show all reports which contain a common pattern. Suppose a process crashes because it
tries to call a non-existing function release handler:mbj func. We could then show reports as
follows:

12> rb:grep("mbj func").
Found match in report number 11

ERROR REPORT <0.24.0> 1996-10-16 16:16:21
===

** undefined function: release handler:mbj func[] **
Found match in report number 10

ERROR REPORT <0.24.0> 1996-10-16 16:16:21
===

** Generic server release handler terminating
** Last message in was funpack release,hejg
** When Server state == fstate,[],
"/home/dup/otp2/otp beam sunos5 p1g 7",
[frelease,
"OTP APN 181 01",
"P1G",
undefined,
[],
permanentg],
undefinedg
** Reason for termination ==
** fundef,frelease handler,mbj func,[]gg
Found match in report number 9

CRASH REPORT <0.24.0> 1996-10-16 16:16:21
===
Crashing process
pid <0.24.0>
registered name release handler
error info fundef,frelease handler,mbj func,[]gg

11System Application Support Libraries (SASL)

Chapter 2: SASL Error Logging

initial call
fgen,init it,
[gen server,
<0.20.0>,
<0.20.0>,
ferlang,registerg,
release handler,
release handler,
[],
[]]g
ancestors [sasl sup,<0.18.0>]
messages []
links [<0.23.0>,<0.20.0>]
dictionary []
trap exit false
status running
heap size 610
stack size 142
reductions 54

Found match in report number 8

SUPERVISOR REPORT <0.20.0> 1996-10-16 16:16:21
===
Reporting supervisor flocal,sasl supg

Child process
errorContext child terminated
reason fundef,frelease handler,mbj func,[]gg
pid <0.24.0>
name release handler
start function frelease handler,start link,[]g
restart type permanent
shutdown 2000
child type worker

ok

Stop the Server

Stop the rb server with the function rb:stop():

13> rb:stop().
ok

12 System Application Support Libraries (SASL)

Chapter 3

The Release Structure

Erlang programs are organized into modules. Each module in a release must have a unique name.

Collections of modules which cooperate to solve a particular problem are organized into applications.
Applications are described in an application resource file.

Collections of applications are organized into a release. Releases are described in a release resource file.

13System Application Support Libraries (SASL)

3.1 Naming of Modules, Applications and Releases

Each module in the system has a version number. An Erlang module should start with

-module(Mod).
-vsn(Vsn).
...

and should be stored in a file named as Mod.erl.

The name of the module is Mod and the version of the module is Vsn. Mod must be an atom while Vsn
can be any valid Erlang term. For example, the version can be an integer or a string, which represents an
Ericsson product number.

Also the applications have versions, but the version must be a string. For example, the application
resource file for the application named snmp must be stored in a file named snmp.app and must start:

fapplication, snmp,
[fvsn, Vag,
fmodules,
[flists, V1g,
forddsets, V2g
...

Here, Va is the version of the application (a string). The application uses the Erlang module versions V1,
V2, ..., where V1, V2, ... can be any valid Erlang terms. The only requirement is that the module
version types (integers, strings, etc.) agrees with the convention used in the module declarations.

Note:
In the application resource file, the name of a module must be specified in modules, but the version
number is not a mandatory requirement. Hence the following is also valid contents for an application
resource file:

fapplication, snmp,
[fvsn, Vag,
fmodules,
[lists,
ordsets,
...

Applications can be upgraded and the instructions to do this are placed in the .appup file for the
application. For example, for the snmp application these instructions are placed in the snmp.appup file.
An .appup file contains the following:

14 System Application Support Libraries (SASL)

3.1: Naming of Modules, Applications and Releases

fVsn,
[fUpFromVsn, UpFromScriptg, ...],
[fDownToVsn, DownToScriptg, ...]

g.

� Vsn is the version of the application

� UpFromVsn is a version we can upgrade from

� UpFromScript is the script which describes the sequence of release upgrade instructions. Refer to
the section Release Handling Instructions [page 36]

� DownToVsn is a version to which we can downgrade

� DownToScript is the script which describes the sequence of downgrade instructions.

In the case of UpFromScript and DownFromScript, the scripts typically contain one line for each
module in the application.

A release resource file has a structure similar to an application resource file. The file
ReleaseFileName.rel, which describes the release contains the following:

frelease, fName,Vsng, ferts, EVsng,
[fAppName, AppVsng, fAppName, AppVsn, AppTypeg, fAppName, AppVsn,
IncAppsg, fAppName, AppVsn, AppType, IncAppsg ...]g.

� Name is the name of the release (a string). Name needs not to be the same as ReleaseFileName
above.

� Vsn is the version of the release (a string).

� ferts, EVsng indicates which Erlang runtime system version EVsn the release is intended for, for
example “4.4”. EVsn must be a string.

� AppName is the name of an application included in the release (an atom).

� AppVsn is the version of the AppName application (a string).

� The application is started by a call to application:start(AppName, AppType), if the AppType is
permanent, transient or temporary. If AppType is load the application is loaded but not started,
and if it is none the application is neither loaded or started.

� IncApps is a list of applications that are included by an application, for example [AppName, ...].
This list overrides the included applications key in the application resource file .app. It must
be a subset of the list of included applications which are specified in the .app file.

Note:
The list of applications must contain the kernel and the stdlib applications.

Releases can also be upgraded and instructions for this should be written in the relup file (see the
definition of the relup file [page 29]). The tedious work of writing the relup file is automated and in
most cases, the file will be automatically generated from the .appup files for the applications in the
release.

15System Application Support Libraries (SASL)

3.2 Release Tools

There are tools available to build and check release packages. These tools read the release resource file,
the application resource files and upgrade files, and they generate a boot script, a release upgrade script,
and also build a release package.

The following functions are in the systools module:

� make script generates a boot script

� make relup generates a release upgrade script

� make tar generates a release package .tar file .

These functions read the .rel release resource file from the current directory and perform syntax and
dependency checks before the output is generated.

Note:
The generated files are written to the current directory as well.

Refer to the Reference Manual for more information about these functions.

16 System Application Support Libraries (SASL)

3.3 Release Directories

A release should be divided into the following directories:

$ROOTDIR/lib/App1-AVsn1/ebin
/priv

/App2-AVsn2/ebin
/priv

...
/AppN-AVsnN/ebin

/priv
/erts-EVsn/bin
/releases/Vsn
/bin

The release resource file includes one AppN-AVsnN directory per application. AppN is the name and
AVsnN is the version of the application.

� The ebin directory contains the Erlang object code and the application resource file.

� The priv directory contains any application private data. Specifically, port programs should be
located in the priv directory. The priv directory of an application is found by a call to
code:priv dir(AppName).

� The boot script and relup files should be located in the releases/Vsn directory. Vsn is the release
version found in the release resource file.

� The Erlang runtime system executables are located in the erts-EVsn/bin directory.

� The releases directory should also contain the ReleaseFileName.rel files, and new release
packages are installed here.

� The bin directory contains the top level Erlang executable program erl.

Applications are not required to be located under the $ROOTDIR/lib directory. Accordingly, several
installation directories may exist which contain different parts of a system. For example, the previous
example could be extended as follows:

$SECOND ROOT/.../SApp1-SAVsn1/ebin
/priv

/SApp2-SAVsn2/ebin
/priv

...
/SAppN-SAVsnN/ebin

/priv

$THIRD ROOT/TApp1-TAVsn1/ebin
/priv

/TApp2-TAVsn2/ebin
/priv

...
/TAppN-TAVsnN/ebin

17System Application Support Libraries (SASL)

Chapter 3: The Release Structure

/priv

The $SECOND ROOT and $THIRD ROOT are introduced as variables in the call to the
systools:make script/2 function.

Disk-less and/or Read-Only Clients

If a complete system consists of some disk-less and/or read-only client nodes, a clients directory should
be added to the $ROOTDIR directory. By a read-only node we mean a node with a read-only file system.

The clients directory should have one sub-directory per supported client node. The name of each
client directory should be the name of the corresponding client node. As a minimum, each client
directory should contain the bin and releases sub-directories. These directories are used to store
information about installed releases and to appoint the current release to the client. Accordingly, the
$ROOTDIR directory contains the following:

$ROOTDIR/...
/clients/ClientName1/bin

/releases/Vsn
/ClientName2/bin

/releases/Vsn
...
/ClientNameN/bin

/releases/Vsn

This structure should be used if all clients are running the same type of Erlang machine. If there are
clients running different types of Erlang machines, or on different operating systems, the clients
directory could be divided into one sub-directory per type of Erlang machine. Alternatively, you can set
up one ROOTDIR per type of machine. For each type, some of the directories specified for the ROOTDIR
directory should be included:

$ROOTDIR/...
/clients/Type1/lib

/erts-EVsn
/bin
/ClientName1/bin

/releases/Vsn
/ClientName2/bin

/releases/Vsn
...
/ClientNameN/bin

/releases/Vsn
...
/TypeN/lib

/erts-EVsn
/bin
...

With this structure, the root directory for clients of Type1 is $ROOTDIR/clients/Type1.

18 System Application Support Libraries (SASL)

3.4 Example

Suppose we have a system called “test”, which consists of the three applications: snmp, kernel and
stdlib. The snmp application is described in the application resource file snmp.app as follows:

fapplication, snmp,
[fvsn, "10"g,
fmodules,
[fsnmp table, 2g,
fsnmp map, 3g,
fsnmp stuff,5g]g,

fapplications,
[stdlib,
kernel]g,

fmod,
fsnmp stuff, [12,34]gg

]g.

Note:
The resource file shown contains only a sub-set of the information available in the actual resource
files. Refer to the Design Principles chapter, section Applications for a more detailed description of
the contents of an application resource file.

In the example shown, version “10” of snmp uses version 2 of snmp table, version 3 of snmp map an so
on. It requires that stdlib and kernel are started before this application is started. It is started by
evaluating the function snmp stuff:start(normal, [12,34]). snmp stuff is the SNMP application
call-back module for the application complying with the behavior application.

Note:
We have used integer version numbers written as strings for the application version. In our further
discussion we will simplify things by using integer version numbers. We will also assume that version
N+1 is the successor of version N of a system component.

The application resource file stdlib.app for stdlib version “6” contains the following:

fapplication, stdlib,
[fvsn, "6"g,
fmodules,
[flists,2g,
fdict,4g,
fordsets, 7g]g,

fapplications,
[]g,

19System Application Support Libraries (SASL)

Chapter 3: The Release Structure

]g.

Note:
stdlib is a “code only” application and has no call-back module.

Finally, the kernel.app file of the kernel application version “2” contains the following:

fapplication, kernel,
[fvsn, "2"g,
fmodules,
[fnet kernel, 3g,
fauth, 3g,
frcp, 5g]g,

fapplications,
[stdlib]g,

fmod,
fnet kernel,[]gg

]g.

We can now in the test1.rel file define release “5” of the “test” release in terms of these applications:

frelease,
f"test", "5"g,
ferts, "4.4"g,
[fkernel, "2"g,
fstdlib, "6"g,
fsnmp, "10"g
]g.

Note:
This means that release “5” of the “test” system is built from kernel version “2”, stdlib version “6”.
The release requires the Erlang runtime system “4.4”.

20 System Application Support Libraries (SASL)

3.4: Example

Making the Start Script

In the example shown, we have defined enough to be able to generate a system. We now have to
generate a start script off-line which will be used when the system is loaded. We evaluate:

systools:make_script("test1")

where test1 refers to the test1.rel file.

This command reads the test1.rel file and checks that all applications required for the release can be
found and that all the modules which are required can be located and have the correct version numbers.

All required application resource files and all required Erlang files must be located somewhere within
the current code path, fpath, Pathg.

If there were no errors, a start script called test1.script and a boot file called test1.boot are created.
The latter is a binary version of the former, and is used when starting the system (e.g. by issuing the
command erl -boot test1).

Changing an Application

Suppose now that we make a change to snmp which results in new versions of the modules snmp map
and snmp stuff. This is specified as follows in a new version of snmp.app:

fapplication, snmp,
[fvsn,"11"g,
fmodules,
[fsnmp table, 2g,
fsnmp map, 4g,
fsnmp stuff,6g]g,

fapplications,
[stdlib,
kernel]g,

fmod,
fsnmp stuff, [12,34]gg

]g.

Note:
We have changed the two modules snmp map and snmp stuff. Everything else remains the same.

We can now define a new release of the system in the file test2.rel as follows:

21System Application Support Libraries (SASL)

Chapter 3: The Release Structure

frelease,
f"test","6"g,
ferts, "4.4"g,
[fkernel, "2"g,
fstdlib, "6"g,
fsnmp, "11"g
]g.

As before we generate the test2.script and test2.boot file by calling

systools:make_script("test2").

So far we have version “5” and “6” of the “test” release defined in the test1.rel and test2.rel files, and
the generated script and boot files test1.script, test1.boot, test2.script, and test2.boot. In our
example two versions of the “test” release only differ in the contents of the snmp application. In order to
be able to update from version “5” to version “6” of the “test” release, we have to provide a specification
of the upgrade of the snmp application in the form of an application upgrade file snmp.appup.

The contents of the snmp.appup file is as follows:

f"11",
[f"10", [fupdate, snmp map, soft, soft purge, soft purge, []g,

fupdate, snmp stuff, soft, soft purge, soft purge, []g]g],

[f"10", [fupdate, snmp map, soft, soft purge, soft purge, []g,
fupdate, snmp stuff, soft, soft purge, soft purge, []g]g]

g.

The snmp application is upgraded by changing code for the snmp map and snmp stuff modules. It is
downgraded by changing code for the same two modules.

Since only the snmp application was changed between version “5” and version “6” of the “test” release,
no .appup files are needed for the other applications.

