Tools Application (TOOLYS)

version 1.6

Typeset in IATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 Tools User’s Guide

11

1.2

13

1.4

The Erlang editing mode forEmacs
Introduction L
Emacs e e
Installing the Erlang Support Packages
The Editing Mode e
Indentation e e e
General Commands
Syntax Highlighting
Electric Commands e
Function and Clause Commands i
Skeletons L e

Running Erlang from Emacs
Erlang Shell
Compilation
Customization e
Emacs Distributions
Installation of the Erlang EditingMode
Notation
KeYS o e
Furtherreading
Reporting Bugs e
The Profiler (eprof)
The Profiler (eprof) e
A Cross-Reference Tool
A Cross-Reference Tool (exref)
xref - The Cross Reference Tool i
Module Check

Tools Application (TOOLS)

0 ~N A W WWNN PR

Predefined Analysis e

Expressions . .
Graph Analysis

2 Tools Reference Manual

2.1
2.2
2.3
2.4
2.5
2.6
2.7

coast (Module)
eprof (Module)
exref (Module)

instrument (Module)

make (Module)
tags (Module)
xref (Module)

List of Figures

Glossary

Tools Application (TOOLS)

41
47
55
57
61
64
66
68

87

89

Chapter 1

Tools User's Guide

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang
programs.

The current set of tools is:

coast A tool for coverage and call statistics analysis of Erlang programs.

emacs An Erlang editing mode for Emacs.

eprof An Erlang profiler; measure how time is used in your Erlang programs.

exref A cross reference tool. Can be used to check external references between Erlang programs.
Predecessor of xref (see below).

xref A (new) cross reference tool. Can be used to check dependencies between functions, modules,
applications and releases.

instrument Utility functions for obtaining and analysing resource usage in an instrumented Erlang
runtime system.

make A make utility for Erlang programs (similar to UNIX make).
tags A module for creating TAGS file for the emacs tags functions.

Tools Application (TOOLS) 1

1.1 The Erlang editing mode for Emacs

Introduction

If you want to get started immediately, the chapters “An Example for UNIX [page 28]” and “An
Example for Windows [page 28]” gives you examples of the configurations you need to make to use the
Erlang Editing mode for Emacs.

Emacs has been the text editor of choice for programmers in the UNIX community for many years.
Thanks to a continuing development process, Emacs is the most powerful editor available. Today,
Emacs runs under most operating systems including MS-Windows, OS/2, Macintosh, and several
dialects of UNIX.

Emacs has editing support for all major programming languages and quite a lot of minor and unknown
languages are supported as well.

Emacs is designed to be extendible. In the unlikely event that you would miss a feature in Emacs you
can add it yourself, or you might find it in the large number of add-on packages that people all over the
world have written.

This book is the documentation to the Emacs package erlang.el. It provides support for the
programming language Erlang. The package provides an editing mode with lots of bells and whistles,
compilation support, and it makes it possible for the user to start Erlang shells that run inside Emacs.

Emacs is written by the Free Software Foundation and is part of the GNU project. Emacs, including the
source code and documentation, is released under the GNU General Public License.

Overview of this Book

This book can be divided into the following sections:

e Introduction. This part introduces Emacs, the Erlang editing mode, and this book. In fact, this is
the section you currently are reading.

e The editing mode. Here the editing mode is described. The editing mode contains a whole series of
features including indentation, syntax highlighting, electric commands, module name verification,
comment support including paragraph filling, skeletons, tags support, and much more.

e Erlang shells. How to start and use an Erlang shell that runs inside Emacs is described in this
section.

e Compilation support. This package is capable of starting compilations of Erlang module. Should
compilation errors occur Emacs is capable of placing the cursor on the erroneous lines.

e Customization. The Erlang editing mode, like most Emacs packages, supports extensive
customization. In this chapter we demonstrate how you can bind your favorite functions to the
hotkeys on the keyboard. It also introduces the concept of “hooks”, a general method for the user
to add code that will be executed when a specific situation occur, for example when an Erlang file
is loaded into Emacs.

The terminology used in this book is the terminology used in the documentation to Emacs. The chapter
“Notation [page 28]” contains a list of commonly used words and their meaning in the Emacs world.

The intended readers of this book are Emacs users. The book contains some examples on how to
customize this package using the Emacs extension language Emacs Lisp. You can safely skip those
sections.

2 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

Emacs

The first component needed to get this package up and running is, of course, an Emacs editor. You can
use either the standard Emacs distribution from FSF or XEmacs, an alternative distribution. Both
brands have their advantages and disadvantages.

Regardless of the brand, it is recommended to use a modern version. If an old version is used it is
possible that some of the features provided by the editing mode cannot be used.

The chapter “Emacs Distributions [page 25]” below contains a short summary on the differences
between the Emacs brands, as well as instructions where to get the distributions and how to install them.

Installing the Erlang Support Packages

Once Emacs has been installed, it must be informed about the presence of the Erlang support packages.

If you do not know if the packages have been installed open, an Erlang source file. The mode line
should contain the word “Erlang”. You can check the version of the installed package by selecting the
“version” entry in the Erlang menu in Emacs. Should no Erlang menu be present, or if the menu does
not contain a “Version” item, you are using an old version.

The packages can either be installed for all users by the system administrator, or each individual user
can install it in their own Emacs setup. The chapter “Installation of the Erlang Editing Mode [page 26]”
contains a description on how to install the packages.

The Editing Mode

The Erlang editing for Emacs provides a number of features described in this and the following
chapters. The editing mode can work with either Erlang source mode or Mnesia database rules. The
Erlang editing mode for Emacs is in Emacs terminology a Major mode .

When Erlang mode is correctly installed, it is automatically activated when a file ending in .erl or .hrl
is opened in Emacs. It is possible to activate Erlang mode for other buffers as well.

The editing mode provides a menu containing a selection of commands structured into logical
subgroups. The menu is designed to help new users get an overview of the features provided by the
Erlang packages while still giving full power to more advanced users.

Erlang mode has got a local key map that contains keyboard bindings for a number of commands. In the
chapter “Custom Key Bindings [page 24]” below, we will demonstrate how the users can bind their
favorite commands to the local Erlang key map.

It is possible for the users to perform advanced customizations by adding their own functions to the
“hook” variables provided by this package. This will be described in the “Customization [page 6]”
chapter below.

The Mode

e M-x erlang-mode RET
This command activates the Erlang major mode for the current buffer. When this mode is active
the mode line contain the word “Erlang”.

Tools Application (TOOLS) 3

Chapter 1: Tools User's Guide

The Version

e M-x erlang-version RET
This command displays the version number of the Erlang editing mode. Remember to always
supply the version number when asking questions about Erlang mode.
Should this command not be present in your setup (after Erlang mode has been activated) you
probably have a very old version of the Erlang editing mode.

Module Name Check

When a file is saved the name in the -module () . line is checked against the file name. Should they
mismatch Emacs can change the module specifier so that it matches the file name. By default, the user
is asked before the change is performed.

e Variable: erlang-check-module-name (default ask)
This variable controls the behavior of the module name check system. When it is t Emacs
changes the module specifier without asking the user, when it is bound to the atom ask the user is
asked. Should it be nil the module name check mechanism is deactivated.

Variables

There are several variables that control the behavior of the Erlang Editing mode.

e Variable: erlang-mode-hook

Functions to run when the Erlang mode is activated. See chapter “Customization [page 6]” below
for examples.

e Variable: erlang-new-file-hook
Functions to run when a new file is created. See chapter “Customization [page 6]” below for
examples.

e Variable: erlang-mode-load-hook

Functions to run when the erlang package is loaded into Emacs. See chapter “Customization
[page 6]” below for examples.

Indentation

The “Oxford Advanced Learners Dictionary of Current English” says the following about the word
“indent”:

“start (a line of print or writing) farther from the margin than the others”.
Possibly the most important feature of an editor designed for programmers is the ability to indent a line

of code in accordance with the structure of the programming language.

The Erlang mode does, of course, provide this feature. The layout used is based on the common use of
the language.

It is strongly recommend to use this feature and avoid to indent lines in a nonstandard way. Some
motivations are:
e Code using the same layout is easy to read and maintain.

e The indentation features can be used to reindent large sections of a file. If some lines use
nonstandard indentation they will be reindented.

4 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

¢ Since several features of Erlang mode is based on the standard layout they might not work
correctly if a nonstandard layout is used. For example, the movement commands (described in
chapter “Function and clause commands [page 12]” below) will not work unless the function
headers start in the first column.

The Layout

The basic layout is that the clause headers start in the first column, and the bodies of clauses and
complex expressions (e.g. “case” and “if”) are indented more that the surrounding code. For example:

remove_bugs([]) ->

;
remove_bugs([X | Xs])
case X of
bug ->
test (Xs);
_ -
[X | test(Xs)]
end.

e Variable: erlang-indent-level
The depth of the indentation is controlled by the variable “erlang-indent-level”, see section
“Customization [page 6]” below.

Indentation of comments

Lines containing comment are indented differently depending on the number of %-characters used:

e Lines with one %-character is indented to the right of the code. The column is specified by the
variable comment-column, by default column 48 is used.

e Lines with two %-characters will be indented to the same depth as code would have been in the
same situation.

e Lines with three of more %-characters are indented to the left margin.

Example:

o
%kt Function: remove_bugs

hht

remove_bugs([]) ->

1;
remove_bugs([X | Xs])
case X of
bug -> % Oh no, a bug!
% Remove it.
test (Xs);
%% This element is not a bug, let’s keep it.
_ =
[X | test(Xs)]
end.

Tools Application (TOOLS) 5

Chapter 1: Tools User's Guide

Indentation commands

The following command are directly available for indentation.

TAB (erlang-indent-command)

Indent the current line of code.

M-C-\ (indent-region)

Indent all lines in the region.

M-1 (indent-for-comment)

Insert a comment character to the right of the code on the line (if any). The comment character is
placed in the column specified by the variable “comment-column”, by default column 48 is used.

C-c C-q (erlang-indent-function)
Indent the current Erlang function.

M-x erlang-indent-clause RET
Indent the current Erlang clause.

M-x erlang-indent-current-buffer RET
Indent the entire buffer.

Customization

The most common customization of the indentation system is to bind the return key to
newline-and-indent. Please see the chapter “Custom Key Bindings [page 24]” below for an example.

There are several Emacs variables that control the indentation system.

Variable: erlang-indent-level (default 4)
The amount of indentation for normal Erlang functions and complex expressions. Should, for
example, the value of this variable be 2 the example above would be indented like:

remove_bugs([]) ->

1;
remove_bugs([X | Xs])
case X of
bug ->
test(Xs);
>
[X | test(Xs)]
end.

Variable: erlang-indent-guard (default 2)
The amount of indentation for Erlang guards.

Variable: erlang-argument-indent (default 2)
The amount of indentation for function calls that span several lines.
Example:

foo() ->
a_very_long_function_name(
AVeryLongVariableName),

Variable: erlang-tab-always-indent (default t)

When non-nil the TAB command always indents the line (this is the default). When nil, the line
will be indented only when the point is in the beginning of any text on the line, otherwise it will
insert a tab character into the buffer.

Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

General Commands

This chapter contains a group of commands that are not found in any other category. Unlike most other
books we do not have a chapter named “Miscellaneous xxx” found at the end of most books. This
chapter is placed near the beginning to reflect the importance and usefulness of the commands.

Filling comments

How many times have you edited a section of text in a comment only to wind up with a unevenly
formatted paragraph? Or even worse, have you ever decided not to edit a comment just because the
formatting would look bad?

When editing normal text in text mode you can let Emacs reformat the text by the fill-paragraph
command. This command will not work for comments since it will treat the comment characters as
words.

The Erlang editing mode provides a command that known about the Erlang comment structure and can
be used to fill text paragraphs in comments.

e M-q (erlang-fill-paragraph)
Fill the text in an Erlang comment. This command known about the Erlang comment characters.
The column to perform the word wrap is defined by the variable £ill-column.

Example:

For the sake of this example, let’s assume that fill-column is set to column 30. Assume that we have
an Erlang comment paragraph on the following form:

%% This is just a test to show
%% how the Erlang fill
%)% paragraph command works.

Assume that you would add the words “very simple” before the word “test”:
%% This is just a very simple test to show
%% how the Erlang fill

%% paragraph command works.

Clearly, the text is badly formatted. Instead of formatting this paragraph line by line, let’s try
erlang-fill-paragraph by pressing M-q. The result is:

%% This is just a very simple
%% test to show how the Erlang

%% £ill paragraph command
%k works.

As you can see the paragraph is now evenly formatted.

Tools Application (TOOLS) 7

Chapter 1: Tools User's Guide

Creating Comments

In Erlang it is possible to write comments to the right of the code. The indentation system described in
the chapter “Indentation” above is able to indent lines containing only comments, and gives support for
end-of-the-line comments.

e M-; (indent-for-comment)
This command will create, or reindent, a comment to the right of the code. The variable
comment-column controls the placement of the comment character.

Comment Region

The standard command comment-region can be used to comment out all lines in a region. To
uncomment the lines in a region precede this command with C-u.

Syntax Highlighting

It is possible for Emacs to use colors when displaying a buffer. By “syntax highlighting”, we mean that
syntactic components, for example keywords and function names, will be colored.

The basic idea of syntax highlighting is to make the structure of a program clearer. For example, the
highlighting will make it easier to spot simple bugs. Have not you ever written a variable in lower-case
only? With syntax highlighting a variable will colored while atoms will be shown with the normal text
color.

The syntax highlighting can be activated from the Erlang menu. There are four different alternatives:

o Off: Normal black and white display.

e Level 1: Function headers, reserved words, comments, strings, quoted atoms, and character
constants will be colored.

e Level 2: The above, attributes, Erlang bif:s, guards, and words in comments enclosed in single
guotes will be colored.

e Level 3: The above, variables, records, and macros will be colored. (This level is also known as the
Christmas tree level.)

The syntax highlighting is based on the standard Emacs package “font-lock”. It is possible to use the
font-lock commands and variables to enable syntax highlighting. The commands in question are:

e M-x font-lock-mode RET
This command activates syntax highlighting for the current buffer.

e M-x global-font-lock-mode RET
Activate syntax highlighting for all buffers.

The variable font-lock-maximum-decoration is used to specify the level of highlighting. If the
variable is bound to an integer, that level is used,; if it is bound to t the highest possible level is used. (It
is possible to set different levels for different editing modes; please see the font-lock documentation for
more information.)

It is possible to change the color used. It is even possible to use bold, underlined, and italic fonts in
combination with colors. However, the method to do this differs between Emacs and XEmacs; and
between different versions of Emacs. For Emacs 19.34, the variable font-lock-face-attributes
controls the colors. For version 20 of Emacs and XEmacs, the faces can be defined in the interactive
custom system.

8 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

Customization

Font-lock mode is activated in different ways in different versions of Emacs. For modern versions of
GNU Emacs place the following lines in your ~/ . emacs file:

(setq font-lock-maximum-decoration t)
(global-font-lock-mode 1)

For modern versions of XEmacs the following code can be used:

(setq auto-font-lock-mode 1)

For older versions of Emacs and XEmacs, font-lock mode must be activated individually for each buffer.
The following will add a function to the Erlang mode hook that activates font-lock mode for all Erlang

buffers.

(defun my-erlang-font-lock-hook ()
(font-lock-mode 1))

(add-hook ’erlang-mode-hook ’my-erlang-font-lock-hook)

Known Problems
Emacs has one problem with the syntactic structure of Erlang, namely the $ character. The normal
Erlang use of the $ character is to denote the ASCII value of a character, for example:

ascii_value_of_a() -> $a.

In order to get the font-lock mechanism to work for the next example, the $ character must be marked
as an “escape” character that changes the ordinary Emacs interpretation of the following double-quote
character.

ascii_value_of_quote() -> $".

The problem is that Emacs will also treat the $ character as an “escape” character at the end of strings
and quoted atoms. Practically, this means that Emacs will not detect the end of the following string:

the_id() -> "$id: $".

Fortunately, there are ways around this. From Erlang’s point of view the following two strings are
equal: "test$" and "test\$". The \-character is also marked as an Emacs “escape” character, hence it
will change the Emacs interpretation of the $-character.

This work-around cannot always be used. For example, when the string is used by an external version
control program. In this situation we can try to avoid placing the $-character at the end of the string, for
example:

-vsn(" $Revision: 1.1 § ").

Should this not be possible we can try to create an artificial end of the string by placing an extra quote
sign in the file. We do this as a comment:

Tools Application (TOOLS) 9

Chapter 1: Tools User's Guide

-vsn("$Revision: 1.1 $"). %"

The comment will be ignored by Erlang since it is a comment. From Emacs point of view the comment
character is part of the string.

This problem is a generic problem for languages with similar syntax. For example, the major mode for
Perl suffers from the same problem.

Electric Commands

An “electric” command is a character that in addition to just inserting the character performs some type
of action. For example the “;” character is typed in a situation where is ends a function clause a new
function header is generated.

Since some people find electric commands annoying they can be deactivated, see section “Unplugging
the Electric Commands [page 11]” below.

The Commands

e ; (erlang-electric-semicolon)
Insert a semicolon. When ending a function or the body of a case clause, and the next few lines
are empty, the special action will be performed. For functions, a new function header will be
generated and the point will be placed between the parentheses. (See the command
erlang-clone-arguments.) For other clauses the string “ ->" will be inserted and the point will
be placed in from of the arrow.

e , (erlang-electric-comma)
Insert a comma. If the point is at the end of the line and the next few lines are empty, a new
indented line is created.

e > (erlang-electric-arrow)
Insert a > character. If it is inserted at the end of a line after a - character so that an arrow “->" is
being formed, a new indented line is created. This requires that the next few lines are empty.

e RET (erlang-electric-newline)
The special action of this command is normally off by default. When bound to the return key the
following line will be indented. Should the current line contain a comment the initial comment
characters will be copied to the new line. For example, assume that the point is at the end of a
line (denoted by “<point>" below).

%% A comment<point>
When pressing return (and erlang-electric-newline is active) the result will be:

%% A comment
%% <point>

This command has a second feature. When issued directly after another electric command that
created a new line this command does nothing. The motivation is that it is in the fingers of many
programmers to hit the return key just when they have, for example, finished a function clause
with the ; character. Without this feature both the electric semicolon and this command would
insert one line each which is probably not what the user wants.

10 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

Undo

All electric command will set an undo marker after the initial character has been inserted but before the
special action has been performed. By executing the undo command (C-x u) the effect of the special
action will be undone while leaving the character. Execute undo a second time to remove the character
itself.

Variables

The electric commands are controlled by a number of variables.

e erlang-electric-commands
This variable controls if an electric command is active or not. This variable should contain a list of
electric commands to be active. To activate all electric commands bind this variable to the atom t.

e erlang-electric-newline-inhibit
When non-nil when erlang-electric-newline should do nothing when preceded by a electric
command that is member of the list erlang-electric-newline-inhibit-1list.

e erlang-electric-newline-inhibit-list
A list of electric commands. The command erlang-electric-newline will do nothing when
preceded by a command in this list, and the variable erlang-electric-newline-inhibit is
non-nil.

e erlang-electric-X-criteria
There is one variable of this form for each electric command. The variable is used to decide if the
special action of an electric command should be used. The variable contains a list of criteria
functions that are called in the order they appear in the list.
If a criteria function returns the atom stop the special action is not performed. If it returns a
non-nil value the action is taken. If it returns nil the next function in the list is called. Should
no function in the list return a non-nil value the special action will not be executed. Should the
list contain the atom t the special action is performed (unless a previous function returned the
atom stop).

e erlang-next-lines-empty-threshold (default 2)
Should the function erlang-next-lines-empty-p be part of a criteria list of an electric
command (currently semicolon, comma, and arrow), this variable controls the number of blank
lines required.

