
STDLIB

version 1.9

Typeset in LATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 STDLIB Reference Manual 1

1.1 beam lib (Module) . 35

1.2 c (Module) . 37

1.3 calendar (Module) . 42

1.4 dets (Module) . 47

1.5 dict (Module) . 53

1.6 digraph (Module) . 57

1.7 digraph utils (Module) . 64

1.8 epp (Module) . 68

1.9 erl eval (Module) . 70

1.10 erl id trans (Module) . 73

1.11 erl internal (Module) . 74

1.12 erl lint (Module) . 76

1.13 erl parse (Module) . 79

1.14 erl pp (Module) . 82

1.15 erl scan (Module) . 85

1.16 ets (Module) . 87

1.17 filename (Module) . 95

1.18 gen event (Module) . 100

1.19 gen fsm (Module) . 109

1.20 gen server (Module) . 117

1.21 io (Module) . 126

1.22 io lib (Module) . 133

1.23 lib (Module) . 136

1.24 lists (Module) . 137

1.25 log mf h (Module) . 147

1.26 math (Module) . 148

1.27 orddict (Module) . 150

1.28 ordsets (Module) . 151

1.29 pg (Module) . 152

1.30 pool (Module) . 153

iSTDLIB

1.31 proc lib (Module) . 155

1.32 queue (Module) . 159

1.33 random (Module) . 160

1.34 regexp (Module) . 161

1.35 sets (Module) . 166

1.36 shell (Module) . 169

1.37 shell default (Module) . 175

1.38 slave (Module) . 176

1.39 string (Module) . 179

1.40 supervisor (Module) . 184

1.41 supervisor bridge (Module) . 189

1.42 sys (Module) . 191

1.43 timer (Module) . 198

1.44 unix (Module) . 202

1.45 win32reg (Module) . 203

ii STDLIB

STDLIB Reference Manual

Short Summaries

� Erlang Module beam lib [page 35] – An interface to the BEAM file format

� Erlang Module c [page 37] – Command Interface Module

� Erlang Module calendar [page 42] – Local and universal time, day-of-the-week,
date and time conversions

� Erlang Module dets [page 47] – A Disk Based Term Storage

� Erlang Module dict [page 53] – Key-Value Dictionary

� Erlang Module digraph [page 57] – Directed Graphs

� Erlang Module digraph utils [page 64] – Algorithms for Directed Graphs

� Erlang Module epp [page 68] – An Erlang Code Preprocessor

� Erlang Module erl eval [page 70] – The Erlang Meta Interpreter

� Erlang Module erl id trans [page 73] – An Identity Parse Transform

� Erlang Module erl internal [page 74] – Internal Erlang Definitions

� Erlang Module erl lint [page 76] – The Erlang Code Linter

� Erlang Module erl parse [page 79] – The Erlang Parser

� Erlang Module erl pp [page 82] – The Erlang Pretty Printer

� Erlang Module erl scan [page 85] – The Erlang Token Scanner

� Erlang Module ets [page 87] – Built-in Term Storage

� Erlang Module filename [page 95] – File Name Manipulation Functions

� Erlang Module gen event [page 100] – A Generic Event Handling Behavior.

� Erlang Module gen fsm [page 109] – A Finite State Machine Behaviour

� Erlang Module gen server [page 117] – A Generic Client-Server Behaviour

� Erlang Module io [page 126] – Standard I/O Server Interface Functions

� Erlang Module io lib [page 133] – IO Library Functions

� Erlang Module lib [page 136] – Interface Module

� Erlang Module lists [page 137] – List Processing Functions

� Erlang Module log mf h [page 147] – An Event Handler which Logs Events to
Disk

� Erlang Module math [page 148] – Mathematical Functions

� Erlang Module orddict [page 150] – Key-Value Dictionary as Ordered List

1STDLIB

STDLIB Reference Manual

� Erlang Module ordsets [page 151] – Functions for Manipulating Sets as Ordered
Lists

� Erlang Module pg [page 152] – Distributed, Named Process Groups

� Erlang Module pool [page 153] – Load Distribution Facility

� Erlang Module proc lib [page 155] – Plug-in Replacements for spawn/3,4 and
spawn link/3,4.

� Erlang Module queue [page 159] – Abstract Data Type for FIFO Queues

� Erlang Module random [page 160] – Pseudo random number generation

� Erlang Module regexp [page 161] – Regular Expression Functions for Strings

� Erlang Module sets [page 166] – Functions for Manipulating Sets as Ordered Lists

� Erlang Module shell [page 169] – The Erlang Shell

� Erlang Module shell default [page 175] – Customizing the Erlang Environment

� Erlang Module slave [page 176] – Functions to Starting and Controlling Slave
Nodes

� Erlang Module string [page 179] – String Processing Functions

� Erlang Module supervisor [page 184] – A Behaviour for Supervision of Processes.

� Erlang Module supervisor bridge [page 189] – A Behaviour for Connecting
Processes To a Supervision Tree

� Erlang Module sys [page 191] – A Functional Interface to System Messages

� Erlang Module timer [page 198] – Timer Functions

� Erlang Module unix [page 202] – Calls to the UNIX Shell

� Erlang Module win32reg [page 203] – win32reg provides access to the registry on
Windows

beam lib

The following functions are exported:

� chunks(FileName, [ChunkRef]) -> fok, fModuleName, [ChunkData]gg |
ferror, Module, Reasong
[page 35] Reads selected chunks from a BEAM file

� version(FileName) -> fok, fModuleName, Versiongg | ferror, Module,
Reasong
[page 36] Reads the BEAM file’s module version

� info(FileName) -> [ffile, FileNameg, fmodule, Moduleg, fchunks,
[ChunkInfo]g] | ferror, Module, Reasong
[page 36] Returns some information about a BEAM file

� format error(Error) -> character list()
[page 36] Returns an English description of a BEAM read error reply

2 STDLIB

STDLIB Reference Manual

c

The following functions are exported:

� bt(Pid) -> void()
[page 37] Evaluates erlang:process display(Pid, backtrace)

� c(File) -> CompileResult
[page 37] Compiles a file

� c(File, Flags) -> CompileResult
[page 37] Compiles a file

� cd(Dir) -> void()
[page 37] Changes directory

� flush() -> void()
[page 38] Flushes the shell message queue

� help() -> void()
[page 38] Displays help information

� i() -> void()
[page 38] Displays system information

� zi() -> void()
[page 38] Displays system information including zombies

� ni() -> void()
[page 38] Displays network information

� i(X, Y, Z) -> void()
[page 38] Evaluates process info(pid(X, Y, Z))

� l(Module) -> void()
[page 38] Loads code into the system

� lc(ListOfFiles) -> Result
[page 38] Compiles several files

� ls() -> void()
[page 38] Lists files

� ls(Dir) -> void()
[page 39] Lists files in Dir

� m() -> void()
[page 39] Lists all loaded modules

� m(Module) -> void()
[page 39] Displays information about a module

� nc(File) -> void()
[page 39] Compiles file and loads it on multiple nodes

� nc(File, Flags) -> void()
[page 39] Compiles file and loads it on multiples nodes

� nl(Module) -> void()
[page 39] Loads module in a network

� pid(X, Y, Z) -> pid()
[page 39] Makes a Pid

� pwd() -> void()
[page 39] Prints current working directory

3STDLIB

STDLIB Reference Manual

� q() -> void()
[page 40] Stops the Erlang node

� regs() -> void()
[page 40] Displays registered processes

� nregs() -> void()
[page 40] Displays registered processes on all nodes

� memory() -> TupleList
[page 40] Returns memory allocation information

� memory(MemoryType) -> int()
[page 40] Returns memory allocation information

calendar

The following functions are exported:

� date to gregorian days(Year, Month, Day) -> Days
[page 42] Computes the number of days from year 0 up to the given date.

� date to gregorian days(Date) -> Days
[page 42] Computes the number of days from year 0 up to the given date.

� datetime to gregorian seconds(DateTime) -> Days
[page 42] Computes the number of seconds from year 0 up to the given date and
time.

� day of the week(Date) -> DayNumber
[page 43] Computes the day of the week

� day of the week(Year, Month, Day) -> DayNumber
[page 43] Computes the day of the week

� gregorian days to date(Days) -> Date
[page 43] Computes the date given the number of gregorian days.

� gregorian seconds to datetime(Secs) -> DateTime
[page 43] Computes the date given the number of gregorian days.

� is leap year(Year) -> bool()
[page 43] Checks if a year is a leap year.

� last day of the month(Year, Month) -> int()
[page 43] Computes the number of days in a month

� local time() -> fDate, Timeg
[page 44] Computes local time

� local time to universal time(fDate, Timeg) -> fDate, Timeg
[page 44] Converts from local time to universal time.

� now to local time(Now) -> fDate, Timeg
[page 44] Converts now to local date and time

� now to universal time(Now) -> fDate, Timeg
[page 44] Converts now to date and time

� now to datetime(Now) -> fDate, Timeg
[page 44] Converts now to date and time

� seconds to daystime(Secs) -> fDays, Timeg
[page 44] Computes a days and time from seconds.

4 STDLIB

STDLIB Reference Manual

� seconds to time(Secs) -> Time
[page 45] Computes time from seconds.

� time difference(T1, T2) -> Tdiff
[page 45] Computes the difference between two times

� time to seconds(Time) -> Secs
[page 45] Computes the number of seconds since midnight up to the given time.

� universal time() -> fDate, Timeg
[page 45] Computes universal time

� universal time to local time(fDate, Timeg) -> fDate, Timeg
[page 45] Converts from universal time to local time.

� valid date(Date) -> bool()
[page 46] Checks if a date is valid

� valid date(Year, Month, Day) -> bool()
[page 46] Checks if a date is valid

dets

The following functions are exported:

� open file(Name, Args) -> fok, Nameg | ferror, Reasong
[page 48] Opens a dets file.

� open file(Filename) -> ok | ferror, Reasong
[page 49] Opens an existing dets file

� close(Name) -> ok | ferror, Reasong
[page 49] Closes a file

� insert(Name, Object) -> ok | ferror, Reasong
[page 49] Inserts an Object in table Name

� lookup(Name, Key) -> ObjectList | ferror, Reasong
[page 49] Searches the table Name for objects with key Key

� traverse(Name, Fun) -> Return
[page 50] Traverses the whole file and applies Fun

� delete(Name, Key) -> ok
[page 50] Deletes all objects with a specific key from a table

� delete object(Name, Object) -> ok
[page 50] Deletes a specific object from a table

� first(Name) -> Key | ’$end of table’
[page 50] Returns the ’first’ object in a table

� next(Name, Key) -> Key | ’$end of table’
[page 50] Returns the next key in a table

� slot(Name, I) -> $end of table | ObjList
[page 50] Returns the list of objects associated with slot I

� all() -> NameList
[page 50] Returns a list of all open files on this node.

� sync(Name) -> ok
[page 50] Ensures that all data written to Name is written to disk.

5STDLIB

STDLIB Reference Manual

� match object(Name, Pattern) -> ObjectList
[page 51] Matches objects and returns a list of all objects which match Pattern

� match(Name, Pattern) -> BindingsList
[page 51] Matches objects and returns a list of variable bindings

� match delete(Name, Pattern) -> ok
[page 51] Deletes all objects from Name

� info(Name) -> InfoList
[page 51] Returns a list of fTag, Valueg pairs describing the file.

� safe fixtable(Name, true|false)
[page 51] Disables rehashing of a table

� info(Name, Key) -> Value
[page 51] Returns one of the possible information fields which are available by
means of info/1

dict

The following functions are exported:

� append(Key, Value, Dict1) -> Dict2
[page 53] Appends a value to keys in a dictionary

� append list(Key, ValList, Dict1) -> Dict2
[page 53] Appends new values to keys in a dictionary

� erase(Key, Dict1) -> Dict2
[page 53] Erases a key from a dictionary

� fetch(Key, Dict) -> Value
[page 53] Look-up values in a dictionary

� fetch keys(Dict) -> Keys
[page 54] Returns all keys in a dictionary

� filter(Pred, Dict1) -> Dict2
[page 54] Chooses elements which satisfy a predicate

� find(Key, Dict) -> Result
[page 54] Searches for a key in a dictionary

� fold(Function, Acc0, Dict) -> Acc1
[page 54] Folds a function over a dictionary

� from list(List) -> Dict
[page 54] Converts a list of pairs to a dictionary

� is key(Key, Dict) -> bool()
[page 54] Tests if a key is in a dictionary.

� map(Func, Dict1) -> Dict2
[page 55] Maps a function over a dictionary

� merge(Func, Dict1, Dict2) -> Dict3
[page 55] Merge two dictionaries

� new() -> dictionary()
[page 55] Creates a dictionary

� store(Key, Value, Dict1) -> Dict2
[page 55] Stores a value in a dictionary

6 STDLIB

STDLIB Reference Manual

� to list(Dict) -> List
[page 55] Converts a dictionary to a list of pairs

� update(Key, Function, Dict) -> Dict
[page 55] Update a value in a dictionary

� update(Key, Function, Initial, Dict) -> Dict
[page 56] Update a value in a dictionary

� update counter(Key, Increment, Dict) -> Dict
[page 56] Increment a value in a dictionary

digraph

The following functions are exported:

� new(Type) -> graph() | ferror, Reasong
[page 57] Creates a new empty graph

� new() -> graph()
[page 58] Returns a protected empty graph, where cycles are allowed

� delete(G) -> true
[page 58] Deletes the graph

� info(G) -> InfoList
[page 58] Returns a list of fTag, Valueg pairs describing the graph

� add vertex(G, V, Label) -> vertex()
[page 58] Adds or modifies the vertex

� add vertex(G, V) -> vertex()
[page 58] Adds or modifies the vertex

� add vertex(G) -> vertex()
[page 58] Adds or modifies the vertex

� vertex(G, V) -> fV, Labelg | false
[page 58] Returns the vertex’ label

� no vertices(G) -> integer() >= 0
[page 59] Returns the number of vertices of the graph

� vertices(G) -> Vertices
[page 59] Returns all vertices of the graph

� del vertex(G, V) -> true
[page 59] Deletes the vertex

� del vertices(G, Vertices) -> true
[page 59] Deletes vertices

� add edge(G, E, V1, V2, Label) -> edge() | ferror, Reasong
[page 59] Adds or modifies the edge

� add edge(G, V1, V2, Label) -> edge() | ferror, Reasong
[page 59] Adds or modifies the edge

� add edge(G, V1, V2) -> edge() | ferror, Reasong
[page 59] Adds or modifies the edge

� edge(G, E) -> fE, V1, V2, Labelg | false
[page 60] Returns the edge’s label

7STDLIB

STDLIB Reference Manual

� edges(G, V) -> Edges
[page 60] Returns edges emanating from or incident on the vertex

� no edges(G) -> integer() >= 0
[page 60] Returns the number of edges of the graph

� edges(G) -> Edges
[page 60] Returns all edges of the graph

� del edge(G, E) -> true
[page 60] Deletes the edge

� del edges(G, Edges) -> true
[page 61] Deletes edges

� out neighbours(G, V) -> Vertices
[page 61] Returns a list with the vertex’ all out-neighbours

� in neighbours(G, V) -> Vertices
[page 61] Returns a list with the vertex’ all in-neighbours

� out edges(G, V) -> Edges
[page 61] Returns all edges emanating from the vertex

� in edges(G, V) -> Edges
[page 61] Returns all edges incident on the vertex

� out degree(G, V) -> integer()
[page 61] Returns the out-degree of the vertex

� in degree(G, V) -> integer()
[page 62] Returns the in-degree of the vertex

� del path(G, V1, V2) -> true
[page 62] Deletes paths

� get path(G, V1, V2) -> Vertices | false
[page 62] Finds one path

� get short path(G, V1, V2) -> Vertices | false
[page 62] Finds one short path

� get cycle(G, V) -> Vertices | false
[page 62] Finds one cycle

� get short cycle(G, V) -> Vertices | false
[page 63] Finds one short cycle

digraph utils

The following functions are exported:

� components(Graph) -> [Component]
[page 65] Returns all components of a directed graph

� strong components(Graph) -> [StrongComponent]
[page 65] Returns all strong components of a directed graph

� cyclic strong components(Graph) -> [StrongComponent]
[page 65] Returns cyclic strong components of a directed graph

� reachable(Vertices, Graph) -> Vertices
[page 65] Returns vertices reachable from some given vertices

8 STDLIB

STDLIB Reference Manual

� reachable neighbours(Vertices, Graph) -> Vertices
[page 65] Returns all reachable neighbours of some given vertices

� reaching(Vertices, Graph) -> Vertices
[page 66] Returns vertices that reach some given vertices

� reaching neighbours(Vertices, Graph) -> Vertices
[page 66] Returns neighbours that reach some given vertices

� topsort(Graph) -> Vertices | false
[page 66] Returns a topological sorting of the graph vertices

� is acyclic(Graph) -> bool()
[page 66] Checks if a graph is acyclic

� loop vertices(Graph) -> Vertices
[page 66] Returns vertices included in some loop

� subgraph(Graph, Vertices, Options) -> Subgraph | ferror, Reasong
[page 66] Returns a subgraph

� subgraph(Graph, Vertices) -> Subgraph | ferror, Reasong
[page 66] Returns a subgraph

� condensation(Graph) -> CondensedGraph
[page 67] Returns a condensed graph

� preorder(Graph) -> Vertices
[page 67] Returns all vertices in pre-order

� postorder(Graph) -> Vertices
[page 67] Returns all vertices in post-order

epp

The following functions are exported:

� open(FileName, IncludePath) -> fok,Eppg | ferror, ErrorDescriptorg
[page 68] Opens a file for preprocessing

� open(FileName, IncludePath, PredefMacros) -> fok,Eppg | ferror,
ErrorDescriptorg
[page 68] Opens a file for preprocessing

� close(Epp) -> ok
[page 68] Closes the preprocessing of the file associated with Epp

� parse erl form(Epp) -> fok, AbsFormg | feof, Lineg | ferror,
ErrorInfog
[page 68] Returns the next Erlang form from the opened Erlang source file

� parse file(FileName,IncludePath,PredefMacro) -> fok,[Form]g |
ferror,OpenErrorg
[page 68] Preprocesses and parses an Erlang source file

9STDLIB

STDLIB Reference Manual

erl eval

The following functions are exported:

� exprs(Expressions, Bindings) -> fvalue, Value, NewBindingsg
[page 70] Evaluates expressions

� exprs(Expressions, Bindings, LocalFunctionHandler) -> fvalue,
Value, NewBindingsg
[page 70] Evaluates expressions

� expr(Expression, Bindings) -> f value, Value, NewBindings g
[page 70] Evaluates expression

� expr(Expression, Bindings, LocalFunctionHandler) -> f value, Value,
NewBindings g
[page 70] Evaluates expression

� expr list(ExpressionList, Bindings) -> fValueList, NewBindingsg
[page 70] Evaluates a list of expressions

� expr list(ExpressionList, Bindings, LocalFunctionHandler) ->
fValueList, NewBindingsg
[page 70] Evaluates a list of expressions

� new bindings() -> BindingStruct
[page 71] Returns a bindings structure

� bindings(BindingStruct) -> Bindings
[page 71] Returns bindings

� binding(Name, BindingStruct) -> Binding
[page 71] Returns bindings

� add binding(Name, Value, Bindings) -> BindingStruct
[page 71] Adds a binding

� del binding(Name, Bindings) -> BindingStruct
[page 71] Deletes a binding

erl id trans

The following functions are exported:

� parse transform(Forms, Options) -> Forms
[page 73] Transforms Erlang forms

erl internal

The following functions are exported:

� bif(Name, Arity) -> bool()
[page 74] Tests for an Erlang BIF

� guard bif(Name, Arity) -> bool()
[page 74] Tests for an Erlang BIF allowed in guards

10 STDLIB

STDLIB Reference Manual

� type test(Name, Arity) -> bool()
[page 74] Tests for a valid type test

� arith op(OpName, Arity) -> bool()
[page 74] Tests for an arithmetic operator

� bool op(OpName, Arity) -> bool()
[page 74] Tests for a Boolean operator

� comp op(OpName, Arity) -> bool()
[page 75] Tests for a comparison operator

� list op(OpName, Arity) -> bool()
[page 75] Tests for a list operator

� send op(OpName, Arity) -> bool()
[page 75] Tests for a send operator

� op type(OpName, Arity) -> Type
[page 75] Returns operator type

erl lint

The following functions are exported:

� module(AbsForms) -> fok,Warningsg | ferror,Errors,Warningsg
[page 76] Checks a module for errors

� module(AbsForms, FileName) -> fok,Warningsg |
ferror,Errors,Warningsg
[page 76] Checks a module for errors

� module(AbsForms, FileName, CompileOptions) -> fok,Warningsg |
ferror,Errors,Warningsg
[page 76] Checks a module for errors

� is guard test(Expr) -> bool()
[page 77] Tests for a guard test

� format error(ErrorDescriptor) -> string()
[page 77] Formats an error descriptor

erl parse

The following functions are exported:

� parse form(Tokens) -> fok, AbsFormg | ferror, ErrorInfog
[page 79] Parses an Erlang form

� parse exprs(Tokens) -> fok, Expr listg | ferror, ErrorInfog
[page 79] Parses Erlang expressions

� parse term(Tokens) -> fok, Termg | ferror, ErrorInfog
[page 79] Parses an Erlang term

� format error(ErrorDescriptor) -> string()
[page 80] Formats an error descriptor

11STDLIB

STDLIB Reference Manual

� tokens(AbsTerm) -> Tokens
[page 80] Generates a list of tokens for an expression

� tokens(AbsTerm, MoreTokens) -> Tokens
[page 80] Generates a list of tokens for an expression

� normalise(AbsTerm) -> Data
[page 80] Converts abstract form to an Erlang term

� abstract(Data) -> AbsTerm
[page 80] Converts a Erlang term into an abstract form

erl pp

The following functions are exported:

� form(Form) -> DeepCharList
[page 82] Pretty prints a form

� form(Form, HookFunction) -> DeepCharList
[page 82] Pretty prints a form

� attribute(Attribute) -> DeepCharList
[page 82] Pretty prints an attribute

� attribute(Attribute, HookFunction) -> DeepCharList
[page 82] Pretty prints an attribute

� function(Function) -> DeepCharList
[page 82] Pretty prints a function

� function(Function, HookFunction) -> DeepCharList
[page 82] Pretty prints a function

� guard(Guard) -> DeepCharList
[page 82] Pretty prints a guard

� guard(Guard, HookFunction) -> DeepCharList
[page 83] Pretty prints a guard

� exprs(Expressions) -> DeepCharList
[page 83] Pretty prints Expressions

� exprs(Expressions, HookFunction) -> DeepCharList
[page 83] Pretty prints Expressions

� exprs(Expressions, Indent, HookFunction) -> DeepCharList
[page 83] Pretty prints Expressions

� expr(Expression) -> DeepCharList
[page 83] Pretty prints one Expression

� expr(Expression, HookFunction) -> DeepCharList
[page 83] Pretty prints one Expression

� expr(Expression, Indent, HookFunction) -> DeepCharList
[page 83] Pretty prints one Expression

� expr(Expression, Indent, Precedence, HookFunction) ->->
DeepCharList
[page 83] Pretty prints one Expression

12 STDLIB

STDLIB Reference Manual

erl scan

The following functions are exported:

� string(CharList,StartLine]) -> fok, Tokens, EndLineg | Error
[page 85] Scans a string and returns the Erlang tokens

� string(CharList) -> fok, Tokens, EndLineg | Error
[page 85] Scans a string and returns the Erlang tokens

� tokens(Continuation, CharList, StartLine) ->Return
[page 85] Re-entrant scanner

� reserved word(Atom) -> bool()
[page 86] Tests for a reserved word

� format error(ErrorDescriptor) -> string()
[page 86] Formats an error descriptor

ets

The following functions are exported:

� new(Name, Type)
[page 88]

� insert(Tab, Object)
[page 88]

� lookup(Tab, Key)
[page 88]

� lookup element(Tab, Key, Pos)
[page 89] Look-up of element

� delete(Tab, Key) -> true
[page 89]

� delete(Tab)
[page 89]

� update counter(Tab, Key, Incr)
[page 89] Updates a counter object

� first(Tab)
[page 90]

� next(Tab, Key)
[page 90]

� last(Tab)
[page 90]

� prev(Tab, Key)
[page 90]

� slot(Tab, I)
[page 90]

� fixtable(Tab, true|false)
[page 91]

13STDLIB

STDLIB Reference Manual

� safe fixtable(Tab, true|false)
[page 91]

� all()
[page 92] Returns a list of all tables on this node.

� match(Tab, Pattern)
[page 92]

� match object(Tab, Pattern)
[page 92] Returns all objects in Tab matching Pattern

� match delete(Tab, Pattern)
[page 93]

� rename(Tab,NewName)
[page 93]

� info(Tab)
[page 93]

� info(Tab, Item)
[page 94]

� tab2file(Tab, Filename)
[page 94]

� file2tab(Filename)
[page 94]

� tab2list(Tab)
[page 94]

� i()
[page 94]

� i(Item)
[page 94]

filename

The following functions are exported:

� absname(Filename) -> Absname
[page 95] Converts a relative Filename to an absolute name

� absname(Filename, Directory) -> Absname
[page 95] Converts the relative Filename to an absolute name, based on
Directory.

� basename(Filename)
[page 96] Returns the part of the Filename after the last directory separator

� basename(Filename,Ext) -> string()
[page 96] Returns the last component of Filename with Extstripped

� dirname(Filename) -> string()
[page 96] Returns the directory part of a path name

� extension(Filename) -> string() | []
[page 96] Returns the file extension

� join(Components) -> string()
[page 97] Joins a list of file name Components with directory separators

14 STDLIB

STDLIB Reference Manual

� join(Name1, Name2) -> string()
[page 97] Joins two file name components with directory separators.

� nativename(Path) -> string()
[page 97] Returns the native form of a file Path

� pathtype(Path) -> absolute | relative | volumerelative
[page 97] Returns the type of a Path

� rootname(Filename) -> string()
[page 98] Returns all characters in Filename, except the extension.

� rootname(Filename, Ext) -> string()
[page 98] Returns all characters in Filename, except the extension.

� split(Filename) -> Components
[page 98] Returns a list whose elements are the file name components of Filename.

� find src(Module) -> fSourceFile, Optionsg
[page 98] Finds the Filename and compilation options for a compiled Module.

� find src(Module, Rules) -> fSourceFile, Optionsg
[page 98] Finds the Filename and compilation options for a compiled Module.

gen event

The following functions are exported:

� start() -> ServerRet
[page 101] Starts an event manager

� start(Name) -> ServerRet
[page 101] Starts an event manager

� start link() -> ServerRet
[page 101] Starts an event manager

� start link(Name) -> ServerRet
[page 101] Starts an event manager

� stop(EventMgr) -> ok
[page 101] Terminates the event manager

� notify(EventMgr, Event) -> ok
[page 102] Sends an event notification to an event manager

� sync notify(EventMgr, Event) -> ok
[page 102] Sends an event notification to an event manager

� add handler(EventMgr, Handler, Args) -> ok | ErrorRet
[page 102] Adds a new event handler

� add sup handler(EventMgr, Handler, Args) -> ok | ErrorRet
[page 102] Adds a new supervised event handler

� delete handler(EventMgr, Handler, Args) -> DelRet
[page 103] Removes an event handler

� swap handler(EventMgr, OldHandler, NewHandler) -> SwRet
[page 103] Installs a new event handler in place of the old handler

� swap sup handler(EventMgr, OldHandler, NewHandler) -> SwRet
[page 104] Installs a new event handler in place of the old handler

15STDLIB

STDLIB Reference Manual

� call(EventMgr, Handler, Query) -> Ret
[page 104] Sends a request to a specific handler

� call(EventMgr, Handler, Query, Timeout) -> Ret
[page 104] Sends a request to a specific handler

� which handlers(EventMgr) -> [Handler]
[page 105] Which event handlers are active in an event manager

� Module:init(Args) -> InitRes
[page 106] Initializes a new event handler

� Module:handle event(Event, State) -> EventRet
[page 106] Handles an event in a event handler

� Module:handle call(Query, State) -> CallRet
[page 106] Handles a request dedicated to the event handler

� Module:handle info(Info, State) -> EventRet
[page 107] Handles miscellaneous events

� Module:terminate(Arg, State) -> TermRet
[page 108] Cleans up before the event handler is removed

� Module:code change(OldVsn, State, Extra) -> fok, NewStateg
[page 108] Changes the state of the event handler

gen fsm

The following functions are exported:

� start(Module, StartArgs, Options) -> StartRet
[page 110] Starts an FSM process

� start link(Module, StartArgs, Options) -> StartRet
[page 110] Starts an FSM process

� start(Name, Module, StartArgs, Options) -> StartRet
[page 110] Starts an FSM process

� start link(Name, Module, StartArgs, Options) -> StartRet
[page 110] Starts an FSM process

� send event(ProcessRef,Event) -> void()
[page 110] Sends an event asynchronously to the FSM process

� send all state event(ProcessRef,Event) -> void()
[page 111] An event, which can be handled in all states, is sent asynchronously to
the FSM process

� sync send event(ProcessRef,Event) -> Reply
[page 111] Sends an event synchronously to the FSM process

� sync send event(ProcessRef,Event, Timeout) -> Reply
[page 111] Sends an event synchronously to the FSM process

� sync send all state event(ProcessRef,Event) -> Reply
[page 111] An event, which can be handled in all states, is sent synchronously to
the FSM process

� sync send all state event(ProcessRef,Event,Timeout) -> Reply
[page 111] An event, which can be handled in all states, is sent synchronously to
the FSM process

16 STDLIB

STDLIB Reference Manual

� reply(To, Reply) -> true
[page 112] Sends an explicit reply to a caller

� Module:init(StartArgs) -> Return
[page 112] Initializes the FSM process

� Module:StateName(Event, StateData) -> Return
[page 113] Handles asynchronous events in this state

� Module:StateName(Event, From, StateData) -> Return
[page 113] Handles synchronous events in this state

� Module:handle event(Event, StateName, StateData) -> Return
[page 114] Handles events common to all states

� Module:handle sync event(Event, From, StateName, StateData) ->
Return
[page 114] Handles events common to all states

� Module:handle info(Info, StateName, StateData) -> Return
[page 114] Handles other messages received by the process

� Module:terminate(Reason, StateName, StateData) -> void()
[page 115] Terminates the FSM

� Module:code change(OldVsn, StateName, StateData, Extra) -> fok,
NewState, NewStateDatag
[page 115] Changes the FSM

gen server

The following functions are exported:

� start(Module, Args, Options) -> ServerRet
[page 118] Starts a gen server server.

� start(ServerName, Module, Args, Options) -> ServerRet
[page 118] Starts a gen server server.

� start link(Module, Args, Options) -> ServerRet
[page 118] Starts a gen server server.

� start link(ServerName, Module, Args, Options) -> ServerRet
[page 118] Starts a gen server server.

� call(ServerRef, Request) -> Reply
[page 118] Makes a request to a server and waits for the reply

� call(ServerRef, Request, Timeout) -> Reply
[page 118] Makes a request to a server and waits for the reply

� cast(ServerRef, Request) -> ok
[page 119] Casts a request to a server. No reply is expected from the server.

� multi call(DistRef, Request) -> DistRep
[page 119] Makes a request to a server on several nodes

� multi call(Nodes, DistRef, Request) -> DistRep
[page 119] Makes a request to a server on several nodes

� multi call(Nodes, DistRef, Request, Timeout) -> DistRep
[page 119] Makes a request to a server on several nodes

17STDLIB

STDLIB Reference Manual

� abcast(DistRef, Request) -> abcast
[page 120] Casts a request to a server which exists on several nodes

� abcast(Nodes, DistRef, Request) -> abcast
[page 120] Casts a request to a server which exists on several nodes

� reply(To, Reply) -> true
[page 120] Sends a explicit reply to a client

� Module:init(Args) -> fok, Stateg | fok, State, Timeoutg | ignore |
fstop, StopReasong
[page 121] Initializes the server

� Module:handle call(Request, From, State) -> CallReply
[page 121] Handles a call request

� Module:handle cast(Request, State) -> Return
[page 122] Handles a cast request

� Module:handle info(Info, State) -> Return
[page 122] Handles miscellaneous messages

� Module:terminate(Reason, State) -> ok
[page 123] Cleans up the server before termination

� Module:code change(OldVsn, State, Extra) -> fok, NewStateg
[page 123] Changes the state of the server

io

The following functions are exported:

� put chars([IoDevice,] Chars)
[page 126] Writes characters to standard output

� nl([IoDevice])
[page 126] Outputs a newline

� get chars([IoDevice,] Prompt, Count)
[page 126] Reads characters from standard input

� get line([IoDevice,] Prompt)
[page 126] Reads a line from standard input

� write([IoDevice,] Term)
[page 126] Writes a term

� read([IoDevice,] Prompt)
[page 126] Reads a term

� fwrite(Format)
[page 127] Writes formatted output

� format(Format)
[page 127] Writes formatted output

� fwrite([IoDevice,] Format, Arguments)
[page 127] Writes formatted output

� format([IoDevice,] Format, Arguments)
[page 127] Writes formatted output

� fread([IoDevice,] Prompt, Format)
[page 130] Reads formatted input

18 STDLIB

STDLIB Reference Manual

� scan erl exprs(Prompt)
[page 131] Reads Erlang tokens

� scan erl exprs([IoDevice,] Prompt, StartLine)
[page 131] Reads Erlang tokens

� scan erl form(Prompt)
[page 131] Reads Erlang tokens

� scan erl form(IoDevice, Prompt[, StartLine])
[page 131] Reads Erlang tokens

� parse erl exprs(Prompt)
[page 131] Reads Erlang expressions

� parse erl exprs(IoDevice, Prompt[, StartLine])
[page 131] Reads Erlang expressions

� parse erl form(Prompt)
[page 132] Reads Erlang form

� parse erl form(IoDevice, Prompt[, StartLine])
[page 132] Reads Erlang form

io lib

The following functions are exported:

� nl()
[page 133] Returns a newline

� write(Term)
[page 133] Writes a term

� write(Term, Depth)
[page 133] Writes a term

� print(Term)
[page 133] Pretty prints a term

� print(Term, Column, LineLength, Depth)
[page 133] Pretty prints a term

� fwrite(Format, Data)
[page 133] Formatted output

� format(Format, Data)
[page 133] Formatted output

� fread(Format, String)
[page 133] Formatted input

� fread(Continuation, CharList, Format)
[page 134] Re-entrant formatted reader

� write atom(Atom)
[page 134] Returns an atom

� write string(String)
[page 134] Returns a string

� write char(Integer)
[page 134] Returns a character

19STDLIB

STDLIB Reference Manual

� indentation(String, StartIndent)
[page 134] Indentation after printing string

� char list(CharList) -> bool()
[page 134] Tests for a list of characters

� deep char list(CharList)
[page 135] Tests for a deep list of characters

� printable list(CharList)
[page 135] Tests for a list of printable characters

lib

The following functions are exported:

� flush receive() -> void()
[page 136] Flushes messages

� error message(Format, Args)
[page 136] Prints error message

� progname() -> atom()
[page 136] Returns Erlang starter

� nonl(List1)
[page 136] Removes last newline

� send(To, Msg)
[page 136] Sends a message

� sendw(To, Msg)
[page 136] Sends a message and waits fo an answer

lists

The following functions are exported:

� append(ListOfLists) -> List1
[page 137] Appends a list of lists

� append(List1, List2) -> List3
[page 137] Appends two lists

� concat(Things) -> string()
[page 137] Concatenates a list of atoms

� delete(Element, List1) -> List2
[page 138] Deletes an element in a list

� duplicate(N, Element) -> List
[page 138] Makes N copies of element

� flatlength(DeepList) -> int()
[page 138] Length of flattened deep list

� flatten(DeepList) -> List
[page 138] Flattens a deep list

20 STDLIB

STDLIB Reference Manual

� flatten(DeepList, Tail) -> List
[page 138] Flattens a deep list

� keydelete(Key, N, TupleList1) -> TupleList2
[page 138] Deletes a tuple for a tuple list

� keymember(Key, N, TupleList) -> bool()
[page 138] Tests for a key in a list of tuples

� keymerge(N, List1, List2)
[page 139] Keyed merge of two sorted lists

� keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2
[page 139] Replaces tuple in tuple list

� keysearch(Key, N, TupleList) -> Result
[page 139] Extracts value of key in a list of tuples

� keysort(N, List1) -> List2
[page 139] Sorts a list by key

� last(List) -> Element
[page 139] Returns last element in a list

� max(List) -> Max
[page 140] Returns maximum element of list

� member(Element, List) -> bool()
[page 140] Tests for membership of a list

� merge(List1, List2) -> List3
[page 140] Merges two sorted lists

� merge(Fun, List1, List2) -> List
[page 140] Sorts a list

� min(List) -> Min
[page 140] Returns minimum element of list

� nth(N, List) -> Element
[page 140] Extracts element from a list

� nthtail(N, List1) -> List2
[page 141] Returns the N’th tail in List1

� prefix(List1, List2) -> bool()
[page 141] Tests for list prefix

� reverse(List1) -> List2
[page 141] Reverses a list

� reverse(List1, List2) -> List3
[page 141] Reverses a list appending a tail

� seq(From, To) -> [int()]
[page 141] Generates a sequence of integers

� seq(From, To, Incr) -> [int()]
[page 141] Generates a sequence of integers

� sort(List1) -> List2
[page 142] Sorts a list

� sort(Fun, List1) -> List2
[page 142] Sorts a list

� sublist(List, N) -> List1
[page 142] Returns the first N elements of List

21STDLIB

STDLIB Reference Manual

� sublist(List1, Start, Length) -> List2
[page 142] Returns a sub-list of list

� subtract(List1, List2) -> List3
[page 142] Subtracts the element in one list from another list

� suffix(List1, List2) -> bool()
[page 143] Tests for list suffix

� sum(List) -> number()
[page 143] Returns sum of elements in a list

� all(Pred, List) -> bool()
[page 143] True if all elements in the list satisfy Pred

� any(Pred, List) -> bool()
[page 143] True if any of the elements X in the list satisfies Pred(X)

� dropwhile(Pred, List1) -> List2
[page 143] Drops elements from List1 while Pred is true

� filter(Pred, List1) -> List2
[page 143] Chooses elements which satisfy a predicate

� flatmap(Function, List1) -> Element
[page 143] Maps and flattens in one pass

� foldl(Function, Acc0, List) -> Acc1
[page 144] Folds a function over a list

� foldr(Function, Acc0, List) -> Acc1
[page 144] Folds a function over a list

� foreach(Function, List) -> void()
[page 144] Applies function to each element of a list

� map(Func, List1) -> List2
[page 144] Maps a function over a list

� mapfoldl(Function, Acc0, List1) -> fList2, Accg
[page 144] Maps and folds in one pass

� mapfoldr(Function, Acc0, List1) -> fList2, Accg
[page 145] Maps and folds in one pass

� splitwith(Pred, List) -> fList1, List2g
[page 145] Partitions List1 into two lists according to Pred

� takewhile(Pred, List1) -> List2
[page 145] Takes elements from List1 while Pred is true

log mf h

The following functions are exported:

� init(Dir, MaxBytes, MaxFiles)
[page 147] Initiates the event handler

� init(Dir, MaxBytes, MaxFiles, Pred) -> Args
[page 147] Initiates the event handler

22 STDLIB

STDLIB Reference Manual

math

The following functions are exported:

� pi() -> float()
[page 148] A useful number

� sin(X)
[page 148] Diverse math functions

� cos(X)
[page 148] Diverse math functions

� tan(X)
[page 148] Diverse math functions

� asin(X)
[page 148] Diverse math functions

� acos(X)
[page 148] Diverse math functions

� atan(X)
[page 148] Diverse math functions

� atan2(X, Y)
[page 148] Diverse math functions

� sinh(X)
[page 148] Diverse math functions

� cosh(X)
[page 148] Diverse math functions

� tanh(X)
[page 148] Diverse math functions

� asinh(X)
[page 148] Diverse math functions

� acosh(X)
[page 148] Diverse math functions

� atanh(X)
[page 148] Diverse math functions

� exp(X)
[page 148] Diverse math functions

� log(X)
[page 148] Diverse math functions

� log10(X)
[page 148] Diverse math functions

� pow(X, Y)
[page 148] Diverse math functions

� sqrt(X)
[page 148] Diverse math functions

� erf(X) -> float()
[page 148] Error function.