In order to finish the specification of the upgrade of the complete “test” release, a release upgrade file,
relup, has to be created (relup is not a file suffix; the complete name of the file is relup). The relup
file is created by evaluating:

systools:make_relup("test2", ["test1"], ["test1"]).

Here the first argument is name of the .rel file we upgrade to or downgrade from. The second and
third arguments are lists of .rel files, specifying releases to upgrade from, and downgrade to,
respectively.

A relup file contains low-level code change instructions for the whole release, based on all application
.appup files.

22 System Application Support Libraries (SASL)

3.4: Example

Making a Release Package

Next, we want to generate a release package which can be installed in the target system. After
evaluating make script/1 and make relup/3 as described above, we do it by evaluating

systools:make_tar("test2").

A release package file, named test2.tar.gz is generated. The release package file may be installed in a
target system by using the release handler. [page 25]

In this example, the release package file will contain all applications of version “6” of the “test” release,
and also a releases directory with the following contents:

$ROOTDIR/releases/test2.rel
/6/relup
/start.boot

where start.boot is a copy of the original test2.boot.

23System Application Support Libraries (SASL)

Chapter 3: The Release Structure

24 System Application Support Libraries (SASL)

Chapter 4

Release Handling

25System Application Support Libraries (SASL)

4.1 Introduction

A new release is assembled into a release package. Such a package is installed in a running system by
giving commands to the release handler, which is an SASL process. A system has a unique system
version, which is updated whenever a new release is installed. The system version is the version of the
entire system, not just the OTP version.

If the system consists of several nodes, each node has its own system version. Release handling can be
synchronized between nodes, or be done at one node at a time.

Changes may require a node to be brought down. If that is the case and the system consists of several
nodes, the release upgrade can be done as follows;

1. move all applications from the node to be changed to other nodes,

2. take down the node,

3. do the change,

4. restart the node and move the applications back.

There are several different types of releases:

Operating system change. Can only be done by taking down the node. This kind of change is not
supported by the release handler and therefore has to be performed manually. It is not possible to
roll back automatically to a previous release, if there is an error.

Application code or data change. The release is installed without bringing down the running node.
Some changes, for example change of C-programs, may be done by shutting down and restarting
the affected processes.

Erlang emulator change. Can only be made by taking down the node. However, the release handler
supports this type of change.

26 System Application Support Libraries (SASL)

4.2 Administering Releases

This section describes how to build and install releases. Also refer to the SASL Reference Manual,
release handler, for more details.

The following steps are involved in administering releases:

1. A release package is built by using release building commands in the systools module. The
package is assembled from application specification files, code files, data files, and a file, which
describes how the release is installed in the system.

2. The release package is transferred to the target machine, e.g. by using ftp.

3. The release package is unpacked, which makes the system version in the release package available
for installation by the release handler, which interprets the release upgrade script, containing
instructions for updating to the new version. If an installation fails in some way, the entire system
is restarted from the old system version.

4. When the installation is complete, the system version must be made permanent. When
permanent, the new version is used if the system restarts.

It is also possible to reinstall an old version, or reboot the system from an old version. There are
functions to remove old releases from disk as well.

27System Application Support Libraries (SASL)

4.3 File Structure

The file structure used in an OTP system is described in Release Directories [page 17]. There are two
ways of using this file structure together with the release handler.

The simplest way is to store all user-defined applications under $OTP ROOT/lib in the same way as other
OTP applications. The release handler takes care of everything, from unpacking a release to the removal
of it. The release packages should be stored in the releases directory (default $OTP ROOT/releases). This
is where release handler:unpack release/1 searches for the packages, and where the release handler
stores its files. Each package is a compressed tar file. The files in the tar file are named relative to the
$OTP ROOT directory. For example, if a new version (say 1.3) of the application snmp is contained in the
release package, the files in the tar file should be named lib/snmp-1.3/*.

The second way is to store all user-defined applications in some other place in the file system. In this
case, some more work has to be done outside the release handler. Specifically, the release packages must
be unpacked in some way and the release handler must be notified of where the new release is located.
The following three functions are available in the module release handler to handle this case:

� set unpacked/2

� set removed/1

� install file/2.

28 System Application Support Libraries (SASL)

4.4 Release Installation Files

The following files must be present when a release is installed. All file names are relative to the releases
directory.

� ReleaseFileName.rel

� Vsn/relup

� Vsn/start.boot

� Vsn/sys.config

The location of the releases directory is specified with the configuration parameter releases dir
(default $OTP ROOT/releases). In a target system, the default location is preferred, but during testing it
may be more convenient to let the release handler write its files in a user specified directory, than in the
$OTP ROOT directory.

The files listed above are either present in the release package, or generated at the target machine and
copied to their correct places using release handler:install file/2.

Vsn is the system version string.

ReleaseFileName.rel

The ReleaseFileName.rel file contains the name of the system, version of the release, the version of
erts (the Erlang runtime system) and the applications, which are parts of the release. The file must
contain the following Erlang term:

{release, {Name, Vsn}, {erts, EVsn},
[{App, AVsn} | {App, AVsn, AType} | {App, AVsn, [App]} |

{App, AVsn, AType, [App]}]}.

Name, Vsn, EVsn and AVsn are strings, App and AType are atoms. ReleaseFileName is a string given in
the call to release handler:unpack release(ReleaseFileName). Name is the name of the system
(the same as found in the boot file). This file is further described in Release Structure [page 15].

relup

The relup file contains instructions on how to install the new version in the system. It must contain
one Erlang term:

{Vsn, [{FromVsn, Descr, RuScript}], [{ToVsn, Descr, RuScript}]}.

29System Application Support Libraries (SASL)

Chapter 4: Release Handling

Vsn, FromVsn and ToVsn are strings, RuScript is a release upgrade script. Descr is a user defined
parameter, which is not processed by any release handling functions. It can be used to describe the
release to an operator. Finally, it will be returned by release handler:install release/1 and
release handler:check install release/1.

There is one tuple fFromVsn, Descr, RuScriptg for each old system version which can be upgraded
to the new version, and one tuple fToVsn, Descr, RuScriptg for each old version to which the new
version can be downgraded.

start.boot

The start.boot file is the compiled start.script file. It is used to boot the Erlang machine.

sys.config

The sys.config is the system configuration file.

30 System Application Support Libraries (SASL)

4.5 Release Handling Principles

The following sections describe the principles for updating parts of an OTP system.

Erlang Code

The code change feature in Erlang is made possible because Erlang allows two versions of a module to
be present in the system: the current version and the old version. There is always a current version of a
loaded module, but an old version of a module only exists if the module has been replaced in run-time
by loading a new version. When a new version is loaded, the previously current version becomes the old
version, and the new version becomes the current version. However, if there are both a current and old
version of a module, a new version cannot be loaded, unless the old version is first explicitly purged.

A global function call is a call where a qualified module name is used, i.e. the call is of the form M:F(A)
(or apply(M, F, A)). A global call causes M:F to be dynamically linked into the run-time code, which
means that M:F(A) will be evaluated using the latest available version of the module, i.e. the current
version.

A local function call is a call without a qualified module name, i.e. the call is of the form F(A). The
reference to F is resolved at compile time (irrespective of whether F is exported or not). By the very
nature of F(A) being a local function call, F can only be called by a function that is defined in the very
same module as that where F is defined. Hence a local function call is always evaluated in the same
version of a module as that of the caller.

A fun is a function without a name. Like ordinary functions (i.e. functions which have names) its
implementation is always bound to some module, and therefore funs are affected by code change as
well. A reference to a fun is always indirect, as is the case for a global function call, where the reference
is M:F (through an export table entry for the module), but the reference is not necessarily global. In
fact, if a fun is called in the same module where it is defined, its reference will be resolved in the same
way as a local function call is resolved. If a fun is called from a different module, its reference will be
resolved as if the call was a global call, but with the additional requirement that the reference also
match the particular implementation of the module where the fun was defined.

For each process there is a current function, i.e. the function that the process is currently evaluating.
That function resides in some module. Hence a process has always a reference to at least one module. It
may of course have references to other modules as well, because of nested, not yet finished calls.

Before a new version of a module can be loaded, the current version must be made old. If there is no
old version, the new version is merely loaded, making the previously current version to the old version,
and the new version becomes current. All processes that execute the version, which became old, will
continue to do so, until they have no unfinished calls within the old version.

If there is an old version, it must first be purged to make room for the current version to become old.
However, an old version should not be purged if there are processes that have references to it. Such
processes must either be terminated, or the loading of the new version must be postponed until they
have terminated by themselves or no longer have references to the old version. There are options for
controlling this in release upgrade scripts.

To prevent processes from making calls to other processes during the release installation, they may be
suspended. All processes implemented with the standard behaviors, or with sys, can be suspended.
When suspended a process enters a special suspend loop instead of its usual main process loop. In the
suspend loop, the process can only receive system messages and shut-down messages from its

31System Application Support Libraries (SASL)

Chapter 4: Release Handling

supervisor. The code change message is a special system message, and this message causes the process to
change code to the new version, and possibly to transform its internal state. After the code change a
process is resumed, i.e. it returns to its main loop.

We highlight here three different types of modules.

Functional module. A module, which does not contain a process loop, i.e. no process has constant
references to this kind of module. lists is an example of a functional module.

Process module. A module, which contains a process loop, i.e. some process has constant reference to
the module. init is an example of a process module.

Call-back module. A special case of a functional module which serves as a call-back module for a
generic behavior such as gen server. file is an example of a call-back module. A call to a
call-back module is always a global call (i.e. it refers to the latest version of the module). This has
some impacts upon how updates must be handled.

Modules of the above types are handled differently when changing code.

Functional Module

If the API of a new version of a functional module is backward compatible, as may be the case of a bug
fix or new functionality, we simply load the new version. After a short while, when no processes have
references to the old version, the old module is purged.

A more complicated situation arises if the API of a functional module is changed so it is not longer
backwards compatible. We must then make sure that no processes, directly or indirectly, try to call
functions that have changed. We do this by writing new versions of all modules that use the API. Then,
when performing the code change, all potential caller processes are suspended, new versions of the
modules that uses the API are loaded, the new version of the functional module is loaded, and finally all
suspended processes are resumed.

There are two alternatives available to manage this type of change:

1. Find all calls to the module, change them, and write dependencies in your release upgrade script.
This may be manageable, if a function that has been incompatibly changed is called from only a
few other functions.

2. Avoid this type of change. This is the only reasonable solution, if an incompatible function is
called from many other modules. Instead a completely new function should be introduced, and
the original function should be kept for backward compatibility. In the next release, when all
other modules are changed as well, the original function can be deleted.

Process Module

A process module should never contain global calls to itself (except for code that makes explicit code
change). Therefore, a new version of a process module is merely loaded and all processes which are
executing the module are told to change their code and, if required, to transform their internal state.

In practice, few modules are pure in the sense that they never contain global calls to themselves. If you
use higher-order functions such as lists:map/2 in a process module, there will be global calls to the
module. Therefore, we cannot merely load the module because a process might, still running the old
version of the module, make a call to the new version, which might be incompatible.

The only safe way to change code for a process module, is to have its implementation to understand
system messages, and to change code by first suspending all processes that run the module, then order
them to change code, and finally resume them.

32 System Application Support Libraries (SASL)

4.5: Release Handling Principles

Call-back Module

As long as the type of the internal state of a call-back module has not changed, we can just simply load
the new version of the module without suspending and resuming the processes involved in the code
change. This case is similar to the case of a functional module.

If the type of the internal state has changed, we must first suspend the processes, tell them to change
code and at the same time give them the possibility to transform their states, and finally resume them.
This is similar to the case of a process module.

Dependencies Between Processes

It is possible that a group of processes, which communicate, must perform code changes while they are
suspended. Some of the processes may otherwise use the old protocol while others use the new
protocol. On the other hand, there may be time-out dependencies which restrict the number of
processes that can perform a synchronized code change as one set. The more processes that are
included in the set, the longer the processes are suspended.

There may also be problems with circular dependencies. The following scenario illustrates this situation.

� two modules a and b are dependent on each other,

� each module is executed by one process with the same name as the corresponding module,

� both are updated at the same time because the internal protocol between them has changed.

The following sequence of events may occur:

1. a is suspended.

2. the release handler tries to suspend b, but some microsecond before this happens, b tries to
communicate with a which is now suspended

3. If b hangs in its call to a, the suspension of b fails and only a is updated.

4. If b notices that a does not answer and is able to deal with it, then b receives the suspend message
and is suspended. Then both modules are updated and the processes are resumed.

5. When a resumes, there is a message waiting from b. This message may be of an old format which
a does not recognize.

Situations of the type described, and many others, are highly application dependent. The author of the
release upgrade script has to predict and avoid them. If the consequences are too difficult to manage, it
may be better to entirely shut down and restart all affected processes. This reduces the problem of
introducing new code and removes the need to do a synchronized change.

Finding Processes

For each application the .appup file specifies how the application is upgraded. The file contains
specifications of which modules to change, and how to change them. The relup file is an assembly of
all the .appup files.

For each application the release handler searches for all processes that have to perform a code change. It
traverses the application supervision tree to find all child specifications of every supervisor in the tree.
Each child specification lists all modules of the application that the child uses.

Hence it is by combining the list of modules to change with all children of supervisors that the release
handler finds all processes that are subject to code change.

33System Application Support Libraries (SASL)

Chapter 4: Release Handling

Port Programs

A port program runs as an external program in the operating system. The simplest way to do code
change for a port program is to terminate it, and then start a new version of it.

If that is not adequate, code change may be performed by sending the port program a message telling it
to return any data that must survive the termination. Then the program is terminated, and the new
version is started and the survived data is to the new version of the port program.