Unplugging the Electric Commands

To disable all electric commands set the variable erlang-electric-commands to the empty list. In
short, place the following line in your ~/ . emacs file:

(setq erlang-electric-commands ’())

Customizing the Electric Commands

To activate all electric commands, including erlang-electric-newline, add the following line to your
~/ .emacs file:

(setq erlang-electric-commands t)

Tools Application (TOOLS) 11

Chapter 1: Tools User's Guide

Function and Clause Commands

The Erlang editing mode has a set of commands that are aware of the Erlang functions and function
clauses. The commands can be used to move the point (cursor) to the end of, or to the beginning of
Erlang functions, or to jump between functions. The region can be placed around a function. Function
headers can be cloned (copied).

Movement Commands

There is a set of commands that can be used to move the point to the beginning or the end of an Erlang
clause or function. The commands are also designed for movement between Erlang functions and
clauses.

e C-a M-a (erlang-beginning-of-function)
Move the point to the beginning of the current or preceding Erlang function. With an argument
skip backwards over this many Erlang functions. Should the argument be negative the point is
moved to the beginning of a function below the current function.
This function returns t if a function was found, nil otherwise.

e M-C-a (erlang-beginning-of-clause)
As above but move point to the beginning of the current or preceding Erlang clause.
This function returns t if a clause was found, nil otherwise.

e C-a M-e (erlang-end-of-function)
Move to the end of the current or following Erlang function. With an argument to it that many
times. Should the argument be negative move to the end of a function above the current
functions.

e M-C-e (erlang-end-of-clause)
As above but move point to the end of the current or following Erlang clause.

When one of the movement commands is executed and the point is already placed at the beginning or
end of a function or clause, the point is moved to the previous/following function or clause.

When the point is above the first or below the last function in the buffer, and an
erlang-beginning-of-, Or erlang-end-of-command is issued, the point is moved to the beginning
or to the end of the buffer, respectively.

Development Tips The functions described above can be used both as user commands and called as
functions in programs written in Emacs Lisp.

Example:

The sequence below will move the point to the beginning of the current function even if the point
should already be positioned at the beginning of the function:

(end-of-1line)
(erlang-beginning-of-function)

Example:

To repeat over all the function in a buffer the following code can be used. It will first move the point to
the beginning of the buffer, then it will locate the first Erlang function. Should the buffer contain no
functions at all the call to erlang-beginning-of-function will return nil and hence the loop will
never be entered.

12 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

(goto-char (point-min))
(erlang-end-of-function 1)
(let ((found-func (erlang-beginning-of-function 1)))
(while found-func
;3 Do something with this function.
;3 Go to the beginning of the next function.
(setq found-func (erlang-beginning-of-function -1))))

Region Commands

e C-c M-h (erlang-mark-function)
Put the region around the current Erlang function. The point is placed in the beginning and the
mark at the end of the function.

e M-C-h (erlang-mark-clause)
Put the region around the current Erlang clause. The point is placed in the beginning and the
mark at the end of the function.

Function Header Commands

e C-c C-j (erlang-generate-new-clause)
Create a new clause in the current Erlang function. The point is placed between the parentheses
of the argument list.

e C-c C-y (erlang-clone-arguments)
Copy the function arguments of the preceding Erlang clause. This command is useful when
defining a new clause with almost the same argument as the preceding.

Limitations

Several clauses are considered to be part of the same Erlang function if they have the same name. It is
possible that in the future the arity of the function also will be checked. To avoid to perform a full
parse of the entire buffer the functions described in the chapter only look at lines where the function
starts in the first column. This means that the commands does not work properly if the source code
contain non-standardized indentation.

Skeletons

A skeleton is a piece of pre-written code that can be inserted into the buffer. Erlang mode comes with a
set of predefined skeletons ranging from simple if expressions to stand-alone applications.

The skeletons can be accessed either from the Erlang menu of from commands named
tempo-template-erlang-X.

The skeletons is defined using the standard Emacs package “tempo”. It is possible to define new
skeletons for your favorite erlang constructions.

Commands
e C-c M-f (tempo-forward-mark)

e C-c M-b (tempo-backward-mark) In a skeleton certain positions are marked. These two
commands move the point between such positions.

Tools Application (TOOLS) 13

Chapter 1: Tools User's Guide

Predefined Skeletons
o Simple skeletons: If, Case, Receive, Receive After, Receive Loop.

e Header elements: Module, Author. These commands inserts lines on the form -module (xxX) .
and -author (*my®@home’) .. They can be used directly, but are also used as part of the full
headers described below:

e Full Headers: Small, Medium, and Large Headers These commands generate three variants of file
headers.

The following skeletons will complete almost ready-to-run modules.

e Small Server
application

Supervisor

Supervisor Bridge

gen_server

gen_event
gen_fsm

Defining New Skeletons

It is possible to define new Erlang skeletons. The skeletons are defined using the standard package
“tempo”. The skeleton is described using the following variables:

e erlang-skel-X (Where X is the name of this skeleton.)
Each skeleton is described by a variable. It contains a list of Tempo rules. See below for two
examples of skeleton definitions. See the Tempo Reference Manual for a complete description of
tempo rules.

e erlang-skel
This variable describes all Erlang skeletons. It is used to define the skeletons and to add them to
the Erlang menu. The variable is a list where is each entry is either the empty list, representing a
vertical bar in the menu, or a list on the form:

(Menu-name tempo-name erlang-skel-X)

The Menu-name is name to use in the menu. A named function is created for each skeleton, it is
tempo-template-erlang-tempo-name. Finally, erlang-skel-Xis the name of the variable
describing the skeleton.

The best time to change this variable is right after the Erlang mode has been loaded but before it
has been activated. See the “Example” section below.

Examples Below is two example on skeletons and one example on how to add an entry to the
erlang-skel variable. Please see the Tempo reference manual for details about the format.

Example 1:
The “If” skeleton is defined by the following variable (slightly rearranged for pedagogical reasons):

14 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

(defvar erlang-skel-if

> ((erlang-skel-skip-blank) I |
o I
> ;3 3
nifn iy 4
n> 55 5
p 55 6
n _>|I ;; 7
n> iy 8
P)
"ok" ;5 10
n> ;5 11
"end" ;s 12
p)) ;5 13

Each line describes an action to perform:
e 1: This is a normal function call. Here we skip over any space characters after the point. (If we do
not they will end up after the skeleton.)

e 2: This means “Open Line”, i.e. split the current line at the point, but leave the point on the end
of the first line.

3: Indent Line. This indents the current line.

4: Here we insert the string if into the buffer
5, 8, 11: Newline and indent.

6, 9, 13: Mark these positions as special. The point will be placed at the position of the first p.
The point can later be moved to the other by the tempo-forward-mark and
tempo-backward-mark described above.

e 7,10, 12: These insert the strings “ ->", “ok”, and “end”, respectively.

Example 2:

This example contains very few entries. Basically, what it does is to include other skeletons in the
correct place.

(defvar erlang-skel-small-header
) (o 7y 1

(erlang-skel-include erlang-skel-module 3y 2
erlang-skel-author)

n ;s 3

(erlang-skel-include erlang-skel-compile ;; 4
erlang-skel-export ;3 5
erlang-skel-vc))) ;3 6

The lines performs the following actions:

1: “Open Line” (see example 1 above).

2: Insert the skeletons erlang-skel-module and erlang-skel-compile into the buffer.
3: Insert one empty line.
4: Insert three more skeletons.

Tools Application (TOOLS) 15

Chapter 1: Tools User's Guide

Example 3:

Here we assume that we have defined a new skeleton named erlang-skel-example. The best time to
add this skeleton to the variable erlang-skel is when Erlang mode has been loaded but before it has
been activated. We define a function that adds two entries to erlang-skel, the firstis () that represent
a divisor in the menu, the second is the entry for the Example skeleton. We then add the function to
the erlang-load-hook, a hook that is called when Erlang mode is loaded into Emacs.

(defun my-erlang-skel-hook ()
(setq erlang-skel
(append erlang-skel
(O

("Example" "example" erlang-skel-example)))))

(add-hook ’erlang-load-hook ’my-erlang-skel-hook)

Manual Pages

The UNIX version of Erlang tools contain a set of manual pages that can be accessed by the standard
UNIX command “man”. The Erlang mode place a list of all available manual pages in the “Erlang” menu.

Unfortunately this feature is not available in the Windows version of the Erlang editing mode since the
Erlang tools are not delivered with the manual pages.

The Menu

In the Erlang menu a list of all Erlang manual pages can be found. The menu item “Man Pages”. The
sub-menu to this menu item contains a list of categories, normally “Man - Commands” and “Man -
Modules”. Under these is a menu containing the names of the man pages. Should this menu be to large
it is split alphabetically into a number of sub-menus.

The menu item “Man - Function” is capable of finding the man page of a named Erlang function. This
commands understands the module: function notation. This command defaults to the name under the
point. Should the name not contain a module name the list of imported modules is searched.

Customization

The following variables control the manual page feature.

e erlang-man-dirs
This variable is a list representing the sub-menu to the “Man Pages” menu item in the Erlang
menu. Each element is a list with three elements. The first is the name of the menu, e.g. “Man -
Modules” or “Man - Local Stuff”. The second is the name of a directory. The third is a flag that
control the interpretation of the directory. When nil the directory is treated as an absolute path,
when non-nil it is taken as relative to the directory named in the variable erlang-root-dir.

e erlang-man-max-menu-size
The maximum number of menu items in a manual page menu. If the number of manual pages
would be more than this variable the menu will be split alphabetically into chunks each not larger
than the value of this variable.

16 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

Tags

Tags is a standard Emacs package used to record information about source files in large development
projects. In addition to listing the files of a project, a tags file normally contains information about all
functions and variables that are defined. By far, the most useful command of the tags system is its
ability to find the definition of functions in any file in the project. However the Tags system is not
limited to this feature, for example, it is possible to do a text search in all files in a project, or to
perform a project-wide search and replace.

Creating a TAGS file

In order to use the Tags system a file named TAGS must be created. The file can be seen as a database

over all functions, records, and macros in all files in the project. The TAGS file can be created using to

different methods for Erlang. The first is the standard Emacs utility “etags”, the second is by using the
Erlang module tags.

The etags utility
The etags is a program that is part of the Emacs distribution. It is normally executed from a command
line, like a unix shell or a DOS box.

The etags program of fairly modern versions of Emacs and XEmacs has native support for Erlang. To
check if your version does include this support, issue the command etags --help at a the command
line prompt. At the end of the help text there is a list of supported languages. Unless Erlang is a
member of this list | suggest that you should upgrade to a newer version of Emacs.

As seen in the help text — unless you have not upgraded your Emacs yet (well, what are you waiting
around here for? Off you go and upgrade!) — etags associate the file extensions .erl and .hrl with
Erlang.

Basically, the etags utility is runed using the following form:
etags filel.erl file2.erl

This will create a file named TAGS in the current directory.

The etags utility can also read a list of files from its standard input by supplying a single dash in place
of the file names. This feature is useful when a project consists of a large number of files. The standard
UNIX command find can be used to generate the list of files, e.g:

file . -name "*.[helrl" -print | etags -

The above line will create a TAGS file covering all the Erlang source files in the current directory, and in
the subdirectories below.

Please see the GNU Emacs Manual and the etags man page for more info.

The code implementing the Erlang support for the etags program has been donated to the Free
Software Foundation by the company Anders Lindgren Development.

Tools Application (TOOLS) 17

Chapter 1: Tools User's Guide

The tags Erlang module

One of the tools in the Erlang distribution is a module named tags. This tool can create a TAGS file
from Erlang source files.

The following are examples of useful functions in this module. Please see the reference manual on tags
for details.

e tags:file(’foo.erl’).
Create a TAGS file for the file “foo.erl”.

e tags:subdir(’src/project/’, [{outfile, ’project.TAGS’}]).
Create a tags file containing all Erlang source files in the directory "src/project/". The option
outfile specify the name of the created TAGS file.

e tags:root([{outdir, ’bar’}]).
Create a TAGS file of all the Erlang files in the Erlang distribution. The TAGS file will be placed in
the the directory bar.

Additional Erlang support

The standard Tags system has only support for simple names. The naming convention
module:function used by Erlang is not supported.

The Erlang mode supplies an alternative set of Tags functions that is aware of the format
module:function. When selecting a the default search string for the commands the name under the
point is first selected. Should the name not contain a module name the -import list at the beginning of
the buffer is scanned.

Limitations Currently, the additional Erlang module name support is not compatible with the
etags.el package that is part of XEmacs.

Useful Tags Commands

e M-. (erlang-find-tag)
Find a function definition. The default value is the function name under the point. Should the
function name lack the module specifier the -import list is searched for an appropriate candidate.

e C-u M-. (erlang-find-tagwith an argument)
The find-tag commands place the point on the first occurrence of a function that match the tag.
This command move the point to the next match.
e C-x 4 . (erlang-find-tag-other-window)
As above, but the new file will be shown in another window in the same frame.
e C-x 5 . (erlang-find-tag-other-frame)
As erlang-find-tag but the new file will be shown in a new frame.

e M-TAB (erlang-complete-tag)
This command is used to fill in the end of a partially written function name. For example, assume
that the point is at the end of the string a_long, and the Tags file contain the function
a long function name. By executing this command the string a_long will be expanded into
a_long _function name.

e M-x tags-search RET
This command will search through all the files in a project for a string. (Actually, it search for a
pattern described by a regular expression.)

18 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

e M-, (tags-loop-continue)
Move the point to the next search match.

IMenu

IMenu is a standard package of GNU Emacs. With IMenu it is possible to get a menu in the menu bar
containing all the functions in the buffer. Erlang mode provides support for Erlang source files.

Starting IMenu

e M-x imenu-add-to-menubar RET
This command will create the IMenu menu containing all the functions in the current buffer. The
command will ask you for a suitable name for the menu.

Customization

See chapter “Customization [page 6]” below for a general description on how to customize the Erlang
mode.

To automatically create the IMenu menu for all Erlang buffers, place the lines below into the
appropriate init file (e.g. ~/.emacs). The function my-erlang-imenu-hook will be called each time an
Erlang source file is read. It will call the imenu-add-to-menubar function. The menu will be named
“Functions”.

(add-hook ’erlang-mode-hook ’my-erlang-imenu-hook)

(defun my-erlang-imenu-hook ()
(if (and window-system (fboundp ’imenu-add-to-menubar))
(imenu-add-to-menubar "Functions")))

Running Erlang from Emacs

One of the strengths of Emacs is its ability to start slave processes. Since Emacs is extendible it is
possible let Emacs be a part of a large application. For example, Emacs could be used as the user
interface for Erlang applications.

The Erlang editing mode provides two simple, yet very useful, applications. The first is to start an
Erlang shell and use an Emacs buffer for input and output. The second is a compile commands that
makes it possible to compile Erlang modules and to locate the lines containing the compilation errors.

The actual communication between Emacs and Erlang can be performed by different low-level
techniques. The Erlang editing mode provides a technique called “inferior” processes. The add on
package Erl’em supplies a technically much more advanced communication technique known as an
Erl’em link. All the commands that are provided by the editing mode can use either technique.
However, more advanced packages will probably need features only provided by the Erl’em package.

Tools Application (TOOLS) 19

Chapter 1: Tools User's Guide

Inferior Erlang

The editing mode is capable of starting a so called “inferior” Erlang process. This is a normal subprocess
that use one Emacs buffer for input and output. The effect is that a command line shell, or an Erlang
shell, can be displayed inside Emacs.

The big drawback with an inferior process is that the communication between Emacs and the process is
limited to commands issued at the command line. Since this is the interface that is used by the user it is
difficult, to say the least, to write an Emacs application that communicate with the inferior process. For
example, the erlang-compile command described in the section “Compilation” below really stretch
the capabilities of the inferior Erlang process. In fact, should the user have issued a command that
would take some time to complete it is impossible for Emacs to perform the erlang-compile
command.

The Erl'em Link

The ErlI’em package established a low-level communication channel between Emacs and an Erlang
node. This communication channel can be used by Emacs to issue several independent Erlang
commands, to start Erlang processes and to open several Erlang 1O streams. It is also possible for Erlang
to call Emacs functions.

In short the Erl’em package is designed to be the base of complex application that is partially
implemented in Emacs and partially in Erlang.

It is the hope of the author that the Erl’em link in the future will be used as the base for porting the
user interface of the Erlang debugger to Emacs. If this could be possible, Emacs could be used as an
Integrated Debugger Environment (IDE) for Erlang.

The structure of the Erl’em link and its programming interface is described in the text “Erl’em
Developers Manual”.

Erlang Sheli

It is possible to start an Erlang shell inside Emacs. The shell will use an Emacs buffer for input and
output. Normal Emacs commands can be used to edit the command line and to recall lines from the
command line history.

The output will never be erased from the buffer so you will never risk letting important output fall over
the top edge of the display.

As discussed in the previous chapter there are two low-level methods for Emacs to communicate with
Erlang. The first is by starting an inferior process, the second is by using an Erl’em link. When using
inferior processes each new shell will start a new Erlang node. Should the Erl’em link be used it is
possible to start several shells on the same node, a feature not normally available.

20 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

The shell

In this section we describe how to start a shell. In the next we cover how to use it once it has been
started.

e M-x erlang-shell RET
Start a new Erlang shell. When an inferior process is used a new Erlang node is started for each
shell. Should the Erl’em link package be installed several shells can be started on the same Erlang
node.
A word of warning. The Erlang function halt () . will kill the current Erlang node, including all
shells running on it.

e M-x erlang-shell-display RET
Display one Erlang shell. If there are no Erlang shells active a new will be started.

Command line history

The look and feel on an Erlang shell inside Emacs should be the same as in a normal Erlang shell. There
is just one major difference, the cursor keys will actually move the cursor around just like in any normal
Emacs buffer. The command line history can be accessed by the following commands:

e C-up Or M-p (comint-previous-input)
Move to the previous line in the input history.
e C-down Or M-n (comint-next-input)

Move to the next line in the input history.

If the Erlang shell buffer would be killed the command line history is saved to a file. The command line
history is automatically retrieved when a new Erlang shell is started.

The Erlang Shell Mode

The buffers that are used to run Erlang shells use the major mode erlang-shell-mode. This major
mode is based on the standard mode comint-mode.

e erlang-shell-mode
Enter Erlang shell mode. To operate correctly the buffer should be in Comint mode when this
command is called.

Variables

In this section we present the variables that control the behavior of the Erlang shell. See also the next
section “Inferior Erlang Variables”.

e Variable: erlang-shell-mode-hook (default ())
Function to run when this mode is activated. See chapter “Customization [page 6]” below for
examples.

e Variable: erlang-input-ring-file-name (default “~/.erlang_history™)
The file name used to save the command line history.

e Variable: erlang-shell-function (default inferior-erlang)
This variable contain the low-level function to call to start an Erlang shell. This variable will be
changed by the Erl’em installation.