� erfc(X) -> float()
[page 149] Another error function

23STDLIB

STDLIB Reference Manual

orddict

No functions are exported.

ordsets

No functions are exported.

pg

The following functions are exported:

� create(PgName)
[page 152]

� create(PgName, Node)
[page 152]

� join(PgName, Pid)
[page 152]

� send(Pgname, Message)
[page 152]

� esend(PgName, Mess)
[page 152]

� members(PgName)
[page 152]

pool

The following functions are exported:

� start(Name)
[page 153]

� start(Name, Args)
[page 153]

� attach(Node)
[page 153]

� stop()
[page 153]

� get nodes()
[page 154]

� pspawn(Mod, Fun, Args)
[page 154]

� pspawn link(Mod, Fun, Args)
[page 154]

24 STDLIB

STDLIB Reference Manual

� get node()
[page 154]

� new node(Host, Name)
[page 154]

proc lib

The following functions are exported:

� spawn(Module,Func,Args) -> Pid
[page 155] Spawns a new process

� spawn(Node,Module,Func,Args) -> Pid
[page 155] Spawns a new process

� spawn link(Module,Func,Args) -> Pid
[page 155] Spawns a new process and sets a link

� spawn link(Node,Module,Func,Args) -> Pid
[page 155] Spawns a new process and sets a link

� start(Module,Func,Args) -> Ret
[page 156] Starts a new process synchronously

� start(Module,Func,Args,Time) -> Ret
[page 156] Starts a new process synchronously

� start link(Module,Func,Args) -> Ret
[page 156] Starts a new process synchronously

� start link(Module,Func,Args,Time) -> Ret
[page 156] Starts a new process synchronously

� init ack(Parent, Ret) -> void()
[page 156] Used by a process when it has started

� init ack(Ret) -> void()
[page 156] Used by a process when it has started

� format(CrashReport) -> string()
[page 157] Formats a crash report

� initial call(PidOrPinfo) -> fModule,Function,Argsg | false
[page 157] Extracts the initial call of a proc lib spawned process

� translate initial call(PidOrPinfo) -> fModule,Function,Arityg
[page 157] Extracts and translates the initial call of a proc lib spawned process

queue

The following functions are exported:

� new() -> Queue
[page 159] Creates a new empty FIFO queue

� in(Item, Q1) -> Q2
[page 159] Inserts an item into a queue

25STDLIB

STDLIB Reference Manual

� out(Q) -> Result
[page 159] Removes an item from a queue

� to list(Q) -> list()
[page 159] Converts a queue to a list

random

The following functions are exported:

� seed() -> ran()
[page 160] Seeds random number generation with default values

� seed(A1, A2, A3) -> ran()
[page 160] Seeds random number generator

� uniform() -> float()
[page 160] Returns a random float

� uniform(N) -> int()
[page 160] Returns a random integer

regexp

The following functions are exported:

� match(String, RegExp) -> MatchRes
[page 161] Matches a regular expression

� first match(String, RegExp) -> MatchRes
[page 161] Matches a regular expression

� matches(String, RegExp) -> MatchRes
[page 161] Matches a regular expression

� sub(String, RegExp, New) -> SubRes
[page 162] Substitutes the first occurrence of a regular expression

� gsub(String, RegExp, New) -> SubRes
[page 162] Substitutes all occurrences of a regular expression

� split(String, RegExp) -> SplitRes
[page 162] Splits a string into fields

� sh to awk(ShRegExp) -> AwkRegExp
[page 163] Converts an sh regular expression into an AWK one

� parse(RegExp) -> ParseRes
[page 163] Parses a regular expression

� format error(ErrorDescriptor) -> string()
[page 163] Formats an error descriptor

26 STDLIB

STDLIB Reference Manual

sets

The following functions are exported:

� new() -> Set
[page 166] Returns an empty set

� is set(Set) -> bool()
[page 166] Tests for an Set

� size(Set) -> int()
[page 166] The number of elements in a set

� to list(Set) -> List
[page 166] Converts an Set into a list

� from list(List) -> Set
[page 166] Converts a list into an Set

� is element(Element, Set) -> bool()
[page 166] Tests for membership of an Set

� add element(Element, Set1) -> Set2
[page 167] Adds an element to an Set

� del element(Element, Set1) -> Set2
[page 167] Removes an element from an Set

� union(Set1, Set2) -> Set3
[page 167] Union of two Sets

� union(SetList) -> Set
[page 167] Union of a list of Sets

� intersection(Set1, Set2) -> Set3
[page 167] Intersection of two Sets

� intersection(SetList) -> Set
[page 167] Intersection of a list of Sets

� subtract(Set1, Set2) -> Set3
[page 167] Difference of two Sets

� is subset(Set1, Set2) -> bool()
[page 168] Tests for subset

� fold(Function, Acc0, Set) -> Acc1
[page 168] Fold over set elements

� filter(Pred, Set1) -> Set2
[page 168] Filter set elements

shell

No functions are exported.

shell default

No functions are exported.

27STDLIB

STDLIB Reference Manual

slave

The following functions are exported:

� start(Host)
[page 176] Starts a slave node at Host

� start link(Host)
[page 176] Starts a slave node at Host

� start(Host, Name)
[page 176] Starts a slave node at Host called Name@Host

� start link(Host, Name)
[page 177] Starts a slave node at Host called Name@Host

� start(Host, Name, Args) -> fok, Nodeg | ferror, ErrorInfog
[page 177] Starts a slave node at Host called Name@Host and passes Args to new
node

� start link(Host, Name, Args)
[page 177] Starts a slave node at Host called Name@Host

� stop(Node)
[page 178]

� pseudo([Master | ServerList])
[page 178] Starts a number of pseudo servers

� pseudo(Master, ServerList)
[page 178] Starts a number of pseudo servers

� relay(Pid)
[page 178]

string

The following functions are exported:

� len(String) -> Length
[page 179] The length of a string

� equal(String1, String2) -> bool()
[page 179] Tests string equality

� concat(String1, String2) -> String3
[page 179] Concatenates two strings

� chr(String, Character) -> Index
[page 179] Finds the index of a character

� rchr(String, Character) -> Index
[page 179] Finds the index of a character

� str(String, SubString) -> Index
[page 179] Finds the index of a substring

� rstr(String, SubString) -> Index
[page 179] Finds the index of a substring

� span(String, Chars) -> Length
[page 180] Spans characters at start of string

28 STDLIB

STDLIB Reference Manual

� cspan(String, Chars) -> Length
[page 180] Spans characters at start of string

� substr(String, Start) -> SubString
[page 180] Extracts a substring

� substr(String, Start, Length) -> Substring
[page 180] Extracts a substring

� tokens(String, SeperatorList) -> Tokens
[page 180] Splits string into tokens

� chars(Character, Number) -> String
[page 180]

� chars(Character, Number, Tail) -> String
[page 180]

� copies(String, Number) -> Copies
[page 181] Copies a string

� words(String) -> Count
[page 181] Counts blank seperated words

� words(String, Character) -> Count
[page 181] Counts blank seperated words

� sub word(String, Number) -> Word
[page 181] Extracts subword

� sub word(String, Number, Character) -> Word
[page 181] Extracts subword

� strip(String) -> Stripped
[page 181] Strips leading or trailing characters

� strip(String, Direction) -> Stripped
[page 181] Strips leading or trailing characters

� strip(String, Direction, Character) -> Stripped
[page 181] Strips leading or trailing characters

� left(String, Number) -> Left
[page 182] Adjusts left end of string

� left(String, Number, Character) -> Left
[page 182] Adjusts left end of string

� right(String, Number) -> Right
[page 182] Adjusts right end of string

� right(String, Number, Character) -> Right
[page 182] Adjusts right end of string

� centre(String, Number) -> Centered
[page 182] Centers a string

� centre(String, Number, Character) -> Centered
[page 182] Centers a string

� sub string(String, Start) -> SubString
[page 182] Extracts a substring

� sub string(String, Start, Stop) -> SubString
[page 183] Extracts a substring

29STDLIB

STDLIB Reference Manual

supervisor

The following functions are exported:

� start link(Module,StartArgs) -> SupRet
[page 184] Starts a supervisor process

� start link(SupName,Module,StartArgs) -> SupRet
[page 184] Starts a supervisor process

� start child(Supervisor,ChildSpec | ExtraStartArgs) -> fok, Childg |
fok, Child, Infog | ferror, Reasong
[page 185] Dynamically starts a child

� terminate child(Supervisor, Name) -> ok | ferror, not foundg
[page 186] Terminates a child

� delete child(Supervisor,Name) -> ok | ferror, running | not foundg
[page 186] Deletes a child from a supervisor

� restart child(Supervisor,Name) -> fok, Pidg | fok, Pid, Infog |
ferror, running | not found | Reasong
[page 186] Starts a terminated child

� which children(Supervisor) -> [fName, Pid, Type, Modulesg]
[page 186] Gets the children of the supervisor

� check childspecs([ChildSpec]) -> ok | ferror, Reasong
[page 187] Checks if a list of child specs are correct

� Module:init(StartArgs) -> fok, fSupFlags, [ChildSpec]gg | ignore |
ferror, Reasong
[page 187] Returns a supervisor specification

supervisor bridge

The following functions are exported:

� start link(Module,StartArgs) -> fok, Pidg | ignore | ferror, Reasong
[page 189] Starts a supervisor bridge process

� start link(Name,Module,StartArgs) -> fok, Pidg | ignore | ferror,
Reasong
[page 189] Starts a supervisor bridge process

� Module:init(StartArgs) -> fok, Pid, Stateg | ignore | ferror,
Reasong
[page 190] Initializes the supervisor bridge process

� Module:terminate(Reason, State) -> void()
[page 190] Terminates the sub-system

30 STDLIB

STDLIB Reference Manual

sys

The following functions are exported:

� log(Name,Flag)
[page 192] Logs system events in memory

� log(Name,Flag,Timeout) -> ok | fok, [system event()]g
[page 192] Logs system events in memory

� log to file(Name,Flag)
[page 192] Logs system events to the specified file

� log to file(Name,Flag,Timeout) -> ok | ferror, open fileg
[page 192] Logs system events to the specified file

� statistics(Name,Flag)
[page 192]

� statistics(Name,Flag,Timeout) -> ok | fok, Statisticsg
[page 192]

� trace(Name,Flag)
[page 193] Prints all system events on standard io

� trace(Name,Flag,Timeout) -> void()
[page 193] Prints all system events on standard io

� no debug(Name)
[page 193] Turns off debugging

� no debug(Name,Timeout) -> void()
[page 193] Turns off debugging

� suspend(Name)
[page 193] Suspends the process

� suspend(Name,Timeout) -> void()
[page 193] Suspends the process

� resume(Name)
[page 193] Resumes a suspended process

� resume(Name,Timeout) -> void()
[page 193] Resumes a suspended process

� change code(Name, OldVsn, Module, Extra)
[page 193] Sends the code change system message to the process

� change code(Name, OldVsn, Module, Extra, Timeout) -> ok | ferror,
Reasong
[page 193] Sends the code change system message to the process

� get status(Name)
[page 193] Gets the status of the process

� get status(Name,Timeout) -> fstatus, Pid, fmodule, Modg, [PDict,
SysState, Parent, Dbg, Misc]g
[page 193] Gets the status of the process

� install(Name,fFunc,FuncStateg)
[page 194] Installs a debug function in the process

� install(Name,fFunc,FuncStateg,Timeout)
[page 194] Installs a debug function in the process

31STDLIB

STDLIB Reference Manual

� remove(Name,Func)
[page 194] Removes a debug function from the process

� remove(Name,Func,Timeout) -> void()
[page 194] Removes a debug function from the process

� debug options(Options) -> [dbg opt()]
[page 195] Converts a list of options to a debug structure

� get debug(Item,Debug,Default) -> term()
[page 195] Gets the data associated with a debug option

� handle debug([dbg opt()],FormFunc,Extra,Event) -> [dbg opt()]
[page 195] Generates a system event

� handle system msg(Msg,From,Parent,Module,Debug,Misc)
[page 195] Takes care of system messages

� print log(Debug) -> void()
[page 196] Prints the logged events in the debug structure

� Mod:system continue(Parent, Debug, Misc)
[page 196] Called when the process should continue its execution

� Mod:system terminate(Reason, Parent, Debug, Misc)
[page 196] Called when the process should terminate

� Mod:system code change(Misc, Module, OldVsn, Extra) -> fok, NMiscg
[page 196] Called when the process should perform a code change

timer

The following functions are exported:

� start() -> ok
[page 198] Starts a global timer server (named timer server).

� apply after(Time, Module, Function, Arguments) -> fok, Trefg |
ferror, Reasong
[page 198] Applies Module:Function(Arguments) after a specified Time.

� send after(Time, Pid, Message) -> fok, TRefg | ferror,Reasong
[page 198] Sends Message to Pid after a specified Time.

� send after(Time, Message) -> fok, TRefg | ferror,Reasong
[page 198] Sends Message to Pid after a specified Time.

� exit after(Time, Pid, Reason1) -> fok, TRefg | ferror,Reason2g
[page 199] Send an exit signal with Reason after a specified Time.

� exit after(Time, Reason1) -> fok, TRefg | ferror,Reason2g
[page 199] Send an exit signal with Reason after a specified Time.

� kill after(Time, Pid)-> fok, TRefg | ferror,Reason2g
[page 199] Send an exit signal with Reason after a specified Time.

� kill after(Time) -> fok, TRefg | ferror,Reason2g
[page 199] Send an exit signal with Reason after a specified Time.

� apply interval(Time, Module, Function, Arguments) -> fok, TRefg |
ferror, Reasong
[page 199] Evaluates Module:Function(Arguments) repeatedly at intervals of
Time.

32 STDLIB

STDLIB Reference Manual

� send interval(Time, Pid, Message) -> fok, TRefg | ferror, Reasong
[page 199] Sends Message repeatedly at intervals of Time.

� send interval(Time, Message) -> fok, TRefg | ferror, Reasong
[page 199] Sends Message repeatedly at intervals of Time.

� cancel(TRef) -> fok, cancelg | ferror, Reasong
[page 199] Cancels a previously requested timeout identified by TRef.

� sleep(Time) -> ok
[page 199] Suspends the calling process for Time amount of milliseconds.

� tc(Module, Function, Arguments) -> fTime, Valueg
[page 200] Measures the real time it takes to evaluate apply(Module, Function,
Arguments)

� seconds(Seconds) -> Milliseconds
[page 200] Converts Seconds to Milliseconds.

� minutes(Minutes) -> Milliseconds
[page 200] Converts Minutes to Milliseconds.

� hours(Hours) -> Milliseconds
[page 200] Converts Hours to Milliseconds.

� hms(Hours, Minutes, Seconds) -> Milliseconds
[page 200] Converts Hours+Minutes+Seconds to Milliseconds.

unix

The following functions are exported:

� cmd(String)
[page 202]

win32reg

The following functions are exported:

� change key(RegHandle, Key) -> ReturnValue
[page 204] Move to a key in the registry

� change key create(RegHandle, Key) -> ReturnValue
[page 204] Move to a key, create it if it is not there

� close(RegHandle)-> ReturnValue
[page 204] Close the registry.

� current key(RegHandle) -> ReturnValue
[page 204] Return the path to the current key.

� delete key(RegHandle) -> ReturnValue
[page 204] Deletes the current key.

� delete value(RegHandle, Name) -> ReturnValue
[page 205] Deletes the named value on the current key.

� expand(String) -> ExpandedString
[page 205] Expand a string with environment variables

33STDLIB

STDLIB Reference Manual

� format error(ErrorId) -> ErrorString
[page 205]

� open(OpenModeList)-> ReturnValue
[page 205] Open the registry for reading or writing

� set value(RegHandle, Name, Value) -> ReturnValue
[page 205] Set value at the current registry key with specified name.

� sub keys(RegHandle) -> ReturnValue
[page 206] Get subkeys to the current key.

� value(RegHandle, Name) -> ReturnValue
[page 206] Get the named value on the current key.

� values(RegHandle) -> ReturnValue
[page 206] Get all values on the current key.

34 STDLIB

STDLIB Reference Manual beam lib (Module)

beam lib (Module)

beam lib provides an interface to files created by the BEAM compiler (“BEAM files”).
The format used, a variant of “EA IFF 1985” Standard for Interchange Format Files,
divides data into chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are
returned when chunks are referenced by names (atoms) rather than identifiers (strings).
The names recognized and the corresponding identifiers are abstract code (“Abst”),
attributes (“Attr”), exports (“ExpT”), imports (“ImpT”), and locals (“LocT”).

The syntas of the compound term (ChunkData) is as follows:

� ChunkData = fChunkId, binary()g | fabstract code, AbstractCodeg |
fattributes, [fAttribute, [AttributeValue]g]g | fexports,
[fFunction, Arityg]g | fimports, [fModule, Function, Arityg]g |
flocals, [fFunction, Arityg]g]g

� ChunkRef = ChunkId | ChunkName

� ChunkName = abstract code | attributes | exports | imports | locals

� ChunkId = string()

� AbstractCode = fAbstVersion, forms()g | no abstract code

� AbstVersion = atom()

� Attribute = atom()

� AttributeValue = term()

� Module = Function = atom()

� Arity = integer() >= 0

The list of attributes is sorted on Attribute, and each attribute name occurs once in the
list. The attribute values occur in the same order as on the file. The lists of functions are
also sorted. It is not checked that the forms conform to the abstract format indicated by
AbstVersion.

Exports

chunks(FileName, [ChunkRef]) -> fok, fModuleName, [ChunkData]gg | ferror, Module,
Reasong

Types:

� FileName = string() | atom()
� ModuleName = string()

35STDLIB

beam lib (Module) STDLIB Reference Manual

� Reason = fnot a file name, term()g | fnot a list, term()g | fnot a beam file,
FileNameg | fmissing chunk, FileName, ”FOR1”g | fform not beam, FileNameg |
fform too big, FileName, FormSize, FileSizeg | finvalid beam file, FileName,
FilePositiong | ffile error, FileName, FileErrorg | finvalid chunk, FileName,
”Atom”g | fmissing chunk, FileName, ChunkIdg | funknown chunk, FileName,
atom()g | fchunk too big, FileName, ChunkId, ChunkSize, FileSizeg |
finvalid chunk, FileName, ChunkIdg | ffile error, FileName, FileErrorg |
fnot a beam handle, pid()g

The chunks/2 function reads chunk data for selected chunks. The order of the returned
list of chunk data is determined by the order of the list of chunks references; if each
chunk data were replaced by the tag, the result would be the given list.

version(FileName) -> fok, fModuleName, Versiongg | ferror, Module, Reasong

Types:

� FileName = string() | atom()
� ModuleName = string()
� Version = [term()]

The version/1 function returns the module version(s) found on a BEAM file.

See chunks/2 for possible error reasons.

info(FileName) -> [ffile, FileNameg, fmodule, Moduleg, fchunks, [ChunkInfo]g] |
ferror, Module, Reasong

Types:

� FileName = string() | atom()
� ChunkInfo = fChunkId, StartPosition, Sizeg
� StartPosition = Size = integer() > 0
� Reason = fnot a file name, term()g | fnot a beam file, FileNameg | fmissing chunk,

FileName, ”FOR1”g | fform not beam, FileNameg | fform too big, FileName,
FormSize, FileSizeg | finvalid beam file, FileName, FilePositiong | ffile error,
FileName, FileErrorg | finvalid chunk, FileName, ”Atom”g

The info/1 function extracts some information about a BEAM file: the file name, the
module name, and for each chunk the identifier as well as the position and size in bytes
of the chunk data.

format error(Error) -> character list()

Given the error returned by any function in this module, the function format error
returns a descriptive string of the error in English. For file errors, the function
format error/1 in the file module is called.

36 STDLIB

STDLIB Reference Manual c (Module)

c (Module)

The c module enables users to enter the short form of some commonly used commands.
These functions are are intended for interactive use in the Erlang shell.

Exports

bt(Pid) -> void()

Types:

� Pid = pid()

This function evaluates erlang:process display(Pid, backtrace).

c(File) -> CompileResult

This function is equivalent to:

compile:file(File,[report errors, report warnings])

c(File, Flags) -> CompileResult

Types:

� File = atom() | string()
� CompileResult = fok, ModuleNameg | error
� ModuleName = atom()
� Flags = [Flag]

This function calls the following function and then purges and loads the code for the file:

compile:file(File, Flags ++ [report errors, report warnings])

If the module corresponding to File is being interpreted, then int:i is called with the
same arguments and the module is loaded into the interpreter. Note that int:i only
recognizes a subset of the options recognized by compile:file.

Extreme care should be exercised when using this command to change running code
which is executing. The expected result may not be obtained.

Refer to compiler manual pages for a description of the individual compiler flags.

cd(Dir) -> void()

Types:

� Dir = atom() | string()

37STDLIB

c (Module) STDLIB Reference Manual

This function changes the current working directory to Dir, and then prints the new
working directory.

flush() -> void()

This function flushes all messages in the shell message queue.

help() -> void()

This function displays help about the shell and about the command interface module.

i() -> void()

This function provides information about the current state of the system. This call uses
the BIFs processes() and process info/1 to examine the current state of the system.
(The code is a good introduction to these two BIFs).

zi() -> void()

This function works like i(), but additionally displays information about zombie
processes, i.e., processes which have exited, but which are still kept in the system to be
inspected.

ni() -> void()

This function does the same as i(), but for all nodes in the network.

i(X, Y, Z) -> void()

Types:

� X = Y = Z = int()

This function evaluates process info(pid(X, Y, Z)).

l(Module) -> void()

Types:

� Module = atom(), | string()

This function evaluates code:purge(Module) followed by code:load module(Module).
It reloads the module.

lc(ListOfFiles) -> Result

Types:

� ListOfFiles = [File]
� File = atom() | string()
� Result = [CompileResult]
� CompileResult = fok, ModuleNameg | error
� ModuleName = atom()

This function compiles several files by calling c(File) for each file in ListOfFiles.

ls() -> void()

38 STDLIB

STDLIB Reference Manual c (Module)

This function lists all files in the current directory.

ls(Dir) -> void()

Types:

� Dir = atom() | string()

This function lists all files in the directory Dir.

m() -> void()

This function lists the modules which have been loaded and the files from which they
have been loaded.

m(Module) -> void()

Types:

� Module = atom()

This function lists information about Module.

nc(File) -> void()

Types:

� File = atom() | string()

This function compiles File and loads it on all nodes in an Erlang nodes network.

nc(File, Flags) -> void()

Types:

� File = atom() | string()
� Flags = [Flag]

This function compiles File with the additional compiler flags Flags and loads it on all
nodes in an Erlang nodes network. Refer to the compile manual pages for a description
of Flags.

nl(Module) -> void()

Types:

� Module = atom()

This function loads Module on all nodes in an Erlang nodes network.

pid(X, Y, Z) -> pid()

Types:

� X = Y = Z = int()

This function converts the integers X, Y, and Z to the Pid <X.Y.Z>. It saves typing and
the use of list to pid/1. This function should only be used when debugging.

pwd() -> void()

This function prints the current working directory.

39STDLIB

c (Module) STDLIB Reference Manual

q() -> void()

This function is shorthand for init:stop(), i.e., it causes the node to stop in a
controlled fashion.

regs() -> void()

This function displays formatted information about all registered processes in the
system.

nregs() -> void()

This function is the same as regs(), but on all nodes in the system.

memory() -> TupleList

Types:

� TupleList = [TwoTuple]
� TwoTuple = fatom(), int()g

A list of tuples is returned. Each tuple has two elements. The first element is an atom
describing memory type. The second element is memory size in bytes. A description of
each tuple follows:

total The total amount of allocated memory. total is the sum of processes and
system.
Observe that this is not a complete list of allocated memory; but, it is almost
complete.

processes The total amount of memory allocated by the processes.

system The total amount of memory allocated by the system. Memory allocated by
processes is not included.
Observe that this is not a complete list of memory allocated by the system; but, it
is almost complete.

atom The total amount of memory allocated for atoms.
This memory is part of the memory presented as system memory.

atom used The total amount of memory actually used for atoms.
This memory is part of the memory presented as atom memory.

binary The total amount of memory allocated for binaries.
This memory is part of the memory presented as system memory.

code The total amount of memory allocated for code.
This memory is part of the memory presented as system memory.

ets The total amount of memory allocated for ets tables.
This memory is part of the memory presented as system memory.

A process executing this function may be preempted by other processes; therefore, the
returned information may not be a consistent snapshot of the memory allocation state.

More tuples in the returned list may be added in the future.

memory(MemoryType) -> int()

Types:

40 STDLIB

STDLIB Reference Manual c (Module)

� MemoryType = atom()

MemoryType is one of the following atoms: total, processes, system, atom,
atom used, binary, code or ets. These atoms correspond to the atoms described for
memory/0 above. An integer representing the memory in bytes that corresponds to the
argument is returned.

A process executing this function may be preempted by other processes; therefore, the
returned information may not be a consistent snapshot of the memory allocation state.

More arguments may be added in the future.

Failure: badarg if MemoryType is not one of the atoms listed above.

41STDLIB

calendar (Module) STDLIB Reference Manual

calendar (Module)

This module provides computation of local and universal time, day-of-the-week, and
several time conversion functions.

Time is local when it is adjusted in accordance with the current time zone and daylight
saving. Time is universal when it reflects the time at longitude zero, without any
adjustment for daylight saving. Universal Coordinated Time (UTC) time is also called
Greenwich Mean Time (GMT).

The time functions local time/0 and universal time/0 provided in this module both
return date and time. The reason for this is that separate functions for date and time
may result in a date/time combination which is displaced by 24 hours. This happens if
one of the functions is called before midnight, and the other after midnight. This
problem also applies to the Erlang BIFs date/0 and time/0, and their use is strongly
discouraged if a reliable date/time stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope
Gregory XIII in 1582 and was used in all Catholic countries from this year. Protestant
parts of Germany and the Netherlands adopted it in 1698, England followed in 1752,
and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For a given date, the
gregorian days is the number of days up to and including the date specified. Similarly,
the gregorian seconds for a given date and time, is the the number of seconds up to and
including the specified date and time.

For computing differences between epochs in time, use the functions counting
gregorian days or seconds. If epochs are given as local time, they must be converted to
universal time, in order to get the correct value of the elapsed time between epochs.
Use of the function time difference/2 is discouraged.

Exports

date to gregorian days(Year, Month, Day) -> Days

date to gregorian days(Date) -> Days

Types:

� Date = fYear, Month, Dayg
� Year = Month = Day = Days = int()

This function computes the number of gregorian days starting with year 0 and ending at
the given date.

datetime to gregorian seconds(DateTime) -> Days

42 STDLIB

STDLIB Reference Manual calendar (Module)

Types:

� DateTime = fdate(), time()g
� date() = fYear, Month, Dayg
� time() = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = Days = int()

This function computes the number of gregorian seconds starting with year 0 and
ending at the given date and time.

day of the week(Date) -> DayNumber

day of the week(Year, Month, Day) -> DayNumber

Types:

� Date = fYear, Month, Dayg
� Year = Month = Day = DayNumber = int()

This function computes the day of the week given Year, Month and Day. The return
value denotes the day of the week as follows:

Monday = 1, Tuesday = 2, ..., Sunday = 7

Year cannot be abbreviated and a value of 93 denotes the year 93, and not the year
1993. Month is the month number with January = 1. Day is an integer in the range 1 and
the number of days in the month Month of the year Year.

gregorian days to date(Days) -> Date

Types:

� Date = fYear, Month, Dayg
� Year = Month = Day = Days = int()

This function computes the date given the number of gregorian days.

gregorian seconds to datetime(Secs) -> DateTime

Types:

� DateTime = fdate(), time()g
� date() = fYear, Month, Dayg
� time() = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = Days = int()

This function computes the date and time from the given number of gregorian seconds.

is leap year(Year) -> bool()

Types:

� Year = int()

This function checks if a year is a leap year.

last day of the month(Year, Month) -> int()

Types:

� Year = Month = int()

43STDLIB

calendar (Module) STDLIB Reference Manual

This function computes the number of days in a month.

local time() -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

This function returns the local time reported by the underlying operating system.

local time to universal time(fDate, Timeg) -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

This function converts from local time to Universal Coordinated Time (UTC). Date
must refer to a local date after Jan 1, 1970.

now to local time(Now) -> fDate, Timeg

Types:

� Now = fMegaSecs, Secs, MicroSecsg
� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� MegaSecs = Secs = MilliSecs = int()
� Year = Month = Day = Hour = Minute = Second = int()

This function returns local date and time converted from the return value from
erlang:now().

now to universal time(Now) -> fDate, Timeg

now to datetime(Now) -> fDate, Timeg

Types:

� Now = fMegaSecs, Secs, MicroSecsg
� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� MegaSecs = Secs = MilliSecs = int()
� Year = Month = Day = Hour = Minute = Second = int()

This function returns Universal Coordinated Time (UTC) converted from the return
value from erlang:now().

seconds to daystime(Secs) -> fDays, Timeg

Types:

� Time() = fHour, Minute, Secondg
� Hour = Minute = Second = Days = int()

44 STDLIB

STDLIB Reference Manual calendar (Module)

This function transforms a given number of seconds into days, hours, minutes, and
seconds. The Time part is always non-negative, but Days is negative if the argument
Secs is.

seconds to time(Secs) -> Time

Types:

� Time() = fHour, Minute, Secondg
� Hour = Minute = Second = Secs = int()

This function computes the time from the given number of seconds. Secs must be less
than the number of seconds per day.

time difference(T1, T2) -> Tdiff

Types:

� T1 = T2 = fDate, Timeg
� Tdiff = fDay, fHour, Minute, Secondgg
� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

This function returns the difference between two fDate, Timeg structures. T2 should
refer to an epoch later than T1.

This function is obsolete. Use the conversion functions for gregorian days and seconds
instead.

time to seconds(Time) -> Secs

Types:

� Time() = fHour, Minute, Secondg
� Hour = Minute = Second = Secs = int()

This function computes the number of seconds since midnight up to the specified time.

universal time() -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

This function returns the Universal Coordinated Time (UTC) reported by the
underlying operating system. Local time is returned if universal time is not available.

universal time to local time(fDate, Timeg) -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

45STDLIB

calendar (Module) STDLIB Reference Manual

This function converts from Universal Coordinated Time (UTC) to local time. Date
must refer to a date after Jan 1, 1970.

valid date(Date) -> bool()

valid date(Year, Month, Day) -> bool()

Types:

� Date = fYear, Month, Dayg
� Year = Month = Day = int()

This function checks if a date is a valid.

Leap Years

The notion that every fourth year is a leap year is not completely true. By the Gregorian
rule, a year Y is a leap year if either of the following rules is valid:

� Y is divisible by 4, but not by 100; or

� Y is divisible by 400.

Accordingly, 1996 is a leap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF localtime/0. Universal time is computed
from the BIF universaltime/0.

The following facts apply:

� there are 86400 seconds in a day

� there are 365 days in an ordinary year

� there are 366 days in a leap year

� there are 1461 days in a 4 year period

� there are 36524 days in a 100 year period

� there are 146097 days in a 400 year period

� there are 719528 days between Jan 1, 0 and Jan 1, 1970.

46 STDLIB

STDLIB Reference Manual dets (Module)

dets (Module)

dets is a disk based version of the module ets. New users should read the
documentation for the ets module before reading this description. In places where no
description is given for the behavior of a function in this module, then the function
behaves exactly as its corresponding function in the ets module.

This module provides a term (tuple) storage on file. It is possible to insert, delete, and
search for specific terms in a file. The implementation is based on linear hashing. This
module is used as the underlying file storage mechanism of the Mnesia DBMS. The
module is provided as is, and without Mnesia, for users who are interested in an efficient
storage of Erlang terms on disk only. Many applications only need to store some terms
in a file. Mnesia adds transactions, queries, and distribution.

A file must be opened and closed. If a file has not been properly closed, the dets
module will automatically repair the file. This might take some time if the file is very
large. By default, files are closed if the process which opened the file terminates. If
several Erlang processes open the same dets file, they will all share the file. The file is
properly closed when all users has either terminated or closed the file. dets files are not
properly closed if the Erlang runtime system is terminated abnormally.

Note:
A ^C command abnormally terminates an Erlang runtime system in a Unix
environment with a break-handler.

Since all operations in this module are disk operations, it is important to realize that a
single look-up operation might involve a series of disk seek and read operations. For this
reason, the operations in this module are much slower than the corresponding operation
in ets, although this module exports a similar interface.

All functions in this module fail and return ferror, Reasong if an error occurs.

The size of an empty dets file is approximately 34 kilobytes. This may seem large, but
this is the price paid for searching for an object in an arbitrarily large file with almost
constant search time.

The implementation of dets is based on the principle of the ets module. Data is
organized as a linear hash list and the hash list grows gracefully the more data is inserted
into the file. Space management on the file is performed by what is called a buddy
system.

It is worth noting that the ordered set data-type present in ets tables is not yet
implemented in dets, neither is the limited support for concurrent updates which
makes a first/next sequence safe to use on ’fixed’ ets tables. Both these features will
be implemented for dets in a future release of the Erlang/OTP system. Until then, the
Mnesia DBMS (or some user implemented method for locking) has to be used to
implement safe concurrency. No supplied library in Erlang/OTP currently has support
for ordered disk based term storage.

47STDLIB

dets (Module) STDLIB Reference Manual

Exports

open file(Name, Args) -> fok, Nameg | ferror, Reasong

This function opens a dets file. An empty dets file is created if no file exists.

The Name argument is the name of the table. The table name must be provided in all
subsequent operations on the file. This means that dets files have atomic names. The
name can be used by other processes as well, and several process can share one dets file.
This behavior is similar to the named table option in ets. If two processes open the
same file, give the file the same name and provide the same arguments, then the file will
have two users. If one user closes the file, it still remains open until the second user
closes the file. The Args argument is a list of fKey, Valg tuple where the following
values are allowed:

� ftype, Typeg, where Type must be either of the atoms set, bag or
duplicate bag. If a file is of type set, it means that each key uniquely identifies
either one or zero objects. Thus, if a second object is inserted with a key that is
already present in the file, then the first object will be overwritten. On the
contrary, a file of type bag can have multiple objects with same key. However,
identical instances of the same object cannot occur in the same file. If the type is
set to duplicate bag multiple identical objects may occur in the file. The default
value is set.

� ffile, Filenameg is the name of the file to be opened. The default value is the
name of the table.

� fkeypos, Posg. Only tuples can be inserted in a dets file. This attribute specifies
which position in each tuple to use as the key field. The default value is 1. The
ability to change the key position is most convenient when we want to store Erlang
records in which the first position of the tuple/record is the name of the record
type.

� frepair, Valueg Value can be either a boolean (true or false), or the atom
force. The flag specifies if the dets server invokes the automatic file repair
algorithm. The default is true. If false is specified, there is no attempt to repair
the file and the error ferror, need repairg is returned.
The value force means that repair should be done even if it is not needed. This
can be used to convert dets files from an older version of stdlib. An example is files
hashed with the deprecated erlang:hash/2 BIF. Files created with dets from a
stdlib version of 1.8.2 and later uses the new erlang:phash/2 function, which may
be preferred. An older dets file can only be converted by a repair of the file, why
forced repairs can be of use.

� fcache size, Integerg The dets process can keep a cache of elements read (or
written) to the file. The cache is “write-through”, i. e. the data is always saved to
disk when inserting.
The integer value is the number of keys kept in the cache, (the objects are also
kept in the cache, but there can be more than one object per key in a bag or
duplicate bag). The atom infinity can be supplied as cache size, which
indicates that the cache can grow infinitely (and be as large as the disk based table
itself). A infinite cache may be an alternative to manually (or via Mnesia)
shadowing a dets table in an ets ditto.
Default is to have no cache at all (0).

48 STDLIB

STDLIB Reference Manual dets (Module)

� fauto save, Timeg If auto save is specified, the dets table is flushed to disk
whenever it is not accessed for Time milliseconds. A dets table that is flushed will
require no repair when reopened after an uncontrolled emulator halt.
A Time value of infinity will disable auto save.
The default value is 180000 (3 minutes).

� fram file, Boolg The dets file is kept in RAM memory if this flag is set. This
may sound like an anomaly, but this flag can enhance the performance of
applications which open a dets file, insert a set of objects, and then close the file.
When the dets file is closed, its contents are written to the real disk file. The
default value is false.

� festimated no object, Intg Application performance can be enhanced with this
flag by specifying, when the file is created, the estimated number of objects that
will occupy the dets file. The default value as well as the minimum value is 256.

� faccess, Accessg. It is possible to open existing dets files in read-only mode.
The value of the parameter Access is either read or read write. The default
value is read write. A dets file which is opened in read-only mode is not marked
as opened, and consequently it is not subjected to the automatic repair process if it
is later opened.

The dets server keeps track of the number of users of each file. If a file is opened twice,
it must be closed twice.

open file(Filename) -> ok | ferror, Reasong

This function opens an existing dets file. If the file is not properly closed, it fails with
ferror, need repairg. This function is most useful for debugging purposes.

close(Name) -> ok | ferror, Reasong

This function closes a file. Only the owner of a dets file (i.e., the process which opened
it) is allowed to close it.