Changing code for port programs is very application dependent. There is no special support for it in
SASL.

Application Specification and Configuration Parameters

In each release, each application specification (i.e. the contents of the .app file of the application) is
known to the release handler. Before any code change is performed for an application, the new
environment variables are are made available for the application, i.e. those parameters specified by the
env tag in the application specification. When the new version of an application is running it will be
informed of any changed, new or removed environment variables (see application(Module) in the
KERNEL Reference Manual). This means that old processes may read new variables before they are
informed of the new release. We advise against the immediate removal of the old variables. Neither do
we recommend that they be syntactically changed, although they may of course change their values.
They can be safely removed in the next release, by which time it is known that no processes will read
the old variables.

Mnesia Data or Schema Changes

Changing data or schemas in Mnesia is similar to changing code for functional modules. Many processes
may read or write in the same table at the same time. If we change a table definition, we must make
sure that all code which uses the table is changed at the same time.

One way of doing it is to let one process be responsible for one or several tables. This process creates
the tables and changes the table definitions or table data. In this way a set of tables is connected with a
module (process module or call-back module). When the process performs a code change, the tables
are changed as well.

Upgrade vs. Downgrade

When a new release is installed, the system is upgraded to the new release. The release handler reads
the relup file of the new release, and finds the upgrade script that corresponds to an upgrade from the
current version to the new version of the system.

When an old release is reinstalled, the release handler reads the relup in the current release, and finds
the downgrade script that corresponds to an downgrade from the current version to the old version of
the system.

Usually a relup file for a new release contains one upgrade script and one downgrade script for each old
version. If a soft downgrade is not wanted (an alternative is to reboot the system from the old release)
the downgrade script is left out.

34 System Application Support Libraries (SASL)

4.5: Release Handling Principles

For each modified module in the new release, there are some instructions that specifies how to install
that module in a system. When performing an upgrade, the following steps are typically involved:

1. Suspend the processes running the module.

2. Load the new code.

3. Tell the processes to switch to new code.

4. Tell the processes to change the internal state. This usually involves calling, in the new module, a
code change function that is responsible for state updates, e.g. transforming the state from the
old format to the new.

5. Resume the processes.

The code change step is always performed when new code has been loaded and all processes are
running the new code. The reason for this is that it is always the new version of the module that knows
how to change the state from the old version.

When performing a downgrade the situation is different. The old module does not know how to
transform the new state to the old version: the new format is unknown to the old code. Therefore, it is
the responsibility of new code to revert the state back to the old version during downgrade. The
following steps are involved:

1. Suspend the processes running the module.

2. Tell the processes to change the internal state. This usually involves calling, in the current module,
a code change function that is responsible for state reversals, i.e. transforming the state from the
current format to the old.

3. Load the new code.

4. Tell the processes to switch code.

5. Resume the processes.

We note that for a process module, it is possible to load the code before a process change its internal
state (since a process module never contains global calls to itself), thus making the steps needed for
downgrade almost the same as for upgrade. The difference between the two cases is still in the order of
switching code and changing state.

For a call-back module it is not actually necessary to tell the processes to switch code, since all calls to
the call-back module are global calls. The difference between upgrade and downgrade is still in the
order of loading code and performing state change.

The difference between how process modules and a call-back modules are handled in the downgrade
case comes from the fact that a process module never contains global calls to itself. The code is thus
static in the sense that a process executing a process module does not spontaneously switch to new
loaded code. The opposite situation is a dynamic module, where a process executing the module
spontaneously switches to the new code when it is loaded. A call-back module is always dynamic, and a
process module static. A functional module is always dynamic.

35System Application Support Libraries (SASL)

4.6 Release Handling Instructions

This section describes the release upgrade and downgrade scripts. A script is a list of instructions which
are interpreted by the release handler when an upgrade or downgrade is made.

There are two levels of instructions; the high-level instructions and the low-level instructions. High-
and low-level instructions may be mixed in one script. However, the high-level instructions are
translated to low-level instructions by the systools:make relup/3 command, because the release
handler understands only low-level instructions.

Scripts have to be placed in the .appup file for each application. systools:make relup/3 assembles
the scripts in all .appup files to form a relup file containing low-level instructions.

High-level Instructions

The high-level instructions are:

� fupdate, Module, Change, PrePurge, PostPurge, [Mod]g | fupdate, Module, Timeout,
Change, PrePurge, PostPurge,[Mod]g | fupdate, Module, ModType, Timeout, Change,
PrePurge, PostPurge,[Mod]g

– Module = atom()

– Timeout = default | infinity | int() > 0

– ModType = static | dynamic

– Change = soft | fadvanced, Extrag

– PrePurge = soft purge | brutal purge

– PostPurge = soft purge | brutal purge

– Mod = atom(). If the module is dependent on changes in other modules, these other
modules are listed here.

The instruction is used to update a process module or a call-back module. All processes that run
the code of Module are suspended, and if the change is advanced they have to transform their
states into the new states. Then the processes are resumed. If Module is dependent on other
modules, the release handler will suspend processes in Module before suspending processes in the
[Mod] modules. In case of circular dependencies, it will suspend processes in the order that
update instructions appear in the script.
soft means backwards compatible changes and advanced means internal data changes, or changes
which are not backwards compatible. Extra is any term, which is used in the argument list of the
code change function in Module (call-back module); otherwise it becomes part of a code change
message (process module).
The optional parameter Timeout defines the time-out for the call to sys:suspend. It specifies
how long to wait for a process to handle a suspend message and to get suspended. If no value is
specified (or default is given), the default value defined in sys is used.
The optional parameter ModType specifies if the code is static or dynamic, as defined in Upgrade
vs. Downgrade [page 34] above. It needs to be specified only in the case of soft downgrades. Its
value defaults to dynamic. Note; if this parameter is specified, Timeout is needed as well.
PrePurge controls what action to take with processes that are executing an old version of this
module. These are processes, which are left since an earlier release upgrade (or downgrade).

36 System Application Support Libraries (SASL)

4.6: Release Handling Instructions

Usually there are no such processes. If the value is soft purge and such processes are found, the
release will not be installed and the install release/1 function returns ferror,
fold processes, Modulegg. If the value is brutal purge, the processes which run old code are
killed.
PostPurge controls what action to take with processes that are executing old code when the new
module has been installed. If the value is soft purge, the release handler will purge the old code
when no remaining processes execute the code. If the value is brutal purge, the code is purged
when the release is made permanent. All processes, which still are running old code are killed.
The update instruction can also be used for functional modules. However, no processes will be
suspended because no processes will have the functional module as its main module. Therefore,
no processes perform code change.

� fload module, Module, PrePurge, PostPurge, [Mod]g

– Module = atom().

– PrePurge = soft purge | brutal purge

– PostPurge = soft purge | brutal purge

– Mod = atom(). If the module is dependent on changes in other modules, these other
modules are listed here.

The instruction is used to update a functional module or a call-back module. It only loads the
module. A call-back module which must perform a code change, or synchronize by being
suspended, should use update instead.
The object code is fetched in the beginning of the release upgrade, but the module is loaded when
this instruction occurs.

� fadd module, Modg The instruction adds a new module to the system. It loads the module.

� fremove application, Applg Removes an application. It calls application:stop and
application:unload for the application.

� fadd application, Applg Adds a new application. It calls application:load and
application:start for the application.

� frestart application, Applg Restarts an existing application. The current version of the
application is stopped and removed, and the new version of the application is loaded and started.
The instruction is useful when the simplest way to change code for an application is to stop and
restart the whole application.

Low-level instructions

The low-level instructions are:

� fload object code, fLib, LibVsn, [Module]gg Reads each Module from the library
Lib-LibVsn as a binary. It does not install the code, it just reads the files. The instruction should
be placed first in the script in order to read all new code from file. This makes the
suspend-load-resume cycle less time consuming. After this instruction has been executed, the
code server is updated with the new version of Lib. Calls to code:priv dir(Lib) which are
made after this instruction return the new priv dir.
Lib is typically the application name.

� point of no return If a crash occurs after this instruction, the system cannot recover and is
restarted from the old version. The instruction must only occur once in a script. It should be
placed after all load object code operations and after user defined checks, which are performed
with apply. The function check install release/1 tries to evaluate all instructions before this

37System Application Support Libraries (SASL)

Chapter 4: Release Handling

command occurs in the script. Therefore, user defined checks must not have side effects, as they
may be evaluated many times.

� fload, fModule, PrePurge, PostPurgegg Before this instruction occurs, the Module object
code must have been loaded with with the load object code instruction. This instruction makes
code out of the binary. PrePurge = soft purge | brutal purge, and PostPurge =
soft purge | brutal purge.

� fremove, fModule, PrePurge, PostPurgegg Makes the current version of Module old. When it
has been executed, there is no current version in the system. PrePurge = soft purge |
brutal purge, and PostPurge = soft purge | brutal purge.

� fpurge, [Module]g Kills all processes that run the old versions of the modules in [Module] and
deletes all old versions.

� fsuspend, [Module | fModule, Timeoutg]g Tries to suspend all processes that execute
Module. If a process does not respond, it is ignored. This may cause the process to die, either
because it crashes when it spontaneously switches to new code, or as a result of a purge operation.
If no Timeout is specified (or if default is given), the default time-out defined in the module sys
is used.

� fcode change, [fModule, Extrag]g | fcode change, Mode, [fModule, Extrag]g This
instruction sends a code change system message using the function change code in the module
sys with the Extra argument to the suspended processes that run this code. Mode is either up or
down. Default is up. In case of an upgrade, the message is sent to the suspended process, after the
new code is loaded (the new version must contain functions to convert from the old internal state,
to the the new internal state). In case of a downgrade, the message is sent to the suspended
process, before the new code is loaded (the current version must contain functions to convert from
the current internal state, to the the old internal state).
Module uses the Extra argument internally in its code change function. Refer to the Reference
Manual, module sys for further details.
One of the arguments to the function sys:change code is OldVsn. In the case of an upgrade it
obtains its value from the attribute vsn in the old code, or undefined if no such attribute was
defined. In the case of downgrade, it is the tuple fdown, Vsng, where Vsn is the version of the
module as defined in the .app file, or undefined otherwise.

� fresume, [Module]g Resumes all previously suspended processes which execute in any of the
modules in the list [Module].

� fstop, [Module]g Stops all processes which are in any of the modules in the list [Module]. The
instruction is useful when the simplest way to change code for the [Module] is to stop and restart
the processes which run the code. If a supervisor is stopped, all its children are stopped as well.

� fstart, [Module]g Starts all previously stopped processes which are in any member of
[Module]. The processes will regain their positions in the supervision tree.

� fsync nodes, Id, [Node] | fM, F, Agg If fM, F, Ag is specified, apply(M, F, A) is
evaluated and must return a list of nodes. The instruction synchronizes the release installation
with other nodes. Each node in the list of nodes must evaluate this command, with the same Id.
The local node waits for all other nodes to evaluate the instruction before execution continues. In
case a node goes down, it is considered to be an unrecoverable error, and the local node is
restarted from the old release. There is no time-out for this instruction, which implies that it may
hang forever if a user defined apply enters an infinite loop at some node. It is up to the user to
ensure that the apply command eventually returns or makes the node to crash.

� fapply, fM, F, Agg Applies the function to the arguments. If the instruction appears before the
point of no return instruction, a failure of the application M:F(A) is caught, causing
release handler:install release/1 to return ferror, f’EXIT’, Reasongg. If ferror,
Errorg is thrown or returned by M:F, install release/1 returns ferror, Errorg.

38 System Application Support Libraries (SASL)

4.6: Release Handling Instructions

If the instruction appears after the point of no return instruction, and if the application M:F(A)
fails, the system is restarted.

� restart new emulator Shuts down the current emulator and starts a new one. All processes are
terminated gracefully. The new release must still be made permanent when the new emulator is
up and running. Otherwise, the old emulator is started in case of a emulator restart. This
instruction should be used when a new emulator is introduced, or if a complete reboot of the
system should be done.

39System Application Support Libraries (SASL)

4.7 Release Handling Examples

This section includes several examples that show how different types of upgrades are handled. In
call-back modules having the gen server behavior, all call-back functions have been provided for
reasons of clarity.

Update of Erlang Code

Several update examples are shown. Unless otherwise stated, it is assumed that all original modules are
in the application foo, version "1.1", and the updated version is "1.2".

Simple Functional Module

This example is about a pure functional module, i.e. a module the functions of which have no side
effects. The original version of the module lists2 has the following contents:

-module(lists2).
-vsn(1).

-export([assoc/2]).

assoc(Key, [{Key, Val} | _]) -> {ok, Val};
assoc(Key, [H | T]) -> assoc(Key, T);
assoc(Key, []) -> false.

The new version of the module adds a new function:

-module(lists2).
-vsn(2).

-export([assoc/2, multi_map/2]).

assoc(Key, [{Key, Val} | _]) -> {ok, Val};
assoc(Key, [H | T]) -> assoc(Key, T);
assoc(Key, []) -> false.

multi_map(Func, [[] | ListOfLists]) -> [];
multi_map(Func, ListOfLists) ->

[apply(Func, lists:map({erlang, hd}, ListOfLists)) |
multi_map(Func, lists:map({erlang, tl}, ListOfLists))].

The release upgrade instructions are:

[{load_module, lists2, soft_purge, soft_purge, []}]

Alternatively, the low-level instructions are:

40 System Application Support Libraries (SASL)

4.7: Release Handling Examples

[{load_object_code, {foo, "1.2", [lists2]}},
point_of_no_return,
{load, {lists2, soft_purge, soft_purge}}]

A More Complicated Functional Module

Here we have a functional module bar that uses the module lists2 of the previous example. The
original version is only dependent on the original version of lists2.