Tools Application (TOOLS) 21

Chapter 1: Tools User's Guide

e Variable: erlang-shell-display-function (default inferior-erlang-run-or-select)
This variable contain the low-level function to call when the erlang-shell-display is issued.
This variable will be changed by the Erl’em installation.

Inferior Erlang Variables

The variables described in this chapter are only used when inferior Erlang processes are used. They do
not affect the behavior of the shell when using an Erl’em link.

e Variable: inferior-erlang-display-buffer-any-frame (default nil)
When this variable is nil the command erlang-shell-display will display the inferior process
in the current frame. When t, it will do nothing when it already is visible in another frame. When
it is bound to the atom raise the frame displaying the buffer will be raised.

e Variable: inferior-erlang-shell-type (default newshell)
There are two different variants of the Erlang shell, named the old and the new shell. The old is a
simple variant that does not provide command line editing facilities. The new, on the other hand,
provide full edition features. Apart from this major difference, they differ on some subtle points.
Since Emacs itself takes care of the command line edition features you can switch between the
two shell types if your shell behaves strange.
To use the new or the old shell bind this variable to newshell or oldshell, respectively.

e Variable: inferior-erlang-machine (default "erl")
The command name of the Erlang runtime system.

e Variable: inferior-erlang-machine-options (default ())
A list of strings containing command line options that is used when starting an inferior Erlang.

e Variable: inferior-erlang-buffer-name (default "*erlangx")
The base name of the Erlang shell buffer. Should several Erlang shell buffers be used they will be
named *erlang*<2>, *xerlang*<3> etc.

Compilation

The classic edit-compile-bugfix cycle for Erlang is to edit the source file in an editor, save it to a file and
switch to an Erlang shell. In the shell the compilation command is given. Should the compilation fail
you have to bring out the editor and locate the correct line.

With the Erlang editing mode the entire edit-compile-bugfix cycle can be performed without leaving
Emacs. Emacs can order Erlang to compile a file and it can parse the error messages to automatically
place the point on the erroneous lines.

Commands
e C-c C-k (erlang-compile)

This command compiles the file in the current buffer.
The action performed by this command depend on the low-level communication method used.
Should an inferior Erlang process be used Emacs tries to issue a compile command at the Erlang
shell prompt. The compilation output will be sent to the shell buffer. This command will fail if it
is not possible to issue a command at the Erlang shell prompt.
Should an Erl’em link be used the compile command sent to Erlang will be independent of any
active shell. The output will be sent to a dedicated buffer.

22 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

e C-x ¢ (erlang-next-error)

This command will place the point on the line where the first error was found. Each successive
use of this command will move the point to the next error. The buffer displaying the compilation
errors will be updated so that the current error will be visible.

You can reparse the compiler output from the beginning by preceding this command by C-u .

e erlang-compile-display
Show the output generated by the compile command.

Variables

e Variable: erlang-compile-use-outdir (default t)
In some versions of Erlang the outdir options contains a bug. Should the directory not be present
in the current Erlang load path the object file will not be loaded.
Should this variable be set to nil the erlang-compile command will use a workaround by
change current directory, compile the file, and change back.

e Variable: erlang-compile-function (default inferior-erlang-compile)
The low-level function to use to compile an Erlang module.

e Variable: erlang-compile-display-function (default inferior-erlang-run-or-select)
The low-level function to call when the result of a compilation should be shown.

e Variable: erlang-next-error-function (default inferior-erlang-next-error)
The low-level function to use when erlang-next-error is used.

Customization

One of the strengths of Emacs is that users can fairly easy customize the behavior of almost every detail.
The Erlang editing mode is not an exception to this rule.

Normally, Emacs is customized through the user and system init files, */.emacs and site-start.el,
respectively. The content of the files are expressions written in the Emacs extension language Emacs
Lisp. The semantics of Lisp is fairly similar Erlang’s. However, the syntax is very different. Fortunately,
most customizations require only very minor knowledge of the language.

Emacs Lisp

In this section we show the basic constructions of Emacs Lisp needed to perform customizations.

In addition to placing the expressions in the init file, they can be evaluated while Emacs is started. One
method is to use the M-: (On older versions of Emacs this is bound to ESC ESC) function that
evaluates Emacs Lisp expressions in the minibuffer. Another method is to write the expressions in the
*scratchx buffer, place the point at the end of the line and press C-j.

Below is a series of example that we use to demonstrate simple Emacs Lisp constructions.
e Example 1:
In this example we set the variable foo to the value 10 added to the value of the variable a. As we

can see by this example, Emacs Lisp use prefix form for all function calls, including simple
functions like +.

(setq foo (+ 10 a))

Tools Application (TOOLS) 23

Chapter 1: Tools User's Guide

e Example 2:
In this example we first define a function bar that sums the value of its four parameters. Then we
evaluated an expression that first calls bar then calls the standard Emacs function message.

(defun bar (a b ¢ d)
(+ abc d)

(message "The sum becomes J%d" (bar 1 2 3 4))

e Example 3:
Among the Emacs Lisp data types we have atoms. However, in the following expressions we
assign the variable foo the value of the variable bar.

(setq foo bar)

To assign the variable foo the atom bar we must quote the atom with a ’-character. Note the
syntax, we should precede the expression (in this case bar) with the quote, not surround it.

(setq foo ’bar)

Hooks

A hook variable is a variable that contain a list of functions to run. In Emacs there is a large number of
hook variables, each is runed at a special situation. By adding functions to hooks the user make Emacs
automatically perform anything (well, almost).

To add a function to a hook you must use the function add-hook. To remove it use remove-hook.
See chapter “The Editing Mode” above for a list of hooks defined by the Erlang editing mode.

e Example:
In this example we add tempo-template-erlang-large-header to the hook
erlang-new-file-hook. The effect is that whenever a new Erlang file is created a file header is
immediately inserted.

(add-hook ’erlang-new-file-hook ’tempo-template-erlang-large-header)

e Example:
Here we define a new function that sets a few variables when it is called. We then add the
function to the hook erlang-mode-hook that gets called every time Erlang mode is activated.

(defun my-erlang-mode-hook ()
(setq erlang-electric-commands t))

(add-hook ’erlang-mode-hook ’my-erlang-mode-hook)

Custom Key Bindings

It is possible to bind keys to your favorite commands. Emacs use a number of key-maps: the global
key-map defines the default value of keys, local maps are used by the individual major modes, minor
modes can have their own key map etc.

The commands global-set-key and local-set-key defines keys in the global and in the current local
key-map, respectively.

If we would like to redefine a key in the Erlang editing mode we can do that by activating Erlang mode
and call local-set-key. To automate this we must define a function that calls local-set-key. This
function can then be added to the Erlang mode hook so that the correct local key map is active when
the key is defined.

24 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

Example:

Here we bind C-c C-c to the command erlang-compile, the function key £1 to erlang-shell, and
M-f1 to erlang-shell-display . The callsto local-set-key will not be performed when the
init file is loaded, they will be called first when the functions in the hook erlang-mode-hook is called,
i.e. when Erlang mode is started.

(defun my-erlang-keymap-hook ()
(local-set-key (read-kbd-macro "C-c C-c") ’erlang-compile)
(local-set-key (read-kbd-macro "<f1>") ’erlang-shell)
(local-set-key (read-kbd-macro "M-<f1>") ‘’erlang-shell-display))
(add-hook ’erlang-mode-hook ’my-erlang-keymap-hook)

The function read-kbd-macro used in the above example converts a string of readable keystrokes into
Emacs internal representation.

Example:

In Erlang mode the tags commands understand the Erlang module naming convention. However, the
normal tags commands does not. This line will bind M-. in the global map to erlang-find-tag.
(global-set-key (read-kbd-macro "M-." ’erlang-find-tag))

Emacs Distributions

Today there are two major Emacs development streams. The first is GNU Emacs from Free Software
Foundation and the second is XEmacs. Both have advantages and disadvantages, you have to decide for
yourself which Emacs you prefer.

GNU Emacs
This is the standard distribution from The Free Software Foundation, an organization lead by the
original author of Emacs, Richard M. Stallman.

The source code for the latest version of Emacs can be fetched from http://www.gnu.org. A binary
distribution for Window NT and 95 can be found at
http://www.cs.washington.edu/homes/voelker/ntemacs.html.

XEmacs

This is an alternative version of Emacs. Historically XEmacs is based on Lucid Emacs that in turn was
based on an early version of Emacs 19. The big advantage of XEmacs is that it can handle graphics
much better. One difference is a list of icons that contains a number of commonly used commands.
Another is the ability to display graphical images in the buffer.

The major drawback is that when a new feature turns up in GNU Emacs, it will often take quite a long
time before it will be incorporated into XEmacs.

The latest distribution can be fetched from http://www.xemacs. org.

Tools Application (TOOLS) 25

Chapter 1: Tools User's Guide

Installing Emacs

The source distributions usually comes in a tared and gzipped format. Unpack this with the following
command:

tar zxvf <file>.tar.gz
If your tar command do not know how to handle the “z” (unpack) option you can unpack it separately:

gunzip <file>.tar.gz
tar xvf <file>.tar

The program gunzip is part of the gzip package that can be found on the http://www.gnu. orgsite.

Next, read the file named INSTALL. The build process is normally performed in three steps: in the first
the build system performs a number of tests on your system, the next step is to actually build the Emacs
executable, finally Emacs is installed.

Installation of the Erlang Editing Mode

In the OTP installation, the Erlang editing mode is already installed. All that is needed is that the
system administrator or the individual user configures their Emacs Init files to use it.

If we assume that OTP has been installed in OTP_ROOT, the editing mode can be found in
OTP_ROOT /misc/emacs.

The erlang.el file found in the installation directory is already compiled. If it needs to be recompiled,
the following command line should create a new erlang.elc file:

emacs -batch -q -no-site-file -f batch-byte-compile erlang.el

Editing the right Emacs Init file

System administrators edit site-start.el, individuals edit their . emacs files.
On UNIX systems, individuals should edit/create the file . emacs in their home directories.
On Windows NT/95, individuals should also edit/create their .emacs file, but the location of the file
depends on the configuration of the system.
¢ If the HOME environment variable is set, Emacs will look for the . emacs file in the directory
indicated by the HOME variable.
e |f HOME is not set, Emacs will look for the .emacs file in C:\.

26 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

Extending the load path

The directory with the editing mode, OTP_ROOT /misc/emacs, must be in the load path for Emacs.

Add the following line to the selected initialization file (replace OTP_ROOT with the name of the
installation directory for OTP, keep the quote characters):

(setq load-path (cons "OTP_RO0T/misc/emacs" load-path))

Note: When running under Windows, use / or \\ as separator in pathnames in the Emacs
configuration files. Using a single \ in strings does not work, as it is interpreted by Emacs as an escape
character.

Specifying the OTP installation directory

Some functions in the Erlang editing mode require that the OTP installation directory is known. The
following is an example where we assume that they are installed in the directory 0TP_ROOT, change this
to reflect the location on your system.

(setq erlang-root-dir "OTP_ROOT")

Extending the execution path

To use inferior Erlang Shells, you need to do the following configuration. If your PATH environment
variable already includes the location of the erl or erl.exe executable this configuration is not
necessary.

You can either extend the PATH environment variable with the location of the erl/erl.exe
executable. Please refer to instructions for setting environment variables on your particular platform for
details.

You can also extend the execution path for Emacs as described below. If the executable is located in
0TP_ROOT/bin then you add the following line to you Emacs Init file:

(setq exec-path (cons "OTP_ROOT/bin" exec-path))

Final setup
Finally, add the following line to the init file:

(require ’erlang-start)

This will inform Emacs that the Erlang editing mode is available. It will associate the file extensions
.erl and .hrl with Erlang mode. Also it will make sure that files with the extension .beam will
be ignored when using file name completion.

Tools Application (TOOLS) 27

Chapter 1: Tools User's Guide

An Example for UNIX

Below is a complete example of what should be added to a user’s . emacs provided that OTP is installed
in the directory /usr/local/otp:

(setq load-path (cons "/usr/local/otp/misc/emacs"
load-path))

(setq erlang-root-dir "/usr/local/otp")

(setq exec-path (cons "/usr/local/otp/bin" exec-path))

(require ’erlang-start)

Any additional user configurations can be added after this. See for instance section “Customization
[page 9]” for some useful customizations.

An Example for Windows

Below is a complete example of what should be added to a user’s . emacs provided that OTP is installed
in the directory C:\Program Files\erl-4.7:

(setq load-path (cons "C:/Program Files/erl-4.7/misc/emacs"
load-path))

(setq erlang-root-dir "C:/Program Files/erl-4.7")

(setq exec-path (cons "C:/Program Files/erl-4.7/bin" exec-path))

(require ’erlang-start)

Any additional user configurations can be added after this. See for instance section “Customization
[page 9]” for some useful customizations.

Check the Installation

Restart the Emacs and load or create an Erlang file (with the .erl extension). If the installation was
performed correctly the mode line should contain the word “Erlang”. Select the “Version” menu item in
the “Erlang” menu, check that the version number matches the version in found in the files in
OTP_ROOT/misc/emacs

Notation

In this book we use the same terminology used in the Emacs documentation. This chapter contain a
short glossary of words and their meaning in the Emacs world.

o Buffer A buffer is used by Emacs to handle text. When editing a file the content is loaded into a
buffer. However buffers can contain other things as well. For example, a buffer can contain a list
of files in a directory, it can contain generated help texts, or it is possible to start processes that use
a buffer in Emacs for input and output. A buffer need not be visible, but if it is, it is shown in a
window.

e Emacs Lisp Emacs is written in two languages. The Emacs core is written in C. The major part, as
well as most add-on packages, are written in Emacs Lisp. This is also the language used by the init
files.

e Frame This is what most other systems refer to as a window . Emacs use frame since the word
window was used for another feature long before window systems were invented.

28 Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

o init file Files read by Emacs at startup. The user startup file is named ~/.emacs. The init files are
used to customize Emacs, for example to add new packages like erlang. The language used in the
startup files is Emacs Lisp.

e Major mode A major mode provides support for edit text of a particular sort. For example, the
Erlang editing mode is a major mode. Each buffer have exactly one major mode active.

e Minor mode A minor mode provides some additional support. Each buffer can have several minor
modes active at the same time. One example is font-lock-mode that activates syntax
highlighting, another is follow-mode that make two side-by-side windows act like one tall
window.

e Mode line The line at the bottom of each Emacs window that contain information about the
buffer. E.g. the name of the buffer, the line number, and the name of the the current major mode.

e nil The value used in Emacs Lisp to represent false. True can be represented by any non-nil
value, but it is preferred to use t.

e Point The point can be seen as the position of the cursor. More precisely, the point is the position
between two characters while the cursor is drawn over the character following the point.

e t The value t is used by flags in Emacs Lisp to represent true. See also nil.

e Window An area where text is visible in Emacs. A frame (which is a window in non-Emacs
terminology) can contain one or more windows. New windows can be created by splitting
windows either vertically or horizontally.

Keys

e C- The control key.

e M- The meta key. Normally this is the left ALT key. Alternatively the escape key can be used
(with the difference that the escape key should be pressed and released while the ALT key work
just like the control key.)

e M-C- Press both meta and control at the same time. (Or press the escape key, release it, and then
press the control key.)

e RET The return key.

All commands in Emacs have names. A hamed command can be executed by pressing M-x, typing the
name of the command, and hitting RET .

Further reading

In this chapter | present some references to material on Emacs. They are divided into the two categories
“Usage” and “Development”. The first is for normal Emacs users who would like to know how to get
more power out of their editor. The second is for people who would like to develop their own
applications in Emacs Lisp.

Personally, | would recommend the series of books from the Free Software Foundation, they are written
by the people that wrote Emacs and they form a coherent series useful for everyone from beginners to
experienced Emacs Lisp developers.

Tools Application (TOOLS) 29

Chapter 1: Tools User's Guide

Usage

Richard M. Stallman. GNU Emacs Manual. Free Software Foundation, 1995.
This is the Bible on using Emacs. It is written by the principle author of Emacs. An on-line version
of this manual is part of the standard Emacs distribution, see the “Help->Browse Manuals” menu.

“comp.emacs”, News Group on Usenet.
General Emacs group, everything is discussed here from beginners to complex development issues.

“comp.emacs.xemacs”, News Group on Usenet.
This group cover XEmacs only.

“gnu.emacs.help”, News Group on Usenet.
This group is like “comp.emacs” except that the topic only should cover GNU Emacs, not
XEmacs or any other Emacs derivate.

“gnu.emacs.sources”, News Group on Usenet.
In this group a lot of interesting Emacs packages are posted. In fact only source code is permitted,
guestions should be redirected to one of the other Emacs groups.

“gnu.emacs.bugs”, News Group on Usenet.

If you have found a bug in Emacs you should post it here. Do not post bug reports on packages
that are nor part of the standard Emacs distribution, they should be sent to the maintainer of the
package.

Development

Robert J. Chassell. Programming in Emacs Lisp: an Introduction. Free Software Foundation,
1995.

This a good introduction to Lisp in general and Emacs Lisp in particular. Just like the other books
form FSF, this book is free and can be downloaded from http://www.gnu.org .

Bil Lewis et.al. The GNU Emacs Lisp Reference Manual. Free Software Foundation, 1995.

This is the main source of information for any serious Emacs developer. This manual covers every
aspect of Emacs Lisp. This manual, like Emacs itself, is free. The manuscript can be downloaded
from http://www.gnu.org and can either be converted into printable form or be converted
into a hypertext on-line manual.

Bob Glickstein. Writing GNU Emacs Extensions. O’Reilly, 1997.
This is a good tutorial on how to write Emacs packages.

Anders Lindgren. ErI’em Developers Manual. Ericsson, 1998.

This text covers the architecture of the Erl’em communication link and the application
programmers interface to it.

The tempo package is presented in this manual. The latest version can be found at
http://www.lysator.liu.se .

Reporting Bugs

Please send bug reports to the following email address:

support@erlang.ericsson.se

Please state as accurate as possible:

e Version number of the Erlang editing mode (see the menu), Emacs, Erlang, and of any other

30

relevant software.

Tools Application (TOOLS)

1.1: The Erlang editing mode for Emacs

What the expected result was.

What you did, preferably in a repeatable step-by-step form.
A description of the unexpected result.

Relevant pieces of Erlang code causing the problem.

e Personal Emacs customizations, if any.

Should the Emacs generate an error, please set the emacs variable debug-on-error to t. Repeat the
error and enclose the debug information in your bug-report.
To set the variable you can use the following command:

M-x set-variable RET debug-on-error RET t RET

Tools Application (TOOLS) 31

1.2 The Profiler (eprof)

The Profiler (eprof)

The profiler eprof tool is used to profile a system in order to find out how much processing time
various processes occupy.

The modules to be profiled must be compiled with the trace flag. The following functions are used to
start and stop the eprof server, select modules to be profiled, and display the profiling results.

start() -> {ok, Pid} | {error, {already_started, Pid}} starts the eprof server
stop() -> stopped stops the eprof server

profile(Rootset, Mod, fun, Args) profiles a process

profile(Rootset) -> profiling | error starts profiling a process

stop profiling() -> profiling stopped | profiling already_stopped stops profiling
analyse() -> ok displays the profiling results

total_analyse() -> ok prints the profiling results

log(File) -> OK activates logging of eprof printouts.

Note:
The trace flag slows the system slightly. The part of the system which is profiled runs at
approximately 20% of its original speed.