All open files must be closed before the system is stopped. If we attempt to open a file
which has not been properly closed, the dets module tries to automatically repair the
file.

insert(Name, Object) -> ok | ferror, Reasong

This function inserts an Object in table Name.

lookup(Name, Key) -> ObjectList | ferror, Reasong

This function searches the table Name for object(s) with the key Key and returns a list of
the found object(s). Insert and look-up times in tables are constant. For example:

2> dets:open_file(abc, [{type, bag}]).
{ok,abc}
3> dets:insert(abc, {1,2,3}).
ok
4> dets:insert(abc, {1,3,4}).
ok
5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]

49STDLIB

dets (Module) STDLIB Reference Manual

If the table is of type set, the function returns either [], or a list with a maximum
length of one (there can be only be one object with a single key in a set). If the table is
of type bag, a look-up returns a list of arbitrary length.

traverse(Name, Fun) -> Return

This function makes it possible to traverse a whole dets file and perform some
operation on all or some objects in the file. Different actions are taken depending on the
return value of Fun. The following Fun return values are allowed:

continue Continue to perform the traversal. For example, the following function is
supplied in order to print the contents of a file to the terminal:

fun(X) -> io:format("~p~n", [X]), continue end.

fcontinue, Valg Continue the traversal and accumulate Val. The following function
is supplied in order to collect all objects in a file into a list:

fun(X) -> fcontinue, Xg end.

fdone, Valueg Terminate the search and return [Value |
Previously accumulated].

delete(Name, Key) -> ok

This function deletes all objects with a specific key from a table.

delete object(Name, Object) -> ok

This function deletes a specific object from a table. If a table is of type bag, the
delete/2 function cannot be used to delete only some of the objects with a specific key.
This function makes this possible.

first(Name) -> Key | ’$end of table’

This function returns the ’first’ object in a table.

next(Name, Key) -> Key | ’$end of table’

This function returns the next key in a table.

slot(Name, I) -> $end of table | ObjList

This function return the list of objects associated with slot I.

all() -> NameList

This function returns a list of all open files on this node.

sync(Name) -> ok

50 STDLIB

STDLIB Reference Manual dets (Module)

This function ensures that all data written to Name is written to disk. This also applies to
files which have been opened with the ram file flag set to true. In this case, the
contents of the RAM file is flushed to disk.

match object(Name, Pattern) -> ObjectList

This function matches objects and returns a list of all objects which match Pattern. If
the keypos’th element of Pattern is unbound, a full search of file is performed. On the
contrary, if the keypos’th element is not a variable, this function only searches among
the objects with the right key.

match(Name, Pattern) -> BindingsList

This function matches objects and returns a list of all bindings which match Pattern. If
the keypos’th element of Pattern is unbound, a full search over the whole file is
performed. On the contrary, if the keypos’th element is not a variable, this function
only searches among the objects with the right key.

match delete(Name, Pattern) -> ok

Deletes all objects which matches Pattern from Name.

info(Name) -> InfoList

This function returns a list of fTag, Valueg pairs describing the file. The following list
of items is returned.

� ftype, Typeg, where Type is either of the atoms set or bag.

� fkeypos, Posg.

� fsize, Sizeg, where Size is the number of objects which reside in the file.

� ffile size, Fzg, where Fz is the size of the file in bytes.

� fusers, Ug. where U is list of the Pids which currently use the file.

� ffilename, Fg, where F is the name of the actual file being used.

safe fixtable(Name, true|false)

This function works as the corresponding function in ets, except that it does not
guarantee that first/next sequences during concurrent deletes work as expected. The
limited support for concurrency implemented in ets tables is not yet implemented in
dets. This interface currently only disables resizing of the hash area in a table. Until
concurrent deletes are supported, the interface is of limited usage for others than the
Mnesia DBMS. It is documented here for completeness.

info(Name, Key) -> Value

Returns one of the possible information fields which are available by means of info/1.

Additionally, the following Keys can be specified:

� fixed. Returns true if rehashing is disabled either by the Mnesia internal
fixtable/2 interface or by the safe fixtable/2 interface.
The Key is special in that it returns the atom undefined if Name is not an open
table. Other Keys will generate an exit signal (badarg) in the same situation,
which is not compatible with ets and may be subject to change in future releases.

51STDLIB

dets (Module) STDLIB Reference Manual

� safe fixed. If the table is ’fixed’ using safe fixtable/2, the call returns a tuple:
fFixedNowTime,[fPid,RefCountg]g, where FixedNowTime is the time when the
table was fixed by the first process (which may not be one of the processes fixing it
now), Pid is a process ’fixing’ the table right now and RefCount is the reference
counter for ’fixes’ done by that process. There may be any number of processes in
the list. In all other cases, the atom false is returned.

� hash. Determines which BIF is used to calculate the hashes in the dets table.
Possible return values are hash, which means the erlang:hash/2 BIF, or phash,
which means the erlang:phash/2 BIF. Files created with this version of dets
always uses erlang:phash/2. Older dets files may need conversion, which is done
by using the frepair, forceg argument when opening.

� hash. Determines which BIF is used to calculate the hashes in the dets table.
Possible return values are hash, which means the erlang:hash/2 BIF, or phash,
which means the erlang:phash/2 BIF. Files created with this version of dets
always uses erlang:phash/2. Older dets files may need conversion, which is done
by using the frepair, forceg argument when opening.

See Also

ets(3), mnesia(3)

52 STDLIB

STDLIB Reference Manual dict (Module)

dict (Module)

Dict implements a Key - Value dictionary. The representation of a dictionary is not
defined.

Exports

append(Key, Value, Dict1) -> Dict2

Types:

� Key = Value = term()
� Dict1 = Dict2 = dictionary()

This function appends a new Value to the current list of values associated with Key. An
exception is generated if the initial value associated with Key is not a list of values.

append list(Key, ValList, Dict1) -> Dict2

Types:

� ValList = [Value]
� Key = Value = [term()]
� Dict1 = Dict2 = dictionary()

This function appends a list of values ValList to the current list of values associated
with Key. An exception is generated if the initial value associated with Key is not a list
of values.

erase(Key, Dict1) -> Dict2

Types:

� Key = term()
� Dict1 = Dict2 = dictionary()

This function erases all items with a given key from a dictionary.

fetch(Key, Dict) -> Value

Types:

� Key = Value = term()
� Dict = dictionary()

53STDLIB

dict (Module) STDLIB Reference Manual

This function returns the value associated with Key in the dictionary Dict. fetch
assumes that the Key is present in the dictionary and an exception is generated if Key is
not in the dictionary.

fetch keys(Dict) -> Keys

Types:

� Dict = dictionary()
� Keys = [term()]

This function returns a list of all keys in the dictionary.

filter(Pred, Dict1) -> Dict2

Types:

� Pred = fun(Key, Value) -> bool()
� Dict1 = Dict2 = dictionary()

Dict2 is a dictionary of all keys and values in Dict1 for which Pred(Key, Value) is
true.

find(Key, Dict) -> Result

Types:

� Key = term()
� Dict = dictionary()
� Result = fok, Valueg | error

This function searches for a key in a dictionary. Returns fok, Valueg where Value is
the value associated with Key, or error if the key is not present in the dictionary.

fold(Function, Acc0, Dict) -> Acc1

Types:

� Function = fun(Key, Value, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Dict = dictionary()

Calls Function on successive keys and values of Dict together with an extra argument
Acc (short for accumulator). Function must return a new accumulator which is passed
to the next call. Acc0 is returned if the list is empty. The evaluation order is undefined.

from list(List) -> Dict

Types:

� List = [fKey, Valueg]
� Dict = dictionary()

This function converts the dictionary to a list representation.

is key(Key, Dict) -> bool()

Types:

� Key = term()
� Dict = dictionary()

54 STDLIB

STDLIB Reference Manual dict (Module)

This function tests if Key is contained in the dictionary Dict

map(Func, Dict1) -> Dict2

Types:

� Func = fun(Key, Value) -> Value
� Dict1 = Dict2 = dictionary()

map calls Func on successive keys and values of Dict to return a new value for each key.
The evaluation order is undefined.

merge(Func, Dict1, Dict2) -> Dict3

Types:

� Func = fun(Key, Value1, Value2) -> Value
� Dict1 = Dict2 = Dict3 = dictionary()

merge merges two dictionaries, Dict1 and Dict2, to create a new dictionary. All the Key
- Value pairs from both dictionaries are included in the new dictionary. If a key occurs
in both dictionaries then Func is called with the key and both values to return a new
value. merge could be defined as:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->

update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

but is faster.

new() -> dictionary()

This function creates a new dictionary.

store(Key, Value, Dict1) -> Dict2

Types:

� Key = Value = term()
� Dict1 = Dict2 = dictionary()

This function stores a Key - Value pair in a dictionary. If the Key already exists in Dict1,
the associated value is replaced by Value.

to list(Dict) -> List

Types:

� Dict = dictionary()
� List = [fKey, Valueg]

This function converts the dictionary to a list representation.

update(Key, Function, Dict) -> Dict

Types:

� Key = term()
� Function = fun(Value) -> Value
� Dict = dictionary()

55STDLIB

dict (Module) STDLIB Reference Manual

Update the a value in a dictionary by calling Function on the value to get a new value.
An exception is generated if Key is not present in the dictionary.

update(Key, Function, Initial, Dict) -> Dict

Types:

� Key = Initial = term()
� Function = fun(Value) -> Value
� Dict = dictionary()

Update the a value in a dictionary by calling Function on the value to get a new value.
If Key is not present in the dictionary then Initial will be stored as the first value. For
example we could define append/3 as:

append(Key, Val, D) ->
update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Dict) -> Dict

Types:

� Key = term()
� Increment = number()
� Dict = dictionary()

Add Increment to the value associated with Key and store this value. If Key is not
present in the dictionary then Increment will be stored as the first value.

This is could have been defined as:

update_counter(Key, Incr, D) ->
update(Key, fun (Old) -> Old + Incr end, Incr, D).

but is faster.

Notes

The functions append and append list are included so we can store keyed values in a
list accumulator. For example:

> D0 = dict:new(),
D1 = dict:store(files, [], D0),
D2 = dict:append(files, f1, D1),
D3 = dict:append(files, f2, D2),
D4 = dict:append(files, f3, D3),
dict:fetch(files, D4).

[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list
of stored values, and storing the result.

The function fetch should be used if the key is known to be in the dictionary,
otherwise find.

56 STDLIB

STDLIB Reference Manual digraph (Module)

digraph (Module)

The digraph module implements a version of labeled directed graphs. What makes the
graphs implemented here non-proper directed graphs is that multiple edges between
vertices are allowed. However, the customary definition of directed graphs will be used
in the text that follows.

A directed graph (or just “graph”) is a pair (V, E) of a finite set V of vertices and a finite
set E of directed edges (or just “edges”). The set of edges E is a subset of V � V (the
Cartesian product of V with itself). In this module, V is allowed to be empty; the so
obtained unique graph is called the empty graph. Both vertices and edges are
represented by unique Erlang terms.

Graphs can be annotated with additional information. Such information may be
attached to the vertices and to the edges of the graph. A graph which has been
annotated is called a labeled graph, and the information attached to a vertex or an edge
is called a label. Labels are Erlang terms.

An edge e = (v, w) is said to emanate from vertex v and to be incident on vertex w. The
out-degree of a vertex is the number of edges emanating from that vertex. The in-degree
of a vertex is the number of edges incident on that vertex. If there is an edge emanating
from v and incident on w, then w is is said to be an out-neighbour of v, and v is said to be
an in-neighbour of w. A path P from v[1] to v[k] in a graph (V, E) is a non-empty
sequence v[1], v[2], ..., v[k] of vertices in V such that there is an edge (v[i],v[i+1]) in E
for 1 <= i < k. The length of the path P is k-1. P is simple if all vertices are distinct,
except that the first and the last vertices may be the same. P is a cycle if the length of P
is not zero and v[1] = v[k]. A loop is a cycle of length one. A simple cycle is a path that is
both a cycle and simple. An acyclic graph is a graph that has no cycles.

Exports

new(Type) -> graph() | ferror, Reasong

Types:

� Type = [cyclic | acyclic | public | private | protected]
� Reason = funknown type, term()g

Returns an empty graph [page 57] with properties according to the options in Type:

cyclic Allow cycles [page 57] in the graph (default).

acyclic The graph is to be kept acyclic [page 57].

public The graph may be read and modified by any process.

protected Other processes can only read the graph (default).

private The graph can be read and modified by the creating process only.

57STDLIB

digraph (Module) STDLIB Reference Manual

If an unrecognized type option T is given, then ferror, funknown type, Tgg is
returned.

new() -> graph()

Equivalent to new([]).

delete(G) -> true

Types:

� G = graph()

Deletes the graph G. This call is important because graphs are implemented with ets.
There is no garbage collection of ets tables. The graph will, however, be deleted if the
process that created the graph terminates.

info(G) -> InfoList

Types:

� G = graph()
� InfoList = [fcyclicity, Cyclicityg, fmemory, NoWordsg, fprotection, Protectiong]
� Cyclicity = cyclic | acyclic
� Protection = public | protected | private
� NoWords = integer() >= 0

Returns a list of fTag, Valueg pairs describing the graph G. The following pairs are
returned:

� fcyclicity, Cyclicityg, where Cyclicity is cyclic or acyclic, according to
the options given to new.

� fmemory, NoWordsg, where NoWords is the number of words allocated to the ets
tables.

� fprotection, Protectiong, where Protection is public, protected or
private, according to the options given to new.

add vertex(G, V, Label) -> vertex()

add vertex(G, V) -> vertex()

add vertex(G) -> vertex()

Types:

� G = graph()
� V = vertex()
� Label = label()

add vertex/3 creates (or modifies) the vertex V of the graph G, using Label as the
(new) label [page 57] of the vertex. Returns V.

add vertex(G, V) is equivalent to add vertex(G, V, []).

add vertex/1 creates a vertex using the empty list as label, and returns the created
vertex. Tuples on the form [’$v’ | N], where N is an integer >= 1, are used for
representing the created vertices.

vertex(G, V) -> fV, Labelg | false

58 STDLIB

STDLIB Reference Manual digraph (Module)

Types:

� G = graph()
� V = vertex()
� Label = label()

Returns fV, Labelg where Label is the label [page 57] of the vertex V of the graph G,
or false if there is no vertex V of the graph G.

no vertices(G) -> integer() >= 0

Types:

� G = graph()

Returns the number of vertices of the graph G.

vertices(G) -> Vertices

Types:

� G = graph()
� Vertices = [vertex()]

Returns a list of all vertices of the graph G, in some unspecified order.

del vertex(G, V) -> true

Types:

� G = graph()
� V = vertex()

Deletes the vertex V from the graph G. Any edges emanating [page 57] from V or
incident [page 57] on V are also deleted.

del vertices(G, Vertices) -> true

Types:

� G = graph()
� Vertices = [vertex()]

Deletes the vertices in the list Vertices from the graph G.

add edge(G, E, V1, V2, Label) -> edge() | ferror, Reasong

add edge(G, V1, V2, Label) -> edge() | ferror, Reasong

add edge(G, V1, V2) -> edge() | ferror, Reasong

Types:

� G = graph()
� E = edge()
� V1 = V2 = vertex()
� Label = label()
� Reason = fbad edge, Pathg | fbad vertex, Vg
� Path = [vertex()]

59STDLIB

digraph (Module) STDLIB Reference Manual

add edge/5 creates (or modifies) the edge E of the graph G, using Label as the (new)
label [page 57] of the edge. The edge is emanating [page 57] from V1 and incident
[page 57] on V2. Returns E.

add edge(G, V1, V2, Label) is equivalent to add edge(G, E, V1, V2, Label),
where E is a created edge. Tuples on the form [’$e’ | N], where N is an integer >= 1,
are used for representing the created edges.

add edge(G, V1, V2) is equivalent to add edge(G, V1, V2, []).

If the edge would create a cycle in an acyclic graph [page 57], then
ferror, fbad edge, Pathgg is returned. If either of V1 or V2 is not a vertex of the
graph G, then ferror, fbad vertex, Vgg is returned, V = V1 or V = V2.

edge(G, E) -> fE, V1, V2, Labelg | false

Types:

� G = graph()
� E = edge()
� V1 = V2 = vertex()
� Label = label()

Returns fE, V1, V2, Labelg where Label is the label [page 57] of the edge E
emanating [page 57] from V1 and incident [page 57] on V2 of the graph G. If there is no
edge E of the graph G, then false is returned.

edges(G, V) -> Edges

Types:

� G = graph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges emanating [page 57] from or incident [page 57] on V of the
graph G, in some unspecified order.

no edges(G) -> integer() >= 0

Types:

� G = graph()

Returns the number of edges of the graph G.

edges(G) -> Edges

Types:

� G = graph()
� Edges = [edge()]

Returns a list of all edges of the graph G, in some unspecified order.

del edge(G, E) -> true

Types:

� G = graph()
� E = edge()

60 STDLIB

STDLIB Reference Manual digraph (Module)

Deletes the edge E from the graph G.

del edges(G, Edges) -> true

Types:

� G = graph()
� Edges = [edge()]

Deletes the edges in the list Edges from the graph G.

out neighbours(G, V) -> Vertices

Types:

� G = graph()
� V = vertex()
� Vertices = [vertex()]

Returns a list of all out-neighbours [page 57] of V of the graph G, in some unspecified
order.

in neighbours(G, V) -> Vertices

Types:

� G = graph()
� V = vertex()
� Vertices = [vertex()]

Returns a list of all in-neighbours [page 57] of V of the graph G, in some unspecified
order.

out edges(G, V) -> Edges

Types:

� G = graph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges emanating [page 57] from V of the graph G, in some
unspecified order.

in edges(G, V) -> Edges

Types:

� G = graph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges incident [page 57] on V of the graph G, in some unspecified
order.

out degree(G, V) -> integer()

Types:

� G = graph()

61STDLIB

digraph (Module) STDLIB Reference Manual

� V = vertex()

Returns the out-degree [page 57] of the vertex V of the graph G.

in degree(G, V) -> integer()

Types:

� G= graph()
� V = vertex()

Returns the in-degree [page 57] of the vertex V of the graph G.

del path(G, V1, V2) -> true

Types:

� G = graph()
� V1 = V2 = vertex()

Deletes edges from the graph G until there are no paths [page 57] from the vertex V1 to
the vertex V2.

A sketch of the procedure employed: Find an arbitrary simple path [page 57]
v[1], v[2], ..., v[k] from V1 to V2 in G. Remove all edges of G emanating [page 57] from
v[i] and incident [page 57] to v[i+1] for 1 <= i < k (including multiple edges). Repeat
until there is no path between V1 and V2.

get path(G, V1, V2) -> Vertices | false

Types:

� G = graph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

Tries to find a simple path [page 57] from the vertex V1 to the vertex V2 of the graph G.
Returns the path as a list [V1, ..., V2] of vertices, or false if no simple path from V1
to V2 of length one or more exists.

The graph G is traversed in a depth-first manner, and the first path found is returned.

get short path(G, V1, V2) -> Vertices | false

Types:

� G = graph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

Tries to find an as short as possible simple path [page 57] from the vertex V1 to the
vertex V2 of the graph G. Returns the path as a list [V1, ..., V2] of vertices, or false
if no simple path from V1 to V2 of length one or more exists.

The graph G is traversed in a breadth-first manner, and the first path found is returned.

get cycle(G, V) -> Vertices | false

Types:

� G = graph()
� V1 = V2 = vertex()

62 STDLIB

STDLIB Reference Manual digraph (Module)

� Vertices = [vertex()]

If there is a simple cycle [page 57] of length two or more through the vertex V, then the
cycle is returned as a list [V, ..., V] of vertices, otherwise if there is a loop [page 57]
through V, then the loop is returned as a list [V]. If there are no cycles through V, then
false is returned.

get path/3 is used for finding a simple cycle through V.

get short cycle(G, V) -> Vertices | false

Types:

� G = graph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

Tries to find an as short as possible simple cycle [page 57] through the vertex V of the
graph G. Returns the cycle as a list [V, ..., V] of vertices, or false if no simple cycle
through V exists. Note that a loop [page 57] through V is returned as the list [V, V].

get short path/3 is used for finding a simple cycle through V.

See Also

digraph utils [page 64](3), ets(3)

63STDLIB

digraph utils (Module) STDLIB Reference Manual

digraph utils (Module)

The digraph utils module implements some algorithms based on depth-first traversal
of directed graphs. See the digraph module for basic functions on directed graphs.

A directed graph (or just “graph”) is a pair (V, E) of a finite set V of vertices and a finite
set E of directed edges (or just “edges”). The set of edges E is a subset of V � V (the
Cartesian product of V with itself).

Graphs can be annotated with additional information. Such information may be
attached to the vertices and to the edges of the graph. A graph which has been
annotated is called a labeled graph, and the information attached to a vertex or an edge
is called a label.

An edge e = (v, w) is said to emanate from vertex v and to be incident on vertex w. If
there is an edge emanating from v and incident on w, then w is is said to be an
out-neighbour of v. A path P from v[1] to v[k] in a graph (V, E) is a non-empty sequence
v[1], v[2], ..., v[k] of vertices in V such that there is an edge (v[i],v[i+1]) in E for
1 <= i < k. The length of the path P is k-1. P is a cycle if the length of P is not zero and
v[1] = v[k]. A loop is a cycle of length one. An acyclic graph is a graph that has no cycles.

A depth-first traversal of a directed graph can be viewed as a process that visits all
vertices of the graph. Initially, all vertices are marked as unvisited. The traversal starts
with an arbitrarily chosen vertex, which is marked as visited, and follows an edge to an
unmarked vertex, marking that vertex. The search then proceeds from that vertex in
the same fashion, until there is no edge leading to an unvisited vertex. At that point the
process backtracks, and the traversal continues as long as there are unexamined edges. If
there remain unvisited vertices when all edges from the first vertex have been
examined, some hitherto unvisited vertex is chosen, and the process is repeated.

A partial ordering of a set S is a transitive, antisymmetric and reflexive relation between
the objects of S. The problem of topological sorting is to find a total ordering of S that is a
superset of the partial ordering. A graph G = (V, E) is equivalent to a relation E on V
(we neglect the fact that the version of directed graphs implemented in the digraph
module allows multiple edges between vertices). If the graph has no cycles of length
two or more, then the reflexive and transitive closure of E is a partial ordering.

A subgraph G’ of G is a graph whose vertices and edges form subsets of the vertices and
edges of G. G’ is maximal with respect to a property P if all other subgraphs that
include the vertices of G’ do not have the property P. A strongly connected component is a
maximal subgraph such that there is a path between each pair of vertices. A connected
component is a maximal subgraph such that there is a path between each pair of vertices,
considering all edges undirected.

64 STDLIB

STDLIB Reference Manual digraph utils (Module)

Exports

components(Graph) -> [Component]

Types:

� Graph = graph()
� Component = [vertex()]

Returns a list of connected components [page 64]. Each component is represented by
its vertices. The order of vertices and the order of components are arbitrary. Each
vertex of the graph is occurs in exactly one component.

strong components(Graph) -> [StrongComponent]

Types:

� Graph = graph()
� StrongComponent = [vertex()]

Returns a list of strongly connected components [page 64]. Each strongly component is
represented by its vertices. The order of vertices and the order of components are
arbitrary. Each vertex of the graph is occurs in exactly one strong component.

cyclic strong components(Graph) -> [StrongComponent]

Types:

� Graph = graph()
� StrongComponent = [vertex()]

Returns a list of strongly connected components [page 64]. Each strongly component is
represented by its vertices. The order of vertices and the order of components are
arbitrary. Only vertices that are included in some cycle [page 64] are returned,
otherwise the returned list is equal to that returned by strong components/1.

reachable(Vertices, Graph) -> Vertices

Types:

� Graph = graph()
� Vertices = [vertex()]

Returns an unsorted list of graph vertices such that for each vertex in the list, there is a
path [page 64] from some of the given vertices to the vertex. In particular, since paths
may have length zero, all the given vertices are included in the returned list.

reachable neighbours(Vertices, Graph) -> Vertices

Types:

� Graph = graph()
� Vertices = [vertex()]

Returns an unsorted list of graph vertices such that for each vertex in the list, there is a
path [page 64] of length one or more from some of the given vertices to the vertex. As
a consequence, only those of the given vertices that are included in some cycle [page
64] are returned.

65STDLIB

digraph utils (Module) STDLIB Reference Manual

reaching(Vertices, Graph) -> Vertices

Types:

� Graph = graph()
� Vertices = [vertex()]

Returns an unsorted list of graph vertices such that for each vertex in the list, there is a
path [page 64] from the vertex to some of the given vertices. In particular, since paths
may have length zero, all the given vertices are included in the returned list.

reaching neighbours(Vertices, Graph) -> Vertices

Types:

� Graph = graph()
� Vertices = [vertex()]

Returns an unsorted list of graph vertices such that for each vertex in the list, there is a
path [page 64] of length one or more from the vertex to some of the given vertices. As
a consequence, only those of the given vertices that are included in some cycle [page
64] are returned.

topsort(Graph) -> Vertices | false

Types:

� Graph = graph()
� Vertices = [vertex()]

Returns a topological ordering [page 64] of all the graph’s vertices if such an ordering
exists, false otherwise. For each vertex in the list, there are no out-neighbours [page
64] that occur earlier in the list.

is acyclic(Graph) -> bool()

Types:

� Graph = graph()

Returns true if and only if the graph is acyclic [page 64].

loop vertices(Graph) -> Vertices

Types:

� Graph = graph()
� Vertices = [vertex()]

Returns a list of all vertices that are included in some loop [page 64].

subgraph(Graph, Vertices, Options) -> Subgraph | ferror, Reasong

subgraph(Graph, Vertices) -> Subgraph | ferror, Reasong

Types:

� Graph = Subgraph = graph()
� Options = [ftype, SubgraphTypeg, fkeep labels, bool()g]
� Reason = finvalid option, term()g | funknown type, term()g
� SubgraphType = inherit | type()
� Vertices = [vertex()]

66 STDLIB

STDLIB Reference Manual digraph utils (Module)

Creates a maximal subgraph [page 64] of Graph having as vertices those vertices of
Graph that are mentioned in Vertices.

If the value of the option type is inherit, which is the default, then the type of Graph
is used for the subgraph as well. Otherwise the option value of type is used as
argument to digraph:new/1.

If the value of the option keep labels is true, which is the default, then the labels
[page 64] of vertices and edges of Graph are used for the subgraph as well. If the value
is false, then the default label, [], is used for the subgraph’s vertices and edges.

subgraph(Graph, Vertices) is equivalent to subgraph(Graph, Vertices, []).

condensation(Graph) -> CondensedGraph

Types:

� Graph = CondensedGraph = graph()

Creates a graph where the vertices are the strongly connected components [page 64] as
returned by strong components/1. If X and Y are strongly connected components, and
there exist vertices x and y in X and Y respectively such that there is an edge emanating
[page 64] from x and incident [page 64] on y, then an edge emanating from X and
incident on Y is created.

The created graph has the same type as Graph. All vertices and edges have the default
label [page 64] [].

Each and every cycle [page 64] is included in some strongly connected component,
which implies that there always exists a topological ordering [page 64] of the created
graph.

preorder(Graph) -> Vertices

Types:

� Graph = graph()
� Vertices = [vertex()]

Returns all vertices of the graph. The order is given by a depth-first traversal [page 64]
of the graph, collecting visited vertices in pre-order.

postorder(Graph) -> Vertices

Types:

� Graph = graph()
� Vertices = [vertex()]

Returns all vertices of the graph. The order is given by a depth-first traversal [page 64]
of the graph, collecting visited vertices in postorder. More precisely, the vertices visited
while searching from an arbitrarily chosen vertex are collected in postorder, and all
those collected vertices are placed before the subsequently visited vertices.

See Also

digraph [page 57](3)

67STDLIB

epp (Module) STDLIB Reference Manual

epp (Module)

The Erlang code preprocessor includes functions which are used by compile to
preprocess macros and include files before the actual parsing takes place.

Exports

open(FileName, IncludePath) -> fok,Eppg | ferror, ErrorDescriptorg

open(FileName, IncludePath, PredefMacros) -> fok,Eppg | ferror, ErrorDescriptorg

Types:

� FileName = atom() | string()
� IncludePath = [DirectoryName]
� DirectoryName = atom() | string()
� PredefMacros = [fatom(),term()g]
� Epp = pid() – handle to the epp server
� ErrorDescriptor = term()

Opens a file for preprocessing.

close(Epp) -> ok

Types:

� Epp = pid() – handle to the epp server

Closes the preprocessing of a file.

parse erl form(Epp) -> fok, AbsFormg | feof, Lineg | ferror, ErrorInfog

Types:

� Epp = pid()
� AbsForm = term()
� Line = integer()
� ErrorInfo = see separate description below.

Returns the next Erlang form from the opened Erlang source file. The tuple feof,
Lineg is returned at end-of-file. The first form corresponds to an implicit attribute
-file(File,1)., where File is the name of the file.

parse file(FileName,IncludePath,PredefMacro) -> fok,[Form]g | ferror,OpenErrorg

Types:

� FileName = atom() | string()

68 STDLIB

STDLIB Reference Manual epp (Module)

� IncludePath = [DirectoryName]
� DirectoryName = atom() | string()
� PredefMacros = [fatom(),term()g]
� Form = term() – same as returned by erl parse:parse form

Preprocesses and parses an Erlang source file. Note that the tuple feof, Lineg
returned at end-of-file is included as a “form”.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

erl parse [page 79]

69STDLIB

erl eval (Module) STDLIB Reference Manual

erl eval (Module)

This module provides an interpreter for Erlang expressions. The expressions are in the
abstract syntax as returned by erl parse, the Erlang parser, or a call to
io:parse erl exprs/2.

Exports

exprs(Expressions, Bindings) -> fvalue, Value, NewBindingsg

exprs(Expressions, Bindings, LocalFunctionHandler) -> fvalue, Value, NewBindingsg

Types:

� Expressions = as returned by erl parse or io:parse erl exprs/2
� Bindings = as returned by bindings/1
� LocalFunctionHandler = fvalue, Funcg | feval, Funcg | none

Evaluates Expressions with the set of bindings Bindings, where Expressions is a
sequence of expressions (in abstract syntax) of a type which may be returned by
io:parse erl exprs/2. See below for an explanation of how and when to use the
argument LocalFunctionHandler.

Returns fvalue, Value, NewBindingsg

expr(Expression, Bindings) -> f value, Value, NewBindings g

expr(Expression, Bindings, LocalFunctionHandler) -> f value, Value, NewBindings g

Types:

� Expression = as returned by io:parse erl form/2, for example
� Bindings = as returned by bindings/1
� LocalFunctionHandler = fvalue, Funcg | feval, Funcg | none

Evaluates Expression with the set of bindings Bindings. Expression is an expression
(in abstract syntax) of a type which may be returned by io:parse erl form/2. See
below for an explanation of how and when to use the argument
LocalFunctionHandler.

Returns fvalue, Value, NewBindingsg.

expr list(ExpressionList, Bindings) -> fValueList, NewBindingsg

expr list(ExpressionList, Bindings, LocalFunctionHandler) -> fValueList, NewBindingsg

70 STDLIB

STDLIB Reference Manual erl eval (Module)

Evaluates a list of expressions in parallel, using the same initial bindings for each
expression. Attempts are made to merge the bindings returned from each evaluation.
This function is useful in the LocalFunctionHandler. See below.

Returns fValueList, NewBindingsg.

new bindings() -> BindingStruct

Returns an empty binding structure.

bindings(BindingStruct) -> Bindings

Returns the list of bindings contained in the binding structure.

binding(Name, BindingStruct) -> Binding

Returns the binding of Name in BindingStruct.

add binding(Name, Value, Bindings) -> BindingStruct

Adds the binding Name = Value to Bindings. Returns an updated binding structure.

del binding(Name, Bindings) -> BindingStruct

Removes the binding of Name in Bindings. Returns an updated binding structure.

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined
function error would be generated. However, the optional argument
LocalFunctionHandler may be used to define a function which is called when there is
a call to a local function. The argument can have the following formats:

fvalue,Funcg This defines a local function handler which is called with:

Func(Name, Arguments)

Name is the name of the local function and Arguments is a list of the evaluated
arguments. The function handler returns the value of the local function. In this
case, it is not possible to access the current bindings. To signal an error, the
function handler just calls exit/1 with a suitable exit value.

feval,Funcg This defines a local function handler which is called with:

Func(Name, Arguments, Bindings)

Name is the name of the local function, Arguments is a list of the unevaluated
arguments, and Bindings are the current variable bindings. The function handler
returns:

{value,Value,NewBindings}

Value is the value of the local function and NewBindings are the updated variable
bindings. In this case, the function handler must itself evaluate all the function
arguments and manage the bindings. To signal an error, the function handler just
calls exit/1 with a suitable exit value.

none There is no local function handler.

71STDLIB

erl eval (Module) STDLIB Reference Manual

Bugs

The evaluator is not complete. receive cannot be handled properly.

Any undocumented functions in erl eval should not be used.

72 STDLIB

STDLIB Reference Manual erl id trans (Module)

erl id trans (Module)

This module performs an identity parse transformation of Erlang code. It is included as
an example for users who may wish to write their own parse transformers. If the option
fparse transform,Moduleg is passed to the compiler, a user written function
parse transform/2 is called by the compiler before the code is checked for errors.

Exports

parse transform(Forms, Options) -> Forms

Types:

� Forms = [erlang form()]
� Options = [compiler options()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with
different semantics. The original Erlang code is then transformed into other Erlang code.

Note:
Programmers are strongly advised not to engage in parse transformations and no
support is offered for problems encountered.

See Also

erl parse [page 79] compile.

73STDLIB

erl internal (Module) STDLIB Reference Manual

erl internal (Module)

This module defines Erlang BIFs, guard tests and operators. This module is only of
interest to programmers who manipulate Erlang code.

Exports

bif(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is automatically recognized by the
compiler, otherwise false.

guard bif(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is allowed in guards, otherwise
false.

type test(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is a valid Erlang type test, otherwise false.

arith op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is an arithmetic operator, otherwise false.

bool op(OpName, Arity) -> bool()

Types:

74 STDLIB

STDLIB Reference Manual erl internal (Module)

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a Boolean operator, otherwise false.

comp op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a comparison operator, otherwise false.

list op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a list operator, otherwise false.

send op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a send operator, otherwise false.

op type(OpName, Arity) -> Type

Types:

� OpName = atom()
� Arity = integer()
� Type = arith | bool | comp | list | send

Returns the Type of operator that OpName/Arity belongs to, or generates a
function clause error if it is not an operator at all.

75STDLIB

erl lint (Module) STDLIB Reference Manual

erl lint (Module)

This module is used to check Erlang code for illegal syntax and other bugs. It also warns
against coding practices which are not recommended.

The errors detected include:

� redefined and undefined functions

� unbound and unsafe variables

� illegal record usage.

Warnings include:

� unused functions and imports

� variables imported into matches

� variables exported from if/case/receive

� variables shadowed in lambdas and list comprehensions.

Some of the warnings are optional, and can be turned on by giving the appropriate
option, described below.

The functions in this module are invoked automatically by the Erlang compiler and
there is no reason to invoke these functions separately unless you have written your own
Erlang compiler.

Exports

module(AbsForms) -> fok,Warningsg | ferror,Errors,Warningsg

module(AbsForms, FileName) -> fok,Warningsg | ferror,Errors,Warningsg

module(AbsForms, FileName, CompileOptions) -> fok,Warningsg | ferror,Errors,Warningsg

Types:

� AbsForms = [term()]
� FileName = FileName2 = atom() | string()
� Warnings = Errors = [fFilename2,[ErrorInfo]g]
� ErrorInfo = see separate description below.
� CompileOptions = [term()]

This function checks all the forms in a module for errors. It returns:

fok,Warningsg There were no errors in the module.

ferror,Errors,Warningsg There were errors in the module.

76 STDLIB

STDLIB Reference Manual erl lint (Module)

The elements of Options selecting optional warnings are as follows:

fformat, Verbosityg Causes warnings to be emitted for malformed format strings as
arguments to io:format and similar functions. Verbosity selects the amount of
warnings: 0 = no warnings; 1 = warnings for invalid format strings; 2 = warnings
also when the validity could not be checked (for example, when the format string
argument is a variable).

unused vars Causes warnings to be emitted for variables which are not used, with the
exception of variables beginning with an underscore (“Prolog style warnings”).

The AbsForms of a module which comes from a file that is read through epp, the Erlang
pre-processor, can come from many files. This means that any references to errors must
include the file name (see epp [page 68], or parser erl parse [page 79] The warnings and
errors returned have the following format:

[{FileName2,[ErrorInfo]}]

The errors and warnings are listed in the order in which they are encountered in the
forms. This means that the errors from one file may be split into different entries in the
list of errors.

is guard test(Expr) -> bool()

Types:

� Expr = term()

This function tests if Expr is a legal guard test. Expr is an Erlang term representing the
abstract form for the expression. erl parse:parse exprs(Tokens) can be used to
generate a list of Expr.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Takes an ErrorDescriptor and returns a string which describes the error or warning.
This function is usually called implicitly when processing an ErrorInfo structure (see
below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

77STDLIB

erl lint (Module) STDLIB Reference Manual

See Also

erl parse [page 79], epp [page 68]

78 STDLIB

STDLIB Reference Manual erl parse (Module)

erl parse (Module)

This module is the basic Erlang parser which converts tokens into the abstract form of
either forms (i.e., top-level constructs), expressions, or terms. Note that a token list
must end with the dot token in order to be acceptable to the parse functions (see
erl scan).

Exports

parse form(Tokens) -> fok, AbsFormg | ferror, ErrorInfog

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� AbsForm = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a form. It returns:

fok, AbsFormg The parsing was successful. See section Abstract Form [page 81] below
for a description of AbsForm.

ferror, ErrorInfog An error occurred.

parse exprs(Tokens) -> fok, Expr listg | ferror, ErrorInfog

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� Expr list = [AbsExpr]
� AbsExpr = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a list of expressions. It returns:

fok, Expr listg The parsing was successful. Expr list is a list of the form AbsExpr,
which is described in the section Abstract Form [page 81] below.

ferror, ErrorInfog An error occurred.

parse term(Tokens) -> fok, Termg | ferror, ErrorInfog

79STDLIB

erl parse (Module) STDLIB Reference Manual

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� Term = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a term. It returns:

fok, Termg The parsing was successful. Term is the Erlang term corresponding to the
token list.

ferror, ErrorInfog An error occurred.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Uses an ErrorDescriptor and returns a string which describes the error. This function
is usually called implicitly when an ErrorInfo structure is processed (see below).

tokens(AbsTerm) -> Tokens

tokens(AbsTerm, MoreTokens) -> Tokens

Types:

� Tokens = MoreTokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� AbsTerm = term()
� ErrorInfo = see section Error Information below.

This function generates a list of tokens representing the abstract form AbsTerm of an
expression. Optionally, it appends Moretokens.

normalise(AbsTerm) -> Data

Types:

� AbsTerm = Data = term()

Converts the abstract form AbsTerm of a term into a conventional Erlang data structure
(i.e., the term itself). This is the inverse of abstract/1.

abstract(Data) -> AbsTerm

Types:

� Data = AbsTerm = term()

Converts the Erlang data structure Data into an abstract form of type AbsTerm. This is
the inverse of normalise/1.

80 STDLIB

STDLIB Reference Manual erl parse (Module)

Abstract Form

To be supplied

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

io [page 126], erl scan [page 85]

81STDLIB

erl pp (Module) STDLIB Reference Manual

erl pp (Module)

The functions in this module are used to generate aesthetically attractive
representations of abstract forms, which are suitable for printing. All functions return
(possibly deep) lists of characters and generate an error if the form is wrong.

All functions can have an optional argument which specifies a hook that is called if an
attempt is made to print an unknown form.