-module(bar).
-vsn(1).

-export([simple/1, complicated_sum/1]).

simple(X) ->
case lists2:assoc(simple, X) of

{ok, Val} -> Val;
false -> false

end.

complicated_sum([X, Y, Z]) -> cs(X, Y, Z).

cs([HX | TX], [HY | TY], [HZ | TZ]) ->
NewRes = cs(TX, TY, TZ),
[HX + HY + HZ | NewRes];

cs([], [], []) -> [].

The new version of bar uses the new functionality of lists2 in order to simplify the implementation of
the useful function complicated sum/1. It does not change its API in any way.

-module(bar).
-vsn(2).

-export([simple/1, complicated_sum/1]).

simple(X) ->
case lists2:assoc(simple, X) of

{ok, Val} -> Val;
false -> false

end.

complicated_sum(X) ->
lists2:multi_map(fun(A,B,C) -> A+B+C end, X).

The release upgrade instructions, including instructions for lists2, are as follows:

[{load_module, lists2, soft_purge, soft_purge, []},
{load_module, bar, soft_purge, soft_purge, [lists2]}]

41System Application Support Libraries (SASL)

Chapter 4: Release Handling

Note:
We must state that bar is dependent on lists2 to make the release handler to load lists2 before it
loads bar.

The low-level instructions are:

[{load_object_code, {foo, "1.2", [lists2, bar]}},
point_of_no_return,
{load, {lists2, soft_purge, soft_purge}}
{load, {bar, soft_purge, soft_purge}}]

Advanced Functional Module

Suppose now that we modify the return value of lists2:assoc/2 from fok, Valg to fKey, Valg. In
order to do an upgrade, we would have to find all modules that call lists2:assoc/2 directly or
indirectly, and specify that these modules are dependent on lists2. In practice this might an unweildy
task, if if many other modules are using the lists2 module, and the only reasonable way to perform an
upgrade which restarts the whole system.

If we insist on doing a soft upgrade, the modification should be made backward compatible by
introducing an new function (assoc2/2, say) that has the new return value, and not make any changes
to the original function at all.

Advanced gen server

This example assumes that we have a gen server process that must be updated because we have
introduced a new function, and added a new data field in our internal state. The contents of the original
module are as follows:

-module(gs1).
-vsn(1).
-behaviour(gen_server).

-export([get_data/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

-record(state, {data}).

get_data() ->
gen_server:call(gs1, get_data).

init([Data]) ->
{ok, #state{data = Data}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State}.

handle_cast(_Request, State) ->
{noreply, State}.

42 System Application Support Libraries (SASL)

4.7: Release Handling Examples

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(_OldVsn, State, _Extra) ->
{ok, State}.

The new module must translate the old state into the new state. Recall that a record is just syntactic
sugar for a tuple:

-module(gs1).
-vsn(2).
-behaviour(gen_server).

-export([get_data/0, get_time/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

-record(state, {data, time}).

get_data() ->
gen_server:call(gs1, get_data).

get_time() ->
gen_server:call(gs1, get_time).

init([Data]) ->
{ok, #state{data = Data, time = erlang:time()}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State};

handle_call(get_time, _From, State) ->
{reply, {ok, State#state.time}, State}.

handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(1, {state, Data}, _Extra) ->
{ok, #state{data = Data, time = erlang:time()}}.

The release upgrade instructions are as follows:

[{update, gs1, {advanced, []}, soft_purge, soft_purge, []}]

The alternative low-level instructions are:

43System Application Support Libraries (SASL)

Chapter 4: Release Handling

[{load_object_code, {foo, "1.2", [gs1]}},
point_of_no_return,
{suspend, [gs1]},
{load, {gs1, soft_purge, soft_purge}},
{code_change, [{gs1, []}]},
{resume, [gs1]}]

If we want to handle soft downgrade as well, the code would be as follows:

-module(gs1).
-vsn(2).
-behaviour(gen_server).

-export([get_data/0, get_time/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

-record(state, {data, time}).

get_data() ->
gen_server:call(gs1, get_data).

get_time() ->
gen_server:call(gs1, get_time).

init([Data]) ->
{ok, #state{data = Data, time = erlang:time()}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State};

handle_call(get_time, _From, State) ->
{reply, {ok, State#state.time}, State}.

handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(1, {state, Data}, _Extra) ->
{ok, #state{data = Data, time = erlang:time()}};

code_change({down, 1}, #state{data = Data}, _Extra) ->
{ok, {state, Data}}.

Note that we take care of translating the new state to the old format as well. The low-level instructions
are:

[{load_object_code, {foo, "1.2", [gs1]}},
point_of_no_return,
{suspend, [gs1]},

44 System Application Support Libraries (SASL)

4.7: Release Handling Examples

{code_change, [{gs1, []}]},
{load, {gs1, soft_purge, soft_purge}},
{resume, [gs1]}]

Advanced gen server with Dependencies

This example assumes that we have gen server process that uses the in gs1 as defined in the previous
example.

The contents of the original module are as follows:

-module(gs2).
-vsn(1).
-behaviour(gen_server).

-export([is_operation_ok/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

is_operation_ok(Op) ->
gen_server:call(gs2, {is_operation_ok, Op}).

init([Data]) ->
{ok, []}.

handle_call({is_operation_ok, Op}, _From, State) ->
Data = gs1:get_data(),
Reply = lists2:assoc(Op, Data),
{reply, Reply, State}.

handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(_OldVsn, State, _Extra) ->
{ok, State}.

The new version does not have to transform the internal state, hence the code change/3 function is not
really needed (it will not be called since the upgrade of gs2 is soft).

-module(gs2).
-vsn(2).
-behaviour(gen_server).

-export([is_operation_ok/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

45System Application Support Libraries (SASL)

Chapter 4: Release Handling

is_operation_ok(Op) ->
gen_server:call(gs2, {is_operation_ok, Op}).

init([Data]) ->
{ok, []}.

handle_call({is_operation_ok, Op}, _From, State) ->
Data = gs1:get_data(),
Time = gs1:get_time(),
Reply = do_things(lists2:assoc(Op, Data), Time),
{reply, Reply, State}.

handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(_OldVsn, State, _Extra) ->
{ok, State}.

do_things({ok, Val}, Time) ->
Val;

do_things(false, Time) ->
{false, Time}.

The release upgrade instructions are:

[{update, gs1, {advanced, []}, soft_purge, soft_purge, []},
{update, gs2, soft, soft_purge, soft_purge, [gs1]},

The corresponding low-level instructions are:

[{load_object_code, {foo, "1.2", [gs1, gs2]}},
point_of_no_return,
{suspend, [gs1, gs2]},
{load, {gs1, soft_purge, soft_purge}},
{load, {gs2, soft_purge, soft_purge}},
{code_change, [{gs1, []}]}, % No gs2 here!
{resume, [gs1, gs2]}]

Other Worker Processes

All other worker processes in a supervision tree, such as processes of the types gen event, gen fsm, and
processes implemented by using proc lib and sys, are handled in exactly the same way as processes of
type gen server are handled. Examples follow.

46 System Application Support Libraries (SASL)

4.7: Release Handling Examples

Simple gen event

This example shows how an event handler may be updated. We do not make any assumptions about
which event manager processes the handler is installed in, it is the responsibility of the release handler
to find them. The contents of the original module is as follows:

-module(ge_h).
-vsn(1).
-behaviour(gen_event).

-export([get_events/1]).
-export([init/1, handle_event/2, handle_call/2, handle_info/2,

terminate/2, code_change/3]).

get_events(Mgr) ->
gen_event:call(Mgr, ge_h, get_events).

init(_) -> {ok, undefined}.

handle_event(Event, _LastEvent) ->
{ok, Event}.

handle_call(get_events, LastEvent) ->
{ok, [LastEvent], LastEvent}.

handle_info(Info, LastEvent) ->
{ok, LastEvent}.

terminate(Arg, LastEvent) ->
ok.

code_change(_OldVsn, LastEvent, _Extra) ->
{ok, LastEvent}.

The new module decides to keep the two latest events in a list and must translate the old state into the
new state.

-module(ge_h).
-vsn(2).
-behaviour(gen_event).

-export([get_events/1]).
-export([init/1, handle_event/2, handle_call/2, handle_info/2,

terminate/2, code_change/3]).

get_events(Mgr) ->
gen_event:call(Mgr, ge_h, get_events).

init(_) -> {ok, []}.

handle_event(Event, []) ->
{ok, [Event]};

handle_event(Event, [Event1 | _]) ->

47System Application Support Libraries (SASL)

Chapter 4: Release Handling

{ok, [Event, Event1]}.

handle_call(get_events, Events) ->
Events.

handle_info(Info, Events) ->
{ok, Events}.

terminate(Arg, Events) ->
ok.

code_change(1, undefined, _Extra) ->
{ok, []};

code_change(1, LastEvent, _Extra) ->
{ok, [LastEvent]}.

The release upgrade instructions are:

[{update, ge_h, {advanced, []}, soft_purge, soft_purge, []}]

The low-level instructions are:

[{load_object_code, {foo, "1.2", [ge_h]}},
point_of_no_return,
{suspend, [ge_h]},
{load, {ge_h, soft_purge, soft_purge}},
{code_change, [{ge_h, []}]},
{resume, [ge_h]}]

Note:
These instructions are identical to those used for the gen server.

Process Implemented with sys and proc lib

Processes implemented with sys and proc lib are changed in the same way as processes that are
implemented according to the gen server behavior (which should not come as surprise, since
gen server et al. are implemented on top of sys and proc lib). However, the code change function is
defined differently. The original is as follows:

-module(sp).
-vsn(1).

-export([start/0, get_data/0]).
-export([init/1, system_continue/3, system_terminate/4]).

-record(state, {data}).

start() ->
Pid = proc_lib:spawn_link(?MODULE, init, [self()]),

48 System Application Support Libraries (SASL)

4.7: Release Handling Examples

{ok, Pid}.

get_data() ->
sp_server ! {self(), get_data},
receive

{sp_server, Data} -> Data
end.

init(Parent) ->
register(sp_server, self()),
process_flag(trap_exit, true),
loop(#state{}, Parent).

loop(State, Parent) ->
receive

{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent, ?MODULE, [], State);

{’EXIT’, Parent, Reason} ->
cleanup(State),
exit(Reason);

{From, get_data} ->
From ! {sp_server, State#state.data},
loop(State, Parent);

_Any ->
loop(State, Parent)

end.

cleanup(State) -> ok.

%% Here are the sys call back functions
system_continue(Parent, _, State) ->

loop(State, Parent).

system_terminate(Reason, Parent, _, State) ->
cleanup(State),
exit(Reason).

The new code, which takes care of up- and downgrade is as follows:

-module(sp).
-vsn(2).

-export([start/0, get_data/0, set_data/1]).
-export([init/1, system_continue/3, system_terminate/4,

system_code_change/4]).

-record(state, {data, last_pid}).

start() ->
Pid = proc_lib:spawn_link(?MODULE, init, [self()]),
{ok, Pid}.

get_data() ->

49System Application Support Libraries (SASL)

Chapter 4: Release Handling

sp_server ! {self(), get_data},
receive

{sp_server, Data} -> Data
end.

set_data(Data) ->
sp_server ! {self(), set_data, Data}.

init(Parent) ->
register(sp_server, self()),
process_flag(trap_exit, true),
loop(#state{last_pid = no_one}, Parent).

loop(State, Parent) ->
receive

{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent,

?MODULE, [], State);
{’EXIT’, Parent, Reason} ->

cleanup(State),
exit(Reason);

{From, get_data} ->
From ! {sp_server, State#state.data},
loop(State, Parent);

{From, set_data, Data} ->
loop(State#state{data = Data, last_pid = From}, Parent);

_Any ->
loop(State, Parent)

end.

cleanup(State) -> ok.

%% Here are the sys call back functions
system_continue(Parent, _, State) ->

loop(State, Parent).

system_terminate(Reason, Parent, _, State) ->
cleanup(State),
exit(Reason).

system_code_change({state, Data}, _Mod, 1, _Extra) ->
{ok, #state{data = Data, last_pid = no_one}};

system_code_change(#state{data = Data}, _Mod, {down, 1}, _Extra) ->
{ok, {state, Data}}.

The release upgrade instructions are:

[{update, sp, static, default, {advanced, []}, soft_purge, soft_purge, []}]

The low-level instructions are the same for upgrade and downgrade:

[{load_object_code, {foo, "1.2", [sp]}},

50 System Application Support Libraries (SASL)

4.7: Release Handling Examples

point_of_no_return,
{suspend, [sp]},
{load, {sp, soft_purge, soft_purge}},
{code_change, [{sp, []}]},
{resume, [sp]}]

Supervisor

This example assumes that a new version of an application adds a new process, and deletes one process
from a supervisor. The original code is as follows:

-module(sup).
-vsn(1).
-behaviour(supervisor).
-export([init/1]).

init([]) ->
SupFlags = {one_for_one, 4, 3600},
Server = {my_server, {my_server, start_link, []},

permanent, 2000, worker, [my_server]},
GS1 = {gs1, {gs1, start_link, []}, permanent, 2000, worker, [gs1]},
{ok, {SupFlags, [Server, GS1]}}.

The new code is as follows:

-module(sup).
-vsn(2).
-behaviour(supervisor).
-export([init/1]).

init([]) ->
SupFlags = {one_for_one, 4, 3600},
GS1 = {gs1, {gs1, start_link, []}, permanent, 2000, worker, [gs1]},
GS2 = {gs2, {gs2, start_link, []}, permanent, 2000, worker, [gs2]},
{ok, {SupFlags, [GS1, GS2]}}.