32

Tools Application (TOOLS)

1.3 A Cross-Reference Tool

A Cross-Reference Tool (exref)

Note:
The exref tool has some limitations and is no longer supported. Please consider using the new cross
reference tool xref [page 35].

exref is an incremental cross reference tool which builds a cross reference graph for selected modules.
Information such as module dependencies and usage graphs can be derived from the cross reference
graph produced by exref.

A function vertex is represented as: .

{{Mod, Fun, Arity}, {Type, File, Linel}}

In this representation, the Type argument equals:

local | exported | {exported, compiler} | {local, compiler} | {Void(), record}
A call edge is represented as:

{EdgeId, {Modl, Funl, Arityl}, {Modd2, Fun2, Arity2}, Line}

The following functions are available for configuring and using the cross reference tool:
e start() -> {ok, Pid} | {error, {already started, Pid}} starts the exref server. The
server must be started before any other functions in module exref can be used.
e stop() -> stopped stops the exref server.
e module(Module) -> true loads the specified module, or modules, into the cross reference graph.

e module(Module, Options) -> true loads the module Module into the cross reference graph.
Module may also be a list of modules. Type can be any of the following:

1. module = atom() | [atom()]
2. Options = [Option], where

3. Option = search | verbose | auto | warnings | recursive, where

— search searches for source file in code path and replaces the path X/ebin with X/src.
— verbose creates an output of module names during loading.

— auto includes all referenced modules in the graph, with the exception of modules listed in
the excludes(Modules) [page 34] function shown below.

— warnings emits warnings about the application and the spawning of variables. The reason
for this is that apply calls lead to an incomplete graph for variable modules or functions. The
apply call is inserted into the graph instead of the actual call. The same applies to spawn.

— recursive recursively includes all files in a directory.

Tools Application (TOOLS) 33

Chapter 1: Tools User's Guide

34

directory(Directory) loads all modules in a directory into the cross reference graph.

directory(Directory, Module) loads specific modules from a directory other than the current
directory into the cross reference graph.

directory(Directory, Module, Options) loads specific modules from a directory other than
the current directory into the cross reference graph.

deletemodule (Module) deletes a module from the cross reference path. Module can be a list of
modules.

excludes (Modules) excludes a module, or list of modules, from the cross reference path.
includes(Dirs) specifies where to search for Erlang include files.

defs(Defs) adds definitions to be used when processing source code. This function appends the
definitions specified with Defs to the definition list used by erl_pp.

analyse(Type [,Arg]l) -> Result analyses the cross reference graph and returns an Erlang
term of a format which depends on the Type specified. The result from this analysis can be pretty
printed with the pretty/1 function listed below. Some of Type can have optional arguments.
Refer to the Reference Manual, the section tools, module exref for details.

pretty(AnalyseResult) -> ok prints a verbose textual representation of the analysis result
produced by the analyse/2 function shown above. The result produced from a user defined
analysis cannot be used as input to this function.

Tools Application (TOOLS)

1.4 xref - The Cross Reference Tool

xref is a cross reference tool that can be used for finding dependencies between functions, modules,
applications and releases. It does so by analyzing the defined functions and the function calls.

In order to make xref easy to use, there are predefined analyses that perform some common tasks.
Typically, a module or a release can be checked for calls to undefined functions. For the somewhat
more advanced user there is a small, but rather flexible, language that can be used for selecting parts of
the analyzed system and for doing some simple graph analyses on selected calls.

The following sections show some features of xref, beginning with a module check and a predefined
analysis. Then follow examples that can be skipped on the first reading; not all of the concepts used are
explained, and it is assumed that the reference manual [page 68] has been at least skimmed.

Module Check

Assume we want to check the following module:

-module (my module) .
-export ([t/1]).

t(A) ->
my_module:t2(4A).

t2(0) ->
true.

Cross reference data are read from BEAM files, so the first step when checking an edited module is to
compile it:

1> c(my_module).
./my_module.erl:10: Warning: function t2/1 is unused
{ok, mymodule}

The module can now be checked for calls to undefined functions [page 69] and unused local functions:

2> xref :m(my.module)
[{undefined, [{{mymodule,t,1},{mymodule,t2,1}}1},
{unused, [{mymodule,t2,1}1}]

m/1 is also suitable for checking that the BEAM file of a module that is about to be loaded into a
running a system does not call any undefined functions. In either case, the code path of the code server
(see the module code) is used for finding modules that export externally called functions not exported
by the checked module itself, so called library modules [page 68].

Tools Application (TOOLS) 35

Chapter 1: Tools User's Guide

Predefined Analysis

In the last example the module to analyze was given as an argument to m/1, and the code path was
(implicitly) used as library path [page 68]. In this example an xref server [page 68] will be used, which
makes it possible to analyze applications and releases, and also to select the library path explicitly.

Each xref server is referred to by a unique name. The name is given when creating the server:

1> xref:start(s).
{0k,<0.27.0>}

Next the system to be analyzed is added to the xref server. Here the system will be OTP, so no library
path will be needed. Otherwise, when analyzing a system that uses OTP, the OTP modules are typically
made library modules by setting the library path to the default OTP code path (or to code_path, see the
reference manual [page 80]). By default, the names of read BEAM files and warnings are output when
adding analyzed modules, but these messages can be avoided by setting default values of some options:

2> xref:set_default(s, [{verbose,false}, {warnings,false}l).
ok
3> xref:add release(s, code:lib.dir(), {name, otp}).

{ok,otp}

add_release/3 assumes that all subdirectories of the library directory returned by code:1ib_dir ()
contain applications; the effect is that of reading all applications’ BEAM files.

It is now easy to check the release for calls to undefined functions:

4> xref:analyze(s, undefined function_calls).

{ok, [...1}

We can now continue with further analyses, or we can delete the xref server:
5> xref:stop(s).

The check for calls to undefined functions is an example of a predefined analysis, probably the most
useful one. Other examples are the analyses that find unused local functions, or functions that call some
given functions. See the analyze/2,3 [page 84] functions for a complete list of predefined analyses.

Each predefined analysis is a shorthand for a query [page 75], a sentence of a tiny language providing
cross reference data as values of predefined variables [page 70]. The check for calls to undefined
functions can thus be stated as a query:

4> xref:q(s, "XC || (XU - X - B)").
{ok,[...]1}

The query asks for the restriction of external calls to calls to functions that are externally used but
neither exported nor built-in functions (the | | operator restricts the used functions while the |
operator restricts the calling functions). The - operator returns the difference of two sets, and the +
operator to be used below returns the union of two sets.

The relationships between the predefined variables XU, X, B and a few others are worth elaborating
upon. The reference manual mentions two ways of expressing the set of all functions, one that focuses
on how they are defined: X + L + B + U, and one that focuses on how they are used: UU + LU + XU.
The reference also mentions some facts [page 71] about the variables:

36 Tools Application (TOOLS)

1.4: xref - The Cross Reference Tool

Fisequal to L + X (the defined functions are the local functions and the external functions);

U is a subset of XU (the unknown functions are a subset of the externally used functions since the
compiler ensures that locally used functions are defined);

B is a subset of XU (calls to built-in functions are always external by definition, and unused built-in
functions are ignored);

LU is a subset of F (the locally used functions are either local functions or exported functions,
again ensured by the compiler);

UUisequal toF - (XU + LU) (the unused functions are defined functions that are neither used
externally nor locally);

e UU is a subset of F (the unused functions are defined in analyzed modules).

Using these facts, the two small circles in the picture below can be combined.

Definition

Definition and Use

Use

Figure 1.1: Definition and use of functions

It is often clarifying to mark the subsets corresponding to a query in such a picture. Some of the
predefined analyses are illustrated in the picture below. The simplification regarding the

locals not_used analysis is that local functions that are used (in)directly by local functions only are not
captured.

Tools Application (TOOLS) 37

Chapter 1: Tools User's Guide

XU-X-B X - XU L * (UU + (XU - LUY)
undefined_functions exports_not_used locals_not_used (simplified)

Figure 1.2: Some predefined analyses as subsets of all functions

Expressions

The module check and the predefined analyses are useful, but limited. Sometimes more flexibility is
needed, for instance one might not need to apply a graph analysis on all calls, but some subset will do
equally well. That flexibility is provided with a simple language. Below are some expressions of the
language with comments, focusing on elements of the language rather than providing useful examples.
The analyzed system is assumed to be OTP, so in order to run the queries, first evaluate these calls:

xref:start(s).
xref:add_release(s, code:root_dir()).

xref:q(s, "(Fun) xref : Mod"). Allfunctions of the xref module.

xref:q(s, "xref : Mod * X"). All exported functions of the xref module. The first operand of
the intersection operator * is implicitly converted to the more special type of the second operand.

xref:q(s, "(Mod) tools"). AIll modules of the tools application.

xref:q(s, ’"xref_.x" : Mod’). All moduleswith a name beginning with xref_.

xref:q(s, "# E | X "). Number of calls from exported functions.

xref:q(s, "XC || L "). Allexternal calls to local functions.

xref:q(s, "XC * LC"). All calls that have both an external and a local version.

xref:q(s, "(LLin) (LC * XC)"). The lines where the local calls of the last example are made.
xref:q(s, "(XLin) (LC * XC)"). The lines where the external calls of the example before last are

made.
xref:q(s, "XC * (ME - strict ME)"). External calls within some module.
xref:q(s, "E ||| kernel"). All calls within the kernel application.

xref:q(s, "closure E | kernel || kernel"). Alldirectand indirect calls within the kernel
application. Both the calling and the used functions of indirect calls are defined in modules of the
kernel application, but it is possible that some functions outside the kernel application are used by
indirect calls.

xref:q(s, "{toolbar,debugger}:Mod of ME"). A chain of module calls from toolbar to
debugger, if there is such a chain, otherwise false. The chain of calls is represented by a list of
modules, toolbar being the first element and debugger the last element.

38 Tools Application (TOOLS)

1.4: xref - The Cross Reference Tool

xref:q(s, "closure E | toolbar:Mod || debugger:Mod"). All (in)direct calls from functions in
toolbar to functions in debugger.

xref:q(s, "(Fun) xref -> xref_base"). Allfunction calls from xref to xref_base.
xref:q(s, "E * xref -> xref base"). Same interpretation as last expression.
xref:q(s, "E || xref base | xref"). Same interpretation as last expression.

xref:q(s, "E * [xref -> lists, xref_base -> digraph]"). All function calls from xref to
lists, and all function calls from xref_base to digraph.

xref:q(s, "E | [xref, xref base] || [lists, digraph]"). All function calls from xref and
xref _base to lists and digraph.

xref:q(s, "components EE"). All strongly connected components of the Inter Call Graph. Each
component is a set of exported or unused local functions that call each other (in)directly.

xref:q(s, "X x digraph * range (closure (E | digraph) | (L * digraph))"). All exported
functions of the digraph module used (in)directly by some function in digraph.

xref:q(s, "L * yeccparser:Mod - range (closure (E | yeccparser:Mod) | (X * yeccparser:Mod))").
The interpretation is left as an exercise.

Graph Analysis

The list representation of graphs [page 69] is used analyzing direct calls, while the digraph
representation is suited for analyzing indirect calls. The restriction operators (I, || and || |) are the
only operators that accept both representations. This means that in order to analyze indirect calls using
restriction, the closure operator (which creates the digraph representation of graphs) has to been
applied explicitly.

As an example of analyzing indirect calls, the following Erlang function tries to answer the question: if
we want to know which modules are used indirectly by some module(s), is it worth while using the
function graph [page 69] rather than the module graph? Recall that a module M1 is said to call a
module M2 if there is some function in M1 that calls some function in M2. It would be nice if we could
use the much smaller module graph, since it is available also in the light weight modules mode [page
68] of xref servers.

t(S) —>

{ok, _} = xref:q(S, "Eplus := closure E"),

{ok, Ms} = xref:q(S, "AM"),

Fun = fun(M, N) ->
Q = io_lib:format("# (Mod) (Eplus | "p : Mod)", [MI),
{ok, NO} = xref:q(S, lists:flatten(Q)),
N + NO

end,

Sum = lists:foldl(Fun, O, Ms),

{ok, Tot} = xref:q(S, "# (closure ME | AM)"),

ok = xref:forget(S, ’Eplus’),

100 * ((Tot - Sum) / Tot).

Comments on the code:

¢ We want to find the reduction of the closure of the function graph to modules. The direct
expression for doing that would be (Mod) (closure E | AM), but then we would have to

Tools Application (TOOLS) 39

represent all of the transitive closure of E in memory. Instead the number of indirectly used
modules is found for each analyzed module, and the sum over all modules is calculated.

A user variable is employed for holding the digraph representation of the function graph for use
in many queries. The reason is efficiency. As opposed to the = operator, the := operator saves a
value for subsequent analyses. Here might be the place to note that equal subexpressions within a
guery are evaluated only once; = cannot be used for speeding things up.

Eplus | "p : Mod. The | operator converts the second operand to the type of the first operand.
In this case the module is converted to all functions of the module. It is necessary to assign a type
to the module (: Mod), otherwise modules like kernel would be converted to all functions of the
application with the same name; the most general constant is used in cases of ambiguity.

Since we are only interested in a ratio, the unary operator # that counts the elements of the
operand is used. It cannot be applied to the digraph representation of graphs.

We could find the size of the closure of the module graph with a loop similar to one used for the
function graph, but since the module graph is so much smaller, a more direct method is feasible.

When the Erlang function t/1 was applied to an xref server loaded with the current version of OTP,
the returned value was close to 84 (percent). This means that the number of indirectly used modules is
approximately six times greater when using the module graph. So the answer to the above stated
guestion is that it is definitely worth while using the function graph for this particular analysis. Finally,
note that in the presence of unresolved calls, the graphs may be incomplete, which means that there
may be indirectly used modules that do not show up.

40

Tools Application (TOOLS)

Tools Reference Manual

Short Summaries

Erlang Module coast [page 47] — Coverage and Statistics Analysis Tool
Erlang Module eprof [page 55] — Time Profiling Tool
Erlang Module exref [page 57] — Cross Reference Tool

Erlang Module instrument [page 61] — Analysis and Utility Functions for
Instrumentation

Erlang Module make [page 64] — Functions Similar to UNIX Type Make Program.
Erlang Module tags [page 66] — Generate Emacs TAGS file from Erlang source files

Erlang Module xref [page 68] — A Cross Reference Tool for analyzing
dependencies between functions, modules, applications and releases.

coast

The following functions are exported:

compile(Module) -> Result
[page 47] Compiles a module for coverage analysis.

compile(Module, Options) -> Result
[page 47] Compiles a module for coverage analysis.

compile_all() -> Result
[page 48] Prepares all Erlang source code files in a directory for coverage and call
statistics analysis.

compile_all(Dir) -> Result
[page 48] Prepares all Erlang source code files in a directory for coverage and call
statistics analysis.

compile_all(Dir, Options) -> Result
[page 48] Prepares all Erlang source code files in a directory for coverage and call
statistics analysis.

run(Module, Function, ArgumentList) -> Result
[page 48] Executes a function in a coast-compiled module.

mod_calls(Modules) -> Result
[page 49] Lists the number of times Modules have been called.

Tools Application (TOOLS) 41

Tools Reference Manual

e func_calls(Modules) -> Result
[page 49] Lists the number of times the functions in Modules have been called.
e clause_calls(Modules) -> Result
[page 50] Lists the number of times the function clauses in Modules have been
called.
e mod_coverage (Modules) -> Result
[page 51] Lists the number of covered and uncovered lines of code in Modules.
e func_coverage(Modules) -> Result
[page 51] Lists, for each function in Modules, the number of covered and
uncovered lines of code.
e clause_coverage (Modules) -> Result
[page 52] Lists, for each function clause in Modules, the number of covered and
uncovered lines of code.
e analyse_to_file(Modules) -> Result
[page 53] Prints to file detailed coverage analysis concerning Modules.
e known_modules() -> Result
[page 53] Lists the modules that, as known by the coast program, may be subject
to analysis.
e source_files(Modules) -> Result
[page 53] Lists the source files that the coast-compiled modules Modules originates
from.
e clear(Modules) -> ok
[page 54] Removes data, stored from previous executions, concerning Modules.
e clear_all() -> ok
[page 54] Removes all data stored from previous executions.
e quit() -> ok
[page 54] Stops the server controlling the collected coverage and call statistics data.

eprof

The following functions are exported:

e start() -> {ok, Pid} | {error, {already_started, Pid}}
[page 55] Starts the eprof server

e stop() -> stopped
[page 55] Stops the eprof server.

e profile(Rootset, Mod, Fun, Args)
[page 55] Profiles a process

e profile(Rootset) -> profiling | error
[page 55] Starts profiling of processes.
e stop_profiling() -> profiling stopped | profiling already_stopped
[page 55] Stops profiling.
e analyse() -> ok
[page 56] Displays profiling results.
e total_analyse() -> ok
[page 56] Displays the results of profiling.
e log(File) -> ok
[page 56] Activates logging of eprof printouts.

Tools Application (TOOLS)

Tools Reference Manual

exref

The following functions are exported:
e start()-> {ok, Pid} | {error, {already.started, Pid}}
[page 57] Starts the exref server

e stop() -> stopped
[page 57] Stops the exref server

e module(Module) -> true
[page 57] Loads module(s) into the cross reference graph

e module(Module, Options) -> true
[page 57] Loads module(s) into the cross reference graph

e directory(Directory)
[page 58] Loads all modules in a directory into the cross reference graph.

e directory(Directory, Options)
[page 58] Loads all modules in a directory into the cross reference graph.

e directory.module(Directory, Module)
[page 58] Loads specific modules from a directory other than the current directory
into the cross reference graph.

e directory.module(Directory, Module, Options)
[page 58] Loads specific modules from a directory other than the current directory
into the cross reference graph.

e delete module (Module)
[page 58] Deletes module(s) from the cross reference graph.

e excludes(Modules)
[page 58] Specifies modules which should not be loaded into the cross reference
graph.

e includes(Dirs)
[page 58] Specifies directories where Erlang include files should be searched for.

e defs(Defs)
[page 58] Adds definitions to be used when processing source code.

e analyse(Type [,Argl) -> Result
[page 59] Performs various analysis based on the cross reference graph

e pretty(AnalyseResult) -> ok
[page 59] Pretty prints the AnalyseResult

instrument

The following functions are exported:
e holes(AllocList) -> ok
[page 62] Prints out the sizes of unused memory blocks

e mem limits(AllocList) -> {Low, High}
[page 62] Returns lowest and highest memory address used

e memory data() -> AllocList
[page 62] Returns current memory allocation list

Tools Application (TOOLS) 43

Tools Reference Manual

44

e read memory data(File) -> {ok, AllocList} | {error, Reason}
[page 62] Reads memory allocation list

e sort(AllocList) -> Alloclist
[page 62] Sorts a memory allocation list

e storememory.data(File) -> ok
[page 63] Stores the current memory allocation list on a file

e sum blocks(AllocList) -> int()
[page 63] Returns the total amount of memory used

e type_string(Type) -> string()
[page 63] Translates a memory block type number to a string

make

The following functions are exported:
e all() -> up-to_date | error
[page 64] Compiles all files in a directory

e all(Options) -> up_to_date | error
[page 64] Compiles all files in a directory (with Options)

e files(FileList) -> up-to._date
[page 64] Compiles the files in FileList

e files(FileList, Options) -> up-to.date | error
[page 64] Compiles the files in FileList using Options

tags

The following functions are exported:
e file(File [, Options])
[page 66] Create a TAGS file for the file File.

e files(FileList [, Options])
[page 66] Create a TAGS file for the files in the list FileList.

e dir(Dir [, Options])
[page 66] Create a TAGS file for all files in directory Dir.

e dirs(DirList [, Options])
[page 66] Create a TAGS file for all files in any directory in DirList.

e subdir(Dir [, Options])

[page 66] Descend recursively down the directory Dir and create a TAGS file based

on all files found.

e subdirs(DirList [, Options])
[page 66] Descend recursively down all the directories in DirList and create a
TAGS file based on all files found.

e root([Options])
[page 66] Create a TAGS file covering all files in the Erlang distribution.