Exports

form(Form) -> DeepCharList

form(Form, HookFunction) -> DeepCharList

Types:

� Form = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

Pretty prints a Form which is an abstract form of a type which is returned by
erl parse:parse form.

attribute(Attribute) -> DeepCharList

attribute(Attribute, HookFunction) -> DeepCharList

Types:

� Attribute = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the attribute Attribute.

function(Function) -> DeepCharList

function(Function, HookFunction) -> DeepCharList

Types:

� Function = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the function Function.

guard(Guard) -> DeepCharList

82 STDLIB

STDLIB Reference Manual erl pp (Module)

guard(Guard, HookFunction) -> DeepCharList

Types:

� Form = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the guard test Guard.

exprs(Expressions) -> DeepCharList

exprs(Expressions, HookFunction) -> DeepCharList

exprs(Expressions, Indent, HookFunction) -> DeepCharList

Types:

� Expressions = term()
� HookFunction = see separate description below.
� Indent = integer()
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the sequence of expressions in Expressions.

expr(Expression) -> DeepCharList

expr(Expression, HookFunction) -> DeepCharList

expr(Expression, Indent, HookFunction) -> DeepCharList

expr(Expression, Indent, Precedence, HookFunction) ->-> DeepCharList

Types:

� Expression = term()
� HookFunction = see separate description below.
� Indent = integer()
� Precedence =
� DeepCharList = [char()|DeepCharList]

This function prints one expression. It is useful for implementing hooks (see below).

Unknown Expression Hooks

The optional argument HookFunction, shown in the functions described above, defines
a function which is called when an unknown form occurs where there should be a valid
expression. It can have the following formats:

Function The hook function is called by:

Function(Expr,
CurrentIndentation,
CurrentPrecedence,
HookFunction)

none There is no hook function

83STDLIB

erl pp (Module) STDLIB Reference Manual

The called hook function should return a (possibly deep) list of characters. expr/4 is
useful in a hook.

If CurrentIndentation is negative, there will be no line breaks and only a space is used
as a separator.

Bugs

It should be possible to have hook functions for unknown forms at places other than
expressions.

See Also

io [page 126], erl parse [page 79], erl eval [page 70]

84 STDLIB

STDLIB Reference Manual erl scan (Module)

erl scan (Module)

This module contains functions for tokenizing characters into Erlang tokens.

Exports

string(CharList,StartLine]) -> fok, Tokens, EndLineg | Error

string(CharList) -> fok, Tokens, EndLineg | Error

Types:

� CharList = string()
� StartLine = EndLine = Line = integer()
� Tokens = [fatom(),Lineg|fatom(),Line,term()g]
� Error = ferror, ErrorInfo, EndLineg

Takes the list of characters CharList and tries to scan (tokenize) them. Returns fok,
Tokens, EndLineg, where Tokens are the Erlang tokens from CharList. EndLine is the
last line where a token was found.

StartLine indicates the initial line when scanning starts. string/1 is equivalent to
string(CharList,1).

ferror, ErrorInfo, EndLineg is returned if an error occurs. EndLine indicates where
the error occurred.

tokens(Continuation, CharList, StartLine) ->Return

Types:

� Return = fdone, Result, LeftOverCharsg | fmore, Continuationg
� Continuation = [] | string()
� CharList = string()
� StartLine = EndLine = integer()
� Result = fok, Tokens, EndLineg | feof, EndLineg
� Tokens = [fatom(),Lineg|fatom(),Line,term()g]

This is the re-entrant scanner which scans characters until a dot (’.’ whitespace) has
been reached. It returns:

fdone, Result, LeftOverCharsg This return indicates that there is sufficient input
data to get an input. Result is:

fok, Tokens, EndLineg The scanning was successful. Tokens is the list of tokens
including dot.

feof, EndLineg End of file was encountered before any more tokens.

85STDLIB

erl scan (Module) STDLIB Reference Manual

ferror, ErrorInfo, EndLineg An error occurred.

fmore, Continuationg More data is required for building a term. Continuation must
be passed in a new call to tokens/3 when more data is available.

reserved word(Atom) -> bool()

Returns true if Atom is an Erlang reserved word, otherwise false.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Takes an ErrorDescriptor and returns a string which describes the error or warning.
This function is usually called implicitly when processing an ErrorInfo structure (see
below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

Notes

The continuation of the first call to the re-entrant input functions must be []. Refer to
Armstrong, Virding and Williams, ’Concurrent Programming in Erlang’, Chapter 13, for
a complete description of how the re-entrant input scheme works.

See Also

io [page 126] erl parse [page 79]

86 STDLIB

STDLIB Reference Manual ets (Module)

ets (Module)

This module acts as an interface to the Erlang built-in term storage BIFs. The module
provides the ability to store very large quantities of data in an Erlang runtime system,
and to have constant access time to this data (or in the case of the ordered set
data-type access time proportional to the logarithm of the number of elements in the
table). Data is organized as a set of dynamic tables. Each table is created by a process.
When the process terminates, the table is automatically destroyed. A table can store
tuples. Every table has access rights set at creation.

The number of tables stored on one Erlang node is limited. The current default limit is
approximately 1400 tables. The upper limit can be increased by setting the
environment variable ERL MAX ETS TABLES before starting the Erlang runtime system
(i.e. with the -env option to erl/werl). The actual limit may be slightly higher than
the one specified, but never lower.

Tables are divided into four different types, set, ordered set, bag and duplicate bag.
A set or ordered set table can only have one tuple associated with each key, a bag
table can have multiple tuples associated with a single key whereas a duplicate bag
table can have multiple identical objects in the same table.

In the current implementation, every object insert and look-up operation results in one
copy of the object.

This module provides very limited support for concurrent updates. No locking is
available, but the safe fixtable/2 function can be used to guarantee that a sequence
of first/1 and next/2 calls will traverse the table without errors even if another
process (or the same process) simultaneously deletes or inserts elements in the table.

If desired, locking and transactions must be implemented on top of these functions.
This is done by the mnesia database system.

There is no automatic garbage collection for tables. The table is not destroyed
automatically if there are no references to it from a process. The table has to be
destroyed explicitly at user level. It is destroyed if the owner terminates, or with
delete/1.

’$end of table’ should not be used as a key since this atom is used to mark the end of
the table when using first/next.

In general, the functions will exit with reason badarg if any argument is of the wrong
format, or if the table ID is invalid.

87STDLIB

ets (Module) STDLIB Reference Manual

Exports

new(Name, Type)

Creates a new table and returns a table identifier which can be used in subsequent
operations. This table ID can also be sent to other processes so that a table can be shared
between processes. It is completely location transparent and can be sent to processes at
other nodes. Accordingly, the table identifier can be used as a location transparent store.
Large amounts of data can be distributed to locations where it can be stored.

The parameter Type is a list which defaults to [set, protected] if [] is specified. The
list may contain the following atoms:

� set The table is a set table - one key, one object, no order among elements.

� ordered set The table is a ordered set table - one key, one object, ordered in
Erlang term order, which is the order implied by the < and > operators. Tables of
this type behave slightly differently in some situations. Each API function of
concern notes this different behaviour.

� bag The table is a bag table which can have multiple objects per key.

� duplicate bag The table is a duplicate bag table which can have multiple copies
of the same object.

� public The table is open to both read and write operations. Any process may read
or write to the table. If this option is used, the ets table can be seen as a shared
memory segment which is shared by all Erlang processes.

� protected The owner can read and write to the table. Other processes can only
read the table.

� private Only the owner process can read or write to the table.

� named table If this option is present, the table can be accessed by name. With this
option, it is possible to have globally accessible tables without passing the table
identifier around.

� fkeypos, Posg By default, the first element of each tuple inserted in a table is the
key. However, this might not always be appropriate. In particular, we do not want
the first element to be the key if we want to insert Erlang records in a table. When
creating a table, it is possible to specify which tuple position is the key.

Warning:
Do not assume anything about the datatype of the table identifier.

insert(Tab, Object)

Inserts Object into the table Tab. The object must be a tuple with a size equal to or
greater than one. If the table was created with the keypos option, the size can also be
supplied there. By default, the first element of the object is the key of the object.
Returns true.

lookup(Tab, Key)

88 STDLIB

STDLIB Reference Manual ets (Module)

Searches the table Tab for object(s) with the key Key and returns a list of the found
object(s). Insert and look-up times in tables of type set, bag and duplicate bag are
constant, regardless of the size of the table. For the ordered set data-type, the look-up
time is proportional to the (binary) logarithm of the number of elements (it is
implemented as a tree).

The following example illustrates:

1>T=ets:new(mytab, [bag, public]).
f6, <0.19.0>g
2> ets:insert(T, fa, 2, xx, yyg).
true
3> ets:insert(T, fa, 2, fpeter, pang, 77g).
true
4> ets:lookup(T, a).
[fa, 2, xx, yyg, fa, 2, fpeter, pang, 77g]
5> ets:insert(T, fb, 123, fpeter, pang, 77g).
true
6> ets:lookup(T, b).
[fb, 123, fpeter, pang, 77g]

If the table is of type set or ordered set, the function returns either [], or a list of
maximum length of one (there can be only be one object with a single key in a set).

If the table is of type bag or duplicate bag , a look-up returns a list of arbitrary length.
It is also worthwhile to note that bag tables have the following two properties.

� The same object cannot occur twice in the same table (no duplicates).

� The time order of object insertions is preserved. If object fx, Xg is inserted before
object fx, Yg, the call ets:lookup(T, x) is guaranteed to return the list [fx,
Xg, fx, Yg], as opposed to the list [fx, Yg, fx, Xg]

lookup element(Tab, Key, Pos)

This function looks up the Pos’th element of the object in table Tab, with key Key. If no
such object exists, the function exists with reason badarg. If the table is of type bag or
duplicate bag, a list of the elements is returned.

delete(Tab, Key) -> true

Deletes object(s) with the key Key in the table Tab. Returns true, or exits with reason
badarg if Tab is not a valid Table.

delete(Tab)

Deletes the table Tab. Returns true, or exits with reason badarg if Tab is not a valid
Table.

update counter(Tab, Key, Incr)

In a table of type set or ordered set, an efficient way of managing counters is to use an
object with one or more integers to associate one or more counters with Key. The
function update counter/3 destructively changes the object with key Key by adding
the integer value Incr to the counter. The return value is the new value of the counter.
Incr can be either:

89STDLIB

ets (Module) STDLIB Reference Manual

� An integer that is added to the (integer) element directly following the key in the
tuple (i.e. at position <keypos> + 1)

� A tuple fPos, Incrementg where Pos is the position of the counter element in the
tuple and Increment is the integer value to be added to that element.

This function fails with badarg if:

� no object with the right key exists

� the object in the counter position is not an integer

� the table is of type duplicate bag or bag

� the object in the table has the wrong arity.

first(Tab)

Returns the ’first’ Key in the table Tab. There is no apparent order among the objects in
tables of other types than ordered set, but there is always an internal order known only
by the table itself. In the case of the ordered set table type, the first key in Erlang term
order is returned. Returns ’$end of table’ if there is no first key (the table is empty).

next(Tab, Key)

Returns the ’next’ table key after Key. ’$end of table’ is returned if the object
associated with Key is the ’last’ object in the table. As with first/1 the only table type
where the order has a meaning is ordered set. For the table types set, bag and
duplicate bag the function fails with badarg if there is no object with the key Key,
except for the case when the object with the associated key has been deleted from a
(still) fixed table (see safe fixtable/2 below). If the table is of type ordered set the
function returns the next object in order, disregarding the fact that the key Key may or
may not exist.

last(Tab)

Works exactly as first/1 but returns the last object in Erlang term order for the
ordered set table type. For all other table types, first/1 and last/1 are synonyms.

prev(Tab, Key)

Returns the previous table key, which only has meaning for the ordered set table type.
For all other table types, next/2 and prev/2 are synonyms, one cannot backup to an
’object passed earlier’ in a table of other type than ordered set.

slot(Tab, I)

This is another way of traversing a table. The first slot of a table is 0 and the table can
be traversed with consecutive calls to slot/2. Each call returns a list of objects.
’$end of table’ is returned when the end of the table is reached. This function fails
with badarg if the I argument is out of range.

While consecutive calls to slot may look like a safe way to traverse a table even if it is
concurrently updated by another process, it is not so. A sequence of calls to slot/2 may
result in unexpected badarg’s if the table is internally resized as an effect of deletes
made from another process (or the traversing process itself). By using safe fixtable/2,
the table will not resize, but then again a sequence of first/1 and next/2 can be used
safely on a fixed table, so slot is not safer than first/1 and next/2.

90 STDLIB

STDLIB Reference Manual ets (Module)

For the ordered set data-type, this function has even more limited usage. It will return
a list containing the I:th element in the table (in Erlang term order). Concurrent
updates can make a traversal of an ordered set using slot/2 behave very
unexpectedly. Calls to slot/2 on ordered set’s with the index given (I) equal to the
number of objects in the table will return the atom ’$end of table’. Calls with indexes
larger than the number of elements will result in a badarg exit.

Do not use this function. It may be removed in a future release.

fixtable(Tab, true|false)

This function toggles the table ability to “rehash” itself. It is primarily used by the
Mnesia DBMS to implement functions which allow write operations in a table,
although the table is in the process of being copied to disk or to another node.

The function keeps no track of when and how tables are fixed, it is actually more to be
regarded as an internal interface used from the safe fixtable/2 function. It is retained
only for backward compatibility, use safe fixtable/2 instead.

safe fixtable(Tab, true|false)

This function implements limited concurrency support for tables of the set, bag and
duplicate bag table types. When a process ’fixes’ a table, it remains fixed until that
process either ’releases’ the table or the process dies. If several processes ’fixes’ a table,
the table will be released when the last process releases it (or exits). A reference
counter is also kept on a per process basis, so N consecutive ’fixes’ of a table requires N
’releases’ to actually release the table.

When a table is ’fixed’, a sequence of first/1 and next/2 calls are guaranteed to
succeed, that is without generating exits due to deleted keys used in the next/2 call. An
example follows:

clean_all_with_value(Tab, X) ->
safe_fixtable(Tab, true), % Make sure the table is

% not rehashed.
clean_all_with_value(Tab,X,ets:first(Tab)),
safe_fixtable(Tab,false).

clean_all_with_value(Tab,X,’$end_of_table’) ->
true;

clean_all_with_value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);

_ -> % This may be either [{Key,_}] or [] due to
% concurrent updates

true
end,
clean_all_with_value(Tab,X,ets:next(Tab,Key)).

The above example would have generated a badarg exit if the table had not been ’fixed’
before the loop clean all with value/3.

Note that a table which is ’fixed’ does not actually remove the elements deleted until it
is ’released’ by all processes that have ’fixed’ it. If a process ’fixes’ the table and never
releases it, the memory used by the deleted objects will never be freed. The
performance of operations on the table will also degrade significantly.

91STDLIB

ets (Module) STDLIB Reference Manual

By using calls to info/2, one can inspect which processes are ’fixing’ the table and when
it was first ’fixed’. A system where a lot of processes are ’fixing’ tables may need a
process that monitors those tables and sends alarms when tables have been ’fixed’ for to
long.

For tables of the ordered set type, ’fixing’ has no usage, consecutive calls to first/1
and next/2 will always succeed, regardless of if the table is ’fixed’ or not.

all()

Returns a list of all tables on this node.

match(Tab, Pattern)

Tries to match the object(s) in table Tab with the pattern Pattern. Pattern may
contain ’ ’ , which matches any object, bound parts, and variables. Pattern variables
have the form of atoms beginning with a ’$’ sign and followed by a number, e.g., ’$0’
or ’$31’. If successful, the result of the call is a list of variable bindings. The reason for
providing a matching function is to scan large portions of a table, searching for a
particular object without having to copy the entire table from the table space to the
user space.

The following interaction with the Erlang shell illustrates how to use the match/2
function:

7> ets:match(T, fa, 2, ’$1’, ’$2’g).
[[fpeter, pang, 77], [xx, yy]]

The call to match/2 returned an ordered list of the variable bindings which is the first
object that matched the pattern, bound the variable $1 to fpeter, pang, and the
variable $2 to 77. The second object which matched the pattern bound the variable $1
to xx, and the variable $2 to yy. The pattern ’ ’ can be used as a wild-card. It matches
everything, but it does not bind any variables.

8> ets:match(T, fa, 2, ’$1’, ’ ’g).
[[fpeter, pang], [xx]]

[] is returned if no match is found.

The first part of the objects are used as keys in the tables and a match request with the
first part of the bound pattern - not a variable or an underscore - is very efficient.
However, if the key part of the pattern is a variable, the entire table must be searched.
The search time can be substantial if the table is very large.

The special case where the pattern is a single variable will collect the entire table.

9> ets:match(T, ’$1’).
[[fa, 2, fpeter, pang, 77g], [fa, 2, xx, yyg],
[fb, 123, fpeter, pang, 77g]]

On tables of the ordered set data-type, the result is in the same order as in a first/1,
next/2 sequence.

match object(Tab, Pattern)

92 STDLIB

STDLIB Reference Manual ets (Module)

Tries to match the object(s) in table Tab with the pattern Pattern. Pattern may
contain ’ ’ , which matches any object, bound parts, and variables. Pattern variables
have the form of atoms beginning with a ’$’ sign and followed by a number, e.g., ’$0’
or ’$31’. The result is a list of matching objects (i.e complete table objects). This
function differs from match/2 in that it returns complete objects and does not return
any variable bindings. It is thus not very meaningful to use pattern variables, it will have
exactly the same effect as using ’ ’.

The following interaction with the Erlang shell illustrates how to use the
match object/2 function:

7> ets:match object(T, fa, 2, ’ ’, ’ ’g).
[fa, 2, peter, pang, fa, 2, captain, hookg]

The call to match object/2 returned an ordered list of objects that matched the pattern,

[] is returned if no match is found.

The first part of the objects are used as keys in the tables and a match request with the
first part of the bound pattern - not a variable or an underscore - is very efficient.
However, if the key part of the pattern is a variable, the entire table must be searched.
The search time can be substantial if the table is very large.

The special case where the pattern is a single variable or ’ ’ will collect the entire table.

On tables of the ordered set data-type, the result is in the same order as in a first/1,
next/2 sequence.

match delete(Tab, Pattern)

Deletes object(s) which match Pattern in the table Tab. This can be especially useful
in combination with bag type tables. If the first element of Pattern is a variable, the
entire table must be searched. Returns true.

rename(Tab,NewName)

Renames a (preferably) named table to the name NewName. NewName has to be an atom.
Renaming a table that is not named will succeed, but is of course quite useless. The old
name of a named table can no longer be used to access it after it is renamed.

info(Tab)

Returns a tagged structure which describes the table with the following tags:

� memory The number of words allocated to the table.

� owner The Pid of the owner of the table.

� size The number of objects inserted in the table.

� type Type bag, duplicate bag or type set.

� protection Public, protected, or private.

� node The name of the node where Tab is actually stored.

� name The name of the table, as given to new/2.

� named table true or false.

� keypos The position of the tuples which are the key position. The default is 1.

93STDLIB

ets (Module) STDLIB Reference Manual

info/1 returns undefined if the table does not exist.

info(Tab, Item)

Same as above, but only for the information that is associated with Item.

Except for the items mentioned above, these to items can be specified in calls to info/2:

� fixed Returns true if the table is fixed by any process, otherwise false. If the
table identifier is no longer valid (deleted) the atom undefined is returned.

� safe fixed If the table is ’fixed’ using the safe fixtable interface, the call
returns a tuple: fFixedNowTime,[fPid,RefCountg]g, where FixedNowTime is the
time when the table was fixed by the first process (which may not be one of the
processes fixing it now), Pid is a process ’fixing’ the table right now and RefCount
is the reference counter for ’fixes’ done by that process. There may be any number
of processes in the list.
In all other cases, the atom false is returned.
One can use this to write a monitor for ’fixed’ tables if desired.

tab2file(Tab, Filename)

Dumps a table in the Erlang external term format to the file called Filename. Returns
ok, or ferror, Reasong. The function may crash if bad arguments are specified. The
implementation of this function is not efficient.

file2tab(Filename)

Reads a file produced by the tab2file/2 function and returns fok, Tabg if the
operation is successful, or ferror, Reasong if it fails.

The error ferror, nofileg is returned whenever the file cannot be read. This will be
changed in future releases so that ferror, nofileg is only returned when the file really
does not exist, otherwise another error code will be returned. For applications that want
to difference between errors, using the routines in the file module to detect if the file
is nonexistent or inaccessible is to be preferred until this interface is changed.

tab2list(Tab)

Returns a list of all objects in the table.

i()

Displays a list of all local ets tables on the tty.

i(Item)

Browses an ets table on the tty. The Item argument is the identifier displayed in the
left most field by the i() function.

94 STDLIB

STDLIB Reference Manual filename (Module)

filename (Module)

The module filename provides a number of useful functions for analyzing and
manipulating file names. These functions are designed so that the Erlang code can work
on many different platforms with different formats for file names. With file name is
meant all strings that can be used to denote a file. They can be short relative names like
foo.erl, very long absolute name which include a drive designator and directory names
like D:\usr/local\bin\erl/lib\tools\foo.erl, or any variations in between.

In Windows, all functions return file names with forward slashes only, even if the
arguments contain back slashes. Use the join/1 function to normalize a file name by
removing redundant directory separators.

Exports

absname(Filename) -> Absname

Types:

� Filename = string() |[string()] | atom()
� Absname = string()

Converts a relative Filename and returns an absolute name. No attempt is made to
create the shortest absolute name, because this can give incorrect results on file systems
which allow links.

Examples include:

Assume (for UNIX) current directory "/usr/local"
Assume (for WIN32) current directory "D:/usr/local"

(for UNIX): absname("foo") -> "/usr/local/foo"
(for WIN32): absname("foo") -> "D:/usr/local/foo"
(for UNIX): absname("../x") -> "/usr/local/../x"
(for WIN32): absname("../x") -> "D:/usr/local/../x"
(for UNIX): absname("/") -> "/"
(for WIN32): absname("/") -> "D:/"

absname(Filename, Directory) -> Absname

Types:

� Filename = string() |[string()] | atom()
� Directory = string()
� Absname = string()

95STDLIB

filename (Module) STDLIB Reference Manual

This function works like absname/1, except that the directory to which the file name
should be made relative is given explicitly in the Directory argument.

basename(Filename)

Types:

� Filename = string() |[string()] | atom()

Returns the part of the Filename after the last directory separator, or the Filename
itself if it has no separators.

Examples include:

basename("foo") -> "foo"
basename("/usr/foo") -> "foo"
basename("/") -> []

basename(Filename,Ext) -> string()

Types:

� Filename = Ext = string() | [string()] | atom()

Returns the last component of Filename with the extension Ext stripped. Use this
function if you want to to remove an extension which might, or might not, be there.
Use rootname(basename(Filename)) if you want to remove an extension that exists,
but you are not sure which one it is.

Examples include:

basename("~/src/kalle.erl", ".erl") -> "kalle"
basename("~/src/kalle.beam", ".erl") -> "kalle.beam"
basename("~/src/kalle.old.erl", ".erl") -> "kalle.old"
rootname(basename("~/src/kalle.erl")) -> "kalle"
rootname(basename("~/src/kalle.beam")) -> "kalle"

dirname(Filename) -> string()

Types:

� Filename = string() | [string()] | atom()

Returns the directory part of Filename.

Examples include:

dirname("/usr/src/kalle.erl") -> "/usr/src"
dirname("kalle.erl") -> "."
On Win32:
filename:dirname("\\usr\\src/kalle.erl") -> "/usr/src"

extension(Filename) -> string() | []

Types:

� Filename = string() | [string()] | atom()

Given a file name string Filename, this function returns the file extension including the
period. Returns an empty list if there is no extension.

Examples include:

96 STDLIB

STDLIB Reference Manual filename (Module)

extension("foo.erl") -> ".erl"
extension("beam.src/kalle") -> []

join(Components) -> string()

Types:

� Components = [string()]

Joins a list of file name Components with directory separators. If one of the elements in
the Components list includes an absolute path, for example “/xxx”, the preceding
elements, if any, are removed from the result.

The result of the join function is “normalized”:

� There are no redundant directory separators.

� In Windows, all directory separators are forward slashes and the drive letter is in
lower case.

Examples include:

join("/usr/local", "bin") -> "/usr/local/bin"
join(["/usr", "local", "bin"]) -> "/usr/local/bin"
join(["a/b///c/"] -> "a/b/c"
join(["B:a\\b///c/"] -> "b:a/b/c" % On Windows only

join(Name1, Name2) -> string()

Types:

� Name1 = Name2 = string()

Joins two file name components with directory separators. Equivalent to
join([Name1,Name2]).

nativename(Path) -> string()

Types:

� Path = string()

Converts a filename in Path to a form accepted by the command shell and native
applications on the current platform. On Windows, forward slashes will be converted to
backward slashes. On all platforms, the name will be normalized as done by join/1.

Example:

(on UNIX) filename:nativename("/usr/local/bin/") -> "/usr/local/bin"
(on Win32) filename:nativename("/usr/local/bin/") -> "\\usr\\local\\bin"

pathtype(Path) -> absolute | relative | volumerelative

Returns one of absolute, relative, or volumerelative.

absolute The path name refers to a specific file on a specific volume.
Examples include:

97STDLIB

filename (Module) STDLIB Reference Manual

on Unix
/usr/local/bin/
on Windows
D:/usr/local/bin

relative The path name is relative to the current working directory on the current
volume.
Example:

foo/bar, ../src

volumerelative The path name is relative to the current working directory on a
specified volume, or it is a specific file on the current working volume.
Examples include:

In Windows
D:bar.erl, /bar/foo.erl
/temp

rootname(Filename) -> string()

rootname(Filename, Ext) -> string()

Types:

� Filename = Ext = string() | [string()] | atom()

rootname/1 returns all characters in Filename, except the extension.

rootname/2 works as rootname/1, except that the extension is removed only if it is Ext.

Examples include:

rootname("/beam.src/kalle") -> "/beam.src/kalle"
rootname("/beam.src/foo.erl") -> "/beam.src/foo"
rootname("/beam.src/foo.erl",".erl") -> "/beam.src/foo"
rootname("/beam.src/foo.beam",".erl") -> "/beam.src/foo.beam"

split(Filename) -> Components

Types:

� Filename = string() | [string()] | atom()
� Components = [string()]

Returns a list whose elements are the path components of Filename.

Examples include:

split("/usr/local/bin") -> ["/", "usr", "local", "bin"]
split("foo/bar") -> ["foo", "bar"]
split("a:\\msdev\\include") -> ["a:/", "msdev", "include"]

find src(Module) -> fSourceFile, Optionsg

find src(Module, Rules) -> fSourceFile, Optionsg

Types:

� Module = atom() | string()
� SourceFile = string()
� Options = [CompilerOption]

98 STDLIB

STDLIB Reference Manual filename (Module)

� CompilerOption = fi, string()g | foutdir, string()g | fd, atom()g

Finds the source file name and compilation options for a compiled module. The result
can be fed to compile:file/2 in order to compile the file again.

The Module argument, which can be a string or an atom, specifies either the module
name or the path to the source code, with or without the “.erl” extension. In either case,
the module must be known by the code manager, i.e. code:which/1 must succeed.

Rules describe how the source directory is found, when the object code directory is
known. Each rule is of the form fBinSuffix, SourceSuffixg and is interpreted as
follows: If the end of the directory name where the object is located matches
BinSuffix, then the suffix of the directory name is replaced by SourceSuffix. If the
source file is found in the resulting directory, then the function returns that location
together with Options. Otherwise, the next rule is tried, and so on.

The function returns fSourceFile, Optionsg. SourceFile is the absolute path to the
source file without the “.erl” extension. Options include the options which are
necessary to compile the file with compile:file/2, but excludes options such as
report or verbose which do not change the way code is generated. The paths in the
foutdir, Pathg and fi, Pathg options are guaranteed to be absolute.

99STDLIB

gen event (Module) STDLIB Reference Manual

gen event (Module)

gen event provides a general framework for building application specific event handling
routines. Event managers can be built for tasks like:

� error logging

� alarm handling

� call record logging

� debugging

� equipment management.

All event handlers are written as generic event managers and share a common set of
interface functions. The generic parts of the event manager contains functions for
debugging, handling the termination of the parent, and error handling.

The idea is that a server, the event manager, implements all server specific parts, while
event handlers are added in order to handle specific events. Each event handler should
be implemented in a module (called the callback module). Each callback module
contains callback functions (e.g. handle event/2) which are called whenever the event
manager receives a corresponding message.

Event handlers can be written which act on all events, on some of the events, or on some
particular combination of events. Event handlers can also be manipulated at runtime. In
particular, an event handler can be:

� installed

� removed

� replaced by a different handler

We can even install several event handlers in the same event manager.

The relationship between the generic interface functions (and received messages) and
the callback functions can be illustrated as follows:

Callback module gen event
---------------- ---------
gen event:add handler ----->
Module:init/1 <-----

gen event:notify ----->
Module:handle event/2 <-----

gen event:call ----->
Module:handle call/2 <-----

gen event:delete handler ----->
Module:terminate/2 <-----

100 STDLIB

STDLIB Reference Manual gen event (Module)

gen event:stop ----->
Module:terminate/2 <-----

gen event:swap handler ----->
Mod1:terminate/2 <-----
Mod2:init/1 <-----

Module:handle info/2 <----- other message
received.

The event manager can be debugged using the sys module.

Exports

start() -> ServerRet

start(Name) -> ServerRet

start link() -> ServerRet

start link(Name) -> ServerRet

Types:

� Name = flocal, atom()g | fglobal, atom()g
� ServerRet = fok, Pidg | ferror, Reasong
� Pid = pid()
� Reason = falready started, Pidg | term()

This function starts an event manager. If the manager is started without Name, it can
only be called by using the returned Pid identifier. If started with Name, the name is
registered locally or globally.

An event manager started with start/0 or start/1 does not care about the parent.
This means that the parent is not handled explicitly in the generic manager part. If
started in this manner, these functions must not be used if the event manager is a worker
in a supervision tree.

A manager started with start link/0 or start link/1 is initially linked to the caller -
the parent - and it will terminate whenever the parent process terminates, with the
same reason as the parent. An event manager always traps exit signals, so the
terminate/2 callback function is called for each added event handler in order to clean
up before termination. If started in this manner, these functions should be used if the
event manager is a worker in a supervision tree.

stop(EventMgr) -> ok

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Pid = pid()

101STDLIB

gen event (Module) STDLIB Reference Manual

Terminates the event manager. The terminate/2 callback function is called for each
added event handler in order to clean up. The Arg argument of each terminate/2 will
have the value stop.

notify(EventMgr, Event) -> ok

sync notify(EventMgr, Event) -> ok

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Pid = pid()
� Event = term()

Sends an event notification to the EventMgr event manager. The Event sent can be any
Erlang term. However, the added event handlers must know about the term, and for
this reason an event format must be specified for each event manager.

The event manager calls each associated handle event/2 callback function to inform
each added event handler about the event.

The notify/2 function is asynchronous, whereas sync notify/2 is synchronous in the
sense that it returns when all handlers have handled the Event.

add handler(EventMgr, Handler, Args) -> ok | ErrorRet

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Pid = pid()
� Handler = Module | fModule, Idg
� Module = atom()
� Id = term()
� Args = term()
� ErrorRet = term()

This function adds a new event handler to the EventMgr event manager. The callback
module of the event handler is Module and the name of the handler is Handler. The Id
term is used to identify a specific handler when installing several handlers which all use
the same callback module. Args is supplied with the Module:init(Args) call in order
to initialize the event handler. ErrorRet is any unexpected return value from the
init/1 function.

add sup handler(EventMgr, Handler, Args) -> ok | ErrorRet

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Pid = pid()
� Handler = Module | fModule, Idg
� Module = atom()

102 STDLIB

STDLIB Reference Manual gen event (Module)

� Id = term()
� Args = term()
� ErrorRet = term()

Adds a new supervised event handler to the EventMgr event manager. The handler is
added in the manner previously described for the add handler/3 function.

Whenever the process which evaluated this function terminates, the Handler is
automatically deleted from the EventMgr. The Module:terminate/2 function is called
in order to clean up with Arg equal to fstop, Reasong. Reason is the termination
reason of the process.

Whenever the Handler is deleted from the EventMgr, the process which evaluated this
function receives the message fgen event EXIT, Handler, Reasong. Reason is one of
the following:

� normal. The handler has been removed by the delete handler/3 function, or
remove handler has been returned by a callback function (see below).

� shutdown. The EventMgr process terminates, or the parent process of the handler
terminates (the parent process could have sent an explicit EXIT signal to the
EventMgr process and expects a message in response).

� fswapped, NewHandler, NewParentg. The handler has been replaced by
NewHandler (see below).

� Error. The handler crashed due to Error. Error is any Erlang term (term()).

delete handler(EventMgr, Handler, Args) -> DelRet

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Pid = pid()
� Handler = Module | fModule, Idg
� Module = atom()
� Id = term()
� Args = term()
� DelRet = term() | ferror, module not foundg

Removes the event handler Handler from the EventMgr event manager. Args is
supplied with the Module:terminate(Args, ...) call in order to clean up the handler.
Normally, it is preferable if Args is the atom stop as described for stop/1.

DelRet can be any Erlang term as returned from the Module:terminate/2 function.
This value can be used later on as a start argument (Args = DelRet) in order to restart
(re-add) the same event handler with its old internal state. See also swap handler/3
below.

swap handler(EventMgr, OldHandler, NewHandler) -> SwRet

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()

103STDLIB

gen event (Module) STDLIB Reference Manual

� Pid = pid()
� OldHandler = fHandler1, Args1g
� NewHandler = fHandler2, Args2g
� Handler1 = Module1 | fModule1, Id1g
� Handler2 = Module2 | fModule2, Id2g
� Module1 = Module2 = atom()
� Id1 = Id2 = term()
� Args1 = Args2 = term()
� SwRet = ok | ferror, SwErrg
� SwErr = term()

Removes the Handler1 event handler and installs the new Handler2 event handler. If
appropriate, the new handler can inherit the internal state of the old handler.

Module1:terminate(Args1,...) is called to remove the old handler. The return value
of the terminate/2 function is passed to the new handler as TermRet below. The new
handler is initialized by calling the Module2:init(fArgs2,TermRetg) function in the
new callback module. If an error occurs, the return value of the init/1 function is
returned as SwErr. To ignore the internal state of the old handler, the TermRet value
should be ignored in the init/1 function of the new handler.

If Handler1 was added as a supervised handler, with the add sup handler/3 function
for example, the Handler2 inherits the same parent. Thus, Handler2 will be supervised
by the same process as Handler1.

swap sup handler(EventMgr, OldHandler, NewHandler) -> SwRet

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Pid = pid()
� OldHandler = fHandler1, Args1g
� NewHandler = fHandler2, Args2g
� Handler1 = Module1 | fModule1, Id1g
� Handler2 = Module2 | fModule2, Id2g
� Module1 = Module2 = atom()
� Id1 = Id2 = term()
� Args1 = Args2 = term()
� SwRet = ok | ferror, SwErrg
� SwErr = term()

Removes the Handler1 event handler and installs the new Handler2 event handler in
the same manner described for the swap handler/3 function above.

The Handler2 event handler will be supervised by the process that evaluated this
function, in the manner described for the add sup handler/3 function above.

call(EventMgr, Handler, Query) -> Ret

call(EventMgr, Handler, Query, Timeout) -> Ret

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid

104 STDLIB

STDLIB Reference Manual gen event (Module)

� Name = atom()
� Node = atom()
� Pid = pid()
� Handler = Module | fModule, Idg
� Module = atom()
� Id = term()
� Query = term()
� Timeout = int() > 0 | infinity
� Ret = Reply | ferror, ErrCallg
� Reply = term()
� ErrCall = bad module | term()

Sends a request to the specified event handler Handler in the EventMgr event manager.
Query can be any Erlang term, but it must be recognized by the event handler. To
handle the request, the callback function Module:handle call/2 is called. bad module
is returned if the Module event handler does not exist. Reply is the returned Reply
value of the callback function, while ErrCall is returned as an error descriptor if the
callback module fails.

Timeout should be set to some reasonable value (in milliseconds). The special value
infinity can be used if the user has no idea how long the request is supposed to take.
If Timeout is not specified, the default value is 5000.

If Timeout has an integer value and no response has been delivered within Timeout
milliseconds, then the client will terminate with reason ftimeout, fgen event, call,
[EventMgr, Handler, Query, Timeout]gg.

which handlers(EventMgr) -> [Handler]

Types:

� EventMgr = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Pid = pid()
� Handler = Module | fModule, Idg
� Module = atom()
� Id = term()

Asks the EventMgr event manager about active event handlers. This function returns a
list of each added event handler.

Callback Functions

The following functions should be exported from a gen event callback module.

105STDLIB

gen event (Module) STDLIB Reference Manual

Exports

Module:init(Args) -> InitRes

Types:

� Args = term()
� InitRes = fok, Stateg | Other
� State = term()
� Other = term()

Whenever a new event handler is added to an event manager, the init/1 function in
the specified callback module is called in order to initialise the handler. If the
initialization function succeeds, it is supposed to return the initialized internal State of
the handler. The State is passed to all subsequent callback function calls to the handler.

The Args argument supplied to the init/1 function is the same argument that is
supplied to, for example, the add handler/3 function.

Module:handle event(Event, State) -> EventRet

Types:

� Event = term()
� EventRet = fok, State1g | fswap handler, Args1, State1, Handler2, Args2g |

remove handler | Other
� Args1 = Args2 = term()
� State1 = State = term()
� Handler2 = Module | fModule, Idg
� Module = atom()
� Id = term()
� Other = term()

For each event handler, this function is called by the event manager whenever the event
manager has received an event. Event is the value sent with the gen event:notify/2
function call. (Any other unmatched messages which are received by the event manager
- such as f’EXIT’, Pid, Whyg - are processed using handle info/2)

Normally, the event handler returns a new state with fok, State1g after the event has
been processed. The event handler can also remove itself or swap to another handler. If
the handler is removed (returned remove handler), the terminate/2 callback function
is called with remove handler as the first argument. The swap procedure is the same as
described for swap handler/3.

If the handle event/2 function crashes, or returns Other, the Module:terminate/2
function is called in order to clean up (if possible) and the handler is removed from the
event manager. The Arg argument of Module:terminate/2 is ferror,Reasong, where
Reason is f’EXIT’,Whyg if crashed, or Other.

Module:handle call(Query, State) -> CallRet

Types:

� Query = term()
� CallRet = fok, Reply, State1g | fswap handler, Reply, Args1, State1, Handler2,

Args2g | fremove handler, Replyg | Other

106 STDLIB

STDLIB Reference Manual gen event (Module)

� Reply = term()
� Args1 = Args2 = term()
� State1 = State = term()
� Handler2 = Module | fModule, Idg
� Module = atom()
� Id = term()
� Other = term()

Handles a request generated by a call/3 function call. The request is dedicated to this
handler. Query can be any Erlang term recognized by the event handler. The type of
queries which are handled is a design issue. Reply is any Erlang term which represents
the reply to the call. Reply is returned by the call/3 function.

Normally, the event handler returns a new state with fok, Reply, State1g after the
call has been processed. The event handler can also decide to remove itself or to swap
to another handler. If the handler should be removed (returned fremove handler,
Replyg), the terminate/2 callback function is called with remove handler as the first
argument. The swap procedure is the same as described for swap handler/3.

If the handle call/2 function crashes, or returns Other, the Module:terminate/2
function is called in order to clean up (if possible) and the handler is removed from the
event manager. The Arg argument of Module:terminate/2 is ferror,Reasong, where
Reason is f’EXIT’,Whyg if crashed, or Other.