The release upgrade instructions are:

[{update, sup, {advanced, []}, soft_purge, soft_purge, []}
{apply, {supervisor, terminate_child, [sup, my_server]}},
{apply, {supervisor, delete_child, [sup, my_server]}},
{apply, {supervisor, restart_child, [sup, gs2]}}]

The low-level instructions are:

[{load_object_code, {foo, "1.2", [sup]}},
point_of_no_return,
{suspend, [sup]},
{load, {sup, soft_purge, soft_purge}},
{code_change, [{sup, []}]},
{resume, [sup]},
{apply, {supervisor, terminate_child, [sup, my_server]}},
{apply, {supervisor, delete_child, [sup, my_server]}},
{apply, {supervisor, restart_child, [sup, gs2]}}]

51System Application Support Libraries (SASL)

Chapter 4: Release Handling

High-level update instruction for a supervisor is mapped to a low-level advanced code change
instruction. In the code change function of the supervisor, the new child specification is installed, but
no children are explicitly terminated or started. Therefore, children must be terminated, deleted and
started by using the apply instruction.

Complex Dependencies

As already mentioned, sometimes the simplest and safest way to introduce a new release is to terminate
parts of the system, load the new code, and restart that part. However, individual processes cannot
simply be killed, since their supervisors will restart them again. Instead supervisors must first be ordered
to stop their children before now code can be loaded. Then supervisors are ordered to restart their
children. All this is done by issuing the stop and start instructions.

The following example assumes that we have a supervisor a with two children b and c, where b is a
worker and c is a supervisor for d. We want to restart all processes except for a. The upgrade
instructions are as follows:

[{load_object_code, {foo, "1.2", [b,c,d]}},
point_of_no_return,
{stop, [b, c]},
{load, {b, soft_purge, soft_purge}},
{load, {c, soft_purge, soft_purge}},
{load, {d, soft_purge, soft_purge}},
{start, [b, c]}]

Note:
We do not need to explicitly stop d, this is done by the supervisor c.

A whole application cannot be stopped and started with the stop and start instructions. The
instruction restart application has to be used instead.

New Application

The examples shown so far have dealt with changing an existing application. In order to introduce a
completely new application we just have to have an add application instruction, but we also have to
make sure that the boot file of the new release contains enough in order to start it. The following
example shows how to to introduce the application new appl, which has just one module: new mod.

The release upgrade instructions are:

[{add_application, new_appl}]

The corresponding low-level instructions are as follows (note that the application specification is used as
argument to application:start application/1):

52 System Application Support Libraries (SASL)

4.7: Release Handling Examples

[{load_object_code, {new_appl, "1.0", [new_mod]}},
point_of_no_return,
{load, {new_mod, soft_purge, soft_purge}},
{apply, {application, start,

[{application, new_appl,
[{description, "NEW APPL"},
{vsn, "1.0"},
{modules, [new_mod]},
{registered, []},
{applications, [kernel, foo]},
{env, []},
{mod, {new_mod, start_link, []}}]},

permanent]}}].

Remove an Application

An application is removed in the same way as new applications are introduced. This example assumes
that we want to remove the new appl application:

[{remove_application, new_appl}]

The corresponding low level instructions are:

[point_of_no_return,
{apply, {application, stop, [new_appl]}},
{remove, {new_mod, soft_purge, soft_purge}}].

Update of Port Programs

Each port program is controlled by a Erlang process called the port controller. A port program is updated
by the port controller process. It is always done by terminating the old port program, and starting the
new one.

Port Controller

In this example we have a port controller process, where we must take care of the termination and
restart of the port program ourselves. Also, we may prepare for the possibility of changing the Erlang
code of the port controller only. The gen server behavior is used to implement the port controller.
The contents of the original module is as follows.

-module(portc).
-vsn(1).
-behaviour(gen_server).

-export([get_data/0]).
-export([init/1, handle_call/3, handle_info/2, code_change/3]).

-record(state, {port, data}).

get_data() -> gen_server:call(portc, get_data).

53System Application Support Libraries (SASL)

Chapter 4: Release Handling

init([]) ->
PortProg = code:priv_dir(foo) ++ "/bin/portc",
Port = open_port({spawn, PortProg}, [binary, {packet, 2}]),
{ok, #state{port = Port}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State}.

handle_info({Port, Cmd}, State) ->
NewState = do_cmd(Cmd, State),
{noreply, NewState}.

code_change(_, State, change_port_only) ->
State#state.port ! close,
receive

{Port, closed} -> true
end,
NPortProg = code:priv_dir(foo) ++ "/bin/portc", % get new version
NPort = open_port({spawn, NPortProg}, [binary, {packet, 2}]),
{ok, State#state{port = NPort}}.

To change the port program without changing the Erlang code, we can use the following code:

[point_of_no_return,
{suspend, [portc]},
{code_change, [{portc, change_port_only}]},
{resume, [portc]}]

Here we used low-level instructions only. In this example we also make use of the Extra argument of
the code change/3 function.

Suppose now that we wish to change only the Erlang code. The new version of portc is as follows:

-module(portc).
-vsn(2).
-behaviour(gen_server).

-export([get_data/0]).
-export([init/1, handle_call/3, handle_info/2, code_change/3]).

-record(state, {port, data}).

get_data() -> gen_server:call(portc, get_data).

init([]) ->
PortProg = code:priv_dir(foo) ++ "/bin/portc",
Port = open_port({spawn, PortProg}, [binary, {packet, 2}]),
{ok, #state{port = Port}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State}.

54 System Application Support Libraries (SASL)

handle_info({Port, Cmd}, State) ->
NewState = do_cmd(Cmd, State),
{noreply, NewState}.

code_change(_, State, change_port_only) ->
State#state.port ! close,
receive

{Port, closed} -> true
end,
NPortProg = code:priv_dir(foo) ++ "/bin/portc", % get new version
NPort = open_port({spawn, NPortProg}, [binary, {packet, 2}]),
{ok, State#state{port = NPort}};

code_change(1, State, change_erl_only) ->
NState = transform_state(State),
{ok, NState}.

The high-level instruction is:

[{update, portc, {advanced, change_erl_only}, soft_purge, soft_purge, []}]

The corresponding low-level instructions are:

[{load_object_code, {portc, 2, [portc]}},
point_of_no_return,
{suspend, [portc]},
{load, {portc, soft_purge, soft_purge}},
{code_change, [{portc, change_erl_only}]},
{resume, [portc]}]

55System Application Support Libraries (SASL)

56 System Application Support Libraries (SASL)

SASL Reference Manual

Short Summaries

� Application sasl [page 61] – The SASL Application

� Erlang Module alarm handler [page 64] – An Alarm Handling Process

� Erlang Module overload [page 66] – An Overload Regulation Process

� Erlang Module rb [page 68] – The Report Browser Tool

� Erlang Module release handler [page 70] – A process to Unpack and Install
Releases

� Erlang Module systools [page 75] – A Set of script Generators.

� File appup [page 81] – Application upgrade file

� File rel [page 82] – Release resource file

� File relup [page 84] – Release upgrade file

� File script [page 86] – Boot script

sasl

No functions are exported.

alarm handler

The following functions are exported:

� clear alarm(AlarmId) -> void()
[page 64] Clears the specified alarms

� get alarms() -> [alarm()]
[page 64] Gets all active alarms

� set alarm(alarm())
[page 64]

57System Application Support Libraries (SASL)

SASL Reference Manual

overload

The following functions are exported:

� request() -> accept | reject
[page 67] Requests to proceed with current job

� get overload info() -> OverloadInfo
[page 67] Returns current overload information data

rb

The following functions are exported:

� grep(RegExp)
[page 68] Searches the reports for a regular expression

� h()
[page 68] Prints help information

� help()
[page 68] Prints help information

� list()
[page 68] Lists all reports

� list(Type)
[page 68] Lists all reports

� rescan()
[page 68] Rescans the report directory

� rescan(Options)
[page 68] Rescans the report directory

� show()
[page 68] Shows reports

� show(Report)
[page 68] Shows reports

� start()
[page 69] Starts the RB server

� start(Options)
[page 69] Starts the RB server

� start log(FileName)
[page 69] Redirects all output to FileName

� stop()
[page 69] Stops the RB server

� stop log()
[page 69] Stops logging to file

58 System Application Support Libraries (SASL)

SASL Reference Manual

release handler

The following functions are exported:

� check install release(Vsn) -> fok, FromVsn, Descrg | ferror, Reasong
[page 71] Checks installation of the release in the system

� create RELEASES(Root, RelDir, RelFile, LibDirs) -> ok | ferror,
Reasong
[page 72] Creates an initial RELEASES file

� install file(Vsn, FileName) -> ok | ferror, Reasong
[page 72] Installs a release file in the release handler

� install release(Vsn) -> fok, FromVsn, Descrg | ferror, Reasong
[page 72] Installs the release in the system

� install release(Vsn, Opt) -> fok, FromVsn, Descrg | ferror, Reasong
[page 72] Installs the release in the system

� make permanent(Vsn) -> ok | ferror, Reasong
[page 73] Makes the specified release to be used at system start-up

� remove release(Vsn) -> ok | ferror, Reasong
[page 73] Deletes all files unique for this release

� reboot old release(Vsn) -> ok | ferror, Reasong
[page 73] Reboots the system from an old release

� set removed(Vsn) -> ok | ferror, Reasong
[page 73] Marks a release as removed

� set unpacked(RelFile, LibDirs) -> fok, Vsng | ferror, Reasong
[page 73] Marks a release as unpacked

� unpack release(ReleaseName) -> fok, Vsng | ferror, Reasong
[page 74] Unpacks and extracts files from the release package

� which releases() -> [fName, Vsn, [Lib], Statusg]
[page 74] Returns all known releases

systools

The following functions are exported:

� behaviour info() -> [Behaviour]
[page 75] Lists the system defined behaviours

� behaviour info(Behaviour) -> [Function]
[page 75] Lists the functions that a behaviour uses

� make script(ReleaseName) -> MakeRet
[page 75] Creates a boot script from a release file

� make script(ReleaseName,Opts) -> MakeRet
[page 75] Creates a boot script from a release file

� make relup(ReleaseName,UpNameList,DownNameList) -> RelRet
[page 78] Gathers release upgrade scripts for a release

� make relup(ReleaseName,UpNameList,DownNameList,Opts) -> RelRet
[page 78] Gathers release upgrade scripts for a release

59System Application Support Libraries (SASL)

SASL Reference Manual

� make tar(ReleaseName) -> TarRet
[page 79] Creates a release package.

� make tar(ReleaseName,Opts) -> TarRet
[page 79] Creates a release package.

� script2boot(File) -> ok | error
[page 80] Generate a binary form of a boot script.

appup

No functions are exported.

rel

No functions are exported.

relup

No functions are exported.

script

No functions are exported.

60 System Application Support Libraries (SASL)

SASL Reference Manual sasl (Application)

sasl (Application)

This section describes the SASL application which provides the following services:

� alarm handler

� overload

� release handler

The SASL application also includes error logger event handlers for formatting SASL
error and crash reports.

Error logger event handlers

The following error logger event handlers are defined in the SASL application.

sasl report tty h Formats and writes supervisor report, crash report and progress report
to stdio.

sasl report file h Formats and writes supervisor report, crash report and progress
report to a single file.

error logger mf h This error logger writes all events sent to the error logger to disk. It
installs the log mf h event handler in the error logger process.

Configuration

The following configuration parameters are defined for the SASL application. Refer to
application(3) for more information about configuration parameters:

sasl error logger = Value <optional> Value is one of:

tty Installs sasl report tty h in the error logger. This is the default option.
ffile, FileNameg Installs sasl report file h in the error logger. This makes

all reports go to the file FileName. FileName is a string.
false No SASL error logger handler is installed.

errlog type = error | progress | all <optional> Restricts the error logging
performed by the specified sasl error logger to error reports, progress reports,
or both. Default is all.

error logger mf dir = string() | false<optional> Specifies in which directory
the files are stored. If this parameter is undefined or false, the
error logger mf h is not installed.

61System Application Support Libraries (SASL)

sasl (Application) SASL Reference Manual

error logger mf maxbytes = integer() <optional> Specifies how large each
individual file can be. If this parameter is undefined, the error logger mf h is not
installed.

error logger mf maxfiles = 0 < integer() < 256 <optional> Specifies how
many files are used. If this parameter is undefined, the error logger mf h is not
installed.

overload max intensity = float() > 0 <optional> Specifies the maximum
intensity for overload. Default is 0.8.

overload weight = float() > 0 <optional> Specifies the overload weight.
Default is 0.1.

start prg = string()<optional> Specifies which program should be used when
restarting the system. Default is $OTP ROOT/bin/start.

masters = [atom()] <optional> Specifies which nodes this node uses to read/write
release information. This parameter is ignored if the client directory parameter
is not set.

client directory = string() <optional> This parameter specifies the client
directory at the master nodes. Refer to Release Handling in the SASL User’s Guide
for more information. This parameter is ignored if the masters parameter is not
set.

static emulator = true | false <optional> Indicates if the Erlang emulator is
statically installed. A node with a static emulator cannot switch dynamically to a
new emulator as the executable files are written into memory statically. This
parameter is ignored if the masters and client directory parameters are not set.

releases dir = string()<optional> Indicates where the releases directory is
located. The release handler writes all its files to this directory. If this parameter is
not set, the OS environment parameter RELDIR is used. By default, this is
$OTP ROOT/releases.

SNMP MIBs

The following MIBs are defined in SASL:

OTP-REG This MIB contains the top-level OTP registration objects, used by all other
MIBs.

OTP-TC This MIB contains the general Textual Conventions, which can be used by
any other MIB.