Tools Application (TOOLS)

Tools Reference Manual

xref

The following functions are exported:

e m(Module) -> [Result] | Error
[page 76] Checks a module using the code path.

e m(file()) -> [Result] | Error
[page 76] Checks a module using the code path.

e d(directory()) -> [Result] | Error
[page 76] Checks the modules in a directory using the code path.

e start(xref() [, Optiomns]) -> Return
[page 76] Creates an xref server.

e set_default(xref(), Option, Value) -> {ok, 0ldValue} | Error
[page 77] Sets the default values of options.

e set_default(xref(), OptionValues) -> ok | Error
[page 77] Sets the default values of options.

e get_default(xref()) -> [{Option, Value}]
[page 77] Returns the default values of options.

e get_default(xref(), Option) -> {ok, Value} | Error
[page 77] Returns the default values of options.

e add_release(xref(), directory() [, Options]) -> {ok, release()} |
Error
[page 77] Adds the modules of a release.

e add_application(xref(), directory() [, Options]) -> {ok,
application()} | Error
[page 78] Adds the modules of an application.

e add directory(xref(), directory() [, Options]) -> {ok, Modules} |
Error

[page 78] Adds the modules in a directory.

e add module(xref(), file() [, Options]) -> {ok, module()} | Error
[page 79] Adds a module.

e replace application(xref(), application(), directory() [, Options])
-> {ok, application()} | Error
[page 79] Replaces an application’s modules.

e replacemodule(xref(), module(), file() [, Optionsl]) -> {ok,
module()} | Error
[page 79] Replaces an analyzed module.

e remove release(xref (), release()) -> ok | Error
[page 79] Removes a release and its applications and modules.

e remove_application(xref (), application()) -> ok | Error
[page 79] Removes an application and its modules.

e removemodule(xref (), module()) -> ok | Error
[page 80] Removes an analyzed module.

e set_library path(xref(), library path() [, Options]) -> ok | Error
[page 80] Sets the library path and finds the library modules.

e get_library_path(xref()) -> {ok, librarypath()}
[page 80] Returns the library path.

Tools Application (TOOLS) 45

Tools Reference Manual

46

info(xref()) -> [Infol
[page 80] Returns information about an xref server.

info(xref (), Category) -> [{Item, [Infol}]
[page 80] Returns information about an xref server.

info(xref(), Category, Items) -> [{Item, [Info]}]
[page 80] Returns information about an xref server.

update (xref() [, Options]) -> {ok, Modules} | Error
[page 83] Replaces newly compiled analyzed modules.

analyze(xref(), Analysis [, Options]) -> {ok, Answer} | Error
[page 83] Evaluates a predefined analysis.

variables(xref() [, Options]) -> {ok, [VariableInfo]}
[page 84] Returns the names of variables.

forget (xref()) -> ok
[page 84] Removes user variables and their values.

forget (xref(), Variables) -> ok | Error
[page 84] Removes user variables and their values.

q(xref(), Query [, Options]) -> {ok, Answer} | Error
[page 84] Evaluates a query.

stop(xref ())
[page 85] Deletes an xref server.

format_error(Error) -> character_ 1ist()
[page 86] Returns an English description of an xref error reply.

Tools Application (TOOLS)

Tools Reference Manual coast (Module)

coast (Module)

The module coast provides a set of functions for coverage and call statistics analysis of
Erlang programs.

Coverage analysis consists of monitoring executing programs, observing if each line of
code is executed, and, if so, the number of times.

Call statistics analysis consists of monitoring executing programs, observing the number
of times certain modules, and the functions in them, are called. This analysis may be
done in various levels of detail.

Before any analysis can take place, the module(s) must be compiled in a special way.
Execution may then take place - in this phase executional data is gathered: in an
internal database, a counter for each statement in the module(s) is incremented every
time that particular statement is executed. In the final phase we analyse the collected
data, presenting it in various ways. (The observant reader may here correctly conclude
that a module has to be executed, at least partially, before any useful coverage and call
statistics analysis can take place.)

Exports

compile (Module) -> Result
compile (Module, Options) -> Result

Types:

¢ Module = ModuleName | [ModuleName]

¢ ModuleName = atom() | string()

e Options = [CompilerOptions]

e CompilerOptions = {outdir, OutDir} | {i, IncludeDir} | {d, Def} | OtherOptions
e OutDir = atom() | string()

e IncludeDir = atom() | string()

e Result = {ok, CompiledModules} | {error, Reason}

e CompiledModules = CompiledModule | [CompiledModule]

e CompiledModule = atom() | string()

Compiles a module for coverage and call statistics analysis. Currently compile does not

search for modules - if Module not resides in the durrent working directory, the
complete path has to be specified. The file extension .erl may be omitted.

compile/2 makes it possible to pass several options to the compiler. Some of these
options are the tuples {i, IncludeDir}, {outdir, OutDir}, and {d, Def}; for a
complete list, please see the manual page(s) for compile:file/2.

The return value Result is one of the following:

Tools Application (TOOLS) 47

coast (Module) Tools Reference Manual

{ok, CompiledModules} Compilation and loading succeeded, meaning that
CompiledModule now is prepared for coverage and call statistics analysis.

{error,Reason} The compilation failed, due to the reason specified in Reason.

The function creates the subdirectories COAST and COAST/tmp_code in either the current
directory or the directory specified using the {outdir, OutDir} option. In
COAST/tmp_code two files, <File>.COAST.pretty.erland <File>.COAST.erl, will
be placed. <File>.COAST.pretty.erl is a transformed version (among other things,
containing no comments) of the original file, <File>.erl. <File>.COAST.erl
contains the code in <File>.COAST.pretty.erl, modified with the counter code
necessary to gather coverage and call statistics data during execution.

In either the current working directory or in the directory specified using the {outdir,
OutDir} option, the file <File>.beam will be placed. This file is the the compiled
version of <File>.COAST.erl.

Note: <File>.COAST.pretty.erland <File>.COAST.erl shall never ever be
renamed or moved, or the coverage and call statistics analysis will fail!

Example:
1> coast:compile(test).
{ok,test}
2> coast:compile("../can", [{outdir, "../ebin"1}]).

{ok,"../can"}

compile_all() -> Result
compile_all(Dir) -> Result
compile_all(Dir, Options) -> Result
Types:
e Dir =atom() | string()
e Options = [CompilerOptions]
e CompilerOptions = {outdir, OutDir} | {i, IncludeDir} | {d, Def} | OtherOptions
e OutDir = atom() | string()
e IncludeDir = atom() | string()
¢ Result = {ok, CompiledModules} | {error, Reason}
e CompiledModules = [CompiledModule]
e CompiledModule = atom() | string()

compile_all/0 evaluates compile/1 for all . erl files found in the current working
directory Dir.

compile_all/1 evaluates compile/1 for all . erl files found in the directory Dir.
compile_all/2 evaluates compile/2 for all . erl files found in the directory Dir.
Example:

3> coast:compile_all().
{ok, ["can","test"]}

run(Module, Function, ArgumentList) -> Result

Types:
e Module = atom()

48 Tools Application (TOOLS)

Tools Reference Manual coast (Module)

e Function = atom()

e ArgumentList = [Args]

e Result = term()

run/3 applies (the presumably coast-compiled) Function in Module on ArgumentList.
The function in question must have been exported from Module. The length of the
ArgumentList is the arity of the function.

A function in a coast-compiled module cannot be started from the shell directly, it has
to be started either using the function run/3 or from another process than the shell.

Example:

4> coast:run(can,start, [10]).
<0.91.0>

mod_calls(Modules) -> Result

Types:

e Modules = ModuleName | [ModuleName]

¢ ModuleName = atom()

¢ Result = {module_calls, ModuleResults} | {error, Reason}

¢ ModuleResults = [ModuleResult]

¢ ModuleResult = {ModuleName, TotalCalls, ExternalCalls,
InternalNonRecursiveCalls}

e TotalCalls = ExternalCalls = InternalNonRecursiveCalls = integer()

¢ Reason = {not_coast_compiled, ModuleName}

mod_calls/1 lists the number of times Modules have been called. The listing is
presented module by module, with the following data:

TotalCalls The total number of times the module (i.e., the functions in the module)
has been called. This number is the sum of both internal calls and calls made from
other modules.

ExternalCalls The number of times the module (i.e., the functions in the module)
has been called from other modules.

InternalNonRecursiveCalls The number of times the module has been called
non-recursively by itself. Here a recursive module call is defined as when the
module (i.e., a function in the module) calls itself (i.e., the same or another
function in the module). Using this definition, it follows that a module can never
call itself non-recursively, meaning that InternalNonRecursiveCalls always
equals to O (zero). (The reason for nevertheless presenting it is to produce results
having the same format from the mod_calls/1, func_calls/1 and
clause_calls/1 functions.)

Example:

5> coast:mod_calls(can).

{module_calls, [{can,37,3,0}]1}

6> coast:mod_calls([can,test]).
{module_calls, [{can,37,3,0},{test,0,0,0}1%}

func_calls (Modules) -> Result

Types:

Tools Application (TOOLS) 49

coast (Module) Tools Reference Manual

¢ Modules = ModuleName | [ModuleName]

¢ ModuleName = atom()

e Result = {function_calls, FunctionResults} | {error, Reason}

e FunctionResults = [FunctionResult]

¢ FunctionResult = {Function, TotalCalls, ExternalCalls, InternalNonRecursiveCalls}
e Function = {ModuleName, FunctionName, Arity}

e FunctionName = atom()

e Arity = integer()

e TotalCalls = ExternalCalls = InternalNonRecursiveCalls = integer()

e Reason = {not_coast_.compiled, ModuleName}

func_calls/1 lists the number of times the functions in Modules have been called. The

listing is presented in order, module by module and function by function, with the
following data:

TotalCalls The total number of times the function in question has been called. This
number is the sum of both internal calls (i.e., calls made from the same module)
and calls made from other modules.

ExternalCalls The number of times the function in question has been called from
other modules.

InternalNonRecursiveCalls The number of times the function in question has been
called non-recursively from the same module (i.e., by other functions in the same
module).

Example:

7> coast:func_calls(can).

{function_calls, [{{can,create_rects,2},1,0,1},
{{can,create_rects,3},11,0,1},
{{can,event_loop,2},20,0,1},
{{can,f,1},1,0,13},
{{can,mk_canvas,1},1,1,0},
{{can,prov,1},2,1,1},
{{can,prov2,1%},0,0,0%},
{{can,start,1},1,1,0}]1}

clause_calls(Modules) -> Result

Types:

¢ Modules = ModuleName | [ModuleName]

¢ ModuleName = atom()

e Result = {clause_calls, ClauseResults} | {error, Reason}

e ClauseResults = [ClauseResult]

e ClauseResult = {Clause, TotalCalls, ExternalCalls, InternalNonRecursiveCalls}
e Clause = {ModuleName, FunctionName, Arity, ClauseNumber}

e FunctionName = atom()

e Arity = ClauseNumber = integer()

e TotalCalls = ExternalCalls = InternalNonRecursiveCalls = integer()
e Reason = {not_coast_compiled, ModuleName}

50 Tools Application (TOOLS)

Tools Reference Manual coast (Module)

clause_calls/1 lists the number of times the function clauses in Modules have been
called. The listing is presented in order, module by module, function by function and
clause by clause. To distinguish between clauses in a function, they are numbered
sequentially, the first clause encountered getting number 1 (one). For each clause the
following data is presented:

TotalCalls The total number of times the function clause in question has been called.
This number is the sum of both internal calls (i.e., calls made from the same
module) and calls made from other modules.

ExternalCalls The number of times the function clause in question has been called
from other modules.

InternalNonRecursiveCalls The number of times the function clause in question has
been called non-recursively from the same module (i.e., by other functions in the
same module). (Please note that a call from another clause in the same
function also is a recursive call!)

Example:

8> coast:clause_calls(can).

{clause_calls, [{{can,create_rects,2,1},1,0,1},
{{can,create_rects,3,1},10,0,1%},
{{can,create_rects,3,2},1,0,0%},
{{can,event_loop,2,1},20,0,1},
{{can,f,1,1},1,0,1},
{{can,mk_canvas,1,1},1,1,07},
{{can,prov,1,1},1,0,1},
{{can,prov,1,2},1,1,0},
{{can,prov2,1,1},0,0,0},
{{can,prov2,1,2},0,0,0},
{{can,start,1,1},1,1,0}]1}

mod_coverage (Modules) -> Result

Types:

e Modules = ModuleName | [ModuleName]

¢ ModuleName = atom()

¢ Result = {module_coverage, ModuleResults} | {error, Reason}
¢ ModuleResults = [ModuleResult]

¢ ModuleResult = {ModuleName, Covered, Uncovered}

e Covered = Uncovered = integer()

¢ Reason = {not_coast_compiled, ModuleName}
mod_coverage/1 lists the number of covered and uncovered lines of code in Modules.
The listing is presented module by module.

Example:

9> coast:mod_coverage(can) .
{module_coverage, [{can,22,4}]1}

func_coverage (Modules) -> Result

Types:
e Modules = ModuleName | [ModuleName]

Tools Application (TOOLS) 51

coast (Module) Tools Reference Manual

¢ ModuleName = atom()

e Result = {function_coverage, FunctionResults} | {error, Reason}
e FunctionResults = [FunctionResult]

e FunctionResult = {Function, Covered, Uncovered}

e Function = {ModuleName, FunctionName, Arity}

e FunctionName = atom()

e Arity = integer()

e Covered = Uncovered = integer()

¢ Reason = {not_coast_compiled, ModuleName}
func_coverage/1 lists, for each function in Modules, the number of covered and
uncovered lines of code.

Example:

10> coast:func_coverage(can).

{function_coverage, [{{can,create_rects,2},1,0%},
{{can,create_rects,3},5,0},
{{can,event_loop,2},5,2},
{{can,f,1},1,0},
{{can,mk_canvas,1},6,0},
{{can,prov,1},3,0},
{{can,prov2,1},0,2},
{{can,start,1},1,0}1%}

clause_coverage (Modules) -> Result

Types:

¢ Modules = ModuleName | [ModuleName]

¢ ModuleName = atom()

e Result = {clause_coverage, ClauseResults} | {error, Reason}

e ClauseResults = [ClauseResult]

e ClauseResult = {Clause, Covered, Uncovered}

e Clause = {ModuleName, FunctionName, Arity, ClauseNumber}
e FunctionName = atom()

e Arity = integer()

e ClauseNumber = integer()

e Covered = Uncovered = integer()

¢ Reason = {not_coast_compiled, ModuleName}
clause_coverage/1 lists, for each function clause in Modules, the number of covered

and uncovered lines of code. To distinguish between clauses in a function, they are
numbered sequentially, the first clause encountered getting number 1 (one).

Example:

11> coast:clause_coverage(can) .

{clause_coverage, [{{can,create_rects,2,1},1,0%},
{{can,create_rects,3,1},4,0},
{{can,create_rects,3,2},1,0},
{{can,event_loop,2,1},5,2},
{{can,f,1,1},1,0%},
{{can,mk_canvas,1,1},6,0},
{{can,prov,1,1},1,0},

52 Tools Application (TOOLS)

Tools Reference Manual coast (Module)

{{can,prov,1,2},2,0},
{{can,prov2,1,1},0,1},
{{can,prov2,1,2},0,1},
{{can,start,1,1},1,0}1}

analyse_to_file(Modules) -> Result
Types:
¢ Modules = ModuleName | [ModuleName]
¢ ModuleName = atom()
Result = {ok, Files} | {error, Reason}
Files = [FileName]
FileName = string()
Reason = {not_coast_compiled, ModuleName} | OtherReason

analyse_to_file/1 performs a detailed coverage analysis, showing the number of times
each line in Modules has been called so far. The result is stored in FileNames (one file
for each module).

Example:
12> coast:analyse_to_file([can,test]).

{ok, ["/clearcase/otp/tools/devtools/tools/ebin/COAST/can.COAST.out",
"/clearcase/otp/tools/devtools/tools/ebin/COAST/test.COAST.out"]}

known modules() -> Result
Types:
¢ Result = [ModuleName]
¢ ModuleName = atom()

known_modules/0 lists the modules that the coast program is aware of, i.e., the
coast-compiled modules that so far, during this session working with coast, have been
coast-compiled or subject to execution. The absence of a module in the list probably
means it has never been coast-compiled. The presence of an unexpected module in the
list probably means that an old coast-compiled module has been executed.

Example:

13> coast:known_modules().
[can,test]

source_files(Modules) -> Result

Types:

e Modules = ModuleName | [ModuleName]
¢ ModuleName = atom()

e Result = [ModuleResult]

e ModuleResult = FileName | {error, Reason}
e FileName = string()

e Reason = {no_such_module, ModuleName} | {not_coast_.compiled, ModuleName} |
OtherReason

Tools Application (TOOLS) 53

coast (Module) Tools Reference Manual

source_files/1 lists the source files that the coast-compiled modules specified in
Modules originates from.

Result is a list containing (for each module in Modules) either the corresponding
source file found, or an error.

This function is useful if one wants to make sure that the correct module actually is the
one being subject to coverage and call statistics analysis.

Example:

14> coast:source_files(coast:known_modules()).
["/clearcase/otp/tools/devtools/tools/ebin/can.erl",
"/clearcase/otp/tools/devtools/tools/ebin/test.erl"]

15> c(test).

{ok,test}

16> coast:source_files([can,xxx,test]).
["/clearcase/otp/tools/devtools/tools/ebin/can.erl",
{error,{no_such_module,xxx}},
{error,{not_coast_compiled,test}}]

clear (Modules) -> ok

Types:

¢ Modules = ModuleName | [ModuleName]

¢ ModuleName = atom()

clear/1 discards all coverage and call statistics data, concerning one or more modules,
that has been stored (in the internal database) up to the present. (Trying to analyse any

of the modules cleared will then yield the same result as when they still not have been
subject to any execution.)

clear_all() -> ok

quit() -> ok

54

clear_all/o0 discards all coverage and call statistics data that has been stored (in the
internal database) up to the present.

quit/0 stops the server controlling the collected coverage and call statistics data.

Note

This module has replaced the cover module, which is now obsolete.

Tools Application (TOOLS)

Tools Reference Manual eprof (Module)

eprof (Module)

This module is used to profile a program to find out how the execution time is used.

In R7 the eprof module uses the new local call trace feature, meaning that you no
longer need to specially compile any of the modules. Eprof will automatically turn on
local trace for all loaded modules (any for any that are loaded when during a profile
session). When profiling is stopped, Eprof will disable local call trace for all functions in
all loaded modules.

The R7 version is faster than previous versions. But you can still expect significant
slowdowns, in most cases at least 100 percent.