Module:handle info(Info, State) -> EventRet

Types:

� Info = term()
� EventRet = fok, State1g | fswap handler, Args1, State1, Handler2, Args2g |

remove handler | Other
� Args1 = Args2 = term()
� State1 = State = term()
� Handler2 = Module | fModule, Idg
� Module = atom()
� Id = term()
� Other = term()

This callback function handles events other than notify and call, which are received
by the event manager. Typical events, or messages, which are handled include:

f’EXIT’, Pid, Reasong If the process traps exit signals, the corresponding messages
are handled here.

fnodedown, Nodeg If another Erlang node is monitored, the corresponding nodedown
message is handled here.

Msg All other messages, sent to the event manager using EventMgr ! Msg, are also
handled here.

Note:
Communication with the event manager should always go through the above
interface functions.

107STDLIB

gen event (Module) STDLIB Reference Manual

The EventRet value is the same as for handle event.

Module:terminate(Arg, State) -> TermRet

Types:

� Arg = stop | remove handler | ferror, term()g | fstop, term()g | term()
� TermRet = term()

Cleans up the event handler before it is removed from the event manager. If Arg is stop
or remove handler, the event handler is supposed to be removed and no other handler
is supposed to take over the internal state. In this case, TermRet is ignored.

If another handler is taking over the internal state of this handler, this should be marked
with Arg as some other Erlang term, swap for example. In this case, the event handler
should return the internal state State, or parts of the state, in a way that is recognized
by the handler which is supposed to take over.

Arg is ferror, Errorg if a callback function has crashed or returned something
inappropriate. Error is f’EXIT’, Whyg if it has crashed.

Arg is fstop, Reasong if the parent of a supervised event handler has terminated.
Reason is the termination reason for the parent process.

Module:code change(OldVsn, State, Extra) -> fok, NewStateg

Types:

� OldVsn = undefined | term()
� State = term()
� Extra = term()
� NewState = term()

This function is called when a code change is performed, which implies that the internal
data structures of the Module event handler has changed. This function is supposed to
convert the old state to the new one. OldVsn is the vsn attribute of the old version of
the module. If no such attribute was defined, the atom undefined is sent. Extra is an
optional term, which is typically defined in the release upgrade script.

System events

The gen event behaviour generates the following system events, which are handled by
the sys module:

� fin, Msgg when a message is received.

See also

sys(3)

108 STDLIB

STDLIB Reference Manual gen fsm (Module)

gen fsm (Module)

This module provides a standard way of writing Finite State Machine (FSM) processes.
All FSMs written as gen fsms share a common set of interface functions. The generic
parts of the FSM contains functions for debugging, for handling the termination of the
parent process, and for presentation of illustrative error information if something goes
wrong in the process.

The state of the FSM is defined by two parameters, the StateName and the StateData.
For each StateName, there must be a corresponding function exported from the
call-back module. When an event is received, and the current state of the FSM is
StateName, Module:StateName(Event, StateData) is called. This function should
return the next state, which is the next StateName.

It is also possible to define a function Module:handle event(Event, StateName,
StateData) to take care of events which should always be handled, regardless of their
state. This function is called when gen fsm:send all state event/2 is used to
generate an event.

Events can be handled synchronously as well. This means that the caller waits for a
reply to the event.

The relationship between the generic interface functions (and received messages) and
the callback functions can be illustrated as follows:

Callback module gen fsm
---------------- -------
gen fsm:start link -----> start a new fsm process
Module:init/1 <-----

looping

gen fsm:send event ----->
Module:StateName/2 <-----

gen fsm:sync send event ----->
Module:StateName/3 <-----

gen fsm:send all state event ----->
Module:handle event/3 <-----

gen fsm:sync send all state event ----->
Module:handle sync event/4 <-----

Module:handle info/3 <----- other message
received.

Module:terminate/3 <----- clean up before
termination.

109STDLIB

gen fsm (Module) STDLIB Reference Manual

Note:
Trapping of exits, if required, must be done explicitly.

An instance of the gen fsm behaviour can be debugged by using the module sys.

Exports

start(Module, StartArgs, Options) -> StartRet

start link(Module, StartArgs, Options) -> StartRet

start(Name, Module, StartArgs, Options) -> StartRet

start link(Name, Module, StartArgs, Options) -> StartRet

Types:

� Name = flocal, atom()g | fglobal, atom()g
� Module = atom()
� StartArgs = term()
� Options = [Opt]
� Opt = fdebug, [Dbg]g | ftimeout, Timeg
� Dbg = trace | log | statistics | flog to file, FileNameg | finstall, fFunc, FuncStategg
� StartRet = fok, Pidg | ignore | ferror, Reasong
� Pid = pid()
� Reason = falready started, Pidg | term()

Starts an FSM process. An anonymous process is started if Name is not specified. This
process can only be called by using the returned Pid identifier.

A process which is started with start does not care about the parent, which means that
the parent is not handled explicitly in the generic process part. If started in this manner,
this function must not be used if the FSM is a worker in a supervision tree.

A process started with start link is initially linked to the caller - the parent - and will
terminate whenever the parent process terminates, and with the same reason as the
parent. If started in this manner, this function should be used if the FSM is a worker in a
supervision tree.

The function Module:init(StartArgs) is called (see below).

Time specifies how long time, in milliseconds, the server is allowed to initialize itself.

The debug options are described in sys(3).

send event(ProcessRef,Event) -> void()

Types:

� ProcessRef = Name | fName, Nodeg | fglobal, Nameg | pid()
� Name = atom()
� Node = atom()

110 STDLIB

STDLIB Reference Manual gen fsm (Module)

� Event = term()

Sends an event asynchronously to the FSM process. In the callback module, the
function StateName/2 is called, where StateName is the name of the current state.

send all state event(ProcessRef,Event) -> void()

Types:

� ProcessRef = Name | fName, Nodeg | fglobal, Nameg | pid()
� Name = atom()
� Node = atom()
� Event = term()

An event, which can be handled in all states, is sent asynchronously to the FSM process.
In the callback module, handle event/3 is called.

sync send event(ProcessRef,Event) -> Reply

sync send event(ProcessRef,Event, Timeout) -> Reply

Types:

� ProcessRef = Name | fName, Nodeg | fglobal, Nameg | pid()
� Name = atom()
� Node = atom()
� Event = term()
� Timeout = int() > 0 | infinity
� Reply = term()

Sends an event synchronously to the FSM process and waits for the answer. In the
callback module, the function StateName/3 is called, where StateName is the name of
the current state.

Timeout should be set to some reasonable value. The special value infinity can be
used if the user has no idea how long the request is supposed to take. The default is
5000.

If Timeout has an integer value and if no response has been delivered within Timeout
milliseconds, the client will terminate with reason ftimeout, fgen fsm,
sync send event, [ProcessRef, Event, Timeout]gg.

If the server should crash during the request and the client is linked to the server and
the client is trapping exits, (phew) the exit message is read out from the clients receive
queue and then this function call fails with the exit reason that was read. This is a
remnant from when monitors did not exist and links was the only way to supervise the
request, and the behaviour may change in a future release. In this release,
unfortuneately, under certain circumstances (e.g. ProcessRef = fName, Nodeg, Node
crashes during call) the exit message cannot be read out. Note that if the server crashes
in between calls, the client must take care of the exit message anyway.

sync send all state event(ProcessRef,Event) -> Reply

sync send all state event(ProcessRef,Event,Timeout) -> Reply

Types:

� ProcessRef = Name | fName, Nodeg | fglobal, Nameg | pid()
� Name = atom()
� Node = atom()

111STDLIB

gen fsm (Module) STDLIB Reference Manual

� Event = term()
� Timeout = int() > 0 | infinity
� Reply = term()

An event, which can be handled in all states, is sent synchronously to the FSM process.
In the callback module, handle event/4 is called.

Timeout should be set to some reasonable value. The special value infinity can be
used if the user has no idea how long the request is supposed to take. The default is
5000.

If Timeout has an integer value and no response has been delivered within Timeout
milliseconds, the client will terminate with reason ftimeout, fgen fsm,
sync send all state event, [ProcessRef, Event, Timeout]gg.

reply(To, Reply) -> true

Types:

� To = fpid(), Tagg
� Tag = term()
� Reply = term()

If a reply cannot be returned immediately - as the return value of Module:StateName/3
or Module:handle sync event/4 - this function can be used to make an explicit reply.
To has the same value as the From argument in these functions.

Callback Functions

The following functions should be exported from a gen fsm callback module.

Exports

Module:init(StartArgs) -> Return

Types:

� StartArgs = term()
� StateName = atom()
� StateData = term()
� Timeout = int() > 0 | infinity
� StopReason = term()
� Return = fok, StateName, StateDatag | fok, StateName, StateData, Timeoutg |

ignore | fstop, StopReasong

112 STDLIB

STDLIB Reference Manual gen fsm (Module)

This function initializes the FSM process and returns the initial state. The Timeout
variable specifies that the process shall wait for Timeout milliseconds for the first
message. If no message has arrived within the specified time,
Module:StateName(timeout, StateData) is called.

The StartArgs argument supplied to the init/1 function is the same as the argument
supplied to the gen fsm:start functions.

If the process should trap exits, this has to be explicitly expressed here with
process flag(trap exit, true).

The representation of the FSM StateData is an implementation specific detail which
has to be decided by the designer of the FSM. It can be any Erlang term. StateData will
be visible as an argument to all callback functions. To change something in StateData,
a new value is returned from the callback function using the terms described below.

If the initializing procedure fails, the reason is supplied as StopReason with the fstop,
StopReasong return value.

This function can return ignore in order to inform the parent, especially if it is a
supervisor, that the FSM, as an example, has not started in accordance with the
configuration data.

Module:StateName(Event, StateData) -> Return

Types:

� Event = term()
� StateData = term()
� Return = fnext state, NextStateName, NextStateDatag | fnext state,

NextStateName, NextStateData, Timeoutg | fstop, Reason, NewStateDatag
� NextStateName = atom()
� NextStateData = term()
� Reason = normal | shutdown | term()

Handles events in the state StateName. The Timeout variable is as in Module:init/1
above.

Whenever the function gen fsm:send event is called, this function is called to handle
the event. If the FSM times out, this function is also called with Event = timeout.

Event is the same term as supplied in the above client call.

If the FSM decides to terminate, this function should return fstop, Reason,
NewStateDatag, and the function Module:terminate(Reason, StateName,
NewStateData) is called. If Reason is something other than normal or shutdown, the
FSM is assumed to have terminated with a runtime failure. In this case, a lot of
information about the failure is reported. The atom normal causes a normal termination
while shutdown causes an abnormal, but faultless, termination of the process.

Module:StateName(Event, From, StateData) -> Return

Types:

� Event = term()
� From = fpid(), Tagg
� StateData = term()

113STDLIB

gen fsm (Module) STDLIB Reference Manual

� Return = fnext state, NextStateName, NextStateDatag | fnext state,
NextStateName, NextStateData, Timeoutg | freply, Reply, NextStateName,
NextStateDatag | freply, Reply, NextStateName, NextStateData, Timeoutg | fstop,
Reason, NewStateDatag | fstop, Reason, Reply, NewStateDatag

� NextStateName = atom()
� NextStateData = term()
� Reply = term()
� Reason = normal | shutdown | term()

Handles synchronous events in the state StateName. The Timeout variable is as in
Module:init/1 above.

Whenever the function gen fsm:sync send event/2,3 is called, this function is called
to handle the event.

Event is the same as the term supplied with the above client call.

The FSM decides if a reply is sent to the caller directly (freply, ...g), indirectly
(fnext state, ...g), or if the FSM has to terminate (fstop, ...g) as a result of the
request. If fnext state, ...g is returned, a reply can be sent to the caller using the
reply/2 function.

If the FSM decides to terminate, this function returns fstop, Reason, NewStateDatag
or fstop, Reason, Reply, NewStateDatag, and the function
Module:terminate(Reason, StateName, NewStateData) is called. If Reason is
something other than normal or shutdown, the FSM is assumed to have terminated
with a runtime failure. In this case, a lot of information about the failure is reported.
The atom normal causes a normal termination while shutdown causes an abnormal, but
faultless, termination of the process.

Module:handle event(Event, StateName, StateData) -> Return

Types:

� Event = term()
� StateName = atom()
� StateData = term()

Handles events generated with the function gen fsm:send all state event/2.

The Return value is the same as for Module:StateName/2.

Module:handle sync event(Event, From, StateName, StateData) -> Return

Types:

� Event = term()
� From = fpid(), Tagg
� StateName = atom()
� StateData = term()

Handles events generated with the function gen fsm:sync send all state event/2,3.

The Return value is the same as for Module:StateName/3.

Module:handle info(Info, StateName, StateData) -> Return

Types:

� Info = term()

114 STDLIB

STDLIB Reference Manual gen fsm (Module)

� StateName = atom()
� StateData = term()

This function receives all messages sent to this process which are not generated by
gen fsm:send event/2, gen fsm:send all state event/2,
gen fsm:sync send event/2,3, or gen fsm:sync send all state event/2,3. Typical
messages handled here include:

f’EXIT’, Pid, Reasong If the process traps exit signals, the corresponding messages
are handled here.

fnodedown, Nodeg If another Erlang node is monitored, the corresponding nodedown
message is handled here.

Msg All other messages sent to the process using Fsm ! Msg are also handled here.

Note:
Communication with the FSM should always go through the interface functions
described above.

The Return value is the same as for Module:StateName/2.

Module:terminate(Reason, StateName, StateData) -> void()

Types:

� Reason = term()
� StateName = atom()
� StateData = term()

This callback function is called whenever the FSM is about to terminate. Either one of
the above callback functions have returned fstop, StopReason, ...g, in which case
Reason is equal to StopReason; or some other fault has been caught. Reason is any
term which describes the termination reason. If the FSM traps exits, the terminate
function is called if the FSM’s parent (normally a supervisor) dies or orders the FSM to
die. If the FSM does not trap exits, it dies immediately if the parent dies.

With this function, the FSM can clean up before the process terminates. It can, for
example, de-allocate external resources.

The termination reason cannot be changed here. The FSM will terminate due toReason
regardless of what was returned from this function.

Module:code change(OldVsn, StateName, StateData, Extra) -> fok, NewState,
NewStateDatag

Types:

� OldVsn = undefined | term()
� StateName = atom()
� StateData = term()
� Extra = term()
� NewStateName = atom()
� NewStateData = term()

115STDLIB

gen fsm (Module) STDLIB Reference Manual

This function is called when a code change is performed, which implies that the internal
data structures of the FSM have changed. The function is supposed to convert the old
state to the new one. OldVsn is the vsn attribute of the old version of the module. If no
such attribute was defined, the atom undefined is sent. Extra is an optional term,
typically defined in the release upgrade script.

System events

The gen fsm behaviour generates the following system events, handled by the sys
module:

� fin, Msgg when a message is received.

� fout, Msg, To, StateNameg when a message is sent.

� return when an event handling callback function returns.

See Also

sys(3)

116 STDLIB

STDLIB Reference Manual gen server (Module)

gen server (Module)

This module provides a standard way of writing Client-Server applications. All servers
written as generic servers share a common set of interface functions. The generic parts
of the server contain functions for debugging, handling the termination of the parent,
and presentation of illustrative error information if something goes wrong with the
server.

The idea is that the implementation specific parts of a client-server is in one module,
called the callback module. The callback module contains the client interface functions
which use the server access functions described below. The callback module also
contains the server callback functions, for example handle call/3. Whenever the
generic part of the server receives a message - sent through a server access function, for
example - the corresponding callback function is called.

The relationship between the generic interface functions (and received messages) and
the callback functions can be illustrated as follows:

Callback module gen server
---------------- ----------
gen server:start -----> start a new server
Module:init/1 <-----

looping

gen server:call ----->
Module:handle call/3 <-----

gen server:cast ----->
Module:handle cast/2 <-----

gen server:multi call ----->
Module:handle call/3 <-----

gen server:abcast ----->
Module:handle cast/2 <-----

Module:handle info/2 <----- other message
received.

Module:terminate/2 <----- clean up before
termination.

If the server wants to trap exit signals, this must be explicitly initiated in the callback
module.

An instance of the gen server behaviour can be debugged using the module sys.

117STDLIB

gen server (Module) STDLIB Reference Manual

Exports

start(Module, Args, Options) -> ServerRet

start(ServerName, Module, Args, Options) -> ServerRet

start link(Module, Args, Options) -> ServerRet

start link(ServerName, Module, Args, Options) -> ServerRet

Types:

� Module = atom()
� ServerName = flocal, atom()g | fglobal, atom()g
� Args = term()
� Options = [Opt]
� Opt = fdebug, [Dbg]g | ftimeout, Timeg
� Dbg = trace | log | statistics | flog to file, FileNameg | finstall, fFunc, FuncStategg
� ServerRet = fok, Pidg | ignore | ferror, Reasong
� Pid = pid()
� Reason = falready started, Pidg | term()

Starts a new server. If the server is started without ServerName, it can only be called
using the returned Pid identifier. If started with ServerName, the name is registered
locally or globally.

Module is the name of the callback module.

A server started with start/3 or start/4 does not care about the parent, which means
that the parent is not handled explicitly in the generic process part. If started in this
manner, these functions must not be used if the server is a worker in a supervision tree.

A server started with start link/3 or start link/4 is initially linked to the caller, the
parent, and it will terminate whenever the parent process terminates, and with the same
reason as the parent. If the server traps exits, the terminate/2 callback function is
called in order to clean up before the termination. If started in this manner, these
functions should be used if the server is a worker in a supervision tree.

Time specifies how long time, in milliseconds, the server is allowed to spend initializing.

The function Module:init(Args) is called in the new process in order to initialize the
server (see below).

Refer to the sys module for more information about the Dbg options.

call(ServerRef, Request) -> Reply

call(ServerRef, Request, Timeout) -> Reply

Types:

� ServerRef = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Request = term()
� Timeout = int() > 0 | infinity
� Reply = term()

118 STDLIB

STDLIB Reference Manual gen server (Module)

A request is sent to the ServerRef server. The request can be any term, but the term
must be recognized by the server. The request is handled by the server (in the
Module:handle call/2 function) and the client is suspended while waiting for the
response. Timeout should be set to some reasonable value in milliseconds. The special
value infinity can be used if the user has no idea how long the request is supposed to
take. The default value is 5000 if Timeout is not specified.

If Timeout has an integer value and no response has been delivered within Timeout
milliseconds, then the client terminates with reason ftimeout, fgen server, call,
[ServerRef, Request, Timeout]gg.

If the server should crash during the request and the client is linked to the server and
the client is trapping exits, (phew) the exit message is read out from the clients receive
queue and then this function call fails with the exit reason that was read. This is a
remnant from when monitors did not exist and links was the only way to supervise the
request, and the behaviour may change in a future release. In this release,
unfortuneately, under certain circumstances (e.g. ServerRef = fName, Nodeg, Node
crashes during call) the exit message cannot be read out. Note that if the server crashes
in between calls, the client must take care of the exit message anyway.

cast(ServerRef, Request) -> ok

Types:

� ServerRef = Name | fName, Nodeg | fglobal, Nameg | Pid
� Name = atom()
� Node = atom()
� Request = term()

A request is sent to the server. As no response will be delivered, the client making the
cast is not suspended until the request has been handled by the server. This function
returns ok immediately and ignores non-existing servers.

multi call(DistRef, Request) -> DistRep

multi call(Nodes, DistRef, Request) -> DistRep

multi call(Nodes, DistRef, Request, Timeout) -> DistRep

Types:

� Nodes = [Node]
� Node = atom()
� DistRef = atom()
� DistRep = f[fNode,Replyg],[Node]g
� Request = term()
� Timeout = int() >= 0 | infinity
� Reply = term()

Sends a request to the locally registered server DistRef at every known node (or
Nodes). This function returns a list of replies which are tagged with the corresponding
node name, and a list of bad nodes. Reply is the value returned by a server. A node is
marked bad if the server at a specific node, or the node itself, does not exist.

The request is sent to the DistRef server at all nodes before the replies are collected.
This ensures that the request is handled in parallel on all nodes.

119STDLIB

gen server (Module) STDLIB Reference Manual

Warning:
If one of the nodes is of an older Erlang release, and its server is not started when the
requests are sent, but starts within 2 s after, this function waits the whole Timeout,
which may be infinity.

This problem does not exist if all nodes are of the current release.

If Timeout is given, each node not replying within that time is regarded as bad.

This function does not read out any exit messages like call/2,3 does.

The previously undocumented functions safe multi call/2..4 have now been
removed since multi call/2..4 is now safe, except for against old nodes as mentioned
in the warning above.

abcast(DistRef, Request) -> abcast

abcast(Nodes, DistRef, Request) -> abcast

Types:

� Nodes = [Node]
� Node = atom()
� DistRef = atom()
� Request = term()

Broadcasts the request asynchronously to the locally registered server DistRef on every
known node (or Nodes). This function returns immediately and ignores non-existing
servers or nodes.

reply(To, Reply) -> true

Types:

� To = fpid(), Tagg
� Tag = term()

This function can be used by a server to make an explicit reply, if a reply cannot be
returned immediately as the return value of Module:handle call/3. To has the same
value as the From argument in Module:handle call/3.

Callback Functions

The following functions should be exported from a gen server callback module.

120 STDLIB

STDLIB Reference Manual gen server (Module)

Exports

Module:init(Args) -> fok, Stateg | fok, State, Timeoutg | ignore | fstop, StopReasong

Types:

� Args = term()
� State = term()
� Timeout = int() >= 0 | infinity
� StopReason = term()

Whenever a new server is started, init/1 is the first function called in the specified
callback module. To ensure a synchronized start-up procedure, the gen server:start
function will not return before the init/1 function has returned.

The Args argument supplied to the init/1 function is the same as the Args parameter
supplied to the gen server:start functions.

The purpose of the init/1 function is to initialize the server and the internal state of
the server. A server which holds an external resource typically opens the associated port
and keeps the port identity in the internal state.

If the server wants to trap exits, this has to be expressed explicitly in the init function
with process flag(trap exit, true).

The representation of the server State is an implementation specific detail which must
be decided by the designer of the server. State will be visible as an argument to all
callback functions. To change something in State, a new value is returned from the
callback function using the return values (terms) described below.

If the initializing procedure fails, the reason is supplied as StopReason with the fstop,
StopReasong return value.

After the server has been successfully initialized, the generic part of the server enters
the main loop and waits for requests. A Timeout time can be specified if the server is
only allowed to wait for a certain time for the next event. If the timeout time elapses,
the special timeout message should be handled in the Module:handle info/2 callback
function. Timeout is specified in milliseconds.

This function can return ignore in order to inform the parent, especially if it is a
supervisor, that the server, as an example, did not start in accordance with the
configuration data.

Module:handle call(Request, From, State) -> CallReply

Types:

� Request = term()
� From = fpid(), Tagg
� Tag = term()
� CallReply = freply, Reply, Stateg | freply, Reply, State, Timeoutg | fnoreply, Stateg
| fnoreply, State, Timeoutg | fstop, StopReason, Reply, Stateg | fstop, StopReason,
Stateg

� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

121STDLIB

gen server (Module) STDLIB Reference Manual

Whenever a client function has called one of the interface functions gen server:call
or gen server:multi call, the server handles the request in this callback function.

Request is the same as the term supplied with the above client call. The server decides
if the client should be sent a reply directly (freply, ...g), indirectly (fnoreply,
...g), or if the server has to terminate (fstop, ...g) as a result of the request. If
fnoreply, ...g is returned, a reply is sent to the client using the reply/2 function.

If StopReason is something other than normal or shutdown, the server is assumed to
have terminated with a runtime error. In this case, a lot of information is reported
about the failure. The atom normal causes a normal termination of the server, while
shutdown causes an abnormal, but faultless, termination.

If the server decided to terminate fstop, StopReason [, ...]g, the
Module:terminate/2 function is called. All code which handles the clean up before the
server terminates should be located in the terminate function. The server will
terminate due to StopReason.

As described above (see init/1), a timeout can be specified to take some specific
action if no more requests are received within Timeout milliseconds.

Module:handle cast(Request, State) -> Return

Types:

� Request = term()
� State = term()
� Return = fnoreply, Stateg | fnoreply, State, Timeoutg | fstop, StopReason, Stateg
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

Whenever a client function has called one of the interface functions gen server:cast
or gen server:abcast, the server handles the request in this callback function. No
reply will ever be sent to the client, but the server can decide to terminate. StopReason
is as described for handle call/3.

Module:handle info(Info, State) -> Return

Types:

� Info = term()
� State = term()
� Return = fnoreply, Stateg | fnoreply, State, Timeoutg | fstop, StopReason, Stateg
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

This callback function handles received messages other than call and cast. Typical
messages which are handled by this function include:

f’EXIT’, Pid, Reasong If the process traps exit signals, the corresponding messages
are handled here.

fnodedown, Nodeg If another Erlang node is monitored, the corresponding nodedown
message is handled here.

timeout If Timeout milliseconds has elapsed since the last handled event, this message
should be handled.

Msg All other messages which are sent to the server using Server ! Msg are also
handled here.

122 STDLIB

STDLIB Reference Manual gen server (Module)

Note:
Communication with the server should always go through the interface functions
described above.

The Return value is the same as for handle cast/2. StopReason is as described for
handle call/3.

Module:terminate(Reason, State) -> ok

Types:

� Reason = term()
� State = term()

This callback function is called whenever the server is about to terminate. Either one of
the above callback functions have returned fstop, StopReason, ...g, in which case
Reason is equal to StopReason; or some other fault has been caught. Reason is any
term which describes the termination reason. If the server traps exits, the terminate
function is called if the server’s parent (normally a supervisor) dies or orders the server
to die. If the server does not trap exits, it dies immediately if the parent dies.

With this function, the server can clean up before the process terminates. It can, for
example, de-allocate external resources.

The termination reason cannot be changed here. The server will terminate due
toReason regardless of what was returned from this function.

Module:code change(OldVsn, State, Extra) -> fok, NewStateg

Types:

� OldVsn = undefined | term()
� State = term()
� Extra = term()
� NewState = term()

This function is called when a code change is performed, which implies that the internal
data structures of the server has changed. This function is supposed to convert the old
state to the new one. OldVsn is the vsn attribute of the old version of the module. If no
such attribute was defined, the atom undefined is sent. Extra is an optional term
which is typically defined in the release upgrade script.

System Events

The gen server behaviour generates the following system events, handled by the sys
module:

� fin, Msgg when a message is received.

� fout, Msg, To, Stateg when a message is sent.

� fnoreply, Stateg when no reply is delivered.

123STDLIB

gen server (Module) STDLIB Reference Manual

Example

The following example implements a simple queue server. The server has four interface
functions:

� start/0 which starts the queue server.

� stop/0 which stops the queue server.

� in/1 which inserts an item last in the queue.

� out/0 which removes the oldest item from the queue.

The queue server is not linked to the parent process and the server does not handle the
termination of the parent process explicitly.

-module(queue_serv).
-behaviour(gen_server).

%% External exports
-export([start/0, in/1, out/0, stop/0]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2]).

start() -> gen_server:start({local, queue_serv},
queue_serv, [], []).

in(Item) -> gen_server:call(queue_serv, {in, Item}).

out() -> gen_server:call(queue_serv, out).

stop() -> gen_server:call(queue_serv, stop).

%% Callback functions.
init([]) ->

{ok, {[],[]}}.

handle_call({in, X}, _From, {In, Out}) ->
{reply, ok, {[X|In], Out}};

handle_call(out, _From, Queue) ->
{Reply, NewQueue} = out(Queue),
{reply, Reply, NewQueue};

handle_call(stop, _From, Queue) ->
{stop, normal, ok, Queue}.

handle_cast(_, State) ->
{noreply, State}.

handle_info(_, State) ->
{noreply, State}.

terminate(Reason, State) ->
ok.

124 STDLIB

STDLIB Reference Manual gen server (Module)

%% Internal functions
out({In, [H|Out]}) ->

{{value, H}, {In, Out}};
out({[], []}) ->

{empty, {[],[]}};
out({In, _}) ->

out({[], lists:reverse(In)}).

See Also

sys(3)

125STDLIB

io (Module) STDLIB Reference Manual

io (Module)

This module provides an interface to standard Erlang IO servers. The output functions
all return ok if they are successful, or exit if they are not. In the following description, a
parameter within square brackets means that that parameter is optional. [IoDevice,]
is such an example. If included, it must be the Pid of a process which handles the IO
protocols. This is often the IoDevice returned by file:open/2 (see file). For a
description of the I/O protocols refer to Armstrong, Virding and Williams, ’Concurrent
Programming in Erlang’, Chapter 13.

Exports

put chars([IoDevice,] Chars)

Writes the characters Chars to the standard output (IoDevice). Chars is a list of
characters. The list is not necessarily flat.

nl([IoDevice])

Writes new line to the standard output (IoDevice).

get chars([IoDevice,] Prompt, Count)

Gets Count characters from standard input (IoDevice), prompting it with Prompt. It
returns:

ListOfChars Returns the input characters, if they are less than Count.

eof End of file was encountered.

get line([IoDevice,] Prompt)

Gets a line from the standard input (IoDevice), prompting it with Prompt. It returns:

ListOfChars The characters in the line terminated by a LF unless the line read was the
last line of the file and was not terminated by LF.

eof End of file was encountered.

write([IoDevice,] Term)

Writes the term Term to the standard output (IoDevice).

read([IoDevice,] Prompt)

126 STDLIB

STDLIB Reference Manual io (Module)

Reads a term from the standard input (IoDevice), prompting it with Prompt. It returns:

fok, Termg The parsing was successful.

ferror, ErrorInfog The parsing failed.

eof End of file was encountered.

fwrite(Format)

format(Format)

Equivalent to fwrite(Format, []).

fwrite([IoDevice,] Format, Arguments)

format([IoDevice,] Format, Arguments)

Writes the list of items in Arguments on the standard output (IoDevice) in accordance
with Format. Format is a list of plain characters which are copied to the output device,
and control sequences which cause the arguments to be printed. If Format is an atom, it
is first converted to a list with the aid of atom to list/1. Arguments is the list of items
to be printed.

> io:fwrite("Hello world!~n", []).
Hello world
ok

The general format of a control sequence is ~F.P.PadC. The character C determines the
type of control sequence to be used, F and P are optional numeric arguments. If F, P, or
Pad is *, the next argument in Arguments is used as the numeric value of F or P.

F is the field width of the printed argument. A negative value means that the
argument will be left justified within the field, otherwise it will be right justified. If no
field width is specified, the required print width will be used. If the field width specified
is too small, then the whole field will be filled with * characters.

P is the precision of the printed argument. A default value is used if no precision is
specified. The interpretation of precision depends on the control sequences. Unless
otherwise specified, the argument within is used to determine print width.

Pad is the padding character. This is the character used to pad the printed representation
of the argument so that it conforms to the specified field width and precision. Only one
padding character can be specified and, whenever applicable, it is used for both the field
width and precision. The default padding character is ’ ’ (space).

The following control sequences are available:

~ The character ~ is written.

c The argument is a number that will be interpreted as an ASCII code. The precision is
the number of times the character is printed and it defaults to the field width,
which in turn defaults to one. The following example illustrates:

> io:fwrite("|~10.5c|~-10.5c|~5c|~n", [$a, $b, $c]).
| aaaaa|aaaaa |ccccc|
ok

f The argument is a float which is written as [-]ddd.ddd, where the precision is the
number of digits after the decimal point. The default precision is 6.

127STDLIB

io (Module) STDLIB Reference Manual

e The argument is a float which is written as [-]d.ddde+-ddd, where the precision is
the number of digits written. The default precision is 6.

g The argument is a float which is written as f, if it is > 0.1, and < 10^4. Otherwise, it
is written as e. The precision is the number of significant digits. It defaults to 6.
There must always be a sufficient number of digits for printing a correct floating
point representation of the argument.

s Prints the argument with the string syntax. The argument is a list of character codes
(possibly not a flat list), or an atom. The characters are printed without quotes. In
this format, the printed argument is truncated to the given precision and field
width.
This format can be used for printing any object and truncating the output so it fits
a specified field:

> io:fwrite("|~10w|~n", [{hey, hey, hey}]).
|**********|
ok
> io:fwrite("|~10s|~n", [io_lib:write({hey, hey, hey})]).
|{hey, hey, h|
ok

w Writes data with the standard syntax. This is used to output Erlang terms. Atoms are
printed within quotes if they contain embedded non-printable characters, and
floats are printed in the default g format.

p Writes the data with standard syntax in the same way as ~w, but breaks terms whose
printed representation is longer than one line into many lines and indents each line
sensibly. It also tries to detect lists of printable characters and to output these as
strings. For example:

> T = [{attributes,[[{id,age,1.50000},{mode,explicit},
{typename,"INTEGER"}],
[{id,cho},{mode,explicit},{typename,’Cho’}]]},
{typename,’Person’},{tag,{’PRIVATE’,3}},
{mode,implicit}].

...
> io:fwrite("~w~n", [T]).
[{attributes,[[{id,age,1.50000},{mode,explicit},{typename,
[73,78,84,69,71,69,82]}],[{id,cho},{mode,explicit},{typena
me,’Cho’}]]},{typename,’Person’},{tag,{’PRIVATE’,3}},{mode
,implicit}]
ok
> io:fwrite("~p~n", [T]).
[{attributes,[[{id,age,1.50000},

{mode,explicit},
{typename,"INTEGER"}],

[{id,cho},{mode,explicit},{typename,’Cho’}]]},
{typename,’Person’},
{tag,{’PRIVATE’,3}},
{mode,implicit}]
ok

The field width specifies the maximum line length. It defaults to 80. The precision
specifies the initial indentation of the term. It defaults to the number of characters
printed on this line in the same call to io:fwrite or io:format. For example,
using T above:

128 STDLIB

STDLIB Reference Manual io (Module)

> io:fwrite("Here T = ~p~n", [T]).
Here T = [{attributes,[[{id,age,1.50000},

{mode,explicit},
{typename,"INTEGER"}],

[{id,cho},{mode,explicit},
{typename,’Cho’}]]},

{typename,’Person’},
{tag,{’PRIVATE’,3}},
{mode,implicit}]

ok

W Writes data in the same way as ~w, but takes an extra argument which is the
maximum depth to which terms are printed. Anything below this depth is
replaced with For example, using T above:

> io:fwrite("~W~n", [T,9]).
[{attributes,[[{id,age,1.50000},{mode,explicit},{typename|
...}],[{id,cho},{mode|...},{...}]]},{typename,’Person’},{t
ag,{’PRIVATE’,3}},{mode,implicit}]
ok

If the maximum depth has been reached, then it is impossible to read in the
resultant output. Also, the |... form in a tuple denotes that there are more
elements in the tuple but these are below the print depth.

P Writes data in the same way as ~p, but takes an extra argument which is the
maximum depth to which terms are printed. Anything below this depth is
replaced with For example:

> io:fwrite("~P~n", [T,9]).
[{attributes,[[{id,age,1.50000},{mode,explicit},

{typename|...}],
[{id,cho},{mode|...},{...}]]},

{typename,’Person’},
{tag,{’PRIVATE’,3}},
{mode,implicit}]

ok

n Writes a new line.

i Ignores the next term.

Returns:

ok The formatting succeeded.

If an error occurs, there is no output. For example:

> io:fwrite("~s ~w ~i ~w ~c ~n",[’abc def’, ’abc def’,
{foo, 1},{foo, 1}, 65]).

abc def ’abc def’ {foo, 1} A
ok
> io:fwrite("~s", [65]).
** exited: {badarg,[{io,format,[<0.21.0>,"~s","A"]},

{erl_eval,expr,3},
{erl_eval,exprs,4},
{shell,eval_loop,2}]} **

129STDLIB

io (Module) STDLIB Reference Manual

In this example, an attempt was made to output the single character ’65’ with the aid of
the string formatting directive “~s”.

The two functions fwrite and format are identical. The old name format has been
retained for backwards compatibility, while the new name fwrite has been added as a
logical complement to fread.

fread([IoDevice,] Prompt, Format)

Reads characters from the standard input (IoDevice), prompting it with Prompt.
Interprets the characters in accordance with Format. Format is a list of control
sequences which directs the interpretation of the input.

Format may contain:

� White space characters (SPACE, TAB and NEWLINE) which cause input to be
read to the next non-white space character.

� Ordinary characters which must match the next input character.

� Control sequences, which have the general format ~*FC. The character * is an
optional return suppression character. It provides a method to specify a field
which is to be omitted. F is the field width of the input field and C determines
the type of control sequence.
Unless otherwise specified, leading white-space is ignored for all control sequences.
An input field cannot be more than one line wide. The following control
sequences are available:

~ A single ~ is expected in the input.
d A decimal integer is expected.
f A floating point number is expected. It must follow the Erlang floating point

number syntax.
s A string of non-white-space characters is read. If a field width has been

specified, this number of characters are read and all trailing white-space
characters are stripped. An Erlang string (list of characters) is returned.

a Similar to s, but the resulting string is converted into an atom.
c The number of characters equal to the field width are read (default is 1) and

returned as an Erlang string. However, leading and trailing white-space
characters are not omitted as they are with s. All characters are returned.

l Returns the number of characters which have been scanned up to that point,
including white-space characters.

It returns:

fok, InputListg The read was successful and InputList is the list of
successfully matched and read items.

ferror, Whatg The read operation failed and the parameter What can be used as
argument to report error/1 to produce an error message.

eof End of file was encountered.

Examples:

130 STDLIB

STDLIB Reference Manual io (Module)

> io:fread(’enter>’, "~f~f~f").
enter>1.9 35.5e3 15.0
{ok, [1.90000, 3.55000e+4, 15.0000]}
> io:fread(’enter>’, "~10f~d").
enter> 5.67899
{ok, [5.67800, 99]}
> io:fread(’enter>’, ":~10s:~10c:").
enter>: alan : joe :
{ok, ["alan", " joe "]}

scan erl exprs(Prompt)

scan erl exprs([IoDevice,] Prompt, StartLine)

Reads data from the standard input (IoDevice), prompting it with Prompt. Reading
starts at line number StartLine (1). The data is tokenized as if it were a sequence of
Erlang expressions until a final ’.’ is reached. This token is also returned. It returns:

fok, Tokens, EndLineg The tokenization succeeded.

ferror, ErrorInfo, EndLineg An error occurred.

feof, EndLineg End of file was encountered.

Example:

> io:scan_erl_exprs(’enter>’).
enter>abc(), "hey".
{ok,[{atom, 1, abc},{’(’, 1}, {’)’, 1}, {’, ’, 1},

{string, 1, "hey"}, {dot, 1}], 2}
> io:scan_erl_exprs(’enter>’).
enter>1.0er.
{error, {1, erl_scan, float}, 2}

scan erl form(Prompt)

scan erl form(IoDevice, Prompt[, StartLine])

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts
reading at line number StartLine (1). The data is tokenized as if it were an Erlang form
- one of the valid Erlang expressions in an Erlang source file - until a final ’.’ is reached.
This last token is also returned. The return values are the same as for scan erl exprs.

parse erl exprs(Prompt)

parse erl exprs(IoDevice, Prompt[, StartLine])

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts
reading at line number StartLine (1). The data is tokenized and parsed as if it were a
sequence of Erlang expressions until a final ’.’ is reached. It returns:

fok, ExpressionList, EndLineg The parsing was successful.

ferror, ErrorInfo, EndLineg An error occurred.

feof, EndLineg End of file was encountered.