OTP-MIB This MIB contains objects for instrumentation of the Erlang nodes, the
Erlang machines and the applications in the system.

The MIBs are stored in the mibs directory. All MIBs are defined in SNMPv2 SMI
syntax. SNMPv1 versions of the mibs are delivered in the mibs/v1 directory.

The compiled MIBs are located under priv/mibs, and the generated .hrl files under
the include directory. To compile a MIB that IMPORTS the OTP-MIB, give the option
fil, ["sasl/priv/mibs"]g to the MIB compiler.

The only MIB with Managed Objects is OTP-MIB. If it is to be used in a system, it must
be loaded into an agent with a call to otp mib:init(Agent), where Agent is the Pid or

62 System Application Support Libraries (SASL)

SASL Reference Manual sasl (Application)

registered name of an SNMP agent. Use otp mib:stop(Agent) to unload the MIB. The
implementation of this MIB uses Mnesia to store a cache with data needed, which
means that Mnesia must run if the implementation of the MIB should be performed.

See Also

alarm handler(3), error logger(3), log mf h(3), overload(3), release handler(3),
systools(3), appup(4), rel(4), relup(4), script(4), application(3), snmp(6)

63System Application Support Libraries (SASL)

alarm handler (Module) SASL Reference Manual

alarm handler (Module)

The alarm handler process is a gen event event manager process which receives alarms
in the system. This process is not intended to be a complete alarm handler. It defines a
place to which alarms can be sent. One simple event handler is installed in the alarm
handler at start-up, but users are encouraged to write and install their own handlers.

The simple event handler sends all alarms as info reports to the error logger, and saves
all of them in a list which can be passed to a user defined event handler, which may be
installed at a later stage. The list can grow large if many alarms are generated. So it is a
good reason to install a better user defined handler.

There are functions to set and clear alarms. The format of alarms are defined by the user.
For example, an event handler for SNMP could be defined, together with an alarm MIB.

The alarm handler is part of the SASL application.

When writing new event handlers for the alarm handler, the following events must be
handled:

fset alarm, fAlarmId, AlarmDescrgg This event is generated by
alarm handler:set alarm(fAlarmId, AlarmDecsrg).

fclear alarm, AlarmIdg This event is generated by
alarm handler:clear alarm(AlarmId).

The default simple handler is called alarm handler and it may be exchanged by calling
gen event:swap handler/3 as gen event:swap handler(alarm handler,
falarm handler, swapg, fNewHandler, Argsg). NewHandler:init(fArgs,
falarm handler, Alarmsgg) is called. Refer to gen event(3) for further details.

Exports

clear alarm(AlarmId) -> void()

Types:

� AlarmId = term()

Clears all alarms with id AlarmId.

get alarms() -> [alarm()]

Returns a list of all active alarms. This function can only be used when the simple
handler is installed.

set alarm(alarm())

64 System Application Support Libraries (SASL)

SASL Reference Manual alarm handler (Module)

Types:

� alarm() = fAlarmId, AlarmDescriptiong
� AlarmId = term()
� AlarmDescription = term()

Sets an alarm with id AlarmId. This id is used at a later stage when the alarm is cleared.

See Also

error logger(3), gen event(3)

65System Application Support Libraries (SASL)

overload (Module) SASL Reference Manual

overload (Module)

overload is a process which indirectly regulates CPU usage in the system. The idea is
that a main application calls the request/0 function before starting a major job, and
proceeds with the job if the return value is positive; otherwise the job must not be
started.

overload is part of the sasl application, and all configuration parameters are defined
there.

A set of two intensities are maintained, the total intensity and the accept
intensity. For that purpose there are two configuration parameters, the
MaxIntensity and the Weight value (both are measured in 1/second).

Then total and accept intensities are calculated as follows. Assume that the time of the
current call to request/0 is T(n), and that the time of the previous call was T(n-1).

� The current total intensity, denoted TI(n), is calculated according to the
formula,
TI(n) = exp(-Weight*(T(n) - T(n-1)) * TI(n-1) + Weight,
where TI(n-1) is the previous total intensity.

� The current accept intensity, denoted AI(n), is determined by the formula,
AI(n) = exp(-Weight*(T(n) - T(n-1)) * AI(n-1) + Weight,
where AI(n-1) is the previous accept intensity, provided that the value of
exp(-Weight*(T(n) - T(n-1)) * AI(n-1) is less than MaxIntensity; otherwise
the value is
AI(n) = exp(-Weight*(T(n) - T(n-1)) * AI(n-1).

The value of configuration parameter Weight controls the speed with which the
calculations of intensities will react to changes in the underlying input intensity. The
inverted value of Weight,

T = 1/Weight

can be thought of as the “time constant” of the intensity calculation formulas. For
example, if Weight = 0.1, then a change in the underlying input intensity will be
reflected in the total and accept intensities within approximately 10 seconds.

The overload process defines one alarm, which it sets using
alarm handler:set alarm(Alarm). Alarm is defined as:

foverload, []g This alarm is set when the current accept intensity exceeds
MaxIntensity.

A new overload alarm is not set until the current accept intensity has fallen below
MaxIntensity. To prevent the overload process from generating a lot of set/reset
alarms, the alarm is not reset until the current accept intensity has fallen below 75% of
MaxIntensity, and it is not until then that the alarm can be set again.

66 System Application Support Libraries (SASL)

SASL Reference Manual overload (Module)

Exports

request() -> accept | reject

Returns accept or reject depending on the current value of the accept intensity.

The application calling this function should be processed with the job in question if the
return value is accept; otherwise it should not continue with that job.

get overload info() -> OverloadInfo

Types:

� OverloadInfo = [ftotal intensity, TotalIntensityg, faccept intensity,
AcceptIntensityg, fmax intensity, MaxIntensityg, fweight, Weightg, ftotal requests,
TotalRequestsg, faccepted requests, AcceptedRequestsg].

� TotalIntensity = float() > 0
� AcceptIntensity = float() > 0
� MaxIntensity = float() > 0
� Weight = float() > 0
� TotalRequests = integer()
� AcceptedRequests = integer()

Returns the current total and accept intensities, the configuration parameters, and
absolute counts of the total number of requests, and accepted number of requests (since
the overload process was started).

See Also

alarm handler(3), sasl(3)

67System Application Support Libraries (SASL)

rb (Module) SASL Reference Manual

rb (Module)

The Report Browser (RB) tool makes it possible to browse and format error reports
written by the error logger handler log mf h.

Exports

grep(RegExp)

Types:

� RegExp = string()

All reports containing the regular expression RegExp are printed.

RegExp is a string containing the regular expression. Refer to the module regexp in the
STDLIB reference manual for a definition of valid regular expressions. They are
essentially the same as the UNIX command egrep.

h()

help()

Prints the on-line help information.

list()

list(Type)

Types:

� Type = type()
� type() = crash report | supervisor report | error | progress

This function lists all reports loaded in the rb server. Each report is given a unique
number that can be used as a reference to the report in the show/1 function.

If no Type is given, all reports are listed.

rescan()

rescan(Options)

Types:

� Options = [opt()]

Rescans the report directory. Options is the same as for start().

show()

show(Report)

68 System Application Support Libraries (SASL)

SASL Reference Manual rb (Module)

Types:

� Report = int() | type()

If a type argument is given, all loaded reports of this type are printed. If an integer
argument is given, the report with this reference number is printed. If no argument is
given, all reports are shown.

start()

start(Options)

Types:

� Options = [opt()]
� opt() = fstart log, FileNameg | fmax, MaxNoOfReportsg | freport dir, DirStringg |
ftype, ReportTypeg

� FileName = string() | standard io
� MaxNoOfReports = int() | all
� DirString = string()
� ReportType = type() | [type()] | all

The function start/1 starts the rb server with the specified options, while start/0
starts with default options. The rb server must be started before reports can be
browsed. When the rb server is started, the files in the specified directory are scanned.
The other functions assume that the server has started.

fstart log, FileNameg starts logging to file. All reports will be printed to the named
file. The default is standard io.

fmax, MaxNoOfReportsg. Controls how many reports the rb server should read on
start-up. This option is useful as the directory may contain 20.000 reports. If this
option is given, the MaxNoOfReports latest reports will be read. The default is ’all’.

freport dir, DirStringg. Defines the directory where the error log files are located.
The default is fsasl, error logger mf dirg.

ftype, ReportTypeg. Controls what kind of reports the rb server should read on
start-up. ReportType is a supported type, ’all’, or a list of supported types. The default
is ’all’.

start log(FileName)

Types:

� FileName = string()

Redirects all report output from the RB tool to the specified file.

stop()

Stops the rb server.

stop log()

Closes the log file. The output from the RB tool will be directed to standard io.

69System Application Support Libraries (SASL)

release handler (Module) SASL Reference Manual

release handler (Module)

The release handler process is a SASL process that handles unpacking, installation, and
removal of release packages. As an example, a release package could contain
applications, a new emulator, and new configuration parameters. In this text, the
directory ROOT refers to the installation root directory (code:root dir()). A release
package is a compressed tar file that is written to the releases directory, for example via
ftp. The location of this directory is specified with the configuration parameter
releases dir, or the OS environment variable RELDIR. Default is ROOT/releases. The
release handler must have write access to this directory in order to install new releases.
The persistent state of the release handler, for example information about installed
releases, is stored in a file called RELEASES in the releases directory.

The package can be unpacked, which extracts the files from the package. When the
release is unpacked, it can be installed. This operation evaluates the release upgrade
script. An installed release can be made permanent. There can only be one permanent
release in the system, and this is the release that is used when the system is started. An
installed release, except the permanent one, can be removed. When a release is
removed, all files that belong to that release only are deleted. The system can be
rebooted from an old release.

Each release has a status. The status can be unpacked, current, permanent, or old.
There is always one latest release which either has status permanent (normal case), or
current (installed, but not yet made permanent). The following table illustrates the
meaning of the status values.

Status Action NextStatus
--
- unpack unpacked

unpacked install current
remove -

current make permanent permanent
install other old
remove -

permanent make other permanent old
install permanent

old reboot old permanent
install current
remove -

A release package always contains two special files, the ReleaseName.rel file and the
relup file. The ReleaseName.rel file contains information about the release, such as its
name, version, and which system and library versions it uses. The relup file contains
release upgrade scripts. There is one release upgrade script for each old version that can
be updated to the new version.

The release handler process is a locally registered process on each node. When a release
is installed in a distributed system, the release handler on each node must be called. The

70 System Application Support Libraries (SASL)

SASL Reference Manual release handler (Module)

release installation may be synchronized between nodes. From an operator view, it may
be unsatisfactory to specify each node. The aim is to install one release package in the
system, no matter how many nodes there are. If this is the case, it is recommended that
software management functions are written which take care of this problem. Such a
function may have knowledge of the system architecture, so it can contact each
individual release handler to install the package.

A new release may restart the system, using start prg. This is a configuration
parameter to the application sasl. The default is ROOT/bin/start

The emulator restart on Windows NT expects that the system is started using the
erlsrv program (as a service). Furthermore the release handler expects that the service
is named NodeName Release, where NodeName is the first part of the Erlang nodename
(up to, but not including the “@”) and Release is the current release of the application.
The release handler furthermore expects that a program like start erl.exe is specified
as “machine” to erlsrv. During upgrading with restart, a new service will be registered
and started. The new service will be set to automatic and the old service removed as
soon as the new release is made permanent.

The release handler at a node which runs on a diskless machine, or with a read-only file
system, must be configured accordingly using the following sasl configuration
parameters:

masters This node uses a number of master nodes in order to store and fetch release
information. All master nodes must be up and running whenever release
information is written by this node.

client directory The client directory in the directory structure of the master nodes
must be specified.

static emulator This parameter specifies if the Erlang emulator is statically installed at
the client node. A node with a static emulator cannot dynamically switch to a new
emulator because the executable files are statically written into memory.

There are additional functions for using another file structure than the structure defined
in OTP. These functions can be used to test a release upgrade locally.

Exports

check install release(Vsn) -> fok, FromVsn, Descrg | ferror, Reasong

Types:

� Vsn = FromVsn = string()
� Descr = term()

The release must not have status current. Checks that there is a relup release upgrade
script from the FromVsn (current version) to Vsn. Checks that all required libs (or
applications) are present and that all new code can be loaded. Checks that there is a
start.boot file and a sys.config for the new release.

This function evaluates all instructions that occur before the point of no return
instruction in the release upgrade script.

Returns the same as install release/1.

71System Application Support Libraries (SASL)

release handler (Module) SASL Reference Manual

create RELEASES(Root, RelDir, RelFile, LibDirs) -> ok | ferror, Reasong

Types:

� Root = RelDir = RelFile = string()
� LibDirs = [fLibName, LibVsn, Dirg]
� LibName = atom()
� LibVsn = Dir = string()

This function can be called to create an initial RELEASES file to be used by the
release handler. This file must exist in order to install new releases. When the system is
installed, a default RELEASES file is created in the default releases directory
ROOT/releases.

Root is the root of the installation as described above. RelDir is the the releases
directory where the RELASES file should be created. RelFile is the name of the .rel
file that describes the initial release.

LibDirs can be used to specify from where the modules for an application should be
loaded. LibName is the name of the lib (or application), LibVsn is the version, and Dir is
the name of the directory where the lib directory LibName-LibVsn is located. The
corresponding modules should be located under Dir/LibName-LibVsn/ebin.

install file(Vsn, FileName) -> ok | ferror, Reasong

Types:

� FileName = string()
� Vsn = string()

Installs a release dependent file in the release structure. A release dependent file is a file
that must be in the release structure when the release is installed. Currently there are
three such mandatory files, start.boot, sys.config and relup.