Exports

start() -> {ok, Pid} | {error, {already.started, Pid}}
stop() -> stopped

profile(Rootset, Mod, Fun, Args)

This function evaluates the expression spawn (Mod, Fun, Args) and profiles the
process which evaluates it. The profiling is done for one function with a set of
arguments in a certain root set of processes. All processes which are created by that
function are profiled, together with its root set and all processes which are created by
processes in that root set.

The profiling is terminated when the given function returns a value. The application
must ensure that the function is truly synchronized and that no work continues after the
function has returned a value.

The root set is a list of Pids or atoms. If atoms, they are assumed to be registered
processes.

profile(Rootset) -> profiling | error

Sometimes, it is not possible to start profiling with the help of a single function.

For example, if some external stimuli enters the Erlang runtime system through a port,
and the handling of this stimuli is to be profiled until a response goes out through a
port, it may be appropriate to change the source code and insert an explicit call to this
function. The profile(Rootset) function starts the profiling for processes included in
Rootset.

stop_profiling() -> profiling stopped | profiling already_stopped

Tools Application (TOOLS) 55

eprof (Module) Tools Reference Manual

This function stops the collection of statistics performed by the eprof process. The
eprof process then holds data which can be analysed at a later stage.

analyse() -> ok

When the profiling has ended - profiling using profile/4, or profile/1 together with
stop_profiling/0 - the eprof process can print the data collected during the run. The
printed profiling statistics show the activity for each process.

total_analyse() -> ok

With this function, the total results of profiling is printed irrespective which process
each function has used.

log(File) -> ok

This function ensures that a copy of all printouts are sent to both File and the screen.

Notes

The actual supervision of execution times is in itself a CPU intensive activity. A message
is sent to the eprof process for every function call that is made by the profiled code.

SEE ALSO

compile(3)

56 Tools Application (TOOLS)

Tools Reference Manual exref (Module)

exref (Module)

Note:
The exref tool has some limitations and is no longer supported. Please consider
using the new cross reference tool xref [page 68].

The exref tool is an incremental cross reference server which builds a cross reference
graph for all modules loaded into it. Information which can be derived from the cross
reference graph includes use graphs and module dependencies. The call graph is
represented as a directed graph (see digraph(3)). A function vertex is represented as:

{{Mod, Fun, Arity}, {Type, File, Line}}

In this code:

Type = local | exported | {exported, compiler} |
{local, compiler} | {void(), record}

A call edge is represented as:

{EdgeId, {Modl, Funl, Arityl}, {Mod2, Fun2, Arity2}, Line}.

Exports

start()-> {ok, Pid} | {error, {already started, Pid}}

Starts the exref server. The exref server must be started before any other functions in
module exref can be used.

stop() -> stopped

Stops the exref server.

module (Module) -> true

This is a short form for calling module (Module, [search,verbose]) (see below).

module (Module, Options) -> true
Types:

Tools Application (TOOLS) 57

exref (Module) Tools Reference Manual

e Module = atom() | [atom()]
e Options = [Option]
e Option =search | verbose | auto | warnings | recursive | no_libs

Loads the module Module into the cross reference graph. Module can also be a list of
modules. Options is a list with the following possible options:

search Searches for source file in code path and replaces the path X/ebin with the
path X/src.

verbose Creates an output of module names during loading.

auto Automatically loads all referenced modules into the cross reference graph, with
the exception of modules specified with the excludes/1 function. See also the
no_libs option.

recursive Recursively includes all files in a directory. See also the no_1ibs option.

warnings Emits warnings about the application and the spawning of variables. The
reason for this is that apply, with variable modules or functions, leads to an
incomplete call graph. The apply call will be inserted into the call graph instead of
the actual call. The same applies to spawn.

no_libs Used together with the options auto and recursive, this options prevents
modules in the standard libraries from being loaded into the cross reference graph.

directory(Directory)
directory(Directory, Options)

Loads all modules found in the directory Directory into the cross reference graph.
Options are the same as for module/2. The function directory/1 is equivalent to
directory(Directory, [verbose]).

directory.module(Directory, Module)
directory.module(Directory, Module, Options)

Loads the module Module located in the directory Directory. Module can also be a list
of modules. Options are the same as for module/2. The function directory module/2
is equivalent to directory module(Directory,Module, [verbose])

delete_module (Module)

Deletes the module Module from the cross reference graph. Module can also be a list of
modules.

excludes (Modules)

Appends the modules of the Modules list to the list of modules which are excluded
from the cross reference graph.

includes(Dirs)

Appends the directories of the Dirs list to the include search path for Erlang include
files (see epp(3)).

defs(Defs)

58 Tools Application (TOOLS)

Tools Reference Manual exref (Module)

Appends the definitions in the Defs list to the definition list used by epp (see epp(3)).

analyse(Type [,Argl) -> Result

Performs various analyses of the cross reference graph and returns an Erlang term with a
format that depends on the Type of analyse. Some analyse types can have an optional
argument Arg. The result can be formatted to a textual printout with pretty/1. The
available Type and Arg combinations are:

call Emits the calls from the functions, for all functions in the graph.

call, Module Emits the calls for all functions in the module Module,

call, Function Emits the calls from the function Function, which has the format
{Mod, Fun, Arity}.

use Emits the use of functions, for all functions in the graph.

use, Module Emits the use of functions, for all functions of the module Module.

use, Function Emits the use of the function Function, which has the format {Mod,
Fun, Arity}.

module _call Emits the module dependency graph. For example, if module M1 has calls
to M2, this analysis emits M1: M2 ...

module use Emits a module graph which is the reverse of the module dependency
graph. For example, if module M1 is called by modules M2 and M3, the analysis
emits M1: M2 M3.

exportsnot_called Reports all exported functions which are not used. This means
that all entry points to a program can be found, also exported functions that should
be local.

locals not_called Reports all local functions which are used. These functions can be
removed without the program being affected.

undefined functions Reports all function calls which are calls to functions outside
the cross reference graph. The library functions and Erlang BIFs are never
considered undefined.

recursive modules Reports modules that are (partially) recursively defined, which
means that they contain function calls outside the module which in turn call the
functions in that module.

user_defined, {Mod, Fun} Calls user-defined analysis. The reason for user-defined
analysis being attached in this way is that the call graph cannot easily be copied to
other processes. It should be performed within the exref server process.
The function definition must be as follows for user supplied analysis:

my_analysis(G) ->
io:format ("MY ANALYSIS ... “n", Args),

G is the cross reference graph as described above. The return value from a
user-defined analysis is ignored.

pretty(AnalyseResult) -> ok

This function pretty-prints a verbose textual representation of AnalyseResult which
must be the output from analyse (Type[,Argl). The result from a user-defined
analysis cannot be used as input to this function.

Tools Application (TOOLS) 59

exref (Module) Tools Reference Manual

See Also

digraph(3), xref [page 68](3)

60 Tools Application (TOOLS)

Tools Reference Manual instrument (Module)

Instrument (Module)

The module instrument contains support for studying the resource usage in an Erlang
runtime system. Currently, only the allocation of memory can be studied.

Note:
Note that this whole module is experimental, and the representations used as well as
the functionality is likely to change in the future.

Some of the functions in this module are only available in Erlang compiled with
instrumentation; otherwise they exit with badarg. This is noted below for the
individual functions. To start an Erlang runtime system with instrumentation, use the
command-line option -instr to the erl command.

The basic object of study in the case of memory allocation is a memory allocation list,
which contains one descriptor for each allocated memory block. Currently, a descriptor
is a 4-tuple

{Type, Address, Size, Pid}

where Type indicates what the block is used for, Address is its place in memory, and
Size is its size, in bytes. Pid is either undefined (if the block was allocated by the
runtime system itself) or a tuple {A,B,C} representing the process which allocated the
block, which corresponds to a pid with the user-visible representation <A.B.C> (the
function c:pid/3 can be used to transform the numbers to a real pid).

Various details about memory allocation:

On Unix (for example, Solaris), memory for a process is allocated linearly, usually from
0. The current size of the process cannot be obtained from within Erlang, but can be
seen with one of the system statistics tools, e.g., ps or top. (There may be a hole above
the highest used memory block; in that case the functions in the instrument module
cannot tell you about it; you have to compare the High value from mem_limits/1 with
the value which the system reports for Erlang.)

In the memory allocation list, certain small objects do not show up individually, since
they are allocated from blocks of 20 objects (called “fixalloc” blocks). The blocks
themselves do show up, but the amount of internal fragmentation in them currently
cannot be observed.

Overhead for instrumentation: instrumented memory allocation uses 28 bytes extra for
each block. The time overhead for managing the list is negligible.

Tools Application (TOOLS) 61

instrument (Module) Tools Reference Manual

Exports

holes(AllocList) -> ok

Types:

e AllocList = [Desc]

e Desc = {int(), int(), int(), pid_tuple()}
e pid_tuple() = {int(), int(), int()}

Prints out the size of each hole (i.e., the space between allocated blocks) on the
terminal. The list must be sorted (see sort/1).

mem limits(AllocList) -> {Low, High}
Types:
e AllocList = [Desc]
e Desc = {int(), int(), int(), pid_tuple()}
e pid_tuple() = {int(), int(), int()}
e Low = High = int()

returns a tuple {Low, High} indicating the lowest and highest address used. The list
must be sorted (see sort/1).

memory_data() -> AllocList

Types:

e AllocList = [Desc]

e Desc = {int(), int(), int(), pid_tuple()}
e pid_tuple() = {int(), int(), int()}

Returns the memory allocation list. Only available in an Erlang runtime system

compiled for instrumentation. Blocks execution of other processes while the list is
collected.

read memory_data(File) -> {ok, AllocList} | {error, Reason}
Types:
e File = string()
e AllocList = [Desc]
e Desc = {int(), int(), int(), pid_tuple()}
e pid_tuple() = {int(), int(), int()}

Reads a memory allocation list from the file File. The file is assumed to have been
created by store memory_data/1. The error codes are the same as for file:consult/1.

sort(AllocList) -> AllocList
Types:
e AllocList = [Desc]

e Desc = {int(), int(), int(), pid_tuple()}
e pid_tuple() = {int(), int(), int()}

62 Tools Application (TOOLS)

Tools Reference Manual instrument (Module)

Sorts a memory allocation list so the addresses are in ascending order. The list
arguments to many of the functions in this module must be sorted. No other function in
this module returns a sorted list.

storememory._data(File) -> ok
Types:
e File = string()

Stores the memory allocation list on the file File. The contents of the file can later be
read using read memory_data/1. Only available in an Erlang runtime system compiled
for instrumentation. Blocks execution of other processes while the list is collected (the
time to write the data is around 0.1 ms/line on a Sun Ultra 1).

Failure: badarg if the file could not be written.

sum_blocks(AllocList) -> int()
Types:
e AllocList = [Desc]
e Desc = {int(), int(), int(), pid_tuple()}
e pid_tuple() = {int(), int(), int()}

Returns the total size of the memory blocks in the list. The list must be sorted (see
sort/1).

type_string(Type) -> string()
Types:
o Type =int()

Translates a memory block type number into a readable string, which is a short
description of the block type.

Failure: badarg if the argument is not a valid block type number.

Tools Application (TOOLS) 63

make (Module) Tools Reference Manual

make (Module)

These functions are similar to the UNIX type Make functions. They can be used to
develop programs which consist of several files. make can also be used to recompile
entire directories. If updates are made, make exits with the value up_to_date.

Exports

all() -> up_to_date | error

all(Options)

This function is the same as al1([]).

-> up-to_date | error

Checks all Erlang files in the current directory and compiles those files which have been
modified after the creation of the object file. Options is a list of valid options for make,
together with valid options for compile.

Compares time stamps of . erl and object code files. If the time stamp of the source file
is later than the object file, or the object file is missing, the source file is recompiled.

The list of files to be compared is taken from the file Emakefile, if it exists. Failing this,
it is taken from the current directory.

This function returns error if compilation fails for any file.
The elements of Options can be:

noexec NoO execution mode. It just specifies that the files should be compiled.
load Load mode. Loads all recompiled files.

netload Net load mode. Loads all recompiled files on the compiling node, and all
other nodes in the network, with net :broadcast/3,

par make is used in parallel on all nodes included in the expression (node () | nodes
O
For example:
1> make:all ([par, netload, tracel).

make is used in parallel on all nodes. This ensures that the produced object files are
loaded on all nodes and the trace flag is passed to the compiler. This produces
traceable code.

files(FileList) -> up-to_date

files(FileList, Options) -> up_to_date | error

64

Tools Application (TOOLS)

Tools Reference Manual make (Module)

This is the same as al1/0 and all/1, but with an explicit list of files.

This function returns error if compilation fails for any file or if a non-existing file is
specified.

Files

This program assumes that a file named Emakefile exists and that it is located in the
current directory. The file must be named Emakefile and it must contain the names of
the files concerned as atoms, each followed by a period. For example:

filel.
file2.
>, ./foo/file3’.
’Filed’.
~ (a new line)

If the Emakefile does not exist, all Erlang files in the current directory are used as
input. This is useful when recompiling entire directories.

Tools Application (TOOLS) 65

tags (Module) Tools Reference Manual

tags (Module)

A TAGS file is used by Emacs to find function and variable definitions in any source file in
large projects. This module can generate a TAGS file from Erlang source files. It
recognises functions, records, and macro definitions.

Exports

file(File [, Options])
Create a TAGS file for the file File.

files(FileList [, Optiomns])
Create a TAGS file for the files in the list FileList.

dir(Dir [, Options])
Create a TAGS file for all files in directory Dir.

dirs(DirList [, Options])

Create a TAGS file for all files in any directory in DirList.

subdir(Dir [, Options])

Descend recursively down the directory Dir and create a TAGS file based on all files
found.

subdirs(DirList [, Options])

Descend recursively down all the directories in DirList and create a TAGS file based on
all files found.

root ([Options])

Create a TAGS file covering all files in the Erlang distribution.

66 Tools Application (TOOLS)

Tools Reference Manual tags (Module)

OPTIONS

The functions above have an optional argument, Options. It is a list which can contain
the following elements:

e {outfile, NameOfTAGSFile} Create a TAGS file named NameOfTAGSFile.

e {outdir, NameOfDirectory} Create a file named TAGS in the directory
NameOfDirectory.

The default behaviour is to create a file named TAGS in the current directory.

Examples

e tags:root([{outfile, "root.TAGS"}]).
This command will create a file named root . TAGS in the current directory. The
file will contain references to all Erlang source files in the Erlang distribution.

e tags:files(["foo.erl", "bar.erl", "baz.erl"], [{outdir,
"../projectdir"}]).
Here we create file named TAGS placed it in the directory . ./projectdir. The file
contains information about the functions, records, and macro definitions of the
three files.

SEE ALSO

e Richard M. Stallman. GNU Emacs Manual, chapter “Editing Programs”, section
“Tag Tables”. Free Software Foundation, 1995.

e Anders Lindgren. The Erlang editing mode for Emacs. Ericsson, 1998.

Tools Application (TOOLS) 67

xref (Module) Tools Reference Manual

xref (Module)

xref is a cross reference tool that can be used for finding dependencies between
functions, modules, applications and releases.

Calls are pairs (From, To) of functions, modules, applications or releases. From is said
to call To, and To is said to be used by From. Calls between functions are either local
calls like £ (), or external calls like m: £ (). Module data, which are extracted from BEAM
files, include local functions, exported functions, local calls and external calls. By
default, calls to built-in functions (BIF) are ignored, but if the option builtins,
accepted by some of this module’s functions, is set to true, calls to BIFs are included as
well. It is the analyzing OTP version that decides what functions are BIFs. Functional
objects are assumed to be called where they are created (and nowhere else). Unresolved
calls are calls to apply or spawn with variable module or variable arguments. Examples
are M:F(a), apply(M, £, [al), spawn(m, £, Args). The unresolved calls are a subset
of the external calls. Calls where the function is variable but the module and the
number of arguments are known, are resolved by replacing the function with the atom
’$F_EXPR’.

Warning:
Unresolved calls make module data incomplete, which implies that the results of
analyses may be invalid.

Applications are collections of modules. The modules’ BEAM files are located in the
ebin subdirectory of the application directory. The name of the application directory
determines the name and version of the application. Releases are collections of
applications located in the 1ib subdirectory of the release directory. There is more to
read about applications and releases in the Design Principles book.

Xref servers are identified by names, supplied when creating new servers. Each xref
server holds a set of releases, a set of applications, and a set of modules with module
data. Xref servers are independent of each other, and all analyses are evaluated in the
context of one single xref server (exceptions are the functions m/1 and d/1 which do not
use servers at all). The mode of an xref server determines what module data are
extracted from BEAM files as modules are added to the server. Starting with R7, BEAM
files contain so called debug information, which is an abstract representation of the
code. In functions mode, which is the default mode, function calls and line numbers
are extracted from debug information. In modules mode, debug information is ignored
if present, but dependencies between modules are extracted from other parts of the
BEAM files. The modules mode is significantly less time and space consuming than the
functions mode, but the analyses that can be done are limited.

An analyzed module is a module that has been added to an xref server together with its
module data. A library module is a module located in some directory mentioned in the
library path. A library module is said to be used if some of its exported functions are
used by some analyzed module. An unknown module is a module that is neither an

68 Tools Application (TOOLS)

Tools Reference Manual xref (Module)

analyzed module nor a library module, but whose exported functions are used by some
analyzed module. An unknown function is a used function that is neither local or
exported by any analyzed module nor exported by any library module. An undefined
function is an externally used function that is not exported by any analyzed module or
library module. With this notion, a local function can be an undefined function, namely
if it is used externally from some module. All unknown functions are also undefined
functions; there is a figure [page 37] in the User’s Guide that illustrates this relationship.

Before any analysis can take place, module data must be set up. For instance, the cross
reference and the unknown functions are computed when all module data are known.
The functions that need complete data (analyze, q, variables) take care of setting up
data automatically. Module data need to be set up (again) after calls to any of the add,
replace, remove, set_library_path or update functions.

The result of setting up module data is the Call Graph. A (directed) graph consists of a
set of vertices and a set of (directed) edges. The vertices of the Call Graph are the
functions of all module data: local and exported functions of analyzed modules; used
BIFs; used exported functions of library modules; and unknown functions. The
functions module_info/0, 1 added by the compiler are included among the exported
functions, but only when called from some module. The edges are the function calls of
all module data. A consequence of the edges being a set is that there is only one edge if
a function is used locally or externally several times on one and the same line of code.

The Call Graph is represented by Erlang terms (the sets are lists), which is suitable for
many analyses. But for analyses that look at chains of calls, a list representation is much
too slow. Instead the representation offered by the digraph module is used. The
translation of the list representation of the Call Graph - or a subgraph thereof - to the
digraph representation does not come for free, so the language used for expressing
gueries to be described below has a special operator for this task and a possibility to save
the digraph representation for subsequent analyses.

In addition to the Call Graph there is a graph called the Inter Call Graph. This is a
graph of calls (From, To) such that there is a chain of calls from From to To in the Call
Graph, and each of From and To is an exported function or an unused local function.
The vertices are the same as for the Call Graph.