Example:

131STDLIB

io (Module) STDLIB Reference Manual

> io:parse_erl_exprs(’enter>’).
enter>abc(), "hey".
{ok, [{call, 1, [], abc, []}, {string, 1, "hey"}], 2}
> io:parse_erl_exprs (’enter>’).
enter>abc("hey".
{error, {1, erl_parse, {before, {terminator,’) ’}, {dot, 1}}}, 2}

parse erl form(Prompt)

parse erl form(IoDevice, Prompt[, StartLine])

Reads data from the standard input (IoDevice), prompting it with Prompt Starts
reading at line number StartLine (1). The data is tokenized and parsed as if it were an
Erlang form - one of the valid Erlang expressions in an Erlang source file - until a final
’.’ is reached. It returns:

fok, Form, EndLineg The parsing was successful.

ferror, ErrorInfo, EndLineg An error occurred.

feof, EndLineg End of file was encountered.

Standard Input/Output

All Erlang processes have a default standard IO device. This device is used when no
IoDevice argument is specified in the IO calls. However, it is sometimes desirable to
use an explicit IoDevice argument which refers to the default IO device. This is the
case with functions that can access either a file or the default IO device. The atom
standard io has this special meaning. The following example illustrates this:

> io:read(’enter>’).
enter>foo.
{term, foo}
> io:read(standard_io, ’enter>’).
enter>bar.
{term, bar}

There is always a process registered under the name of user. This can be used for
sending output to the user.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

132 STDLIB

STDLIB Reference Manual io lib (Module)

io lib (Module)

This module contains functions for converting to and from strings (lists of characters).
They are used for implementing the functions in the io module. There is no guarantee
that the character lists returned from some of the functions are flat, they can be deep
lists. lists:flatten/1 is used for generating flat lists.

Exports

nl()

Returns a character list which represents a new line character.

write(Term)

write(Term, Depth)

Returns a character list which represents Term. The Depth (-1) argument controls the
depth of the structures written. When the specified depth is reached, everything below
this level is replaced by “...”. For example:

> lists:flatten(io_lib:write({1,[2],[3],[4,5],6,7,8,9})).
"{1,[2],[3],[4,5],6,7,8,9}"
> lists:flatten(io_lib:write({1,[2],[3],[4,5],6,7,8,9}, 5)).
"{1,[2],[3],[4|...],6|...}"

print(Term)

print(Term, Column, LineLength, Depth)

Also returns a list of characters which represents Term, but breaks representations which
are longer than one line into many lines and indents each line sensibly. It also tries to
detect and output lists of printable characters as strings. Column is the starting column
(1), LineLength the maximum line length (80), and Depth the maximum print depth.

fwrite(Format, Data)

format(Format, Data)

Returns a character list which represents Data formatted in accordance with Format.
Refer to io [page 126] for a detailed description of the available formatting options. A
fault is generated if there is an error in the format string or argument list.

fread(Format, String)

133STDLIB

io lib (Module) STDLIB Reference Manual

Tries to read String in accordance with the control sequences in Format. Refer to io
[page 126] for a detailed description of the available formatting options. It is assumed
that String contains whole lines. It returns:

fok, InputList, LeftOverCharsg The string was read. InputList is the list of
successfully matched and read items, and LeftOverChars are the input characters
not used.

fmore, RestFormat, Nchars, InputStackg The string was read, but more input is
needed in order to complete the original format string. RestFormat is the
remaining format string, NChars the number of characters scanned, and
InputStack is the reversed list of inputs matched up to that point.

ferror,Whatg An error occurred which can be formatted with the call
format error/1.

Example:

> io_lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok, [15.6000, 1.73000e-5, 24.5000], []}

fread(Continuation, CharList, Format)

This is the re-entrant formatted reader. It returns:

fdone, Result, LeftOverCharsg The input is complete. The result is one of the
following:

fok, InputListg The string was read. InputList is the list of successfully
matched and read items, and LeftOverChars are the remaining characters.

eof End of file has been encountered. LeftOverChars are the input characters not
used.

ferror,Whatg An error occurred, which can be formatted with the call
format error/1.

fmore, Continuationg More data is required to build a term. Continuation must be
passed to <c>fread/3, when more data becomes available.

write atom(Atom)

Returns the list of characters needed to print the atom Atom.

write string(String)

Returns the list of characters needed to print String as a string.

write char(Integer)

Returns the list of characters needed to print a character constant.

indentation(String, StartIndent)

Returns the indentation if String has been printed, starting at Indentation.

char list(CharList) -> bool()

134 STDLIB

STDLIB Reference Manual io lib (Module)

Returns true if CharList is a list of characters, otherwise it returns false.

deep char list(CharList)

Returns true if CharList is a deep list of characters, otherwise it returns false.

printable list(CharList)

Returns true if CharList is a list of printable characters, otherwise it returns false.

Notes

The module io lib also uses the extra modules io lib format, io lib fread, and
io lib pretty. All external interfaces exist in io lib.

Users are strongly advised not to access the other modules directly.

Note:
Any undocumented functions in io lib should not be used.

The continuation of the first call to the re-entrant input functions must be []. Refer to
Armstrong, Virding, Williams, ’Concurrent Programming in Erlang’, Chapter 13 for a
complete description of how the re-entrant input scheme works

135STDLIB

lib (Module) STDLIB Reference Manual

lib (Module)

The module lib provides the following useful library functions.

Exports

flush receive() -> void()

Flushes the message buffer of the current process.

error message(Format, Args)

Prints error message Args in accordance with Format in the normal way.

progname() -> atom()

Returns the name of the script that starts the current Erlang session.

nonl(List1)

Removes the last newline character, if any, in List.

send(To, Msg)

This function to makes it possible to send a message through apply.

sendw(To, Msg)

As send/2, but waits for an answer. It is implemented as follows:

sendw(To, Msg) ->
To ! {self(),Msg},
receive
Reply -> Reply

end.

The message returned is not necessarily a reply to the message sent.

Warning

This module is retained for compatibility. It may disappear without warning in a future
release.

136 STDLIB

STDLIB Reference Manual lists (Module)

lists (Module)

This module contains functions for list processing. The functions are organized in two
groups: those in the first group perform a particular operation on one ore several lists,
whereas those in the second group perform use a user-defined function (given as the
first argument) to perform an operation on one list.

Exports

append(ListOfLists) -> List1

Types:

� ListOfLists = [List]
� List = List1 = [term()]

Returns a list in which all the sub-lists of ListOfLists have been appended. For
example:

> lists:append([[1, 2, 3], [a, b], [4, 5, 6]]).
[1, 2, 3, a, b, 4, 5, 6]

append(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns a new list List3 which is made from the elements of List1 followed by the
elements of List2. For example:

> lists:append("abc", "def").
"abcdef".

lists:append(A,B) is equivalent to A ++ B.

concat(Things) -> string()

Types:

� Things = [Thing]
� Thing = atom() | integer() | float() | string()

Concatenates the ASCII list representation of the elements of Things. The elements of
Things can be atoms, integers, floats or strings.

> lists:concat([doc, ’/’, file, ’.’, 3]).
"doc/file.3"

137STDLIB

lists (Module) STDLIB Reference Manual

delete(Element, List1) -> List2

Types:

� List1 = list2 = [Element]
� Element = term()

Returns a copy of List1, but the first occurrence of Element, if present, is deleted.

duplicate(N, Element) -> List

Types:

� N = int()
� List = [Element]
� Element = term()

Returns a list which contains N copies of the term Element.

Note:
N must be an integer >= 0. For example:

> lists:duplicate(5, xx).
[xx, xx, xx, xx, xx]

flatlength(DeepList) -> int()

Equivalent to length(flatten(DeepList)), but more efficient.

flatten(DeepList) -> List

Types:

� DeepList = [term() | DeepList]

Returns a flattened version of DeepList.

flatten(DeepList, Tail) -> List

Types:

� DeepList = [term() | DeepList]
� Tail = [term()]

Returns a flattened version of DeepList with the tail Tail appended.

keydelete(Key, N, TupleList1) -> TupleList2

Types:

� TupleList1 = TupleList2 = [tuple()]
� N = int()
� Key = term()

Returns a copy of TupleList1 where the first occurrence of a tuple whose Nth element
is Key is deleted, if present.

keymember(Key, N, TupleList) -> bool()

138 STDLIB

STDLIB Reference Manual lists (Module)

Types:

� TupleList = [tuple()]
� N = int()
� Key = term()

Searches the list of tuples TupleList for a tuple whose Nth element is Key.

keymerge(N, List1, List2)

Types:

� N = int()
� List1 = List2 = [tuple()]

Returns the sorted list formed by merging the List1 and List2. The merge is
performed on the Nth element of each tuple. Both List1 and List2 must be key-sorted
prior to evaluating this function; otherwise the order of the elements in the result will
be undefined. When elements in the input lists compare equal, elements from List1
are picked before elements from List2.

keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2

Types:

� Key = term()
� N = int()
� TupleList1 = TupleList2 = [tuple()]
� NewTuple = tuple()

Returns a list of tuples. In this list, a tuple is replaced by the tuple NewTuple. This tuple
is the first tuple in the list where the element number N is equal to Key.

keysearch(Key, N, TupleList) -> Result

Types:

� TupleList = [tuple()]
� N = int()
� Key = term()
� Result = fvalue, tuple()g | false

Searches the list of the tuples TupleList for Tuple whose Nth element is Key. Returns
fvalue, Tupleg if such a tuple is found, or false if no such tuple is found.

keysort(N, List1) -> List2

Types:

� N = int()
� List1 = List2 = [tuple()]

Returns a list containing the sorted elements of List1. TupleList1 must be a list of
tuples, and the sort is performed on the Nth element of the tuple. The sort is stable.

last(List) -> Element

Types:

� List = [Element]

139STDLIB

lists (Module) STDLIB Reference Manual

� Element = term()

Returns the last element in List.

max(List) -> Max

Types:

� List = [Element]
� Element = Max = term()

Returns the maximum element of List.

member(Element, List) -> bool()

Types:

� List = [Element]
� Element = term()

Returns true if Element is contained in the list List, otherwise false.

merge(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns the sorted list formed by merging List1 and List2. Both List1 and List2
must be sorted prior to evaluating this function.

merge(Fun, List1, List2) -> List

Types:

� List = List1 = List2 = [Element]
� Fun = fun(Element, Element) -> bool()
� Element = term()

Returns the sorted list formed by merging List1 and List2. Both List1 and List2
must be sorted prior to evaluating this function, according to the ordering function Fun.
Fun(A,B) should return true if A comes before B in the ordering, false otherwise.

min(List) -> Min

Types:

� List = [Element]
� Element = Max = term()

Returns the minimum element of List.

nth(N, List) -> Element

Types:

� N = int()
� List = [Element]
� Element = term()

Returns the Nth element of the List. For example:

140 STDLIB

STDLIB Reference Manual lists (Module)

> lists:nth(3, [a, b, c, d, e]).
c

nthtail(N, List1) -> List2

Types:

� N = int()
� List1 = List2 = [Alpha]

Returns the Nth tail of List. For example:

> lists:nthtail(3, [a, b, c, d, e]).
[d, e]

prefix(List1, List2) -> bool()

Types:

� List1 = List2 = [term()]

Returns true if List1 is a prefix of List2, otherwise false.

reverse(List1) -> List2

Types:

� List1 = List2 = [term()]

Returns a list with the top level elements in List1 in reverse order.

reverse(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns a list where List1 has been reversed and appended to the beginning of List2.
Equivalent to reverse(List1) ++ List2. For example:

> lists:reverse([1, 2, 3, 4], [a, b, c]).
[4, 3, 2, 1, a, b, c]

seq(From, To) -> [int()]

seq(From, To, Incr) -> [int()]

Types:

� From = To = Incr = int()

Returns a sequence of integers which starts with From and contains the successive
results of adding Incr to the previous element, until To has been reached or passed (in
the latter case, To is not an element of the sequence). If To-From has a different sign
from Incr, or if Incr = 0 and From is different from To, an error is signalled (this implies
that the result is never an empty list - the first element is always From).

seq(From, To) is equivalent to seq(From, To, 1).

Examples:

141STDLIB

lists (Module) STDLIB Reference Manual

> lists:seq(1, 10).
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

> lists:seq(1, 20, 3).
[1, 4, 7, 10, 13, 16, 19]

> lists:seq(1, 1, 0).
[1]

sort(List1) -> List2

Types:

� List1 = List2 = [term()]

Returns a list which contains the sorted elements of List1.

sort(Fun, List1) -> List2

Types:

� List1 = List2 = [Element]
� Fun = fun(Element, Element) -> bool()
� Element = term()

Returns a list which contains the sorted elements of List1, according to the ordering
function Fun. Fun(A,B) should return true if A comes before B in the ordering, false
otherwise.

sublist(List, N) -> List1

Types:

� List1 = List2 = [term()]
� N = int()

Returns the first N elements of List. It is not an error for N to exceed the length of the
list when List is a proper list - in that case the whole list is returned.

sublist(List1, Start, Length) -> List2

Types:

� List1 = List2 = [term()]
� Start = End = int()

Returns the sub-list of List starting at Start of length Length. Terminates with a
runtime failure if Start is not in List, but a sub-list of a length less than Length is
accepted. Start is considered to be in List if Start >= 1 and Start <=
length(List)+1.

subtract(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns a new list List3 which is a copy of List1, subjected to the following procedure:
for each element in List2, its first occurrence in List1 is removed. For example:

142 STDLIB

STDLIB Reference Manual lists (Module)

> lists:subtract("123212", "212").
"312".

lists:subtract(A,B) is equivalent to A -- B.

suffix(List1, List2) -> bool()

Returns true if List1 is a suffix of List2, otherwise false.

sum(List) -> number()

Types:

� List = [number()]

Returns the sum of the elements in List.

all(Pred, List) -> bool()

Types:

� Pred = fun(A) -> bool()
� List = [A]

Returns true if all elements X in List satisfy Pred(X).

any(Pred, List) -> bool()

Types:

� Pred = fun(Element) -> bool()
� List = [Element]
� Element = term()

Returns true if any of the elements in List satisfies Pred.

dropwhile(Pred, List1) -> List2

Types:

� Pred = fun(A) -> bool()
� List1 = List2 = [A]

Drops elements X from List1 while Pred(X) is true and returns the remaining list.

filter(Pred, List1) -> List2

Types:

� Pred = fun(A) -> bool()
� List1 = List2 = [A]

List2 is a list of all elements X in List1 for which Pred(X) is true.

flatmap(Function, List1) -> Element

Types:

� Function = fun(A) -> B
� List1 = [A]
� Element = [B]

143STDLIB

lists (Module) STDLIB Reference Manual

flatmap behaves as if it had been defined as follows:

flatmap(Func, List) ->
append(map(Func, List))

foldl(Function, Acc0, List) -> Acc1

Types:

� Function = fun(A, AccIn) -> AccOut
� List = [A]
� Acc0 = Acc1 = AccIn = AccOut = term()

Acc0 is returned if the list is empty. For example:

> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15
> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

foldr(Function, Acc0, List) -> Acc1

Types:

� Function = fun(A, AccIn) -> AccOut
� List = [A]
� Acc0 = Acc1 = AccIn = AccOut = term()

Calls Function on successive elements of List together with an extra argument Acc
(short for accumulator). Function must return a new accumulator which is passed to
the next call. Acc0 is returned if the list is empty. foldr differs from foldl in that the
list is traversed “bottom up” instead of “top down”. foldl is tail recursive and would
usually be preferred to foldr.

foreach(Function, List) -> void()

Types:

� Function = fun(A) -> void()
� List = [A]

Applies the function Function to each of the elements in List. This function is used
for its side effects and the evaluation order is defined to be the same as the order of the
elements in the list.

map(Func, List1) -> List2

Types:

� Func = fun(A) -> B
� List1 = [A]
� List2 = [B]

map takes a function from As to Bs, and a list of As and produces a list of Bs by applying
the function to every element in the list. This function is used to obtain the return
values. The evaluation order is implementation dependent.

mapfoldl(Function, Acc0, List1) -> fList2, Accg

144 STDLIB

STDLIB Reference Manual lists (Module)

Types:

� Function = fun(A, AccIn) -> fB, AccOutg
� Acc0 = Acc1 = AccIn = AccOut = term()
� List1 = [A]
� List2 = [B]

mapfold combines the operations of map and foldl into one pass. For example, we
could sum the elements in a list and double them at the same time:

> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
0, [1,2,3,4,5]).

{[2,4,6,8,10],15}

mapfoldr(Function, Acc0, List1) -> fList2, Accg

Types:

� Function = fun(A, AccIn) -> fB, AccOutg
� Acc0 = Acc1 = AccIn = AccOut = term()
� List1 = [A]
� List2 = [B]

mapfold combines the operations of map and foldr into one pass.

splitwith(Pred, List) -> fList1, List2g

Types:

� Pred = fun(A) -> bool()
� List = List1 = List2 = [A]

Partitions Lists into List1 and List2 according to Pred.

splitwith behaves as if it had been defined as follows:

splitwidth(Pred, List) ->
ftakewhile(Pred, List), dropwhile(Pred, List)g.

Note also that List == List1 ++ List2.

takewhile(Pred, List1) -> List2

Types:

� Pred = fun(A) -> bool()
� List1 = List2 = [A]

Returns the longest prefix of List1 for which all elements X in List1 satisfy Pred(X).

145STDLIB

lists (Module) STDLIB Reference Manual

Relics

Some of the exported functions in lists.erl are not documented. In particular, this
applies to a number of maps and folds which have an extra argument for environment
passing. These functions are no longer needed because Erlang 4.4 and later releases have
Funs.

Note:
Any undocumented functions in lists should not be used.

146 STDLIB

STDLIB Reference Manual log mf h (Module)

log mf h (Module)

The log mf h is a gen event handler module which can be installed in any gen event
process. It logs onto disk all events which are sent to an event manager. Each event is
written as a binary which makes the logging very fast. However, a tool such as the
Report Browser (rb) must be used in order to read the files. The events are written to
multiple files. When all files have been used, the first one is re-used and overwritten.
The directory location, the number of files, and the size of each file are configurable.
The directory will include one file called index, and report files 1, 2,

Exports

init(Dir, MaxBytes, MaxFiles)

init(Dir, MaxBytes, MaxFiles, Pred) -> Args

Types:

� Dir = string()
� MaxBytes = integer()
� MaxFiles = 0 < integer() < 256
� Pred = fun(Event) -> boolean()
� Event = term()
� Args = args()

Initiates the event handler. This function returns Args, which should be used in a call to
gen event:add handler(EventMgr, log mf h, Args).

Dir specifies which directory to use for the log files. MaxBytes specifies the size of each
individual file. MaxFiles specifies how many files are used. Pred is a predicate function
used to filter the events. If no predicate function is specified, all events are logged.

See Also

gen event(3), rb(3)

147STDLIB

math (Module) STDLIB Reference Manual

math (Module)

This module provides an interface to a number of mathematical functions.

Exports

pi() -> float()

A useful number.

sin(X)

cos(X)

tan(X)

asin(X)

acos(X)

atan(X)

atan2(X, Y)

sinh(X)

cosh(X)

tanh(X)

asinh(X)

acosh(X)

atanh(X)

exp(X)

log(X)

log10(X)

pow(X, Y)

sqrt(X)

Types:

� X = Y = number()

A collection of math functions which return floats. Arguments are numbers.

erf(X) -> float()

Types:

� X = number()

Returns the error function of X, where

erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.

148 STDLIB

STDLIB Reference Manual math (Module)

erfc(X) -> float()

Types:

� X = number()

erfc(X) returns 1.0 - erf(X), computed by methods that avoid cancellation for large
X.

Bugs

As these are the C library, the bugs are the same.

149STDLIB

orddict (Module) STDLIB Reference Manual

orddict (Module)

Orddict implements a Key - Value dictionary. An orddict is a representation of a
dictionary, where a list of pairs is used to store the keys and values. The list is ordered
after the keys.

This module provides exactly the same interface as the module dict but with a defined
representation.

150 STDLIB

STDLIB Reference Manual ordsets (Module)

ordsets (Module)

Sets are collections of elements with no duplicate elements. An ordset is a
representation of a set, where an ordered list is used to store the elements of the set. An
ordered list is more efficient than an unordered list.

This module provides exactly the same interface as the module sets but with a defined
representation.

151STDLIB

pg (Module) STDLIB Reference Manual

pg (Module)

This (experimental) module implements process groups. A process group is a group of
processes that can be accessed by a common name. For example, a group named
foobar can include a set of processes as members of this group and they can be located
on different nodes.

When messages are sent to the named group, all members of the group receive the
message. The messages are serialized. If the process P1 sends the message M1 to the
group, and process P2 simultaneously sends message M2, then all members of the group
receive the two messages in the same order. If members of a group terminate, they are
automatically removed from the group.

This module is not complete. The module is inspired by the ISIS system and the causal
order protocol of the ISIS system should also be implemented. At the moment, all
messages are serialized by sending them through a group master process.

Exports

create(PgName)

Creates an empty group named PgName on the current node.

create(PgName, Node)

Creates an epmty group on the node Node.

join(PgName, Pid)

Joins the Pid Pid to the process group PgName.

send(Pgname, Message)

Sends the tuple fpg message, From, PgName, Messageg to all members of the process
group.

esend(PgName, Mess)

Sends the tuple fpg message, From, PgName, Messageg to all members of the process
group, except the current node.

members(PgName)

Returns a list of the current members in the process group.

152 STDLIB

STDLIB Reference Manual pool (Module)

pool (Module)

pool can be used to run a set of Erlang nodes as a pool of computational processors. It is
organized as a master and a set of slave nodes and includes the following features:

� The slave nodes send regular reports to the master about their current load.

� Queries can be sent to the master to determine which node will have the least load.

The BIF statistics(run queue) is used for estimating future loads. It returns the
length of the queue of ready to run processes in the Erlang runtime system.

The slave nodes are started with the slave module. This effects, tty IO, file IO, and
code loading.

If the master node fails, the entire pool will exit.

Exports

start(Name)

Starts a new pool. The file .hosts.erlang is read to find host names where the pool
nodes can be started. The current working directory is searched first, then the home
directory, and finally the root directory of the Erlang runtime system. The start-up
procedure fails if the file is not found.

Name is sent to all pool nodes. This is used as the first part of the node name in the
alive/3 statements for the nodes.

The function net adm:host file() reads the file .hosts.erlang for host names. The
slave nodes are started with slave:start. See slave(3).

start/1 is synchronous and all the nodes, as well as all the system servers, are running
when it returns a value. Access rights must also be set so that all nodes in the pool have
the authority to access each other.

start(Name, Args)

This function is the same as start/1, except that the environment Args is passed to the
pool nodes. See slave(3).

attach(Node)

This function ensures that a pool master is running and includes Node in the pool
master’s pool of nodes.

stop()

153STDLIB

pool (Module) STDLIB Reference Manual

Stops the pool and kills all the slave nodes.

get nodes()

Returns a list of the current member nodes of the pool.

pspawn(Mod, Fun, Args)

Spawns a process on the pool node which is expected to have the lowest future load.

pspawn link(Mod, Fun, Args)

Spawn links a process on the pool node which is expected to have the lowest future
load.

get node()

Returns the node ID of the node with the expected lowest future load.

new node(Host, Name)

Starts a new node and attaches it to an already existing pool If there is no existing pool,
it starts a pool with two nodes, the current node and Node. This function can also be
used as a convenient way of starting new nodes, even if the load distribution facilities of
pool are of no interest.

Files

$HOME/.hosts.erlang is used to pick hosts where nodes can be started.

$HOME/.erlang.slave.out.HOST is used for all additional IO that may come from the
slave nodes on standard IO. If the start-up procedure does not work, this file may
indicate the reason.

154 STDLIB

STDLIB Reference Manual proc lib (Module)

proc lib (Module)

The proc lib module is used to initialize some useful information when a process
starts. The registered names, or the process identities, of the parent process, and the
parent ancestors, are stored together with information about the function initially called
in the process.

A crash report is generated if the process terminates with a reason other than normal or
shutdown. shutdown is used to terminate an abnormal process in a controlled manner.
A crash report contains the previously stored information such as ancestors and initial
function, the termination reason, and information regarding other processes which
terminate as a result of this process terminating.

The crash report is sent to the error logger. An event handler has to be installed in
the error logger event manager in order to handle these reports. The crash report is
tagged crash report and the format/1 function should be called in order to format the
report.

Exports

spawn(Module,Func,Args) -> Pid

spawn(Node,Module,Func,Args) -> Pid

Types:

� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Node = atom()
� Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned
using the spawn BIF. The process can be spawned on another Node.

spawn link(Module,Func,Args) -> Pid

spawn link(Node,Module,Func,Args) -> Pid

Types:

� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Node = atom()

155STDLIB

proc lib (Module) STDLIB Reference Manual

� Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned
using the spawn link BIF. The process can be spawned on another Node.

start(Module,Func,Args) -> Ret

start(Module,Func,Args,Time) -> Ret

start link(Module,Func,Args) -> Ret

start link(Module,Func,Args,Time) -> Ret

Types:

� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Time = integer >= 0 | infinity
� Ret = term() | ferror, Reasong

Starts a new process synchronously. Spawns the process using proc lib:spawn/3 or
proc lib:spawn link/3, and waits for the process to start. When the process has
started, it must call proc lib:init ack(Parent, Ret) or proc lib:init ack(Ret),
where Parent is the process that evaluates start. At this time, Ret is returned from
start.

If the start link function is used and the process crashes before proc lib:init ack is
called, ferror, Reasong is returned if the calling process traps exits.

If Time is specified as an integer, this function waits for Time milliseconds for the
process to start (proc lib:init ack). If it has not started within this time, ferror,
timeoutg is returned, and the process is killed.

init ack(Parent, Ret) -> void()

init ack(Ret) -> void()

Types:

� Parent = pid()
� Ret = term()

This function is used by a process that has been started by a proc lib:start function.
It tells Parent that the process has initialized itself, has started, or has failed to initialize
itself. The init ack/1 function uses the parent value previously stored by the
proc lib:start function. If the init ack function is not called (e.g. if the init
function crashes) and proc lib:start/3 is used, that function never returns and the
parent hangs forever. This can be avoided by using a time out in the call to start, or by
using start link.

The following example illustrates how this function and proc lib:start link are used.

156 STDLIB

STDLIB Reference Manual proc lib (Module)

-module(my_proc).
-export([start_link/0]).
start_link() ->

proc_lib:start_link(my_proc, init, [self()]).
init(Parent) ->

case do_initialization() of
ok ->

proc_lib:init_ack(Parent, {ok, self()});
{error, Reason} ->

exit(Reason)
end,
loop().

loop() ->
receive

....

format(CrashReport) -> string()

Types:

� CrashReport = void()

Formats a previously generated crash report. The formatted report is returned as a
string.

initial call(PidOrPinfo) -> fModule,Function,Argsg | false

Types:

� PidOrPinfo = pid() | fX,Y,Zg | ProcInfo
� X = Y = Z = int()
� ProcInfo = [void()]
� Module = atom()
� Function = atom()
� Args = [term()]

Extracts the initial call of a process that was spawned using the spawn functions
described above. PidOrPinfo can either be a Pid, an integer tuple (from which a pid
can be created), or the process information of a process (fetched through a
erlang:process info/1 function call).

translate initial call(PidOrPinfo) -> fModule,Function,Arityg

Types:

� PidOrPinfo = pid() | fX,Y,Zg | ProcInfo
� X = Y = Z = int()
� ProcInfo = [void()]
� Module = atom()
� Function = atom()
� Arity = int()

157STDLIB

proc lib (Module) STDLIB Reference Manual

Extracts the initial call of a process which was spawned using the spawn functions
described above. If the initial call is to one of the system defined behaviours such as
gen server or gen event, it is translated to more useful information. If a gen server is
spawned, the returned Module is the name of the callback module and Function is init
(the function that initiates the new server).

A supervisor and a supervisor bridge are also gen server processes. In order to
return information that this process is a supervisor and the name of the call-back
module, Module is supervisor and Function is the name of the supervisor callback
module. Arity is 1 since the init/1 function is called initially in the callback module.

By default, fproc lib,init p,5g is returned if no information about the initial call can
be found. It is assumed that the caller knows that the process has been spawned with
the proc lib module.

PidOrPinfo can either be a Pid, an integer tuple (from which a pid can be created), or
the process information of a process (fetched through a erlang:process info/1
function call).

This function is used by the c:I/0 and c:regs/0 functions in order to present process
information.

See Also

error logger(3)

158 STDLIB

STDLIB Reference Manual queue (Module)

queue (Module)

This module implements FIFO queues in an efficient manner.

Exports

new() -> Queue

Types:

� Queue = queue()

Returns an empty queue.

in(Item, Q1) -> Q2

Types:

� Item = term()
� Q1 = Q2 = queue()

Inserts Item into the queue Q1. Returns a new queue Q2.

out(Q) -> Result

Types:

� Result = ffvalue, Itemg, Q1g | fempty, Q1g
� Q = Q1 = queue()

Removes the oldest element from the queue Q. Returns the tuple ffvalue, Itemg,
Q1g, where Item is the element removed and Q1 is an identifier for the new queue. If Q
is empty, the tuple fempty, Qg is returned.

to list(Q) -> list()

Types:

� Q = queue()

Returns a list of the elements in the queue, with the oldest element first.

159STDLIB

random (Module) STDLIB Reference Manual

random (Module)

Random number generator. The method is attributed to B.A. Wichmann and I.D.Hill,
in ’An efficient and portable pseudo-random number generator’, Journal of Applied
Statistics. AS183. 1982. Also Byte March 1987.

The current algorithm is a modification of the version attributed to Richard A O’Keefe
in the standard Prolog library.

Exports

seed() -> ran()

Seeds random number generation with default (fixed) values.

seed(A1, A2, A3) -> ran()

Types:

� A1 = A2 = A3 = int()

Seeds random number generation with integer values.

uniform() -> float()

Returns a random float uniformly distributed between 0.0 and 1.0.

uniform(N) -> int()

Types:

� N = int()

Given an integer N >= 1, uniform(N) returns a random integer uniformly distributed
between 1 and N.

Note

Uses the process dictionary variable random seed to remember the current seed.

Before a process calls uniform/0 or uniform/1 for the first time, it must call one of the
seeding functions.

160 STDLIB

STDLIB Reference Manual regexp (Module)

regexp (Module)

This module contains functions for regular expression matching and substitution.

Exports

match(String, RegExp) -> MatchRes

Types:

� String = RegExp = string()
� MatchRes = fmatch,Start,Lengthg | nomatch | ferror,errordesc()g
� Start = Length = integer()

Finds the first, longest match of the regular expression RegExp in String. This function
searches for the longest possible match and returns the first one found if there are
several expressions of the same length. It returns as follows:

fmatch,Start,Lengthg if the match succeeded. Start is the starting position of the
match, and Length is the length of the matching string.

nomatch if there were no matching characters.

ferror,Errorg if there was an error in RegExp.

first match(String, RegExp) -> MatchRes

Types:

� String = RegExp = string()
� MatchRes = fmatch,Start,Lengthg | nomatch | ferror,errordesc()g
� Start = Length = integer()

Finds the first match of the regular expression RegExp in String. This call is usually
faster than match and it is also a useful way to ascertain that a match exists. It returns as
follows:

fmatch,Start,Lengthg if the match succeeded. Start is the starting position of the
match and Length is the length of the matching string.

nomatch if there were no matching characters.

ferror,Errorg if there was an error in RegExp.

matches(String, RegExp) -> MatchRes

Types:

161STDLIB

regexp (Module) STDLIB Reference Manual

� String = RegExp = string()
� MatchRes = fmatch, Matchesg | ferror, errordesc()g
� Matches = list()

Finds all non-overlapping matches of the expression RegExp in String. It returns as
follows:

fmatch, Matchesg if the regular expression was correct. The list will be empty if there
was no match. Each element in the list looks like fStart, Lengthg, where Start
is the starting position of the match, and Length is the length of the matching
string.

ferror,Errorg if there was an error in RegExp.

sub(String, RegExp, New) -> SubRes

Types:

� String = RegExp = New = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

Substitutes the first occurrence of a substring matching RegExp in String with the
string New. A & in the string New is replaced by the matched substring of String. \& puts
a literal & into the replacement string. It returns as follows:

fok,NewString,RepCountg if RegExp is correct. RepCount is the number of
replacements which have been made (this will be either 0 or 1).

ferror, Errorg if there is an error in RegExp.

gsub(String, RegExp, New) -> SubRes

Types:

� String = RegExp = New = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

The same as sub, except that all non-overlapping occurrences of a substring matching
RegExp in String are replaced by the string New. It returns:

fok,NewString,RepCountg if RegExp is correct. RepCount is the number of
replacements which have been made.

ferror, Errorg if there is an error in RegExp.

split(String, RegExp) -> SplitRes

Types:

� String = RegExp = string()
� SubRes = fok,FieldListg | ferror,errordesc()g
� Fieldlist = [string()]

162 STDLIB

STDLIB Reference Manual regexp (Module)

String is split into fields (sub-strings) by the regular expression RegExp.

If the separator expression is " " (a single space), then the fields are separated by blanks
and/or tabs and leading and trailing blanks and tabs are discarded. For all other values of
the separator, leading and trailing blanks and tabs are not discarded. It returns:

fok, FieldListg to indicate that the string has been split up into the fields of
FieldList.

ferror, Errorg if there is an error in RegExp.

sh to awk(ShRegExp) -> AwkRegExp

Types:

� ShRegExp AwkRegExp = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

Converts the sh type regular expression ShRegExp into a full AWK regular expression.
Returns the converted regular expression string. sh expressions are used in the shell for
matching file names and have the following special characters:

* matches any string including the null string.

? matches any single character.

[...] matches any of the enclosed characters. Character ranges are specified by a pair
of characters separated by a -. If the first character after [is a !, then any character
not enclosed is matched.

It may sometimes be more practical to use sh type expansions as they are simpler and
easier to use, even though they are not as powerful.

parse(RegExp) -> ParseRes

Types:

� RegExp = string()
� ParseRes = fok,REg | ferror,errordesc()g

Parses the regular expression RegExp and builds the internal representation used in the
other regular expression functions. Such representations can be used in all of the other
functions instead of a regular expression string. This is more efficient when the same
regular expression is used in many strings. It returns:

fok, REg if RegExp is correct and RE is the internal representation.

ferror, Errorg if there is an error in RegExpString.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Returns a string which describes the error ErrorDescriptor returned when there is an
error in a regular expression.

163STDLIB

regexp (Module) STDLIB Reference Manual

Regular Expressions

The regular expressions allowed here is a subset of the set found in egrep and in the AWK
programming language, as defined in the book, The AWK Programming Language, by
A. V. Aho, B. W. Kernighan, P. J. Weinberger. They are composed of the
following characters:

c matches the non-metacharacter c.

\c matches the escape sequence or literal character c.

. matches any character.

^ matches the beginning of a string.

$ matches the end of a string.

[abc...] character class, which matches any of the characters abc... Character ranges
are specified by a pair of characters separated by a -.

[^abc...] negated character class, which matches any character except abc....

r1 | r2 alternation. It matches either r1 or r2.

r1r2 concatenation. It matches r1 and then r2.

r+ matches one or more rs.

r* matches zero or more rs.

r? matches zero or one rs.

(r) grouping. It matches r.

The escape sequences allowed are the same as for Erlang strings:

\b backspace

\f form feed

\n newline (line feed)

\r carriage return

\t tab

\e escape

\v vertical tab

\s space

\d delete

\ddd the octal value ddd

\c any other character literally, for example \\ for backslash, \" for “)

To make these functions easier to use, in combination with the function io:get line
which terminates the input line with a new line, the $ characters also matches a string
ending with "...\n". The following examples define Erlang data types:

Atoms [a-z][0-9a-zA-Z]*

Variables [A-Z][0-9a-zA-Z]*

Floats (\+|-)?[0-9]+\.[0-9]+((E|e)(\+|-)?[0-9]+)?

164 STDLIB

STDLIB Reference Manual regexp (Module)

Regular expressions are written as Erlang strings when used with the functions in this
module. This means that any \ or " characters in a regular expression string must be
written with \ as they are also escape characters for the string. For example, the regular
expression string for Erlang floats is:
"(\\+|-)?[0-9]+\\.[0-9]+((E|e)(\\+|-)?[0-9]+)?".

It is not really necessary to have the escape sequences as part of the regular expression
syntax as they can always be generated directly in the string. They are included for
completeness and can they can also be useful when generating regular expressions, or
when they are entered other than with Erlang strings.

165STDLIB

sets (Module) STDLIB Reference Manual

sets (Module)

Sets are collections of elements with no duplicate elements. The representation of a set
is not defined.

Exports

new() -> Set

Types:

� Set = set()

Returns a new empty ordered set.

is set(Set) -> bool()

Types:

� Set = term()

Returns true if Set is an ordered set of elements, otherwise false.

size(Set) -> int()

Types:

� Set = term()

Returns the number of elements in Set.

to list(Set) -> List

Types:

� Set = set()
� List = [term()]

Returns the elements of Set as a list.

from list(List) -> Set

Types:

� List = [term()]
� Set = set()

Returns an ordered set of the elements in List.

is element(Element, Set) -> bool()

166 STDLIB

STDLIB Reference Manual sets (Module)

Types:

� Element = term()
� Set = set()

Returns true if Element is an element of Set, otherwise false.

add element(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = set()

Returns a new ordered set formed from Set1 with Element inserted.

del element(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = set()

Returns Set1, but with Element removed.

union(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the merged (union) set of Set1 and Set2.

union(SetList) -> Set

Types:

� SetList = [set()]
� Set = set()

Returns the merged (union) set of the list of sets.

intersection(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the intersection of Set1 and Set2.

intersection(SetList) -> Set

Types:

� SetList = [set()]
� Set = set()

Returns the intersection of the list of sets.

subtract(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

167STDLIB

sets (Module) STDLIB Reference Manual

Returns only the elements of Set1 which are not also elements of Set2.

is subset(Set1, Set2) -> bool()

Types:

� Set1 = Set2 = set()

Returns true when every element of Set1 is also a member of Set2, otherwise false.

fold(Function, Acc0, Set) -> Acc1

Types:

� Function = fun (E, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Set = set()

Fold Function over every element in Set returning the final value of the accumulator.

filter(Pred, Set1) -> Set2

Types:

� Pred = fun (E) -> bool()
� Set1 = Set2 = set()

Filter elements in Set1 with boolean function Fun.

168 STDLIB

STDLIB Reference Manual shell (Module)

shell (Module)

The module shell implements an Erlang shell.

The shell is a user interface program for entering expression sequences. The expressions
are evaluated and a value is returned. A history mechanism saves previous commands
and their values, which can then be incorporated in later commands.

Variable bindings, and local process dictionary changes which are generated in user
expressions, are preserved and the variables can be used in later commands to access
their values. The bindings can also be forgotten so the variables can be re-used.

The special shell commands all have the syntax of (local) function calls. They are
evaluated as normal function calls and many commands can be used in one expression
sequence.

If a command (local function call) is not recognized by the shell, an attempt is first
made to find the function in the module user default, where customized local
commands can be placed. If found, then the function is evaluated. Otherwise, an
attempt is made to evaluate the function in the module shell default. The module
user default must be explicitly loaded.

The shell also permits the user to start multiple concurrent jobs. A job can be regarded
as a set of processes which can communicate with the shell.

The shell runs in two modes:

� Normal mode, in which commands can be edited and expressions evaluated

� Job Control Mode JCL, in which jobs can be started, killed, detached and
connected.

Only the currently connected job can ’talk’ to the shell.