This function should be called to install release dependent files, for example when these
files are generated at the target. It should be called when set unpacked/2 has been
called.

install release(Vsn) -> fok, FromVsn, Descrg | ferror, Reasong

install release(Vsn, Opt) -> fok, FromVsn, Descrg | ferror, Reasong

Types:

� Vsn = FromVsn = string()
� Opt = [ferror action, Error actiong | fcode change timeout, Timeoutg |
fsuspend timeout, Timeoutg]

� Error action = restart | reboot
� Descr = term()
� Timeout = default | infinity | int() > 0

72 System Application Support Libraries (SASL)

SASL Reference Manual release handler (Module)

The release must not have status current. Installs the delivered release in the system by
evaluating the release upgrade script found in the relup file. This function returns fok,
FromVsn, Descrg if successful, or ferror, Reasong if a recoverable error occurs.
Descr is a user defined parameter, found in the relup file, used to describe the release.
The system is restarted if a non-recoverable error occurs. There can be many installed
releases at the same time in the system.

It is possible to define if the node should be restarted or rebooted in case of an error
during the installation. Default is restart.

The option code change timeout defines the time-out for all calls to sys:change code.
If no value is specified or default is given, the default value defined in sys is used.

The option suspend timeout defines the time-out for all calls to sys:suspend. If no
value is specified, the values defined by the Timeout parameter of the upgrade or
suspend instructions are used. If default is specified, the default value defined in sys is
used.

Note that if an old or the permanent release is installed, a downgrade will occur. There
must a correspnding downgrade script in the relup file.

make permanent(Vsn) -> ok | ferror, Reasong

Types:

� Vsn = string()

Makes the current release permanent. This causes the specified release to be used at
system start-up.

remove release(Vsn) -> ok | ferror, Reasong

Types:

� Vsn = string()

Removes a release and its files from the system. The release must not be the permanent
release. Removes only the files and directories not in use by another release.

reboot old release(Vsn) -> ok | ferror, Reasong

Types:

� Vsn = string()
� Reason = fno such release, Vsng

Reboots the system by making the old release permanent, and calls init:reboot()
directly. The release must have status old.

set removed(Vsn) -> ok | ferror, Reasong

Types:

� Vsn = string()
� Reason = fno such release, Vsng | fpermanent, Vsng

Makes it possible to handle removal of releases outside the release handler. Tells the
release handler that the release is removed from the system. This function does not
delete any files.

set unpacked(RelFile, LibDirs) -> fok, Vsng | ferror, Reasong

73System Application Support Libraries (SASL)

release handler (Module) SASL Reference Manual

Types:

� RelFile = string()
� LibDirs = [fLibName, LibVsn, Dirg]
� LibName = atom()
� LibVsn = Dir = string()
� Vsn = string()

Makes it possible to handle the unpacking of releases outside the release handler.
Makes the release handler aware that the release is unpacked. Vsn is extracted from
the release file RelFile and is used as parameter to the other functions.

LibDirs can be used to specify from where the modules for an application should be
loaded. LibName is the name of the lib (or application), LibVsn is the version, and Dir is
the name of the directory where the lib directory LibName-LibVsn is located. The
corresponding modules should be located under Dir/LibName-LibVsn/ebin.

unpack release(ReleaseName) -> fok, Vsng | ferror, Reasong

Types:

� ReleaseName = string()
� Vsn = string()

The ReleaseName is the name of the release package. This is the name of the package
file, without .tar.gz. ReleaseName may or may not be the same as the release version.
Vsn is extracted from the release package and is used as parameter to the other
functions.

Performs some checks on the package - for example checks that all mandatory files are
present - and extracts its contents.

which releases() -> [fName, Vsn, [Lib], Statusg]

Types:

� Name = string()
� Vsn = string()
� Lib = string()
� Status = unpacked | current | permanent | old

Returns all releases known to the release handler. Name is the name of the system. Lib is
the name of a library. This name may be the application name followed by its version,
for example “kernel-1.0”.

See Also

systools(3)

74 System Application Support Libraries (SASL)

SASL Reference Manual systools (Module)

systools (Module)

This module contains functions to generate boot scripts, release upgrade scripts, and
release packages. A release file (.rel), application definition files (.app), and application
upgrade files (.appup) are required as input to these functions. The syntax definitions
for these files can be found in rel(4), app(4) and appup(4) respectively, and also in the
Design Principles chapter and in the SASL User’s Guide.

If a boot script is written without using the generator, it can be transformed to a binary
form with the script2boot/1 function, as required by the Erlang runtime system
during start-up.

The behaviour functions described below can be used to obtain a list of the system
defined behaviours, and information about which callback functions are required for
each of them.

Exports

behaviour info() -> [Behaviour]

Types:

� Behaviour = atom()

Returns a list of the behaviours defined in Erlang/OTP. gen server and gen event are
examples of behaviours.

behaviour info(Behaviour) -> [Function]

Types:

� Behaviour = atom()
� Function = fName, Arityg
� Name = atom()
� Arity = int()

A behaviour calls a number of functions in the callback module. The functions that a
callback module has to export are returned by this function. Behaviour is the same as
returned from the behaviour info/0 function.

make script(ReleaseName) -> MakeRet

make script(ReleaseName,Opts) -> MakeRet

Types:

� ReleaseName = string()

75System Application Support Libraries (SASL)

systools (Module) SASL Reference Manual

� Opts = [fpath, Pathg | silent | local | no module tests | fvariables, Varsg |
fmachine, Machineg | exref | fexref, [AppName]g]

� Path = [Dir]
� Dir = string()
� Vars = [Var]
� Var = fVarName, PreFixDirg
� VarName = atom() | string()
� PreFixDir = string()
� Machine = atom()
� AppName = atom()
� MakeRet = ok | error | fok, Module, Warningsg | ferror, Module, Errorg
� Warnings = void()
� Module = atom()
� Error = void()

A boot script file is generated from the ReleaseName.rel file. The
ReleaseName.script and ReleaseName.boot files are generated. The release file
contains a specification of the version of the release, and the name and version of the
applications that are included.

The script generator searches the normal code server path for the ReleaseName.rel file
and the application files ApplicationName.app. A path fpath, Pathg can be specified
and appended to the code server path. Each directory in Path can be given with the
wildcard * (* is the only wildcard recognized). A directory given with wildcards is
expanded to all matching directories. * is translated to “any character except /”. If /*/
is specified - * is the only character given between two / characters - the corresponding
regular expression is [^/]+ and it represents a directory.

The compiled Erlang modules should be located in the same directory as the .app file.
The function searches for the source code in the corresponding src or src/e src
directory if the directory name of the .app file directory ends with /ebin. Otherwise, it
searches for the source code in the .app file directory.

The correctness of each application is checked. The following checks are performed:

� The version of the application file found.

� Dependencies to applications not included in the release.

� Circular dependencies among applications.

� Duplicated module names.

� Version compliance between modules and versions specified in the application file.

� Currency of object code for each module.

The boot script is generated if all checks are satisfactory. The applications are loaded
and started in the order specified in the release file. The exception to this order are
dependencies between applications as specified in the application files. These
dependencies specify that applications on which other applications depend must be
started first.

If the no module tests option is specified, the module version and object code checks
are excluded. This implies that a boot script can be generated without the requirement
that each .app file must be located in the same directory as the modules which belong
to the application.

76 System Application Support Libraries (SASL)

SASL Reference Manual systools (Module)

The checks performed before the boot script is generated can be extended with some
rudimentary cross reference checks by specifying the exref option. These checks are
performed with the exref tool. All modules specified in the application resource files
are loaded into the exref tool. A warning is generated for each call to an undefined
function, but only explicit function calls are checked. No cross reference checks are
performed if the exref option is specified in combination with the no module tests
option.

As the cross reference checks can be heavy, the set of modules to be checked can be
limited. The fexref, [AppName]g option specifies the applications in which modules
should be cross referenced checked. One warning only is generated for each application
whenever calls are found to functions in applications which are not cross reference
checked.

The generated boot script contains a search path to all included applications. By default,
all directories in the path are relative to the installation directory of the Erlang runtime
system which uses the boot script.

The variables option can be used to specify an installation directory other than the
Erlang installation directory for user provided applications. If the option fvariables,
[f"TEST","/home/xxx/applications"g]g is supplied, all applications found
underneath this directory will have $TEST substituted in place of the directory. The
variable substitution mechanism needs absolute paths. Therefore, the paths specified
(either in the code server path, or with the path option) must be absolute. The
following example illustrates this:

/home/xxx/applications/type1/app1/ebin
/app2/ebin

type2/app3/ebin
app4/ebin

The boot script is generated as:

systools:make_script(RelName,
[{path,["/home/xxx/applications/*/ebin"]},
{variables,[{"TEST","/home/xxx/applications"}]}])

In the generated boot script, the path looks as follows for the applications app1 - app4:

[...
"$TEST/type1/app1-Vsn/ebin",
"$TEST/type1/app2-Vsn/ebin",
"$TEST/type2/app3-Vsn/ebin",
"$TEST/app4-Vsn/ebin"]

When starting the system with the generated boot script, the TEST variable is given a
value using the -boot var Var Value command line flag. In the previous example, Var
is TEST and Value is the name of the directory where these applications are installed.
The -boot var flag is described for the init module.

The local option can also be used to change the default path as well. If the local
option is supplied, the path includes the actual directories where the applications were
found. This is a useful way to test a generated boot script locally.

The machine option can be used to generate a boot script for an Erlang machine other
than the running machine. This is important when checking the object code, as the file
extension can differ between the machines (for example .beam).

By default, this function writes all errors and warnings to the tty and returns ok or
error. Nothing is written to the tty if the silent option is supplied, but the function

77System Application Support Libraries (SASL)

systools (Module) SASL Reference Manual

returns fok, Module, Warningsg or ferror, Module, Errorsg instead. To convert
the Warnings and Errors terms to strings, the Module:format warning(Warnings) and
Module:format error(Errors) functions are called respectively.

make relup(ReleaseName,UpNameList,DownNameList) -> RelRet

make relup(ReleaseName,UpNameList,DownNameList,Opts) -> RelRet

Types:

� ReleaseName = string() | atom()
� UpNameList = NameList
� DownNameList = NameList
� NameList = [ReleaseName | fReleaseName, Descriptiong]
� Description = term()
� Opts = [fpath, Pathg | silent | noexec | restart emulator]
� Path = [Dir]
� Dir = string()
� RelRet = ok | error | fok, Relup, Module, Warningsg | ferror, Module, Errorg
� Relup = fVsn, UpScript, DownScriptg
� UpScript = RelupScript
� DownScript = RelupScript
� RelupScript = [fVsn, Description, Scriptg]
� Script = [low level release upgrade instructions]
� Warnings = void()
� Module = atom()
� Error = void()

A relup file is generated which describes how to upgrade the system from a number of
previous releases, and also how to downgrade from a number of previous releases.

The relup file is built by gathering all the application release upgrade scripts and
picking those applicable for each combination of release versions. The scripts are also
translated from high level release instructions to low level instructions. The normal
code server path is searched for release files (ReleaseName.rel) and application files
(ApplicationName.app), as well as the application upgrade scripts files
(ApplicationName.appup). The ApplicationName.app and ApplicationName.appup
files must be in the same directory. The code server path can be appended with a path
specified with the fpath, Pathg option. Path can contain wildcards (*) as described for
the make script function.

A ReleaseName.rel file must be available for each UpName and DownName since the
versions of the applications are compared. For each change in the application versions,
there must be an entry in the Application.appup file.

The optional Description parameter which can be supplied to either of the input
name lists is passed to the correct output script in the relup file. The parameter
defaults to the empty list [].

Basically, make relup combines a re-ordering of the ReleaseName.rel file and the
Application.appup files, so that the new release version and a target release version is a
list of release upgrade scripts for all applications that have changed between the two
release versions.

By default, this function writes the relup script to a file named relup and all errors and
warnings to the tty and returns ok or error. If the silent option is supplied, nothing is

78 System Application Support Libraries (SASL)

SASL Reference Manual systools (Module)

written to the tty and the function returns fok, Relup, Module, Warningsg or
ferror, Module, Errorg instead, where Relup is the structure written to the relup
file. The Warnings and Errors can be converted to strings with the
Module:format warning(Warning) and Module:format error(Error) functions. If the
noexec option is supplied, then nothing is written to the relup file and the function
returns one of the verbose return values.

If the restart emulator option is supplied, the low-level instruction
restart new emulator is appended to the relup scripts. This ensures that a complete
reboot of the system is done when the system is upgraded or downgraded.

make tar(ReleaseName) -> TarRet

make tar(ReleaseName,Opts) -> TarRet

Types:

� ReleaseName = string()
� Opts = [fpath, Pathg | silent | fdirs, Dirsg | ferts, ErtsDirg | no module tests |
fvariables, Varsg | fvar tar, VarTarg | fmachine, Machineg | exref | fexref,
[AppName]g]

� Path = [Dir]
� Dir = string()
� Dirs = [atom()]
� ErtsDir = string()
� Vars = [Var]
� Var = fVarName, PreFixDirg
� VarName = atom() | string()
� PreFixDir = string()
� VarTar = include | ownfile | omit
� Machine = atom()
� AppName = atom()
� TarRet = ok | error | fok, Module, Warningsg | ferror, Module, Errorg
� Warnings = void()
� Module = atom()
� Error = void()

A release package file is generated from the ReleaseName.rel file. The
ReleaseName.tar.gz file is generated. This file must be uncompressed and unpacked
on the target system before the new release can be activated, using the
release handler.

By default, the generated release package contains a directory under the lib directory
for each included application. Each application directory is named
ApplicationName-ApplicationVsn. For each application, the ebin and priv
directories are included. These directories are copied from where the applications were
found. If more directories are needed, it is possible to specify these with the
fdirs,Dirsg option. For example, if the src and example directories should be
included for each application in the release package, the fdirs,[src,examples]g
option should be supplied.