Calls between modules, applications and releases are also directed graphs. The types of
the vertices and edges of these graphs are (ranging from the most special to the most
general): Fun for functions; Mod for modules; App for applications; and Rel for releases.
The following paragraphs will describe the different constructs of the language used for
selecting and analyzing parts of the graphs, beginning with the constants:

e Expression ::= Constants

e Constants ::= Consts | Consts : Type | RegExpr

e Consts ::= Constant | [Constant, ...] | {Constant, ...}
¢ Constant ::= Call | Const

e Call ::= FunSpec -> FunSpec | {MFA, MFA} | AtomConst -> AtomConst |
{AtomConst, AtomConst}

e Const ::= AtomConst | FunSpec | MFA

e AtomConst ::= Application | Module | Release

e FunSpec ::= Module : Function / Arity

e MFA ::= {Module, Function, Arity}

e RegExpr ::= RegString : Type | RegFunc | RegFunc : Type

Tools Application (TOOLS) 69

xref (Module)

Tools Reference Manual

70

e RegFunc ::= RegModule : RegFunction / RegArity
¢ RegModule ::= RegAtom

e RegFunction ::= RegAtom

e RegArity ::= RegString | Number | _

e RegAtom ::= RegString | Atom | _

e RegString ::= - a regular expression, as described in the regexp module, enclosed
in double quotes -

e Type ::=Fun | Mod | App | Rel

e Function ::= Atom

e Application ::= Atom

e Module ::= Atom

e Release ::= Atom

e Arity ::= Number

e Atom ::= - same as Erlang atoms -

e Number ::= - same as non-negative Erlang integers -

Examples of constants are: kernel, kernel->stdlib, [kernel, sasl], [pg ->
mnesia, {tv, mnesia}] : Mod. Itisan error if an instance of Const does not match
any vertex of any graph. If there are more than one vertex matching an untyped
instance of AtomConst, then the one of the most general type is chosen. A list of
constants is interpreted as a set of constants, all of the same type. A tuple of constants
constitute a chain of calls (which may, but does not have to, correspond to an actual
chain of calls of some graph). Assigning a type to a list or tuple of Constant is
equivalent to assigning the type to each Constant.

Regular expressions are used as a means to select some of the vertices of a graph. A
RegExpr consisting of a RegString and a type - an example is "xref_.*" : Mod - is
interpreted as those modules (or applications or releases, depending on the type) that
match the expression. Similarly, a RegFunc is interpreted as those vertices of the Call
Graph that match the expression. An example is "xref_.*":"add_.*"/"(2]3)", which
matches all add functions of arity two or three of any of the xref modules. Another
example, one that matches all functions of arity 10 or more: _: /" [1-9].+". Here _is
an abbreviation for ".*", i.e. the regular expression that matches everything.

The syntax of variables is simple:

e Expression ::= Variable
e Variable ::= - same as Erlang variables -

There are two kinds of variables: predefined variables and user variables. Predefined
variables hold set up module data, and cannot be assigned to but only used in queries.
User variables on the other hand can be assigned to, and are typically used for
temporary results while evaluating a query, and for keeping results of queries for use in
subsequent queries. The predefined variables are (variables marked with (*) are
available in functions mode only):

E Call Graph Edges (*).
vV Call Graph Vertices (*).

M Modules. All modules: analyzed modules, used library modules, and unknown
modules.

Tools Application (TOOLS)

Tools Reference Manual

xref (Module)

A
R
ME
AE
RE
L
X

o =

U
uu

XU

LU

LC
XC
AM
UM
LM
uc
EE

Applications.
Releases.
Module Edges. All module calls.
Application Edges. All application calls.
Release Edges. All release calls.
Local Functions (*). All local functions of analyzed modules.

Exported Functions. All exported functions of analyzed modules and all used
exported functions of library modules.

Functions (*).

Used BIFs. B can be non-empty if builtins is false for all analyzed modules,
namely if there are unresolved calls (some of the apply and spawn functions are
BIFs).

Unknown Functions.

Unused Functions (*). All local and exported functions of analyzed modules that
have not been used.

Externally Used Functions. Functions of all modules - including local functions -
that have been used in some external call.

Locally Used Functions (*). Functions of all modules that have been used in some
local call.

Local Calls (*).

External Calls (*).
Analyzed Modules.
Unknown Modules.

Used Library Modules.
Unresolved Calls (*).

Inter Call Graph Edges (*).

These are a few facts about the predefined variables (the set operators + (union) and -
(difference) as well as the cast operator (Type) are described below):

e FisequaltoL + X.

VisequaltoX + L + B + U, where X, L, B and U are pairwise disjoint (that is, have
no elements in common).

e UUisequal toVv - (XU + LU), where LU and XU may have elements in common.
Put in another way:

e Visequal toUU + XU + LU.

e Eisequal to LC + XC. Note that LC and XC may have elements in common, namely
if some function is used locally and externally from one and the same function.

e U is a subset of XU.
e B is a subset of XU.
e LU is equal to range LC.
e XU is equal to range XC.
e LU isasubset of F.
UU is a subset of F.

Tools Application (TOOLS) 71

xref (Module)

Tools Reference Manual

72

Misequal to AM + LM + UM, where AM, LM and UM are pairwise disjoint.
e ME is equal to (Mod) E.
e AE isequal to (App) E.
e RE is equal to (Rel) E.

e (Mod) Vis asubset of M. Equality holds if all analyzed modules have some local,
exported function or unknown function.

e (App) Misasubset of A. Equality holds if all applications have some module.
e (Rel) Aisasubset of R. Equality holds if all releases have some application.

An important notion is that of conversion of expressions. The syntax of a cast expression
is:

e Expression ::= (Type) Expression

The interpretation of the cast operator depends on the named type Type, the type of
Expression, and the structure of the elements of the interpretation of Expression. If
the named type is equal to the expression type, no conversion is done. Otherwise, the
conversion is done one step at a time; (Fun) (App) RE, for instance, is equivalent to
(Fun) (Mod) (App) RE. Now assume that the interpretation of Expression is a set of
constants (functions, modules, applications or releases). If the named type is more
general than the expression type, say Mod and Fun respectively, then the interpretation
of the cast expression is the set of modules that have at least one of their functions
mentioned in the interpretation of the expression. If the named type is more special
than the expression type, say Fun and Mod, then the interpretation is the set of all the
functions of the modules (in modules mode, the conversion is partial since the local
functions are not known). The conversions to and from applications and releases work
analogously. For instance, (App) "xref_.*" : Mod returns all applications containing
at least one module such that xref_ is a prefix of the module name.

Now assume that the interpretation of Expression is a set of calls. If the named type is
more general than the expression type, say Mod and Fun respectively, then the
interpretation of the cast expression is the set of calls (M1, M2) such that the
interpretation of the expression contains a call from some function of M1 to some
function of M2. If the named type is more special than the expression type, say Fun and
Mod, then the interpretation is the set of all function calls (F1, F2) such that the
interpretation of the expression contains a call (M1, M2) and F1 is a function of M1 and
F2 is a function of M2 (in modules mode, there are no functions calls, so a cast to Fun
always yields an empty set). Again, the conversions to and from applications and
releases work analogously.

The interpretation of constants and variables are sets, and those sets can be used as the
basis for forming new sets by the application of set operators. The syntax:

e Expression ::= Expression BinarySetOp Expression
e BinarySetOp ::=+ | * | -

+, * and - are interpreted as union, intersection and difference respectively: the union
of two sets contains the elements of both sets; the intersection of two sets contains the
elements common to both sets; and the difference of two sets contains the elements of
the first set that are not members of the second set. The elements of the two sets must
be of the same structure; for instance, a function call cannot be combined with a
function. But if a cast operator can make the elements compatible, then the more
general elements are converted to the less general element type. For instance, M + Fis

Tools Application (TOOLS)

Tools Reference Manual xref (Module)

equivalentto (Fun) M + F,andE - AEisequivalentto E - (Fun) AE. One more
example: X * xref : Mod is interpreted as the set of functions exported by the
module xref; xref : Mod is converted to the more special type of X (Fun, that is)
yielding all functions of xref, and the intersection with X (all functions exported by
analyzed modules and library modules) is interpreted as those functions that are
exported by some module and functions of xref.

There are also unary set operators:

e Expression ::= UnarySetOp Expression
e UnarySetOp ::= domain | range | strict

Recall that a call is a pair (From, To). domain applied to a set of calls is interpreted as
the set of all vertices From, and range as the set of all vertices To. The interpretation of
the strict operator is the operand with all calls on the form (A, A) removed.

The interpretation of the restriction operators is a subset of the first operand, a set of
calls. The second operand, a set of vertices, is converted to the type of the first operand.
The syntax of the restriction operators:

e Expression ::= Expression RestrOp Expression
e RestrOp ::= |

e RestrOp ::= | |

e RestrOp ::= |||

The interpretation in some detail for the three operators:

| The subset of calls from any of the vertices.
|1 The subset of calls to any of the vertices.

11 The subset of calls to and from any of the vertices. For all sets of calls CS and all
sets of vertices VS, CS ||| VS isequivalenttoCS | VS * CS || VS.

Two functions (modules, applications, releases) belong to the same strongly connected
component if they call each other (in)directly. The interpretation of the components
operator is the set of strongly connected components of a set of calls. The
condensation of a set of calls is a new set of calls between the strongly connected
components such that there is an edge between two components if there is some
constant of the first component that calls some constant of the second component.

The interpretation of the of operator is a chain of calls of the second operand (a set of
calls) that passes throw all of the vertices of the first operand (a tuple of constants), in
the given order. The second operand is converted to the type of the first operand. For
instance, the of operator can be used for finding out whether a function calls another
function indirectly, and the chain of calls demonstrates how. The syntax of the graph
analyzing operators:

e Expression ::= Expression GraphOp Expression

e GraphOp ::= components | condensation | of
As was mentioned before, the graph analyses operate on the digraph representation of
graphs. By default, the digraph representation is created when needed (and deleted

when no longer used), but it can also be created explicitly by use of the closure
operator:

Tools Application (TOOLS) 73

xref (Module) Tools Reference Manual

e Expression ::= ClosureOp Expression
e ClosureOp ::= closure

The interpretation of the closure operator is the transitive closure of the operand.

The restriction operators are defined for closures as well; closure E | xref : Modis
interpreted as the direct or indirect function calls from the xref module, while the
interpretation of E | xref : Mod is the set of direct calls from xref. If some graph is
to be used in several graph analyses, it saves time to assign the digraph representation
of the graph to a user variable, and then make sure that each graph analysis operates on
that variable instead of the list representation of the graph.

The lines where functions are defined (more precisely: where the first clause begins)
and the lines where functions are used are available in functions mode. The line
numbers refer to the files where the functions are defined. This holds also for files
included with the -include and -include_1ib directives, which may result in
functions defined apparently in the same line. The line operators are used for assigning
line numbers to functions and for assigning sets of line numbers to function calls. The
syntax is similar to the one of the cast operator:

e Expression ::= (LineOp) Expression
e Expression ::= (XLineOp) Expression
e LineOp ::=Lin | ELin | LLin | XLin
e XLineOp ::= XXL

The interpretation of the Lin operator applied to a set of functions assigns to each
function the line number where the function is defined. Unknown functions and
functions of library modules are assignhed the number O.

The interpretation of some LineOp operator applied to a set of function calls assigns to
each call the set of line numbers where the first function calls the second function. Not
all calls are assigned line numbers by all operators:

e the Lin operator is defined for Call Graph Edges;

e the LLin operator is defined for Local Calls.

e the XLin operator is defined for External Calls.

e the ELin operator is defined for Inter Call Graph Edges.

The Lin (LLin, XLin) operator assigns the lines where calls (local calls, external calls) are
made. The ELin operator assigns to each call (From, To), for which it is defined, each
line L such that there is a chain of calls from From to To beginning with a call on line L.

The XXL operator is defined for the interpretation of any of the LineOp operators
applied to a set of function calls. The result is that of replacing the function call with a
line numbered function call, that is, each of the two functions of the call is replaced by a
pair of the function and the line where the function is defined. The effect of the XXL
operator can be undone by the LineOp operators. For instance, (Lin) (XXL) (Lin) E
is equivalent to (Lin) E.

The +, -, x and # operators are defined for line number expressions, provided the
operands are compatible. The LineOp operators are also defined for modules,
applications, and releases; the operand is implicitly converted to functions. Similarly,
the cast operator is defined for the interpretation of the LineOp operators.

The interpretation of the counting operator is the number of elements of a set. The
operator is undefined for closures. The +, - and * operators are interpreted as the

74 Tools Application (TOOLS)

Tools Reference Manual xref (Module)

obvious arithmetical operators when applied to numbers. The syntax of the counting
operator:

e Expression ::= CountOp Expression
e CountOp ::=#

All binary operators are left associative; for instance, A | B || Cis equivalent to
(A | B) |l c.The following is a list of all operators, in increasing order of precedence:

(Type)

e closure, components, condensation, domain, range, strict

Parentheses are used for grouping, either to make an expression more readable or to
override the default precedence of operators:

e Expression ::= (Expression)

A query is a non-empty sequence of statements. A statement is either an assignment of a
user variable or an expression. The value of an assignment is the value of the right hand
side expression. It makes no sense to put a plain expression anywhere else but last in
gueries. The syntax of queries is summarized by these productions:

e Query ::= Statement, ...
e Statement ::= Assignment | Expression
e Assignment ::= Variable := Expression | Variable = Expression

A variable cannot be assigned a new value unless first removed. Variables assigned to by
the = operator are removed at the end of queries, while variables assigned to by the :=
operator can only be removed by calls to forget.

Types

application() = atom()

arity() = integer()

bool() = true | false

call() = {atom(), atom()} | funcall()
constant() = mfa() | module() | application() | release()
directory() = string()

file(D) = string()

funcall() = {mfa(Q), mfaQ}

function() = atom()

library() = atom()

library path() = path() | code_path
mfa() = {module(), function(), arity(}
mode() = functions | modules

module() = atom()

integer() = int() >= 0

release() = atom()

Tools Application (TOOLS) 75

xref (Module) Tools Reference Manual

string position() = integer() | at_end
variable() = atom()
xref () = atom()

Exports

m(Module) -> [Result] | Error

m(file()) -> [Result] | Error
Types:
e Error = {error, module(), Reason}
e Module = module()

e Reason = {file_error, file(), error()} | {interpreted, module()} | {no-debug_info,
file()} | {no_such_module, module()} | - error from beam_lib:chunks/2 -

e Result = {undefined, [funcall()]} | {unused, [mfa()]}

The given BEAM file (with or without the .beam extension) or the the file found by
calling code:which(Module) is checked for calls to undefined functions [page 69] and
for unused local functions. The code path is used as library path [page 68]. Returns a
list of tuples, where the first element of each tuple is one of:

e undefined, a sorted list of calls to undefined functions;
e unused, a sorted list of unused local functions.

If the BEAM file contains no debug information [page 68], the error message
no_debug_info is returned.

d(directory()) -> [Result] | Error

Types:
e Error = {error, module(), Reason}

e Reason = {file_error, file(), error()} | {unrecognized_file, file()} | - error from
beam_lib:chunks/2 -

e Result = {undefined, [funcall()]} | {unused, [mfa()]}

The modules found in a directory are checked for calls to undefined functions [page 69]
and for unused local functions. The code path is used as library path [page 68]. Returns
a list of tuples, where the first element of each tuple is one of:

e undefined, a sorted list of calls to undefined functions;
e unused, a sorted list of unused local functions.

Only BEAM files that contain debug information [page 68] are checked.

start (xref () [, Options]) -> Return
Types:
¢ Options = [Option] | Option

76 Tools Application (TOOLS)

Tools Reference Manual xref (Module)

e Option = {xref_-mode, mode()} | term()
e Return = {ok, pid()} | {error, {already_started, pid()}}

Creates an xref server [page 68]. The default mode [page 68] is functions. Options
that are not recognized by xref are passed on to gen_server:start/4.

set_default(xref(), Option, Value) -> {ok, 0ldValue} | Error
set_default(xref (), OptionValues) -> ok | Error

Types:

e Error = {error, module(), Reason}

e OptionValues = [OptionValue] | OptionValue

¢ OptionValue = {Option, Value}

e Option = builtins | recurse | verbose | warnings

¢ Reason = {invalid_options, term()}

¢ Value = bool()

Sets the default value of one or more options. The options that can be set this way are:

e builtins, with initial default value false;
e recurse, with initial default value false;
e verbose, with initial default value true;

e warnings, with initial default value true.

The initial default values are set when creating an xref server [page 68].

get_default(xref()) -> [{Option, Value}]
get_default(xref(), Option) -> {ok, Value} | Error
Types:
e Error = {error, module(), Reason}
e Option = builtins | recurse | verbose | warnings
¢ Reason = {invalid_options, term()}
¢ Value = bool()
Returns the default values of one or more options.

add_release(xref (), directory() [, Options]) -> {ok, release()} | Error
Types:
e Error = {error, module(), Reason}
e Options = [Option] | Option
e Option = {builtins, bool()} | {name, release()} | {verbose, bool()} | {warnings,
bool()}
¢ Reason = {application_clash, {application(), directory(), directory()}} | {file_error,

file(), error()} | {invalid_options, term()} | {release_clash, {release(), directory(),
directory()}} | - see also add_directory -

Tools Application (TOOLS) 77

xref (Module) Tools Reference Manual

Adds a release, the applications of the release, the modules of the applications, and
module data [page 68] of the modules to an xref server [page 68]. The applications will
be members of the release, and the modules will be members of the applications. The
default is to use the base name of the directory as release name, but this can be
overridden by the name option. Returns the name of the release.

If the given directory has a subdirectory named 1ib, the directories in that directory are
assumed to be application directories, otherwise all subdirectories of the given directory
are assumed to be application directories. If there are several versions of some
application, the one with the highest version is chosen.

If the mode [page 68] of the xref server is functions, BEAM files that contain no
debug information [page 68] are ignored.

add_application(xref (), directory() [, Options]) -> {ok, application()} | Error

Types:

e Error = {error, module(), Reason}

¢ Options = [Option] | Option

e Option = {builtins, bool()} | {name, application()} | {verbose, bool()} | {warnings,
bool()}

e Reason = {application_clash, {application(), directory(), directory()}} | {file_error,
file(), error()} | {invalid_options, term()} | - see also add_directory -

Adds an application, the modules of the application and module data [page 68] of the
modules to an xref server [page 68]. The modules will be members of the application.
The default is to use the base name of the directory with the version removed as
application name, but this can be overridden by the name option. Returns the name of
the application.

If the given directory has a subdirectory named ebin, modules (BEAM files) are
searched for in that directory, otherwise modules are searched for in the given directory.

If the mode [page 68] of the xref server is functions, BEAM files that contain no
debug information [page 68] are ignored.

add_directory(xref (), directory() [, Options]) -> {ok, Modules} | Error

Types:

e Error = {error, module(), Reason}

e Modules = [module()]

e Options = [Option] | Option

e Option = {builtins, bool()} | {recurse, bool()} | {verbose, bool()} | {warnings,
bool()}

e Reason = {file_error, file(), error()} | {invalid_options, term()} | {unrecognized._file,
fileQ)} | - error from beam_lib:chunks/2 -

Adds the modules found in the given directory and the modules’ data [page 68] to an
xref server [page 68]. The default is not to examine subdirectories, but if the option
recurse has the value true, modules are searched for in subdirectories on all levels as
well as in the given directory. Returns a sorted list of the names of the added modules.

The modules added will not be members of any applications.

If the mode [page 68] of the xref server is functions, BEAM files that contain no
debug information [page 68] are ignored.