Shell Commands

b() Prints the current variable bindings.

f() Removes all variable bindings.

f(X) Removes the binding of variable X.

h() Prints the history list.

e(N) Repeats the command N, if N is positive. If it is negative, the Nth previous
command is repeated (i.e. e(-1) repeats the previous command).

v(N) Uses the return value of the command N in the current command.

help() Evaluates shell default:help().

c(File) Evaluates shell default:c(File). This compiles and loads code in File and
purges old versions of code, if necessary. Assumes that the file and module names
are the same.

169STDLIB

shell (Module) STDLIB Reference Manual

Example

The following example is a long dialogue with the shell. Commands starting with > are
inputs to the shell. All other lines are output from the shell. All commands in this
example are explained at the end of the dialogue. .

strider 1> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> Str = "abcd".
"abcd"
2> L = length(Str).
4
3> Descriptor = fL, list to atom(Str)g.
f4,abcdg
4> L.
4
5> b().
Descriptor = f4,abcdg
L = 4
Str = "abcd"
ok
6> f(L).
ok
7> b().
Descriptor = f4,abcdg
Str = "abcd"
ok
8> f(L).
ok
9> fL, g = Descriptor.
f4,abcdg
10> L.
4
11> fP, Q, Rg = Descriptor.
** exited: ffbadmatch,f4,abcdgg,ferl eval,expr,3gg **
12> P.
** exited: ffunbound,’P’g,ferl eval,expr,3gg **
13> Descriptor.
f4,abcdg
14> fP, Qg = Descriptor.
f4,abcdg
15> P.
4
16> f().
ok
17> put(aa, hello).
undefined
18> get(aa).
hello
19> Y = test1:demo(1).

170 STDLIB

STDLIB Reference Manual shell (Module)

11
20> get().
[faa,workedg]
21> put(aa, hello).
worked
22> Z = test1:demo(2).
** exited: ffbadmatch,1g,ftest1,demo,[2]gg **

=ERROR REPORT==== 24-Jan-1997::07:48:46 ===
!!! Error in process <0.22.0> with exit value: ffbadmatch,1g
,ftest1,demo,[2]gg
23> Z.
** exited: ffunbound,’Z’g,ferl eval,expr,3gg **
24> get(aa).
hello
25> erase(), put(aa, hello).
undefined
26> spawn(test1, demo, [1]).
<0.25.0>
27> get(aa).
hello
28> io:format("hello hello\n").
hello hello
ok
29> e(28).
hello hello
ok
30> v(28).
ok
31> test1:loop(0).
Hello Number: 0
Hello Number: 1
Hello Number: 2
Hello Number: 3

User switch command
--> i
--> c
.
.
.
Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exited: killed **
32> halt().
strider 2>

171STDLIB

shell (Module) STDLIB Reference Manual

Comments

Command 1 sets the variable Str to the string "abcd".

Command 2 sets L to the length of the string evaluating the BIF atom to list.

Command 3 builds the tuple Descriptor.

Command 4 prints the value of the variable L.

Command 5 evaluates the internal shell command b(), which is an abbreviation of
“bindings”. This prints the current shell variables and their bindings. The ok at the end
is the return value of the b() function.

Command 6 f(L) evaluates the internal shell command f(L) (abbreviation of “forget”).
The value of the variable L is removed.

Command 7 prints the new bindings.

Command 8 shows that the value of L has disappeared from the bindings.

Command 9 performs a pattern matching operation on Descriptor, binding a new
value to L.

Command 10 prints the current value of L.

Command 11 tries to match fP, Q, Rg against Descriptor which is f4, abcg. The
match fails and none of the new variables become bound. The printout starting with
“** exited:” is not the value of the expression (the expression had no value because its
evaluation failed), but rather a warning printed by the system to inform the user that an
error has occurred. The values of the other variables (L, Str, etc.) are unchanged.

Commands 12 and 13 show that P is unbound because the previous command failed,
and that Descriptor has not changed.

Commands 14 and 15 show a correct match where P and Q are bound.

Command 16 clears all bindings.

The next few commands assume that test1:demo(X) is defined in the following way:

demo(X) ->
put(aa, worked),
X = 1,
X + 10.

Commands 17 and 18 set and inspect the value of the item aa in the process dictionary.

Command 19 evaluates test1:demo(1). The evaluation succeeds and the changes
made in the process dictionary become visible to the shell. The new value of the
dictionary item aa can be seen in command 20.

Commands 21 and 22 change the value of the dictionary item aa to hello and call
test1:demo(2). Evaluation fails and the changes made to the dictionary in
test1:demo(2), before the error occurred, are discarded.

Commands 23 and 24 show that Z was not bound and that the dictionary item aa has
retained its original value.

Commands 25, 26 and 27 show the effect of evaluating test1:demo(1) in the
background. In this case, the expression is evaluated in a newly spawned process. Any
changes made in the process dictionary are local to the newly spawned process and
therefore not visible to the shell.

Commands 28, 29 and 30 use the history facilities of the shell.

172 STDLIB

STDLIB Reference Manual shell (Module)

Command 29 is e(28). This re-evaluates command 28. Command 30 is v(28). This
uses the value (result) of command 28. In the cases of a pure function (a function with
no side effects), the result is the same. For a function with side effects, the result can be
different.

For the next command, it is assumed that test1:loop(N) is defined in the following
way:

loop(N) ->
io:format("Hello Number: ~w~n", [N]),
loop(N+1).

Command 31 evaluates test1:loop(0), which puts the system into an infinite loop. At
this point the user types Control G, which suspends output from the current process,
which is stuck in a loop, and activates JCL mode. In JCL mode the user can start and
stop jobs.

In this particular case, the i command (“interrupt”) is used to terminate the looping
program, and the c command is used to connect to the shell again. Since the process
was running in the background before we killed it, there will be more printouts before
the “** exited: killed **” message is shown.

The halt() command exits the Erlang runtime system.

JCL Mode

When the shell starts, it starts a single evaluator process. This process, together with any
local processes which it spawns, is referred to as a job. Only the current job, which is
said to be connected, can perform operations with standard IO. All other jobs, which
are said to be detached, are blocked if they attempt to use standard IO.

All jobs which do not use standard IO run in the normal way.

^G (Control G) detaches the current job and JCL mode is activated. The JCL mode
prompt is "-->". If "?" is entered at the prompt, the following help message is
displayed:

--> ?
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s - start local shell
r [node] - start remote shell
q - quit Erlang
? | h - this message

The JCL commands have the following meaning:

c [nn] Connects to job number <nn> or the current job. The standard shell is
resumed. Operations which use standard IO by the current job will be interleaved
with user inputs to the shell.

173STDLIB

shell (Module) STDLIB Reference Manual

i [nn] Stops the current evaluator process for job number nn or the current job, but
does not kill the shell process. Accordingly, any variable bindings and the process
dictionary will be preserved and the job can be connected again. This command
can be used to interrupt an endless loop.

k [nn] Kills job number nn or the current job. All spawned processes in the job are
killed, provided they have not evaluated the group leader/1 BIF and are located
on the local machine. Processes spawned on remote nodes will not be killed.

j Lists all jobs. A list of all known jobs is printed. The current job name is prefixed
with ’*’.

s Starts a new job. This will be assigned the new index [nn] which can be used in
references.

r [node] Starts a remote job on node. This is used in distributed Erlang to allow a shell
running on one node to control a number of applications running on a network of
nodes.

q Quits Erlang.

? Displays this message.

Bugs

There is no way of changing the length of the history list or saving it between sessions.

174 STDLIB

STDLIB Reference Manual shell default (Module)

shell default (Module)

The functions in shell default are called when no module name is given in a shell
command.

Consider the following shell dialogue:

1 > lists:reverse("abc").
"cab"
2 > c(foo).
fok, foog

In command one, the module lists is called. In command two, no module name is
specified. The shell searches the modules user default followed by shell default for
the function foo/1.

shell default is intended for “system wide” customizations to the shell.
user-default is intended for “local” or individual user customizations.

Hint

To add your own commands to the shell, create a module called user default and add
the commands you want. Then add the following line as the first line in your .erlang
file in your home directory.

code:load abs("$PATH/user default").

$PATH is the directory where your user default module can be found.

175STDLIB

slave (Module) STDLIB Reference Manual

slave (Module)

This module provides functions for starting Erlang slave nodes. All slave nodes which
are started by a master will terminate automatically when the master terminates. All
TTY output produced at the slave will be sent back to the master node. File I/O is done
via the master.

Slave nodes on other hosts than the current one are started with the program rsh. The
user must be allowed to rsh to the remote hosts without being prompted for a
password. This can be arranged in a number of ways (refer to the rsh documentation
for details). A slave node started on the same host as the master inherits certain
environment values from the master, such as the current directory and the environment
variables. For what can be assumed about the environment when a slave is started on
another host, read the documentation for the rsh program.

An alternative to the rsh program can be specified on the command line to erl as
follows: -rsh Program.

The slave node should use the same file system at the master. At least, Erlang/OTP
should be installed in the same place on both computers and the same version of Erlang
should be used.

Currently, a node running on Windows NT can only start slave nodes on the host on
which it is running.

The master node must be alive.

Exports

start(Host)

Starts a slave node on the host Host. Host names need not necessarily be specified as
fully qualified names; short names can also be used. This is the same condition that
applies to names of distributed Erlang nodes. The name of the started node will be the
same as the node which executes the call, with the exception of the host name part of
the node name.

Return value: see start/3.

start link(Host)

Starts a slave node on the host Host in the same way as the start/1, except that the
slave node is linked to the currently executing process. If the process terminates, the
slave node also terminates.

Return value: see start/3.

start(Host, Name)

176 STDLIB

STDLIB Reference Manual slave (Module)

Starts a slave node on the host Host with the name Name@Host.

Return value: see start/3.

start link(Host, Name)

Starts a slave node on the host Host in the same way as start/2, except that the slave
node is linked to the currently executing process. If that process terminates, the slave
node also terminates.

Return value: see start/3.

start(Host, Name, Args) -> fok, Nodeg | ferror, ErrorInfog

Starts a slave node with the name Name@Host on Host and passes the argument string
Args to the new node.

The slave node resets its user process so that all terminal I/O which is produced at the
slave is automatically relayed to the master. Also, the file process will be relayed to the
master.

The Args argument can be used for a variety of purposes. See erl(1). For example, the
following command line arguments can be passed to the slave:

� to set some environment variable on the slave

� to run some specific program on the slave

� to set some specific code path on the slave node.

As an example, suppose that we want to start a slave node at host H with the node name
Name@H, and we also want the slave node to have the following properties:

� directory Dir should be added to the code path;

� the Mnesia directory should be set to M;

� the unix DISPLAY environment variable should be set to the display of the master
node.

The following code is executed to achieve this:

E = " -env DISPLAY " ++ net_adm:localhost() ++ ":0 ",
Arg = "-mnesia_dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).

The start/3 call returns fok, Name@Hostg if successful, otherwise ferror, Reasong.
Reason can be one of:

timeout The master node failed to get in contact with the slave node. This can happen
in a number of circumstances:

� Erlang/OTP is not installed on the remote host
� the file system on the other host has a different structure to the the master
� the Erlang nodes have different cookies.

no rsh There is no rsh program on the computer.

falready running, Name@Hostg A node with the name Name@Host already exists.

start link(Host, Name, Args)

177STDLIB

slave (Module) STDLIB Reference Manual

Starts a slave node on the host Host in the same way as the start/3, except that the
slave node is linked to the currently executing process. If that process terminates, the
slave node also terminates.

Return value: see start/3.

stop(Node)

Stops (kills) a node.

pseudo([Master | ServerList])

Calls pseudo(Master, ServerList). If we want to start a node from the command
line and set up a number of pseudo servers, an Erlang runtime system can be started as
follows:

% erl -name abc -s slave pseudo klacke@super x --

pseudo(Master, ServerList)

Starts a number of pseudo servers. A pseudo server is a server with a registered name
which does absolutely nothing but pass on all message to the real server which executes
at a master node. A pseudo server is an intermediary which only has the same registered
name as the real server.

For example, if we have started a slave node N and want to execute pxw graphics code
on this node, we can start the server pxw server as a psudo server at the slave node.
The following code illustrates:

rpc:call(N, slave, pseudo, [node(), [pxw_server]]).

relay(Pid)

Runs a pseudo server. This function never returns any value and the process which
executes the function will receive messages. All messages received will simply be passed
on to Pid.

178 STDLIB

STDLIB Reference Manual string (Module)

string (Module)

This module contains functions for string processing.

Exports

len(String) -> Length

Types:

� String = string()
� Length = integer()

Returns the number of characters in the string.

equal(String1, String2) -> bool()

Types:

� String1 = String2 = string()

Tests whether two strings are equal. Returns true if they are, otherwise false.

concat(String1, String2) -> String3

Types:

� String1 = String2 = String3 = string()

Concatenates two strings to form a new string. Returns the new string.

chr(String, Character) -> Index

rchr(String, Character) -> Index

Types:

� String = string()
� Character = char()
� Index = integer()

Returns the index of the first/last occurrence of Character in String. 0 is returned if
Character does not occur.

str(String, SubString) -> Index

rstr(String, SubString) -> Index

Types:

� String = SubString = string()

179STDLIB

string (Module) STDLIB Reference Manual

� Index = integer()

Returns the position where the first/last occurence of SubString begins in String. 0 is
returned if SubString does not exist in String. For example:

> string:str(" Hello Hello World World ", "Hello World").
8

span(String, Chars) -> Length

cspan(String, Chars) -> Length

Types:

� String = Chars = string()
� Length = integer()

Returns the length of the maximum initial segment of String, which consists entirely of
characters from (not from) Chars.

For example:

> string:span("\t abcdef", " \t").
5
> string:cspan("\t abcdef", " \t").
0

substr(String, Start) -> SubString

substr(String, Start, Length) -> Substring

Types:

� String = SubString = string()
� Start = Length = integer()

Returns a substring of String, starting at the position Start, and ending at the end of
the string or at length Length.

For example:

> substr("Hello World", 4, 5).
"lo Wo"

tokens(String, SeperatorList) -> Tokens

Types:

� String = SeperatorList = string()
� Tokens = [string()]

Returns a list of tokens in String, separated by the characters in SeperatorList.

For example:

> tokens("abc defxxghix jkl", "x ").
["abc", "def", "ghi", "jkl"]

chars(Character, Number) -> String

chars(Character, Number, Tail) -> String

Types:

� Character = char()

180 STDLIB

STDLIB Reference Manual string (Module)

� Number = integer()
� String = string()

Returns a string consisting of Number of characters Character. Optionally, the string
can end with the string Tail.

copies(String, Number) -> Copies

Types:

� String = Copies = string()
� Number = integer()

Returns a string containing String repeated Number times.

words(String) -> Count

words(String, Character) -> Count

Types:

� String = string()
� Character = char()
� Count = integer()

Returns the number of words in String, separated by blanks or Character.

For example:

> words(" Hello old boy!", $o).
4

sub word(String, Number) -> Word

sub word(String, Number, Character) -> Word

Types:

� String = Word = string()
� Character = char()
� Number = integer()

Returns the word in position Number of String. Words are separated by blanks or
Characters.

For example:

> string:sub_word(" Hello old boy !",3,$o).
"ld b"

strip(String) -> Stripped

strip(String, Direction) -> Stripped

strip(String, Direction, Character) -> Stripped

Types:

� String = Stripped = string()
� Direction = left | right | both
� Character = char()

181STDLIB

string (Module) STDLIB Reference Manual

Returns a string, where leading and/or trailing blanks or a number of Character have
been removed. Direction can be left, right, or both and indicates from which
direction blanks are to be removed. The function strip/1 is equivalent to
strip(String, both).

For example:

> string:strip("...Hello.....", both, $.).
"Hello"

left(String, Number) -> Left

left(String, Number, Character) -> Left

Types:

� String = Left = string()
� Character = char
� Number = integer()

Returns the String with the length adjusted in accordance with Number. The left
margin is fixed. If the length(String)< Number, String is padded with blanks or
Characters.

For example:

> string:left("Hello",10,$.).
"Hello....."

right(String, Number) -> Right

right(String, Number, Character) -> Right

Types:

� String = Right = string()
� Character = char
� Number = integer()

Returns the String with the length adjusted in accordance with Number. The right
margin is fixed. If the length of (String) < Number, String is padded with blanks or
Characters.

For example:

> string:right("Hello", 10, $.).
".....Hello"

centre(String, Number) -> Centered

centre(String, Number, Character) -> Centered

Types:

� String = Centered = string()
� Character = char
� Number = integer()

Returns a string, where String is centred in the string and surrounded by blanks or
characters. The resulting string will have the length Number.

sub string(String, Start) -> SubString

182 STDLIB

STDLIB Reference Manual string (Module)

sub string(String, Start, Stop) -> SubString

Types:

� String = SubString = string()
� Start = Stop = integer()

Returns a substring of String, starting at the position Start to the end of the string, or
to and including the Stop position.

For example:

sub_string("Hello World", 4, 8).
"lo Wo"

Notes

Some of the general string functions may seem to overlap each other. The reason for
this is that this string package is the combination of two earlier packages and all the
functions of both packages have been retained.

The regular expression functions have been moved to their own module regexp (see
regexp [page 161]). The old entry points still exist for backwards compatibility, but will
be removed in a future release so that users are encouraged to use the module regexp.

Note:
Any undocumented functions in string should not be used.

183STDLIB

supervisor (Module) STDLIB Reference Manual

supervisor (Module)

A supervisor is a process that supervises child processes. A child can be another
supervisor or a worker process. A supervisor is always linked to its children. This
structure is used to build a supervision tree, which is a nice way to structure an
application for fault tolerance.

The basic idea of a supervisor is that it keeps its children alive. If a child terminates
abnormally, it is restarted. There are three basic types of restart strategies for
supervisors, one-for-one, one-for-all, and rest-for-one

� If a child in a one-for-one supervisor dies abnormally, it is restarted.

� If a child in a one-for-all supervisor dies, the supervisor shuts down all of the other
children and then restarts all children. This strategy can be used when there are
dependencies among the children.

� If a child in a rest-for-one supervisor dies, all children started after the faulty child
are shut down, then restarted. The children started before the faulty child are not
affected.

There is yet another restart strategy which is a variant of the ordinary one-for-one. It is
called simple-one-for-one. It should be used for dynamic processes of the same type, for
example processes which represent a call. Compared to one-for-one, this type has
reduced overheads in starting dynamic children .

Each child can be one of three types: permanent, transient, or temporary. A permanent
child is always restarted when it dies. A transient child is restarted if it dies abnormally,
and a temporary child is never restarted.

The supervisors have a built-in mechanism to prevent situations where a child dies, is
restarted by the supervisor, only to die again for the same reason, is restarted again, and
so on. It limits the number of restarts which can occur in a given time interval. This is
determined by the values of two parameters, MaxR and MaxT. If more than MaxR restarts
are performed in the last MaxT seconds, then the supervisor shuts down all the children
which it supervises and then dies.

An instance of the supervisor behaviour can be debugged using the module sys.

Exports

start link(Module,StartArgs) -> SupRet

start link(SupName,Module,StartArgs) -> SupRet

Types:

� SupName = flocal, atom()g | fglobal, atom()g
� Module = atom()

184 STDLIB

STDLIB Reference Manual supervisor (Module)

� StartArgs = term()
� SupRet = fok, Pidg | ignore | ferror, Reasong
� Pid = pid()
� Reason = falready started, Pidg | term()

Starts a new instance of the supervisor behaviour. The function
Module:init(StartArgs) is called in order to create a start specification (see below).

If the supervisor is started without SupName, it can only be called using the returned Pid
identifier. If it is started with SupName, the name is registered locally or globally.

start child(Supervisor,ChildSpec | ExtraStartArgs) -> fok, Childg | fok, Child, Infog
| ferror, Reasong

Types:

� Supervisor = pid() | SupName | fglobal, SupNameg
� ChildSpec = child spec()
� ExtraStartArgs = [term()]
� child spec() = fName, Start, Restart, Shutdown, Type, Modulesg
� SupName = atom()
� Name = term()
� Start = fM, F, Ag
� Restart = permanent | transient | temporary
� Shutdown = int() >= 0 | brutal kill | infinity
� Type = worker | supervisor
� Modules = [atom()] | dynamic
� Child = pid() | undefined
� Info = term()

Use this function to dynamically add a child to a supervisor. The start function Start is
supposed to return fok, Pidg | fok, Pid, Infog | ignore | ferror, Reasong. If
ignore is returned, the supervisor ignores the child and returns fok, undefinedg. The
start function is executed by the supervisor process. It must return a Pid that is linked to
the caller (i.e. the supervisor). The supervisor uses this link to monitor and control the
child. If fok, Pid, Infog is returned from the start function, the same is returned
from this function. The Info is not interpreted in any way by the supervisor.

Name is an internal name, which is used by the supervisor to identify its children.

Modules is used for the code change procedure. It should be dynamic if the modules
that the child uses can change dynamically at runtime, for example a gen event
process. (Note that this refers to the names of the modules rather than the
implementation of the module.) Otherwise, it should be a list of the module with
which the child is implemented, This information is used by the release handler to find
all processes which execute a module. For example, if the child is a gen server,
Modules is a list with the name of the callback module as its only element.

The Shutdown value infinity must be used with care. The supervisor tries to shut
down the child by calling exit(Child, shutdown) and waits for the child to terminate.
If the child does not terminate, the supervisor will hang forever. infinity should be
used for children which themselves are supervisors, but it is not allowed for workers.
This is to make sure that the system can be shut down without hanging forever.

If the supervisor is a simple one for one supervisor, this function should be called as
start child(Supervisor, ExtraStartArgs). It starts a new child of the same type

185STDLIB

supervisor (Module) STDLIB Reference Manual

and calls the child’s start function as apply(M, F, A ++ ExtraStartArgs). M, F, and A
are returned from the supervisor’s init function. The new child does not get a unique
name by which is identified in the supervisor. Therefore, the functions
terminate child/2, delete child/2 and restart child/2 cannot be used for a
simple one for one supervisor. When a temporary child dies for any reason or a
transient child dies normally, the child is removed from the supervisor. Compare this
with a ordinary supervisor, where the child specification remains until delete child/2
is called. No progress report is generated when the child is started. This is to reduce
overheads.

terminate child(Supervisor, Name) -> ok | ferror, not foundg

Types:

� Supervisor = pid() | SupName | fglobal, SupNameg
� SupName = atom()
� Name = term()

Terminates a child. The child is not removed from the supervisor’s set of children. This
means that it can be restarted explicitly by calling restart child/2, or started
implicitly if the supervisor has to restart all children.

delete child(Supervisor,Name) -> ok | ferror, running | not foundg

Types:

� Supervisor = pid() | SupName | fglobal, SupNameg
� SupName = atom()
� Name = term()

Deletes a child from the supervisor. The child must be terminated.

restart child(Supervisor,Name) -> fok, Pidg | fok, Pid, Infog | ferror, running |
not found | Reasong

Types:

� Supervisor = pid() | SupName | fglobal, SupNameg
� SupName = atom()
� Name = term()
� Info = term()

Starts a child which has been terminated and not restarted according to the restart
specification. This can include a temporary child which terminates, or a child that was
terminated explicitly by calling the function terminate child/2.

which children(Supervisor) -> [fName, Pid, Type, Modulesg]

Types:

� Supervisor = pid() | SupName | fglobal, SupNameg
� SupName = atom()
� Name = term()
� Pid = pid() | undefined
� Type = worker | supervisor
� Modules = [atom()] | dynamic

186 STDLIB

STDLIB Reference Manual supervisor (Module)

Returns a list of the supervisor’s children. Name, Type and Modules are as defined in the
child specification.

check childspecs([ChildSpec]) -> ok | ferror, Reasong

Types:

� ChildSpec = child spec()

Checks if a list of child specifications are syntactically correct.

Callback Functions

The following functions should be exported from a supervisor callback module.

Exports

Module:init(StartArgs) -> fok, fSupFlags, [ChildSpec]gg | ignore | ferror, Reasong

Types:

� SupFlags = frestart strategy(), MaxR, MaxTg
� restart strategy() = one for all | one for one | rest for one | simple one for one
� MaxR = int() >= 0
� MaxT = int() > 0
� ChildSpec = child spec()

This function returns a supervisor specification. ChildSpec is as previously defined in
the start child/2 function. MaxR is the maximum number of restarts which can be
performed within MaxT seconds.

When the restart strategy is simple one for one, the list of child specifications must be
a list with one element only. This child is not started during the initialization phase, but
all children are started dynamically. Each dynamically started child is of the same type,
which means that all children are instances of the initial child specification. New
children are created with a call to start child(Supervisor, ExtraStartArgs).

If a child start function returns ignore, the child is kept in the supervisor’s list of
children. The child can be restarted explicitly by calling restart child/2. The child is
also restarted if the supervisor is one for all and performs a restart of all children, or if
the supervisor is rest for one and performs a restart of this child. The supervisor
start-up fails and terminates if the child start function returns ferror, Reasong

This function can return ignore in order to inform the parent, especially if it is another
supervisor, that the supervisor is not started according to configuration data, for
instance.

187STDLIB

supervisor (Module) STDLIB Reference Manual

System Events

The supervisor behaviour generates the same system events as the gen server
behaviour. System events are handled by the sys module.

See Also

gen server(3), sys(3)

188 STDLIB

STDLIB Reference Manual supervisor bridge (Module)

supervisor bridge (Module)

It can sometimes be useful to connect a process or a sub-system, which has not been
designed with the supervision principles in mind, to a supervisor tree. This can be
accomplished by using an instance of the supervisor bridge behaviour. A supervisor
bridge is a process which sits in between a supervisor and the sub-system. It behaves
like a real supervisor to its own supervisor, but has a different interface than a real
supervisor to the sub-system. Note, however, that it does not allow the use of the
sophisticated code changing mechanisms to the sub-system.

An instance of the supervisor bridge behaviour can be debugged with the module
sys.

In the following, Module is the name of the callback module that implements the
supervisor bridge behaviour.

Exports

start link(Module,StartArgs) -> fok, Pidg | ignore | ferror, Reasong

start link(Name,Module,StartArgs) -> fok, Pidg | ignore | ferror, Reasong

Types:

� Name = flocal, atom()g | fglobal, atom()g
� Module = atom()
� StartArgs = term()

Starts a new supervisor bridge process synchronously. The function
Module:init(StartArgs) is called (see below).

If the supervisor bridge is started with Name, the name is registered locally or globally.

Callback Functions

The following functions should be exported from a supervisor bridge callback
module.

189STDLIB

supervisor bridge (Module) STDLIB Reference Manual

Exports

Module:init(StartArgs) -> fok, Pid, Stateg | ignore | ferror, Reasong

Types:

� StartArgs = term()
� State = term()

This function starts the sub-system and returns the Pid of the main process in the
sub-system, and a State. The State can be any term and it is sent to the
Module:terminate/2 function (see below).

Module:terminate(Reason, State) -> void()

Types:

� Reason = term()
� State = term()

This function terminates the sub-system. The return value is ignored.

System Events

The supervisor bridge behaviour generates the same system events as the gen server
behaviour. System events are handled by the sys module.

See Also

gen server(3), supervisor(3), sys(3)

190 STDLIB

STDLIB Reference Manual sys (Module)

sys (Module)

This module contains functions for sending system messages used by programs, and
messaged used for debugging purposes.

Functions used for implementation of processes should also understand system messages
such as debugging messages and code change. These functions must be used to
implement the use of system messages for a process; either directly, or through standard
behaviours, such as gen server.

The following types are used in the functions defined below:

� Name = pid() | atom() | fglobal, atom()g

� Timeout = int() >= 0 | infinity

� system event() = fin, Msgg | fin, Msg, Fromg | fout, Msg, Tog |
term()

The default timeout is 5000 ms, unless otherwise specified. The timeout defines the
time period to wait for the process to respond to a request. If the process does not
respond, the function evaluates exit(ftimeout, fM, F, Agg).

The functions make reference to a debug structure. The debug structure is a list of
dbg opt(). dbg opt() is an internal data type used by the handle system msg/6
function. No debugging is performed if it is an empty list.

System Messages

Processes which are not implemented as one of the standard behaviours must still
understand system messages. There are three different messages which must be
understood:

� Plain system messages. These are received as fsystem, From, Msgg. The content
and meaning of this message are not interpreted by the receiving process module.
When a system message has been received, the function
sys:handle system msg/6 is called in order to handle the request.

� Shutdown messages. If the process traps exits, it must be able to handle an
shut-down request from its parent, the supervisor. The message f’EXIT’,
Parent, Reasong from the parent is an order to terminate. The process must
terminate when this message is received, normally with the same Reason as
Parent.

191STDLIB

sys (Module) STDLIB Reference Manual

� There is one more message which the process must understand if the modules used
to implement the process change dynamically during runtime. An example of such
a process is the gen event processes. This message is fget modules, Fromg. The
reply to this message is From ! fmodules, Modulesg, where Modules is a list of
the currently active modules in the process.
This message is used by the release handler to find which processes execute a
certain module. The process may at a later time be suspended and ordered to
perform a code change for one of its modules.

System Events

When debugging a process with the functions of this module, the process generates
system events which are then treated in the debug function. For example, trace formats
the system events to the tty.

There are three predefined system events which are used when a process receives or
sends a message. The process can also define its own system events. It is always up to
the process itself to format these events.

Exports

log(Name,Flag)

log(Name,Flag,Timeout) -> ok | fok, [system event()]g

Types:

� Flag = true | ftrue, Ng | false | get | print
� N = integer() > 0

Turns the logging of system events On or Off. If On, a maximum of N events are kept in
the debug structure (the default is 10). If Flag is get, a list of all logged events is
returned. If Flag is print, the logged events are printed to standard io. The events
are formatted with a function that is defined by the process that generated the event
(with a call to sys:handle debug/4).

log to file(Name,Flag)

log to file(Name,Flag,Timeout) -> ok | ferror, open fileg

Types:

� Flag = FileName | false
� FileName = string()

Enables or disables the logging of all system events in textual format to the file. The
events are formatted with a function that is defined by the process that generated the
event (with a call to sys:handle debug/4).

statistics(Name,Flag)

statistics(Name,Flag,Timeout) -> ok | fok, Statisticsg

192 STDLIB

STDLIB Reference Manual sys (Module)

Types:

� Flag = true | false | get
� Statistics = [fstart time, fDate1, Time1gg, fcurrent time, fDate, Time2gg,
freductions, integer()g, fmessages in, integer()g, fmessages out, integer()g]

� Date1 = Date2 = fYear, Month, Dayg
� Time1 = Time2 = fHour, Min, Secg

Enables or disables the collection of statistics. If Flag is get, the statistical collection is
returned.

trace(Name,Flag)

trace(Name,Flag,Timeout) -> void()

Types:

� Flag = boolean()

Prints all system events on standard io. The events are formatted with a function that
is defined by the process that generated the event (with a call to sys:handle debug/4).

no debug(Name)

no debug(Name,Timeout) -> void()

Turns off all debugging for the process. This includes functions that have been installed
explicitly with the install function, for example triggers.

suspend(Name)

suspend(Name,Timeout) -> void()

Suspends the process. When the process is suspended, it will only respond to other
system messages, but not other messages.

resume(Name)

resume(Name,Timeout) -> void()

Resumes a suspended process.

change code(Name, OldVsn, Module, Extra)

change code(Name, OldVsn, Module, Extra, Timeout) -> ok | ferror, Reasong

Types:

� OldVsn = undefined | term()
� Module = atom()
� Extra = term()

Tells the process to change code. The process must be suspended to handle this
message. The Extra argument is reserved for each process to use as its own. The
function Mod:system code change/4 is called. OldVsn is the old version of the Module.

get status(Name)

get status(Name,Timeout) -> fstatus, Pid, fmodule, Modg, [PDict, SysState, Parent,
Dbg, Misc]g

Types:

193STDLIB

sys (Module) STDLIB Reference Manual

� PDict = [fKey, Valueg]
� SysState = running | suspended
� Parent = pid()
� Dbg = [dbg opt()]
� Misc = term()

Gets the status of the process.

install(Name,fFunc,FuncStateg)

install(Name,fFunc,FuncStateg,Timeout)

Types:

� Func = dbg fun()
� dbg fun() = fun(FuncState, Event, ProcState) -> done | NewFuncState
� FuncState = term()
� Event = system event()
� ProcState = term()
� NewFuncState = term()

This function makes it possible to install other debug functions than the ones defined
above. An example of such a function is a trigger, a function that waits for some special
event and performs some action when the event is generated. This could, for example,
be turning on low level tracing.

Func is called whenever a system event is generated. This function should return done,
or a new func state. In the first case, the function is removed. It is removed if the
function fails.

remove(Name,Func)

remove(Name,Func,Timeout) -> void()

Types:

� Func = dbg fun()

Removes a previously installed debug function from the process. Func must be the same
as previously installed.

Process Implementation Functions

The following functions are used when implementing a special process. This is an
ordinary process which does not use a standard behaviour, but a process which
understands the standard system messages.

194 STDLIB

STDLIB Reference Manual sys (Module)

Exports

debug options(Options) -> [dbg opt()]

Types:

� Options = [Opt]
� Opt = trace | log | statistics | flog to file, FileNameg | finstall, fFunc, FuncStategg
� Func = dbg fun()
� FuncState = term()

This function can be used by a process that initiates a debug structure from a list of
options. The values of the Opt argument are the same as the corresponding functions.

get debug(Item,Debug,Default) -> term()

Types:

� Item = log | statistics
� Debug = [dbg opt()]
� Default = term()

This function gets the data associated with a debug option. Default is returned if the
Item is not found. Can be used by the process to retrieve debug data for printing before
it terminates.

handle debug([dbg opt()],FormFunc,Extra,Event) -> [dbg opt()]

Types:

� FormFunc = dbg fun()
� Extra = term()
� Event = system event()

This function is called by a process when it generates a system event. FormFunc is a
formatting function which is called as FormFunc(Device, Event, Extra) in order to
print the events, which is necessary if tracing is activated. Extra is any extra information
which the process needs in the format function, for example the name of the process.

handle system msg(Msg,From,Parent,Module,Debug,Misc)

Types:

� Msg = term()
� From = pid()
� Parent = pid()
� Module = atom()
� Debug = [dbg opt()]
� Misc = term()

195STDLIB

sys (Module) STDLIB Reference Manual

This function is used by a process module that wishes to take care of system messages.
The process receives a fsystem, From, Msgg message and passes the Msg and From to
this function.

This function never returns. It calls the function Module:system continue(Parent,
NDebug, Misc) where the process continues the execution, or
Module:system terminate(Reason, Parent, Debug, Misc) if the process should
terminate. The Module must export system continue/3, system terminate/4, and
system code change/4 (see below).

The Misc argument can be used to save internal data in a process, for example its state.
It is sent to Module:system continue/3 or Module:system terminate/4

print log(Debug) -> void()

Types:

� Debug = [dbg opt()]

Prints the logged system events in the debug structure using FormFunc as defined when
the event was generated by a call to handle debug/4.

Mod:system continue(Parent, Debug, Misc)

Types:

� Parent = pid()
� Debug = [dbg opt()]
� Misc = term()

This function is called from sys:handle system msg/6 when the process should
continue its execution (for example after it has been suspended). This function never
returns.

Mod:system terminate(Reason, Parent, Debug, Misc)

Types:

� Reason = term()
� Parent = pid()
� Debug = [dbg opt()]
� Misc = term()

This function is called from sys:handle system msg/6 when the process should
terminate. For example, this function is called when the process is suspended and its
parent orders shut-down. It gives the process a chance to do a clean-up. This function
never returns.

Mod:system code change(Misc, Module, OldVsn, Extra) -> fok, NMiscg

Types:

� Misc = term()
� OldVsn = undefined | term()
� Module = atom()
� Extra = term()
� NMisc = term()

196 STDLIB

STDLIB Reference Manual sys (Module)

Called from sys:handle system msg/6 when the process should perform a code
change. The code change is used when the internal data structure has changed. This
function converts the Misc argument to the new data structure. OldVsn is the vsn
attribute of the old version of the Module. If no such attribute was defined, the atom
undefined is sent.

197STDLIB

timer (Module) STDLIB Reference Manual

timer (Module)

This module provides useful functions related to time. Unless otherwise stated, time is
always measured in milliseconds. All timer functions return immediately, regardless
of work carried out by another process.

Successful evalutions of the timer functions yield return values containing a timer
reference, denoted TRef below. By using cancel/1, the returned reference can be used
to cancel any requested action. A TRef is an Erlang term, the contents of which must
not be altered.

The timeouts are not exact, but should be at least as long as requested.

Exports

start() -> ok

Starts the timer server. Normally, the server does not need to be started explicitly. It is
started dynamically if it is needed. This is useful during development, but in a target
system the server should be started explicitly. Use configuration parameters for kernel
for this.

apply after(Time, Module, Function, Arguments) -> fok, Trefg | ferror, Reasong

Types:

� Time = integer() in Milliseconds
� Module = Function = atom()
� Arguments = [term()]

Evaluates apply(M, F, A) after Time amount of time has elapsed. Returns fok,
TRefg, or ferror, Reasong.

send after(Time, Pid, Message) -> fok, TRefg | ferror,Reasong

send after(Time, Message) -> fok, TRefg | ferror,Reasong

Types:

� Time = integer() in Milliseconds
� Pid = pid() | atom()
� Message = term()
� Result = fok, TRefg | ferror, Reasong

send after/3 Evaluates Pid ! Message after Time amount of time has elapsed. (Pid
can also be an atom of a registered name.) Returns fok, TRefg, or ferror,
Reasong.

198 STDLIB

STDLIB Reference Manual timer (Module)

send after/2 Same as send after(Time, self(), Message).

exit after(Time, Pid, Reason1) -> fok, TRefg | ferror,Reason2g

exit after(Time, Reason1) -> fok, TRefg | ferror,Reason2g

kill after(Time, Pid)-> fok, TRefg | ferror,Reason2g

kill after(Time) -> fok, TRefg | ferror,Reason2g

Types:

� Time = integer() in milliseconds
� Pid = pid() | atom()
� Reason1 = Reason2 = term()

exit after/3 Send an exit signal with reason Reason1 to Pid Pid. Returns fok,
TRefg, or ferror, Reason2g.

exit after/2 Same as exit after(Time, self(), Reason1).

kill after/2 Same as exit after(Time, Pid, kill).

kill after/1 Same as exit after(Time, self(), kill).

apply interval(Time, Module, Function, Arguments) -> fok, TRefg | ferror, Reasong

Types:

� Time = integer() in milliseconds
� Module = Function = atom()
� Arguments = [term()]

Evaluates apply(Module, Function, Arguments) repeatedly at intervals of Time.
Returns fok, TRefg, or ferror, Reasong.

send interval(Time, Pid, Message) -> fok, TRefg | ferror, Reasong

send interval(Time, Message) -> fok, TRefg | ferror, Reasong

Types:

� Time = integer() in milliseconds
� Pid = pid() | atom()
� Message = term()
� Reason = term()

send interval/3 Evaluates Pid ! Message repeatedly after Time amount of time has
elapsed. (Pid can also be an atom of a registered name.) Returns fok, TRefg or
ferror, Reasong.

send interval/2 Same as send interval(Time, self(), Message).

cancel(TRef) -> fok, cancelg | ferror, Reasong

Cancels a previously requested timeout. TRef is a unique timer reference returned by
the timer function in question. Returns fok, cancelg, or ferror, Reasong when TRef
is not a timer reference.

sleep(Time) -> ok

199STDLIB

timer (Module) STDLIB Reference Manual

Types:

� Time = integer() in milliseconds

Suspends the process calling this function for Time amount of milliseconds and then
returns ok. Naturally, this function does not return immediately.

tc(Module, Function, Arguments) -> fTime, Valueg

Types:

� Module = Function = atom()
� Arguments = [term()]
� Time = integer() in microseconds
� Value = term()

Evaluates apply(Module, Function, Arguments) and measures the elapsed real time.
Returns fTime, Valueg, where Time is the elapsed real time in microseconds, and Value
is what is returned from the apply.

seconds(Seconds) -> Milliseconds

Returns the number of milliseconds in Seconds.

minutes(Minutes) -> Milliseconds

Returns the number of milliseconds in Minutes.

hours(Hours) -> Milliseconds

Returns the number of milliseconds in Hours.

hms(Hours, Minutes, Seconds) -> Milliseconds

Returns the number of milliseconds in Hours + Minutes + Seconds.