The variables option can be used to specify an installation directory other than the
Erlang installation directory for the user provided applications. If the
optionfvariables, [f"TEST","/home/xxx/applications"g]g is supplied, all
applications found underneath this directory will be packed into the TEST.tar.gz file.

79System Application Support Libraries (SASL)

systools (Module) SASL Reference Manual

Accordingly, a separate package is created for each defined variable. By default, all these
files are included at the top level in the ReleaseName.tar.gz file and should be
unpacked to an appropriate installation directory. The fvar tar, VarTarg option can
be used to specify if and where a separate package should be stored. In this option,
VarTar is:

� include. Each separate (variable) package is included in the main
ReleaseName.tar.gz file. This is the default.

� ownfile. Each separate (variable) package is generated as separate files in the same
directory as the ReleaseName.tar.gz file.

� omit. No separate (variable) packages are generated and applications which are
found underneath a variable directory are ignored.

The normal code server path is searched for the release file ReleaseName.rel and the
application files (ApplicationName.app). The code server path can be appended with a
path specified with the fpath, Pathg option. Path can contain wildcards (*) as
described for the make script function.

The machine option can be used to generate a release package file for an Erlang machine
other than the running machine. This ensures that object code files with the expected
file extension are included in the package, for example .beam files.

A directory called releases/RelVsn is also included in the release package. The release
version RelVsn is found in the release package. This directory contains the boot script
(ReleaseName.boot copied to start.boot), the relup file (generated by make relup),
and the system configuration file (sys.config).

If the release package shall contain a new Erlang runtime system, the bin directory of
the specified (ferts,ErtsDirg) runtime system is copied to erts-ErtsVsn/bin.

Finally, the releases directory contains the ReleaseName.rel file.

All checks performed with the make script function are performed before the release
package is created. The no module tests and exref options are also valid here.

The return value TarRet and the handling of errors and warnings are as described for
the make script function above.

script2boot(File) -> ok | error

Types:

� File = string()

The Erlang runtime system requires that the contents of the script used to boot the
system is a binary Erlang term. This function transforms the File.script boot script to
a binary term which is stored in the file File.boot.

A boot script generated using the make script function is already transformed to the
binary form.

See also

release handler(3), init(3), exref(3)

80 System Application Support Libraries (SASL)

SASL Reference Manual appup

appup (File)

The application upgrade file defines how an application is upgraded in a running system.

This file is used by systools to generate release upgrade files.

FILE SYNTAX

Applications can be upgraded and the instructions to do this are placed in the .appup
file for the application. For example, for the snmp application these instructions are
placed in the snmp.appup file. The .appup file looks as follows:

The application upgrade file is called Name.appup where Name is the name of the
application. The file should be located in the ebin directory for the application.

The .appup file contains one single Erlang term, which defines the instructions used to
upgrade the application. The file has the following syntax:

{Vsn,
[{UpFromVsn, UpFromScript}, ...],
[{DownToVsn, DownToScript}, ...]}.

� Vsn = string() is the current version of the application.

� UpFromVsn = string() is a version we can upgrade from.

� UpFromScript is the script which describes the sequence of release upgrade
instructions. Refer to the section Release Handling Instructions in the SASL User’s
Guide for a description of this script.

� DownToVsn = string() is a version to which we can downgrade.

� DownToScript is the script which describes the sequence of downgrade
instructions. Refer to the section Release Handling Instructions in the SASL User’s
Guide for a description of this script.

In the case of UpFromScript and DownFromScript, the scripts typically contain one line
for each module in the application.

SEE ALSO

app(4), relup(4), systools(3)

81System Application Support Libraries (SASL)

rel SASL Reference Manual

rel (File)

The release resource file describes each release of an entire system based on OTP. This
file defines which applications are included in a certain version of the system.

This file is used by systools to generate start scripts and release upgrade files.

Releases can also be upgraded and instructions for this should be written in the relup
file (see the definition of the relup file). The tedious work of writing the relup file has
been automated and in most cases the file can be automatically generated from the
.appup files for the applications in the release.

FILE SYNTAX

A release resource file is called RelName.rel where RelName is the name of the release.

The .rel file contains one single Erlang term, which is called a release specification. The
file has the following syntax:

{release, {Name,Vsn}, {erts, EVsn},
[{AppName, AppVsn} |
{AppName, AppVsn, AppType} |
{AppName, AppVsn, IncApps} |
{AppName, AppVsn, AppType, IncApps}]}.

� Name = string() is the name of the release Name need not be the same as RelName
above in the file name.

� Vsn = string() is the version of the release.

� EVsn = string() indicates which Erlang runtime system version EVsn the release
is intended for, for example “4.4”.

� AppName = atom() is the name of an application included in the release.

� AppVsn = string() is the version of the AppName application.

� AppType = permanent | transient | temporary | load | none is the start
type of the AppName application. This parameter specifies how the application is
treated in the systools-generated start script. If it is permanent, transient or
temporary, the application is started with a call to application:start(AppName,
AppType). If it is load, the application is loaded, but not started. If it is none, the
application is neither loaded nor started.

� IncApps = [atom()] is a list of applications that are included by an application,
for example [AppName, ...]. This list overrides the included applications key
in the application resource file .app. This list must be a subset of the list of
included applications which are specified in the .app file.

82 System Application Support Libraries (SASL)

SASL Reference Manual rel

Note:
The list of applications must contain the kernel and the stdlib applications.

SEE ALSO

app(4), appup(4), relup(4), systools(3)

83System Application Support Libraries (SASL)

relup SASL Reference Manual

relup (File)

The release upgrade file describes how a system is upgraded in runtime.

This file is used by systools to generate start scripts and release upgrade files.

The tedious work of writing the relup file has been automated and in most cases this
file can be automatically generated from the .rel file and .appup files for the
applications in the release.

FILE SYNTAX

A release upgrade file is called relup. In the target system, this file must be located in
the OTP ROOT/erts-EVsn/Vsn directory.

The relup file contains one single Erlang term, which contains instructions on how to
upgrade from old versions to this version, and how to downgrade from this version to
older versions. The file has the following syntax:

{Vsn, [{FromVsn, Descr, RuScript}], [{ToVsn, Descr, RuScript}]}.

� Vsn = string() is the version of the release.

� FromVsn = string() is a version of a release that we can upgrade from. If the
current version of the system matches this version, the corresponding upgrade
instructions in RuScript is used to install the release in the system.

� ToVsn = string() is a version of a release that we can downgrade to. If this
release (Vsn) is the current release, and we are about to downgrade to ToVsn, the
corresponding upgrade instructions in RuScript is used to install the old release in
the system.

� Descr is a user defined parameter which is not processed by any release handling
functions. It can be used to describe the release to an operator. Eventually, it will
be returned by release handler:install release/1 and
release handler:check install release/1.

� RuScript is a release upgrade script. Refer to the section Release Handling
Instructions in the SASL User’s Guide for a description of this script.

There is one tuple fFromVsn, Descr, RuScriptg for each old system version which
can be upgraded to this version, and one tuple fToVsn, Descr, RuScriptg for each old
version that this version can be downgraded to.

When upgrading from FromVsn with release handler:install release/1, there does
not have to be an exact match of versions. FromVsn can be a sub-string of the current
version of the system. For example, if the current version is "2.1.1", we can upgrade
from FromVsn "2.1" or "2.1.1", but not from "2.0" or "2.1.1.2". However, if this
scheme is used, the same release upgrade script is used to go from both "2.1" and

84 System Application Support Libraries (SASL)

SASL Reference Manual relup

"2.1.1". Therefore, "2.1.1" must be compatible with "2.1". If you do not want to
use this feature, you must make sure that the current version and the new version
match before you call install release/1.

SEE ALSO

app(4), appup(4), rel(4), systools(3)

85System Application Support Libraries (SASL)

script SASL Reference Manual

script (File)

The boot script describes how the Erlang runtime system is started. It contains
instructions on which code to load and which processes and applications to start.

The command erl -boot Name starts the system with a boot file called Name.boot,
which is generated from the Name.script file, using systools:script2boot/1.

The .script file is generated by systools from a .rel file and .app files.

FILE SYNTAX

The boot script is stored in a file with the extension .script

The file has the following syntax:

{script, {Name, Vsn},
[
{progress, loading},
{preLoaded, [Mod1, Mod2, ...]},
{path, [Dir1,"$ROOT/Dir",...]}.
{primLoad, [Mod1, Mod2, ...]},
...
{kernel_load_completed},
{progress, loaded},
{kernelProcess, Name, {Mod, Func, Args}},
...
{apply, {Mod, Func, Args}},
...
{progress, started}]}.

� Name = string() defines the name of the system.

� Vsn = string() defines the version of the system.

� fprogress, Termg sets the “progress” of the initialization program. The function
init:get status() returns the current value of the progress, which is
fInternalStatus,Termg.

� fpath, [Dir]g where Dir is a string. This argument sets the load path of the
system to [Dir]. The load path used to load modules is obtained from the initial
load path, which is given in the script file, together with any path flags which were
supplied in the command line arguments. The command line arguments modify
the path as follows:

– -pa Dir1 Dir2 ... DirN adds the directories Dir1, Dir2, ..., DirN to
the front of the initial load path.

86 System Application Support Libraries (SASL)

– -pz Dir1 Dir2 ... DirN adds the directories Dir1, Dir2, ..., DirN to
the end of the initial load path.

– -path Dir1 Dir2 ... DirN defines a set of directories Dir1, Dir2, ...,
DirN which replaces the search path given in the script file. Directory names
in the path are interpreted as follows:
� Directory names starting with / are assumed to be absolute path names.
� Directory names not starting with / are assumed to be relative the current

working directory.
� The special $ROOT variable can only be used in the script, not as a

command line argument. The given directory is relative the Erlang
installation directory.

� fprimLoad, [Mod]g loads the modules [Mod] from the directories specified in
Path. The script interpreter fetches the appropriate module by calling the function
erl prim loader:get file(Mod). A fatal error which terminates the system will
occur if the module cannot be located.

� fkernel load completedg indicates that all modules which must be loaded before
any processes are started are loaded. In interactive mode, all fprimLoad,[Mod]g
commands interpreted after this command are ignored, and these modules are
loaded on demand. In embedded mode, kernel load completed is ignored, and
all modules are loaded during system start.

� fkernelProcess, Name, fMod, Func, Argsgg starts a “kernel process”. The
kernel process Name is started by evaluating apply(Mod, Func, Args) which is
expected to return fok, Pidg or ignore. The init process monitors the
behaviour of Pid and terminates the system if Pid dies. Kernel processes are key
components of the runtime system. Users do not normally add new kernel
processes.

� fapply, fMod, Func, Argsgg. The init process simply evaluates apply(Mod,
Func, Args). The system terminates if this results in an error. The boot
procedure hangs if this function never returns.

Note:
In the interactive system the code loader provides demand driven code loading,
but in the embedded system the code loader loads all the code immediately. The
same version of code is used in both cases. The code server calls
init:get argument(mode) to find out if it should run in demand mode, or
non-demand driven mode.

SEE ALSO

systools(3)

87System Application Support Libraries (SASL)

88 System Application Support Libraries (SASL)

Index

Modules are typed in this way.
Functions are typed in this way.

alarm handler
clear_alarm/1, 64
get_alarms/0, 64
set_alarm/1, 64

behaviour_info/0
systools , 75

behaviour_info/1
systools , 75

check_install_release/1
release handler , 71

clear_alarm/1
alarm handler , 64

create_RELEASES/4
release handler , 72

get_alarms/0
alarm handler , 64

get_overload_info/0
overload , 67

grep/1
rb , 68

h/0
rb , 68

help/0
rb , 68

install_file/2
release handler , 72

install_release/1
release handler , 72

install_release/2
release handler , 72

list/0
rb , 68

list/1
rb , 68

make_permanent/1
release handler , 73

make_relup/3
systools , 78

make_relup/4
systools , 78

make_script/1
systools , 75

make_script/2
systools , 75

make_tar/1
systools , 79

make_tar/2
systools , 79

overload
get_overload_info/0, 67
request/0, 67

rb
grep/1, 68
h/0, 68
help/0, 68
list/0, 68
list/1, 68
rescan/0, 68
rescan/1, 68
show/0, 68
show/1, 68
start/0, 69
start/1, 69
start_log/1, 69

89System Application Support Libraries (SASL)

Index

stop/0, 69
stop_log/0, 69

reboot_old_release/1
release handler , 73

release handler
check_install_release/1, 71
create_RELEASES/4, 72
install_file/2, 72
install_release/1, 72
install_release/2, 72
make_permanent/1, 73
reboot_old_release/1, 73
remove_release/1, 73
set_removed/1, 73
set_unpacked/2, 73
unpack_release/1, 74
which_releases/0, 74

remove_release/1
release handler , 73

request/0
overload , 67

rescan/0
rb , 68

rescan/1
rb , 68

script2boot/1
systools , 80

set_alarm/1
alarm handler , 64

set_removed/1
release handler , 73

set_unpacked/2
release handler , 73

show/0
rb , 68

show/1
rb , 68

start/0
rb , 69

start/1
rb , 69

start_log/1
rb , 69

stop/0
rb , 69

stop_log/0
rb , 69

systools
behaviour_info/0, 75
behaviour_info/1, 75
make_relup/3, 78
make_relup/4, 78
make_script/1, 75
make_script/2, 75
make_tar/1, 79
make_tar/2, 79
script2boot/1, 80

unpack_release/1
release handler , 74

which_releases/0
release handler , 74

90 System Application Support Libraries (SASL)