78 Tools Application (TOOLS)

Tools Reference Manual xref (Module)

add module(xref (), file() [, Optiomns]) -> {ok, module()} | Error

Types:

e Error = {error, module(), Reason}

e Options = [Option] | Option

e Option = {builtins, bool()} | {verbose, bool()} | {warnings, bool()}

e Reason = {file_error, file(), error()} | {invalid_options, term()} | {module_clash,
{module(), file(), file()}} | {no_debug_info, file()} | - error from beam_lib:chunks/2 -

Adds a module and its module data [page 68] to an xref server [page 68]. The module
will not be member of any application. Returns the name of the module.

If the mode [page 68] of the xref server is functions, and the BEAM file contains no
debug information [page 68], the error message no_debug-info is returned.

replace_application(xref (), application(), directory() [, Options]) -> {ok,
application()} | Error

Types:

e Error = {error, module(), Reason}

e Options = [Option] | Option

e Option = {builtins, bool()} | {verbose, bool()} | {warnings, bool()}

¢ Reason = {no_such_application, application()} | - see also add_application -

Replaces the modules of an application with other modules read from an application
directory. Release membership of the application is retained. Note that the name of the
application is kept; the name of the given directory is not used.

replacemodule(xref(), module(), file() [, Options]) -> {ok, module()} | Error

Types:

e Error = {error, module(), Reason}

e Options = [Option] | Option

e Option = {verbose, bool()} | {warnings, bool()}
¢ ReadModule = module()

¢ Reason = {module_mismatch, module(), ReadModule} | {no_such_module,
module()} | - see also add_module -

Replaces module data [page 68] of an analyzed module [page 68] with data read from a
BEAM file. Application membership of the module is retained, and so is the value of
the builtins option of the module. An error is returned if the name of the read
module differs from the given module.

The update function is an alternative for updating module data of recompiled modules.

remove_release(xref (), release()) -> ok | Error

Types:
e Error = {error, module(), Reason}
e Reason = {no_such_release, release()}

Removes a release and its applications, modules and module data [page 68] from an
xref server [page 68].

remove_application(xref (), application()) -> ok | Error

Tools Application (TOOLS) 79

xref (Module)

Tools Reference Manual

Types:
e Error = {error, module(), Reason}
e Reason = {no_such_application, application()}

Removes an application and its modules and module data [page 68] from an xref server
[page 68].

remove module (xref (), module()) -> ok | Error

Types:
e Error = {error, module(), Reason}
e Reason = {no_such_module, module()}

Removes an analyzed module [page 68] module and its module data [page 68] from an
xref server [page 68].

set_library path(xref(), library path() [, Options]) -> ok | Error

Types:

e Error = {error, module(), Reason}

¢ Options = [Option] | Option

e Option = {verbose, bool()}

e Reason = {invalid_options, term()} | {invalid_path, term()}

Sets the library path [page 68]. If the given path is a list of directories, the set of library
modules [page 68] is determined by choosing the first module encountered while
traversing the directories in the given order, for those modules that occur in more than
one directory. By default, the library path is an empty list.

The library path code_path is used by the functionsm/1 and d/1, but can also be set
explicitly. Note however that the code path will be traversed once for each used library
module [page 68] while setting up module data. On the other hand, if there are only a
few modules that are used by not analyzed, using code_path may be faster than setting
the library path to code:get_path().

If the library path is set to code_path, the set of library modules is not determined, and
the info functions will return empty lists of library modules.

get_library path(xref ()) -> {ok, library path()}

info(xref())
info(xref(),
info(xref (),

80

Returns the library path [page 68].

-> [Infol

Category) -> [{Item, [Infol}]

Category, Items) -> [{Item, [Infol}]

Types:

o Application =[] | [application()]

e Category = modules | applications | releases | libraries

¢ Info = {application, Application} | {builtins, bool()} | {directory, directory()} |
{library_path, library_path()} | {mode, mode()} | {no.analyzed_modules, integer()}
| {no_applications, integer()} | {no_calls, {NoResolved, NoUnresolved}} |
{no_function_calls, {NoLocal, NoResolvedExternal, NoUnresolved}} |

{no_functions, {NoLocal, NoExternal}} | {no_inter_function_calls, integer()} |
{no_releases, integer()} | {release, Release} | {version, Version}

Tools Application (TOOLS)

Tools Reference Manual xref (Module)

o Item = module() | application() | release() | library()

o Items = Item | [Item]

e NoLocal = NoExternal = NoResolvedExternal, NoResolved = NoUnresolved =
integer()

o Release =[] | [release()]

e Version = [integer()]

The info functions return information as a list of pairs {Tag, term()} in some order

about the state and the module data [page 68] of an xref server [page 68].

info/1 returns information with the following tags (tags marked with (*) are available
in functions mode only):

library_path, the library path [page 68];

mode, the mode [page 68];

no_releases, number of releases;

no_applications, total number of applications (of all releases);
no_analyzed modules, total number of analyzed modules [page 68];

no_calls (*), total number of calls (in all modules), regarding instances of one
function call in different lines as separate calls;

no_function _calls (*), total number of local calls [page 68], resolved external
calls [page 68] and unresolved calls [page 68];

no_functions (*), total number of local and exported functions;

no_inter _function calls (¥*), total number of calls of the Inter Call Graph [page
69].

info/2 and info/3 return information about all or some of the analyzed modules,
applications, releases or library modules of an xref server. The following information is
returned for each analyzed module:

application, an empty list if the module does not belong to any application,
otherwise a list of the application name;

builtins, whether calls to BIFs are included in the module’s data;
directory, the directory where the module’s BEAM file is located,;

no_calls (*), number of calls, regarding instances of one function call in different
lines as separate calls;

no_function calls (*), number of local calls, resolved external calls and
unresolved calls;

no_functions (*), number of local and exported functions;
no_inter _function_calls (*), number of calls of the Inter Call Graph;

The following information is returned for each application:

directory, the directory where the modules’ BEAM files are located;
no_analyzed modules, number of analyzed modules;

no_calls (*), number of calls of the application’s modules, regarding instances of
one function call in different lines as separate calls;

no_function_calls (*), number of local calls, resolved external calls and
unresolved calls of the application’s modules;

Tools Application (TOOLS) 81

xref (Module)

Tools Reference Manual

82

no_functions (*), number of local and exported functions of the application’s
modules;

no_inter _function_calls (*), number of calls of the Inter Call Graph of the
application’s modules;

release, an empty list if the application does not belong to any release, otherwise
a list of the release name;

version, the application’s version as a list of numbers. For instance, the directory
“kernel-2.6” results in the application name kernel and the application version
[2,6]; “kernel” yields the name kernel and the version [].

The following information is returned for each release:

directory, the release directory;
no_analyzed modules, number of analyzed modules;
no_applications, number of applications;

no_calls (*), number of calls of the release’s modules, regarding instances of one
function call in different lines as separate calls;

no_function_calls (*), number of local calls, resolved external calls and
unresolved calls of the release’s modules;

no_functions (*), number of local and exported functions of the release’s modules;

no_inter _function calls (*), number of calls of the Inter Call Graph of the
release’s modules.

The following information is returned for each library module:

directory, the directory where the library module’s [page 68] BEAM file is
located.

For each number of calls, functions etc. returned by the no_ tags, there is a query
returning the same number. Listed below are examples of such queries. Some of the
queries return the sum of a two or more of the no_ tags numbers. mod (app, rel) refers
to any module (application, release).

no_analyzed modules
— "# AM" (info/1)
— "# (Mod) app:App" (application)
— "# (Mod) rel:Rel" (release)
no_applications
— "# A" (info/1)
no_calls. The sum of the number of resolved and unresolved calls:
— "# (Lin) E" (info/1)
— "# (Lin) (E | mod:Mod)" (module)
— "# (Lin) (E | app:App)" (application)
— "# (Lin) (E | rel:Rel)" (release)

no_functions. The functions module_info/0,1 are not counted by info.
Assuming that "Extra := _:module_info/\"(0|1)\" + _:’$F EXPR’/_" has
been evaluated, the sum of the number of local and exported functions are:

— "# (F - Extra)" (info/l1)

Tools Application (TOOLS)

Tools Reference Manual xref (Module)

— "# (F * mod:Mod - Extra)" (module)
— "# (F * app:App - Extra)" (application)
— "# (F * rel:Rel - Extra)" (release)
e no_function_calls. The sum of the number of local calls, resolved external calls
and unresolved calls:
— "# LC + # XC" (info/1)
— "# LC | mod:Mod + # XC | mod:Mod" (module)
— "# LC | app:App + # XC | app:App" (application)
— "# LC | rel:Rel + # XC | mod:Rel" (release)
e no_inter function calls
— "# EE" (info/1)
— "# EE | mod:Mod" (module)
— "# EE | app:App" (application)
— "# EE | rel:Rel" (release)

® no_releases

— " R" (info/1)

update(xref() [, Options]) -> {ok, Modules} | Error

Types:

Error = {error, module(), Reason}

Modules = [module()]

Options = [Option] | Option

Option = {verbose, bool()} | {warnings, bool()}

Reason = {invalid_options, term()} | {module_mismatch, module(), ReadModule} |
- see also add_module -

Replaces the module data [page 68] of all analyzed modules [page 68] the BEAM files
of which have been modified since last read by an add function or update. Application
membership of the modules is retained, and so is the value of the builtins option.
Returns a sorted list of the names of the replaced modules.

analyze(xref (),

Analysis [, Options]) -> {ok, Answer} | Error

Types:

Analysis = undefined_function_calls | undefined_functions | locals_not_used |
exports_not_used | {call, FuncSpec} | {use, FuncSpec} | {module_call, ModSpec} |
{module_use, ModSpec} | {application_call, AppSpec} | {application_use,
AppsSpec} | {release_call, RelSpec} | {release_use, RelSpec}

Answer = [term()]

AppSpec = application() | [application()]
Error = {error, module(), Reason}
FuncSpec = mfa() | [mfa()]

ModSpec = module() | [module()]
Options = [Option] | Option

Option = {verbose, bool()}

RelSpec = release() | [release()]

Tools Application (TOOLS) 83

xref (Module) Tools Reference Manual

e Reason = {invalid_options, term()} | {parse_error, string_position(), term()} |
{unknown_analysis, term()} | {unknown_constant, string()} | {unknown_variable,
variable()}

Evaluates a predefined analysis. Returns a sorted list without duplicates of call () or
constant (), depending on the chosen analysis. The predefined analyses, which operate
on all analyzed modules [page 68], are:

undefined function_calls Returns a list of calls to undefined functions [page 69].

undefined function Returns a list of undefined functions [page 69]. This analysis is
available also in the modules mode [page 68].

localsnot_used Returns a list of local functions that have not been used locally.

exports_not_used Returns a list of exported functions that have not been used
externally.

{call, FuncSpec} Returns a list of functions called by some of the given functions.
{use, FuncSpec} Returns a list of functions that use some of the given functions.

{module_call, ModSpec} Returns a list of modules called by some of the given
modules.

{module_use, ModSpec} Returnsa list of modules that use some of the given modules.

{application_call, AppSpec} Returns a list of applications called by some of the
given applications.

{application_use, AppSpec} Returnsa list of applications that use some of the given
applications.

{release_call, RelSpec} Returns a list of releases called by some of the given
releases.

{release_use, RelSpec} Returns a list of releases that use some of the given releases.

variables(xref() [, Options]) -> {ok, [VariableInfol}
Types:
Options = [Option] | Option
Option = predefined | user | {verbose, bool()}
e Reason = {invalid_options, term()}
e VariableInfo = {predefined, [variable()]} | {user, [variable()]}

Returns a sorted lists of the names of the variables of an xref server [page 68]. The
default is to return the user variables [page 70] only.

forget (xref ()) -> ok

forget(xref (), Variables) -> ok | Error
Types:
e Error = {error, module(), Reason}

e Reason = {not_user_variable, term()}

e Variables = [variable()] | variable()

forget/1 and forget/2 remove all or some of the user variables [page 70] of an xref
server [page 68].

q(xref(), Query [, Options]) -> {ok, Answer} | Error

84 Tools Application (TOOLS)

Tools Reference Manual xref (Module)

Types:

e Answer = false | [constant()] | [Call] | [Component] | integer() | [DefineAt] |
[CallAt] | [AllLines]

e Call = call() | ComponentCall

e ComponentCall = {Component, Component}

e Component = [constant()]

e DefineAt = {mfa(), LineNumber}

e CallAt = {funcall(), LineNumbers}

¢ AllLines = {{DefineAt, DefineAt}, LineNumbers}

e Error = {error, module(), Reason}

e LineNumbers = [LineNumber]

e LineNumber = integer()

e Options = [Option] | Option

¢ Option = {verbose, bool()}

e Query =string() | atom()

¢ Reason = {invalid_options, term()} | {parse_error, string_position(), term()} |
{type_error, string()} | {type_mismatch, string(), string()} | {unknown_analysis,

term()} | {unknown_constant, string()} | {unknown_variable, variable()} |
{variable_reassigned, string()}

Evaluates a query [page 75] in the context of an xref server [page 68], and returns the
value of the last statement. The syntax of the value depends on the expression:

A set of calls is represented by a sorted list without duplicates of call().
A set of constants is represented by a sorted list without duplicates of constant ().

A set of strongly connected components is a sorted list without duplicates of
Component.

A set of calls between strongly connected components is a sorted list without
duplicates of ComponentCall.

A chain of calls is represented by a list of constant (). The list contains the From
vertex of each call and the To vertex of the last call.

The of operator returns false if no chain of calls between the given constants can
be found.

The value of the closure operator (the digraph representation) is represented by
the atom ’closure()’.

A set of line numbered functions is represented by a sorted list without duplicates
of DefineAt.

A set of line numbered function calls is represented by a sorted list without
duplicates of CallAt.

A set of line numbered functions and function calls is represented by a sorted list
without duplicates of A11Lines.

For both CallAt and AllLines it holds that for no list element is LineNumbers an
empty list; such elements have been removed. The constants of component and the
integers of LineNumbers are sorted and without duplicates.

stop(xref())

Tools Application (TOOLS) 85

Stops an xref server [page 68].

format_error (Error) -> character_list()
Types:
e Error = {error, module(), term()}

Given the error returned by any function of this module, the function format_error
returns a descriptive string of the error in English. For file errors, the function
format_error/1in the £ile module is called.

See Also

beam_lib(3), digraph(3), digraph_utils(3), exref [page 57](3), regexp(3), TOOLS User’s
Guide [page 35]

86 Tools Application (TOOLS)

List of Figures

Chapter 1: Tools User’s Guide

11
1.2

Definition and use of functions
Some predefined analyses as subsets of all functions

Tools Application (TOOLS)

87

List of Figures

88 Tools Application (TOOLS)

Glossary

BIF

Built-In Functions which perform operations that are impossible or inefficient to program in Erlang
itself. Are defined inthe module Erlang in the application kernel

Tools Application (TOOLS)

89

Glossary

90 Tools Application (TOOLS)

Index

Modules are typed in this way.
Functions are typed in this way.

add_application/1
xref, 78

add_directory/1
xref, 78

add_module/1
xref , 79

add_release/1
xref, 77

all/o
make , 64

all/1
make , 64

analyse/0
eprof , 56

analyse/2
exref , 59

analyse_to_file/1
coast , 53

analyze/1
xref, 83

clause_calls/1
coast , 50

clause_coverage/1
coast , 52

clear/1
coast , 54

clear_all/0
coast , 54

coast
analyse_to_file/1,53
clause_calls/1,50
clause_coverage/1, 52
clear/1,54

clear_all/0, 54
compile/1, 47
compile/2, 47
compile_all/0, 48
compile_all/1, 48
compile_all/2, 48
func_calls/1, 49
func_coverage/1,51
known_modules/0, 53
mod_calls/1, 49
mod_coverage/1, 51
quit/0, 54
run/3, 48
source_files/1, 53

compile/1
coast , 47

compile/2
coast , 47

compile_all/0
coast , 48

compile_all/1
coast , 48

compile_all/2
coast , 48

d/1
xref, 76

defs/1
exref , 58

delete_module/1
exref, 58

dir/2
tags , 66

directory/1
exref, 58

directory/2

Tools Application (TOOLS)

91

Index

exref , 58

directory_module/2
exref , 58

directory_module/3
exref, 58

dirs/2
tags , 66

eprof
analyse/0, 56
log/1, 56
profile/1,55
profile/4, 55
start/0, 55
stop/0, 55
stop_profiling/0, 55
total_analyse/0, 56

excludes/1
exref, 58

exref
analyse/2, 59
defs/1, 58
delete_module/1, 58
directory/1, 58
directory/2, 58
directory_module/2, 58
directory_module/3, 58
excludes/1, 58
includes/1, 58
module/1, 57
module/2, 57
pretty/1, 59
start/0, 57
stop/0, 57

file/2
tags , 66

files/1
make , 64

files/2
make , 64
tags , 66

forget/1
xref , 84

format_error/1

xref , 86

func_calls/1
coast , 49

92

func_coverage/1
coast , 51

get_default/1
xref , 77

get_library_path/1
xref, 80

holes/1
instrument , 62

includes/1
exref, 58

info/1
xref , 80

instrument
holes/1, 62
mem_limits/1, 62
memory_data/0, 62
read_memory_data/1, 62
sort/1, 62
store_memory_data/1, 63
sum_blocks/1, 63
type_string/1, 63

known_modules/0
coast , 53

log/1
eprof, 56

m/1
xref, 76

make
all/o, 64
all/1, 64
files/1,64
files/2,64

mem_limits/1
instrument , 62

memory_data/0
instrument , 62

mod_calls/1
coast , 49

mod_coverage/1
coast , 51

module/1

Tools Application (TOOLS)

Index

exref , 57

module/2
exref , 57

pretty/1
exref , 59

profile/1
eprof , 55

profile/4
eprof , 55

q/1
xref, 84

quit/0
coast , 54

read_memory_data/1
instrument , 62

remove_application/1
xref, 79

remove_module/1

xref , 80

remove_release/1

xref, 79

replace_application/1
xref, 79

replace_module/1
xref, 79

root/1
tags , 66

run/3
coast , 48

set_default/1
xref, 77

set_library_path/1
xref, 80

sort/1
instrument , 62

source_files/1
coast , 53

start/0
eprof , 55
exref, 57

start/1
xref , 76
stop/0
eprof, 55
exref, 57
stop/1
xref, 85

stop_profiling/0
eprof, 55

store_memory_data/1
instrument , 63

subdir/2
tags , 66

subdirs/2
tags , 66

sum_blocks/1
instrument , 63

tags

dir/2, 66
dirs/2, 66
file/2, 66
files/2, 66
root/1, 66
subdir/2, 66
subdirs/2, 66

total_analyse/0
eprof , 56

type_string/1
instrument , 63

update/1
xref , 83

variables/1
xref , 84

xref
add_application/1,78
add_directory/1, 78
add_module/1, 79
add_release/1,77
analyze/1, 83
da/1,76
forget/1, 84
format_error/1, 86
get_default/1,77
get_library_path/1, 80

Tools Application (TOOLS) 93

Index

94

info/1, 80

m/1,76

q/1, 84
remove_application/1, 79
remove_module/1, 80
remove_release/1,79
replace_application/1, 79
replace_module/1, 79
set_default/1,77
set_library_path/1, 80
start/1, 76

stop/1, 85

update/1, 83
variables/1, 84

Tools Application (TOOLS)