Examples

This example illustrates how to print out “Hello World!” in 5 seconds:

1> timer:apply_after(5000, io, format, ["~nHello World!~n", []]).
{ok,TRef}
Hello World!
2>

The following coding example illustrates a process which performs a certain action and
if this action is not completed within a certain limit, then the process is killed.

Pid = spawn(mod, fun, [foo, bar]),
%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill_after(timer:seconds(10), Pid),
...
%% We change our mind...
timer:cancel(R),
...

200 STDLIB

STDLIB Reference Manual timer (Module)

WARNING

A timer can always be removed by calling cancel/1.

An interval timer, i.e. a timer created by evaluating any of the functions
apply interval/4, send interval/3, and send interval/2, is linked to the process
towards which the timer performs its task.

A one-shot timer, i.e. a timer created by evaluating any of the functions apply after/4,
send after/3, send after/2, exit after/3, exit after/2, kill after/2, and
kill after/1 is not linked to any process. Hence, such a timer is removed only when it
reaches its timeout, or if it is explicitely removed by a call to cancel/1.

201STDLIB

unix (Module) STDLIB Reference Manual

unix (Module)

This module makes it possible to make calls to the UNIX shell. The shell used is
/bin/sh, so the environment might be different to the one you commonly use. C shell
expansions cannot be used. The module is extremely easy to use and there is only one
function.

Note that most UNIX commands produce a trailing new line.

Exports

cmd(String)

Makes the call String to sh and returns the answer in a list of characters.

Example: (bizarre version of ls)

1> unix:cmd("for i in *; do echo $i; done").

202 STDLIB

STDLIB Reference Manual win32reg (Module)

win32reg (Module)

win32reg provides read and write access to the registry on Windows. It is essentially a
port driver wrapped around the Win32 API calls for accessing the registry.

The registry is a hierarchical database, used to store various system and software
information in Windows. It is available in Windows 95 and Windows NT. It contains
installation data, and is updated by installers and system programs. The Erlang installer
updates the registry by adding data that Erlang needs.

The registry contains keys and values. Keys are like the directories in a file system, they
form a hierarchy. Values are like files, they have a name and a value, and also a type.

Paths to keys are left to right, with sub-keys to the right and backslash between keys.
(Remember that backslashes must be doubled in Erlang strings.) Case is preserved but
not significant. Example:
"\\hkey local machine\\software\\Ericsson\\Erlang\\5.0" is the key for the
installation data for the latest Erlang release.

There are six entry points in the Windows registry, top level keys. They can be
abbreviated in the win32reg module as:

Abbrev. Registry key
======= ============
hkcr HKEY CLASSES ROOT
current user HKEY CURRENT USER
hkcu HKEY CURRENT USER
local machine HKEY LOCAL MACHINE
hklm HKEY LOCAL MACHINE
users HKEY USERS
hku HKEY USERS
current config HKEY CURRENT CONFIG
hkcc HKEY CURRENT CONFIG
dyn data HKEY DYN DATA
hkdd HKEY DYN DATA

The key above could be written as "\\hklm\\software\\ericsson\\erlang\\5.0".

The win32reg module uses a current key. It works much like the current directory.
From the current key, values can be fetched, sub-keys can be listed, and so on.

Under a key, any number of named values can be stored. They have name, and types,
and data.

Currently, the win32reg module supports storing only the following types:
REG DWORD, which is an integer, REG SZ which is a string and REG BINARY
which is a binary. Other types can be read, and will be returned as binaries.

There is also a “default” value, which has the empty string as name. It is read and
written with the atom default instead of the name.

203STDLIB

win32reg (Module) STDLIB Reference Manual

Some registry values are stored as strings with references to environment variables, e.g.
"%SystemRoot%Windows". SystemRoot is an environment variable, and should be
replaced with its value. A function expand/1 is provided, so that environment variables
surrounded in % can be expanded to their values.

For additional information on the Windows registry consult the Win32 Programmer’s
Reference.

Exports

change key(RegHandle, Key) -> ReturnValue

Types:

� RegHandle = term()
� Key = string()

Changes the current key to another key. Works like cd. The key can be specified as a
relative path or as an absolute path, starting with \.

change key create(RegHandle, Key) -> ReturnValue

Types:

� RegHandle = term()
� Key = string()

Creates a key, or just changes to it, if it is already there. Works like a combination of
mkdir and cd. Calls the Win32 API function RegCreateKeyEx().

The registry must have been opened in write-mode.

close(RegHandle)-> ReturnValue

Types:

� RegHandle = term()

Closes the registry. After that, the RegHandle cannot be used.

current key(RegHandle) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = fok, string()g

Returns the path to the current key. This is the equivalent of pwd.

Note that the current key is stored in the driver, and might be invalid (e.g. if the key has
been removed).

delete key(RegHandle) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = ok | ferror, ErrorIdg

204 STDLIB

STDLIB Reference Manual win32reg (Module)

Deletes the current key, if it is valid. Calls the Win32 API function RegDeleteKey().
Note that this call does not change the current key, (unlike change key create/2.)
This means that after the call, the current key is invalid.

delete value(RegHandle, Name) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = ok | ferror, ErrorIdg

Deletes a named value on the current key. The atom default is used for the the default
value.

The registry must have been opened in write-mode.

expand(String) -> ExpandedString

Types:

� String = string()
� ExpandedString = string()

Expands a string containing environment variables between percent characters.
Anything between two % is taken for a environment variable, and is replaced by the
value. Two consecutive % is replaced by one %.

A variablename that is not in the environment, will result in an error.

format error(ErrorId) -> ErrorString

Types:

� ErrorId = atom()
� ErrorString = string()

Convert an POSIX errorcode to a string (by calling erl posix msg:message).

open(OpenModeList)-> ReturnValue

Types:

� OpenModeList = [OpenMode]
� OpenMode = read | write

Opens the registry for reading or writing. The current key will be the root
(HKEY CLASSES ROOT). The read flag in the mode list can be omitted.

Use change key/2 with an absolute path after open.

set value(RegHandle, Name, Value) -> ReturnValue

Types:

� Name = string() | default
� Value = string() | integer() | binary()

205STDLIB

Sets the named (or default) value to value. Calls the Win32 API function
RegSetValueEx(). The value can be of three types, and the corresponding registry type
will be used. Currently the types supported are: REG DWORD for integers, REG SZ for
strings and REG BINARY for binaries. Other types cannot currently be added or changed.

The registry must have been opened in write-mode.

sub keys(RegHandle) -> ReturnValue

Types:

� ReturnValue = fok, SubKeysg | ferror, ErrorIdg
� SubKeys = [SubKey]
� SubKey = string()

Returns a list of subkeys to the current key. Calls the Win32 API function
EnumRegKeysEx().

Avoid calling this on the root keys, it can be slow.

value(RegHandle, Name) -> ReturnValue

Types:

� Name = string() | default
� ReturnValue = fok, Valueg
� Value = string() | integer() | binary()

Retrieves the named value (or default) on the current key. Registry values of type
REG SZ, are returned as strings. Type REG DWORD values are returned as integers. All
other types are returned as binaries.

values(RegHandle) -> ReturnValue

Types:

� ReturnValue = fok, ValuePairsg
� ValuePairs = [ValuePair]
� ValuePair = fName, Valueg
� Name = string | default
� Value = string() | integer() | binary()

Retrieves a list of all values on the current key. The values have types corresponding to
the registry types, see value. Calls the Win32 API function EnumRegValuesEx().

SEE ALSO

Win32 Programmer’s Reference (from Microsoft)

erl posix msg

The Windows 95 Registry (book from O’Reilly)

206 STDLIB

Index

Modules are typed in this way.
Functions are typed in this way.

abcast/2
gen server , 120

abcast/3
gen server , 120

absname/1
filename , 95

absname/2
filename , 95

abstract/1
erl parse , 80

acos/1
math , 148

acosh/1
math , 148

add_binding/3
erl eval , 71

add_edge/3
digraph , 59

add_edge/4
digraph , 59

add_edge/5
digraph , 59

add_element/2
sets , 167

add_handler/3
gen event , 102

add_sup_handler/3
gen event , 102

add_vertex/1
digraph , 58

add_vertex/2
digraph , 58

add_vertex/3

digraph , 58

all/0
dets , 50
ets , 92

all/2
lists , 143

any/2
lists , 143

append/1
lists , 137

append/2
lists , 137

append/3
dict , 53

append_list/3
dict , 53

apply_after/4
timer , 198

apply_interval/4
timer , 199

arith_op/2
erl internal , 74

asin/1
math , 148

asinh/1
math , 148

atan/1
math , 148

atan2/2
math , 148

atanh/1
math , 148

attach/1

207STDLIB

Index

pool , 153

attribute/1
erl pp , 82

attribute/2
erl pp , 82

basename/1
filename , 96

basename/2
filename , 96

beam lib
chunks/2, 35
format_error/1, 36
info/1, 36
version/1, 36

bif/2
erl internal , 74

binding/2
erl eval , 71

bindings/1
erl eval , 71

bool_op/2
erl internal , 74

bt/1
c , 37

c
bt/1, 37
c/1, 37
c/2, 37
cd/1, 37
flush/0, 38
help/0, 38
i/0, 38
i/3, 38
l/1, 38
lc/1, 38
ls/0, 38
ls/1, 39
m/0, 39
m/1, 39
memory/0, 40
memory/1, 40
nc/1, 39
nc/2, 39
ni/0, 38
nl/1, 39
nregs/0, 40

pid/3, 39
pwd/0, 39
q/0, 40
regs/0, 40
zi/0, 38

c/1
c , 37

c/2
c , 37

calendar
date_to_gregorian_days/1, 42
date_to_gregorian_days/3, 42
datetime_to_gregorian_seconds/1, 42
day_of_the_week/1, 43
day_of_the_week/3, 43
gregorian_days_to_date/1, 43
gregorian_seconds_to_datetime/1, 43
is_leap_year/1, 43
last_day_of_the_month/2, 43
local_time/0, 44
local_time_to_universal_time/2, 44
now_to_datetime/1, 44
now_to_local_time/1, 44
now_to_universal_time/1, 44
seconds_to_daystime/1, 44
seconds_to_time/1, 45
time_difference/2, 45
time_to_seconds/1, 45
universal_time/0, 45
universal_time_to_local_time/2, 45
valid_date/1, 46
valid_date/3, 46

call/2
gen server , 118

call/3
gen event , 104
gen server , 118

call/4
gen event , 104

cancel/1
timer , 199

cast/2
gen server , 119

cd/1
c , 37

centre/2
string , 182

centre/3

208 STDLIB

Index

string , 182

change_code/4
sys , 193

change_code/5
sys , 193

change_key/2
win32reg , 204

change_key_create/2
win32reg , 204

char_list/1
io lib , 134

chars/2
string , 180

chars/3
string , 180

check_childspecs/1
supervisor , 187

chr/2
string , 179

chunks/2
beam lib , 35

close/1
dets , 49
epp , 68
win32reg , 204

cmd/1
unix , 202

comp_op/2
erl internal , 75

components/1
digraph utils , 65

concat/1
lists , 137

concat/2
string , 179

condensation/1
digraph utils , 67

copies/2
string , 181

cos/1
math , 148

cosh/1
math , 148

create/1
pg , 152

create/2
pg , 152

cspan/2
string , 180

current_key/1
win32reg , 204

cyclic_strong_components/1
digraph utils , 65

date_to_gregorian_days/1
calendar , 42

date_to_gregorian_days/3
calendar , 42

datetime_to_gregorian_seconds/1
calendar , 42

day_of_the_week/1
calendar , 43

day_of_the_week/3
calendar , 43

debug_options/1
sys , 195

deep_char_list/1
io lib , 135

del_binding/2
erl eval , 71

del_edge/2
digraph , 60

del_edges/2
digraph , 61

del_element/2
sets , 167

del_path/3
digraph , 62

del_vertex/2
digraph , 59

del_vertices/2
digraph , 59

delete/1
digraph , 58
ets , 89

delete/2
dets , 50

209STDLIB

Index

ets , 89
lists , 138

delete_child/2
supervisor , 186

delete_handler/3
gen event , 103

delete_key/1
win32reg , 204

delete_object/2
dets , 50

delete_value/2
win32reg , 205

dets
all/0, 50
close/1, 49
delete/2, 50
delete_object/2, 50
first/1, 50
info/1, 51
info/2, 51
insert/2, 49
lookup/2, 49
match/2, 51
match_delete/2, 51
match_object/2, 51
next/2, 50
open_file/1, 49
open_file/2, 48
safe_fixtable/2, 51
slot/2, 50
sync/1, 50
traverse/2, 50

dict
append/3, 53
append_list/3, 53
erase/2, 53
fetch/2, 53
fetch_keys/1, 54
filter/2, 54
find/2, 54
fold/3, 54
from_list/1, 54
is_key/2, 54
map/2, 55
merge/3, 55
new/0, 55
store/3, 55
to_list/1, 55
update/3, 55

update/4, 56
update_counter/3, 56

digraph
add_edge/3, 59
add_edge/4, 59
add_edge/5, 59
add_vertex/1, 58
add_vertex/2, 58
add_vertex/3, 58
del_edge/2, 60
del_edges/2, 61
del_path/3, 62
del_vertex/2, 59
del_vertices/2, 59
delete/1, 58
edge/2, 60
edges/1, 60
edges/2, 60
get_cycle/2, 62
get_path/3, 62
get_short_cycle/2, 63
get_short_path/3, 62
in_degree/2, 62
in_edges/2, 61
in_neighbours/2, 61
info/1, 58
new/0, 58
new/1, 57
no_edges/1, 60
no_vertices/1, 59
out_degree/2, 61
out_edges/2, 61
out_neighbours/2, 61
vertex/2, 58
vertices/1, 59

digraph utils
components/1, 65
condensation/1, 67
cyclic_strong_components/1, 65
is_acyclic/1, 66
loop_vertices/1, 66
postorder/1, 67
preorder/1, 67
reachable/2, 65
reachable_neighbours/2, 65
reaching/2, 66
reaching_neighbours/2, 66
strong_components/1, 65
subgraph/2, 66
subgraph/3, 66
topsort/1, 66

210 STDLIB

Index

dirname/1
filename , 96

dropwhile/2
lists , 143

duplicate/2
lists , 138

edge/2
digraph , 60

edges/1
digraph , 60

edges/2
digraph , 60

epp
close/1, 68
open/2, 68
open/3, 68
parse_erl_form/1, 68
parse_file/3, 68

equal/2
string , 179

erase/2
dict , 53

erf/1
math , 148

erfc/1
math , 149

erl eval
add_binding/3, 71
binding/2, 71
bindings/1, 71
del_binding/2, 71
expr/2, 70
expr/3, 70
expr_list/2, 70
expr_list/3, 70
exprs/2, 70
exprs/3, 70
new_bindings/0, 71

erl id trans
parse_transform/2, 73

erl internal
arith_op/2, 74
bif/2, 74
bool_op/2, 74
comp_op/2, 75
guard_bif/2, 74

list_op/2, 75
op_type/2, 75
send_op/2, 75
type_test/2, 74

erl lint
format_error/1, 77
is_guard_test/1, 77
module/1, 76
module/2, 76
module/3, 76

erl parse
abstract/1, 80
format_error/1, 80
normalise/1, 80
parse_exprs/1, 79
parse_form/1, 79
parse_term/1, 79
tokens/1, 80
tokens/2, 80

erl pp
attribute/1, 82
attribute/2, 82
expr/1, 83
expr/2, 83
expr/3, 83
expr/4, 83
exprs/1, 83
exprs/2, 83
exprs/3, 83
form/1, 82
form/2, 82
function/1, 82
function/2, 82
guard/1, 82
guard/2, 83

erl scan
format_error/1, 86
reserved_word/1, 86
string/1, 85
string/2, 85
tokens/3, 85

error_message/2
lib , 136

esend/2
pg , 152

ets
all/0, 92
delete/1, 89
delete/2, 89

211STDLIB

Index

file2tab/1, 94
first/1, 90
fixtable/2, 91
i/0, 94
i/1, 94
info/1, 93
info/2, 94
insert/2, 88
last/1, 90
lookup/2, 88
lookup_element/3, 89
match/2, 92
match_delete/2, 93
match_object/2, 92
new/2, 88
next/2, 90
prev/2, 90
rename/2, 93
safe_fixtable/2, 91
slot/2, 90
tab2file/2, 94
tab2list/1, 94
update_counter/3, 89

exit_after/2
timer , 199

exit_after/3
timer , 199

exp/1
math , 148

expand/1
win32reg , 205

expr/1
erl pp , 83

expr/2
erl eval , 70
erl pp , 83

expr/3
erl eval , 70
erl pp , 83

expr/4
erl pp , 83

expr_list/2
erl eval , 70

expr_list/3
erl eval , 70

exprs/1
erl pp , 83

exprs/2
erl eval , 70
erl pp , 83

exprs/3
erl eval , 70
erl pp , 83

extension/1
filename , 96

fetch/2
dict , 53

fetch_keys/1
dict , 54

file2tab/1
ets , 94

filename
absname/1, 95
absname/2, 95
basename/1, 96
basename/2, 96
dirname/1, 96
extension/1, 96
find_src/1, 98
find_src/2, 98
join/1, 97
join/2, 97
nativename/1, 97
pathtype/1, 97
rootname/1, 98
rootname/2, 98
split/1, 98

filter/2
dict , 54
lists , 143
sets , 168

find/2
dict , 54

find_src/1
filename , 98

find_src/2
filename , 98

first/1
dets , 50
ets , 90

first_match/2
regexp , 161

fixtable/2

212 STDLIB

Index

ets , 91

flatlength/1
lists , 138

flatmap/2
lists , 143

flatten/1
lists , 138

flatten/2
lists , 138

flush/0
c , 38

flush_receive/0
lib , 136

fold/3
dict , 54
sets , 168

foldl/3
lists , 144

foldr/3
lists , 144

foreach/2
lists , 144

form/1
erl pp , 82

form/2
erl pp , 82

format/1
io , 127
proc lib , 157

format/2
io lib , 133

format/3
io , 127

format_error/1
beam lib , 36
erl lint , 77
erl parse , 80
erl scan , 86
regexp , 163
win32reg , 205

fread/2
io lib , 133

fread/3
io , 130

io lib , 134

from_list/1
dict , 54
sets , 166

function/1
erl pp , 82

function/2
erl pp , 82

fwrite/1
io , 127

fwrite/2
io lib , 133

fwrite/3
io , 127

gen event
add_handler/3, 102
add_sup_handler/3, 102
call/3, 104
call/4, 104
delete_handler/3, 103
Module:code_change/3, 108
Module:handle_call/2, 106
Module:handle_event/2, 106
Module:handle_info/2, 107
Module:init/1, 106
Module:terminate/2, 108
notify/2, 102
start/0, 101
start/1, 101
start_link/0, 101
start_link/1, 101
stop/1, 101
swap_handler/3, 103
swap_sup_handler/3, 104
sync_notify/2, 102
which_handlers/1, 105

gen fsm
Module:code_change/4, 115
Module:handle_event/3, 114
Module:handle_info/3, 114
Module:handle_sync_event/4, 114
Module:init/1, 112
Module:StateName/2, 113
Module:StateName/3, 113
Module:terminate/3, 115
reply/2, 112
send_all_state_event/2, 111
send_event/2, 110

213STDLIB

Index

start/3, 110
start/4, 110
start_link/3, 110
start_link/4, 110
sync_send_all_state_event/2, 111
sync_send_all_state_event/3, 111
sync_send_event/2, 111
sync_send_event/3, 111

gen server
abcast/2, 120
abcast/3, 120
call/2, 118
call/3, 118
cast/2, 119
Module:code_change/3, 123
Module:handle_call/3, 121
Module:handle_cast/2, 122
Module:handle_info/2, 122
Module:init/1, 121
Module:terminate/2, 123
multi_call/2, 119
multi_call/3, 119
multi_call/4, 119
reply/2, 120
start/3, 118
start/4, 118
start_link/3, 118
start_link/4, 118

get_chars/3
io , 126

get_cycle/2
digraph , 62

get_debug/3
sys , 195

get_line/2
io , 126

get_node/0
pool , 154

get_nodes/0
pool , 154

get_path/3
digraph , 62

get_short_cycle/2
digraph , 63

get_short_path/3
digraph , 62

get_status/1
sys , 193

get_status/2
sys , 193

gregorian_days_to_date/1
calendar , 43

gregorian_seconds_to_datetime/1
calendar , 43

gsub/3
regexp , 162

guard/1
erl pp , 82

guard/2
erl pp , 83

guard_bif/2
erl internal , 74

handle_debug/1
sys , 195

handle_system_msg/6
sys , 195

help/0
c , 38

hms/3
timer , 200

hours/1
timer , 200

i/0
c , 38
ets , 94

i/1
ets , 94

i/3
c , 38

in/2
queue , 159

in_degree/2
digraph , 62

in_edges/2
digraph , 61

in_neighbours/2
digraph , 61

indentation/2
io lib , 134

info/1

214 STDLIB

Index

beam lib , 36
dets , 51
digraph , 58
ets , 93

info/2
dets , 51
ets , 94

init/3
log mf h , 147

init/4
log mf h , 147

init_ack/1
proc lib , 156

init_ack/2
proc lib , 156

initial_call/1
proc lib , 157

insert/2
dets , 49
ets , 88

install/3
sys , 194

install/4
sys , 194

intersection/1
sets , 167

intersection/2
sets , 167

io
format/1, 127
format/3, 127
fread/3, 130
fwrite/1, 127
fwrite/3, 127
get_chars/3, 126
get_line/2, 126
nl/1, 126
parse_erl_exprs/1, 131
parse_erl_exprs/3, 131
parse_erl_form/1, 132
parse_erl_form/3, 132
put_chars/2, 126
read/2, 126
scan_erl_exprs/1, 131
scan_erl_exprs/3, 131
scan_erl_form/1, 131
scan_erl_form/3, 131

write/2, 126

io lib
char_list/1, 134
deep_char_list/1, 135
format/2, 133
fread/2, 133
fread/3, 134
fwrite/2, 133
indentation/2, 134
nl/0, 133
print/1, 133
print/4, 133
printable_list/1, 135
write/1, 133
write/2, 133
write_atom/1, 134
write_char/1, 134
write_string/1, 134

is_acyclic/1
digraph utils , 66

is_element/2
sets , 166

is_guard_test/1
erl lint , 77

is_key/2
dict , 54

is_leap_year/1
calendar , 43

is_set/1
sets , 166

is_subset/2
sets , 168

join/1
filename , 97

join/2
filename , 97
pg , 152

keydelete/3
lists , 138

keymember/3
lists , 138

keymerge/3
lists , 139

keyreplace/4
lists , 139

215STDLIB

Index

keysearch/3
lists , 139

keysort/2
lists , 139

kill_after/1
timer , 199

kill_after/2
timer , 199

l/1
c , 38

last/1
ets , 90
lists , 139

last_day_of_the_month/2
calendar , 43

lc/1
c , 38

left/2
string , 182

left/3
string , 182

len/1
string , 179

lib
error_message/2, 136
flush_receive/0, 136
nonl/1, 136
progname/0, 136
send/2, 136
sendw/2, 136

list_op/2
erl internal , 75

lists
all/2, 143
any/2, 143
append/1, 137
append/2, 137
concat/1, 137
delete/2, 138
dropwhile/2, 143
duplicate/2, 138
filter/2, 143
flatlength/1, 138
flatmap/2, 143
flatten/1, 138
flatten/2, 138

foldl/3, 144
foldr/3, 144
foreach/2, 144
keydelete/3, 138
keymember/3, 138
keymerge/3, 139
keyreplace/4, 139
keysearch/3, 139
keysort/2, 139
last/1, 139
map/2, 144
mapfoldl/3, 144
mapfoldr/3, 145
max/1, 140
member/2, 140
merge/2, 140
merge/3, 140
min/1, 140
nth/2, 140
nthtail/2, 141
prefix/2, 141
reverse/1, 141
reverse/2, 141
seq/2, 141
seq/3, 141
sort/1, 142
sort/2, 142
splitwith/2, 145
sublist/2, 142
sublist/3, 142
subtract/2, 142
suffix/2, 143
sum/1, 143
takewhile/2, 145

local_time/0
calendar , 44

local_time_to_universal_time/2
calendar , 44

log/1
math , 148

log/2
sys , 192

log/3
sys , 192

log10/1
math , 148

log mf h
init/3, 147
init/4, 147

216 STDLIB

Index

log_to_file/2
sys , 192

log_to_file/3
sys , 192

lookup/2
dets , 49
ets , 88

lookup_element/3
ets , 89

loop_vertices/1
digraph utils , 66

ls/0
c , 38

ls/1
c , 39

m/0
c , 39

m/1
c , 39

map/2
dict , 55
lists , 144

mapfoldl/3
lists , 144

mapfoldr/3
lists , 145

match/2
dets , 51
ets , 92
regexp , 161

match_delete/2
dets , 51
ets , 93

match_object/2
dets , 51
ets , 92

matches/2
regexp , 161

math
acos/1, 148
acosh/1, 148
asin/1, 148
asinh/1, 148
atan/1, 148
atan2/2, 148

atanh/1, 148
cos/1, 148
cosh/1, 148
erf/1, 148
erfc/1, 149
exp/1, 148
log/1, 148
log10/1, 148
pi/0, 148
pow/2, 148
sin/1, 148
sinh/1, 148
sqrt/1, 148
tan/1, 148
tanh/1, 148

max/1
lists , 140

member/2
lists , 140

members/1
pg , 152

memory/0
c , 40

memory/1
c , 40

merge/2
lists , 140

merge/3
dict , 55
lists , 140

min/1
lists , 140

minutes/1
timer , 200

Mod:system_code_change/4
sys , 196

Mod:system_continue/3
sys , 196

Mod:system_terminate/4
sys , 196

module/1
erl lint , 76

module/2
erl lint , 76

module/3
erl lint , 76

217STDLIB

Index

Module:code_change/3
gen event , 108
gen server , 123

Module:code_change/4
gen fsm , 115

Module:handle_call/2
gen event , 106

Module:handle_call/3
gen server , 121

Module:handle_cast/2
gen server , 122

Module:handle_event/2
gen event , 106

Module:handle_event/3
gen fsm , 114

Module:handle_info/2
gen event , 107
gen server , 122

Module:handle_info/3
gen fsm , 114

Module:handle_sync_event/4
gen fsm , 114

Module:init/1
gen event , 106
gen fsm , 112
gen server , 121
supervisor , 187
supervisor bridge , 190

Module:StateName/2
gen fsm , 113

Module:StateName/3
gen fsm , 113

Module:terminate/2
gen event , 108
gen server , 123
supervisor bridge , 190

Module:terminate/3
gen fsm , 115

multi_call/2
gen server , 119

multi_call/3
gen server , 119

multi_call/4
gen server , 119

nativename/1
filename , 97

nc/1
c , 39

nc/2
c , 39

new/0
dict , 55
digraph , 58
queue , 159
sets , 166

new/1
digraph , 57

new/2
ets , 88

new_bindings/0
erl eval , 71

new_node/2
pool , 154

next/2
dets , 50
ets , 90

ni/0
c , 38

nl/0
io lib , 133

nl/1
c , 39
io , 126

no_debug/1
sys , 193

no_debug/2
sys , 193

no_edges/1
digraph , 60

no_vertices/1
digraph , 59

nonl/1
lib , 136

normalise/1
erl parse , 80

notify/2
gen event , 102

now_to_datetime/1

218 STDLIB

Index

calendar , 44

now_to_local_time/1
calendar , 44

now_to_universal_time/1
calendar , 44

nregs/0
c , 40

nth/2
lists , 140

nthtail/2
lists , 141

op_type/2
erl internal , 75

open/1
win32reg , 205

open/2
epp , 68

open/3
epp , 68

open_file/1
dets , 49

open_file/2
dets , 48

out/1
queue , 159

out_degree/2
digraph , 61

out_edges/2
digraph , 61

out_neighbours/2
digraph , 61

parse/1
regexp , 163

parse_erl_exprs/1
io , 131

parse_erl_exprs/3
io , 131

parse_erl_form/1
epp , 68
io , 132

parse_erl_form/3
io , 132

parse_exprs/1
erl parse , 79

parse_file/3
epp , 68

parse_form/1
erl parse , 79

parse_term/1
erl parse , 79

parse_transform/2
erl id trans , 73

pathtype/1
filename , 97

pg
create/1, 152
create/2, 152
esend/2, 152
join/2, 152
members/1, 152
send/2, 152

pi/0
math , 148

pid/3
c , 39

pool
attach/1, 153
get_node/0, 154
get_nodes/0, 154
new_node/2, 154
pspawn/3, 154
pspawn_link/3, 154
start/1, 153
start/2, 153
stop/0, 153

postorder/1
digraph utils , 67

pow/2
math , 148

prefix/2
lists , 141

preorder/1
digraph utils , 67

prev/2
ets , 90

print/1
io lib , 133

219STDLIB

Index

print/4
io lib , 133

print_log/1
sys , 196

printable_list/1
io lib , 135

proc lib
format/1, 157
init_ack/1, 156
init_ack/2, 156
initial_call/1, 157
spawn/3, 155
spawn/4, 155
spawn_link/3, 155
spawn_link/4, 155
start/3, 156
start/4, 156
start_link/3, 156
start_link/4, 156
translate_initial_call/1, 157

progname/0
lib , 136

pseudo/1
slave , 178

pseudo/2
slave , 178

pspawn/3
pool , 154

pspawn_link/3
pool , 154

put_chars/2
io , 126

pwd/0
c , 39

q/0
c , 40

queue
in/2, 159
new/0, 159
out/1, 159
to_list/1, 159

random
seed/0, 160
seed/3, 160
uniform/0, 160

uniform/1, 160

rchr/2
string , 179

reachable/2
digraph utils , 65

reachable_neighbours/2
digraph utils , 65

reaching/2
digraph utils , 66

reaching_neighbours/2
digraph utils , 66

read/2
io , 126

regexp
first_match/2, 161
format_error/1, 163
gsub/3, 162
match/2, 161
matches/2, 161
parse/1, 163
sh_to_awk/1, 163
split/2, 162
sub/3, 162

regs/0
c , 40

relay/1
slave , 178

remove/2
sys , 194

remove/3
sys , 194

rename/2
ets , 93

reply/2
gen fsm , 112
gen server , 120

reserved_word/1
erl scan , 86

restart_child/2
supervisor , 186

resume/1
sys , 193

resume/2
sys , 193

220 STDLIB

Index

reverse/1
lists , 141

reverse/2
lists , 141

right/2
string , 182

right/3
string , 182

rootname/1
filename , 98

rootname/2
filename , 98

rstr/2
string , 179

safe_fixtable/2
dets , 51
ets , 91

scan_erl_exprs/1
io , 131

scan_erl_exprs/3
io , 131

scan_erl_form/1
io , 131

scan_erl_form/3
io , 131

seconds/1
timer , 200

seconds_to_daystime/1
calendar , 44

seconds_to_time/1
calendar , 45

seed/0
random , 160

seed/3
random , 160

send/2
lib , 136
pg , 152

send_after/2
timer , 198

send_after/3
timer , 198

send_all_state_event/2

gen fsm , 111

send_event/2
gen fsm , 110

send_interval/2
timer , 199

send_interval/3
timer , 199

send_op/2
erl internal , 75

sendw/2
lib , 136

seq/2
lists , 141

seq/3
lists , 141

set_value/3
win32reg , 205

sets
add_element/2, 167
del_element/2, 167
filter/2, 168
fold/3, 168
from_list/1, 166
intersection/1, 167
intersection/2, 167
is_element/2, 166
is_set/1, 166
is_subset/2, 168
new/0, 166
size/1, 166
subtract/2, 167
to_list/1, 166
union/1, 167
union/2, 167

sh_to_awk/1
regexp , 163

sin/1
math , 148

sinh/1
math , 148

size/1
sets , 166

slave
pseudo/1, 178
pseudo/2, 178
relay/1, 178

221STDLIB

Index

start/1, 176
start/2, 176
start/3, 177
start_link/1, 176
start_link/2, 177
start_link/3, 177
stop/1, 178

sleep/1
timer , 199

slot/2
dets , 50
ets , 90

sort/1
lists , 142

sort/2
lists , 142

span/2
string , 180

spawn/3
proc lib , 155

spawn/4
proc lib , 155

spawn_link/3
proc lib , 155

spawn_link/4
proc lib , 155

split/1
filename , 98

split/2
regexp , 162

splitwith/2
lists , 145

sqrt/1
math , 148

start/0
gen event , 101
timer , 198

start/1
gen event , 101
pool , 153
slave , 176

start/2
pool , 153
slave , 176

start/3

gen fsm , 110
gen server , 118
proc lib , 156
slave , 177

start/4
gen fsm , 110
gen server , 118
proc lib , 156

start_child/2
supervisor , 185

start_link/0
gen event , 101

start_link/1
gen event , 101
slave , 176

start_link/2
slave , 177
supervisor , 184
supervisor bridge , 189

start_link/3
gen fsm , 110
gen server , 118
proc lib , 156
slave , 177
supervisor , 184
supervisor bridge , 189

start_link/4
gen fsm , 110
gen server , 118
proc lib , 156

statistics/2
sys , 192

statistics/3
sys , 192

stop/0
pool , 153

stop/1
gen event , 101
slave , 178

store/3
dict , 55

str/2
string , 179

string
centre/2, 182
centre/3, 182

222 STDLIB

Index

chars/2, 180
chars/3, 180
chr/2, 179
concat/2, 179
copies/2, 181
cspan/2, 180
equal/2, 179
left/2, 182
left/3, 182
len/1, 179
rchr/2, 179
right/2, 182
right/3, 182
rstr/2, 179
span/2, 180
str/2, 179
strip/1, 181
strip/2, 181
strip/3, 181
sub_string/2, 182
sub_string/3, 183
sub_word/2, 181
sub_word/3, 181
substr/2, 180
substr/3, 180
tokens/2, 180
words/1, 181
words/2, 181

string/1
erl scan , 85

string/2
erl scan , 85

strip/1
string , 181

strip/2
string , 181

strip/3
string , 181

strong_components/1
digraph utils , 65

sub/3
regexp , 162

sub_keys/1
win32reg , 206

sub_string/2
string , 182

sub_string/3
string , 183

sub_word/2
string , 181

sub_word/3
string , 181

subgraph/2
digraph utils , 66

subgraph/3
digraph utils , 66

sublist/2
lists , 142

sublist/3
lists , 142

substr/2
string , 180

substr/3
string , 180

subtract/2
lists , 142
sets , 167

suffix/2
lists , 143

sum/1
lists , 143

supervisor
check_childspecs/1, 187
delete_child/2, 186
Module:init/1, 187
restart_child/2, 186
start_child/2, 185
start_link/2, 184
start_link/3, 184
terminate_child/2, 186
which_children/1, 186

supervisor bridge
Module:init/1, 190
Module:terminate/2, 190
start_link/2, 189
start_link/3, 189

suspend/1
sys , 193

suspend/2
sys , 193

swap_handler/3
gen event , 103

swap_sup_handler/3

223STDLIB

Index

gen event , 104

sync/1
dets , 50

sync_notify/2
gen event , 102

sync_send_all_state_event/2
gen fsm , 111

sync_send_all_state_event/3
gen fsm , 111

sync_send_event/2
gen fsm , 111

sync_send_event/3
gen fsm , 111

sys
change_code/4, 193
change_code/5, 193
debug_options/1, 195
get_debug/3, 195
get_status/1, 193
get_status/2, 193
handle_debug/1, 195
handle_system_msg/6, 195
install/3, 194
install/4, 194
log/2, 192
log/3, 192
log_to_file/2, 192
log_to_file/3, 192
Mod:system_code_change/4, 196
Mod:system_continue/3, 196
Mod:system_terminate/4, 196
no_debug/1, 193
no_debug/2, 193
print_log/1, 196
remove/2, 194
remove/3, 194
resume/1, 193
resume/2, 193
statistics/2, 192
statistics/3, 192
suspend/1, 193
suspend/2, 193
trace/2, 193
trace/3, 193

tab2file/2
ets , 94

tab2list/1
ets , 94

takewhile/2
lists , 145

tan/1
math , 148

tanh/1
math , 148

tc/3
timer , 200

terminate_child/2
supervisor , 186

time_difference/2
calendar , 45

time_to_seconds/1
calendar , 45

timer
apply_after/4, 198
apply_interval/4, 199
cancel/1, 199
exit_after/2, 199
exit_after/3, 199
hms/3, 200
hours/1, 200
kill_after/1, 199
kill_after/2, 199
minutes/1, 200
seconds/1, 200
send_after/2, 198
send_after/3, 198
send_interval/2, 199
send_interval/3, 199
sleep/1, 199
start/0, 198
tc/3, 200

to_list/1
dict , 55
queue , 159
sets , 166

tokens/1
erl parse , 80

tokens/2
erl parse , 80
string , 180

tokens/3
erl scan , 85

topsort/1
digraph utils , 66

trace/2

224 STDLIB

Index

sys , 193

trace/3
sys , 193

translate_initial_call/1
proc lib , 157

traverse/2
dets , 50

type_test/2
erl internal , 74

uniform/0
random , 160

uniform/1
random , 160

union/1
sets , 167

union/2
sets , 167

universal_time/0
calendar , 45

universal_time_to_local_time/2
calendar , 45

unix
cmd/1, 202

update/3
dict , 55

update/4
dict , 56

update_counter/3
dict , 56
ets , 89

valid_date/1
calendar , 46

valid_date/3
calendar , 46

value/2
win32reg , 206

values/1
win32reg , 206

version/1
beam lib , 36

vertex/2
digraph , 58

vertices/1
digraph , 59

which_children/1
supervisor , 186

which_handlers/1
gen event , 105

win32reg
change_key/2, 204
change_key_create/2, 204
close/1, 204
current_key/1, 204
delete_key/1, 204
delete_value/2, 205
expand/1, 205
format_error/1, 205
open/1, 205
set_value/3, 205
sub_keys/1, 206
value/2, 206
values/1, 206

words/1
string , 181

words/2
string , 181

write/1
io lib , 133

write/2
io , 126
io lib , 133

write_atom/1
io lib , 134

write_char/1
io lib , 134

write_string/1
io lib , 134

zi/0
c , 38

225STDLIB

