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Chapter 1

OTP Design Principles

1.1 Overview

The OTP Design Principles is a set of principles for how to structure Erlang code in terms of processes,
modules and directories.

1.1.1 Supervision Trees

A basic concept in Erlang/OTP is the supervision tree. This is a process structuring model based on the
idea of workers and supervisors.

� Workers are processes which perform computations, that is, they do the actual work.

� Supervisors are processes which monitor the behaviour of workers. A supervisor can restart a
worker if something goes wrong.

� The supervision tree is a hierarchical arrangement of code into supervisors and workers, making it
possible to design and program fault-tolerant software.
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Figure 1.1: Supervision Tree

In the figure above, square boxes represents supervisors and circles represent workers.

1.1.2 Behaviours

In a supervision tree, many of the processes have similar structures, they follow similar patterns. For
example, the supervisors are very similar in structure. The only difference between them is which child
processes they supervise. Also, many of the workers are servers in a server-client relation, finite state
machines, or event handlers such as error loggers.

Behaviours are formalizations of these common patterns. The idea is to divide the code for a process in
a generic part (a behaviour module) and a specific part (a callback module).

The behaviour module is part of Erlang/OTP. To implement a process such as a supervisor, the user only
has to implement the callback module which should export a pre-defined set of functions, the callback
functions.

An example to illustrate how code can be divided into a generic and a specific part: Consider the
following code (written in plain Erlang) for a simple server, which keeps track of a number of
“channels”. Other processes can allocate and free the channels by calling the functions alloc/0 and
free/1, respectively.

-module(ch1).
-export([start/0]).
-export([alloc/0, free/1]).
-export([init/0]).

start() ->
spawn(ch1, init, []).

alloc() ->
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ch1 ! {self(), alloc},
receive

{ch1, Res} ->
Res

end.

free(Ch) ->
ch1 ! {free, Ch},
ok.

init() ->
register(ch1, self()),
Chs = channels(),
loop(Chs).

loop(Chs) ->
receive

{From, alloc} ->
{Ch, Chs2} = alloc(Chs),
From ! {ch1, Ch},
loop(Chs2);

{free, Ch} ->
Chs2 = free(Ch, Chs),
loop(Chs2)

end.

The code for the server can be rewritten into a generic part server.erl:

-module(server).
-export([start/1]).
-export([call/2, cast/2]).
-export([init/1]).

start(Mod) ->
spawn(server, init, [Mod]).

call(Name, Req) ->
Name ! {call, self(), Req},
receive

{Name, Res} ->
Res

end.

cast(Name, Req) ->
Name ! {cast, Req},
ok.

init(Mod) ->
register(Mod, self()),
State = Mod:init(),
loop(Mod, State).

loop(Mod, State) ->
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receive
{call, From, Req} ->

{Res, State2} = Mod:handle_call(Req, State),
From ! {Mod, Res},
loop(Mod, State2);

{cast, Req} ->
State2 = Mod:handle_cast(Req, State),
loop(Mod, State2)

end.

and a callback module ch2.erl:

-module(ch2).
-export([start/0]).
-export([alloc/0, free/1]).
-export([init/0, handle_call/2, handle_cast/2]).

start() ->
server:start(ch2).

alloc() ->
server:call(ch2, alloc).

free(Ch) ->
server:cast(ch2, {free, Ch}).

init() ->
channels().

handle_call(alloc, Chs) ->
alloc(Chs). % => {Ch,Chs2}

handle_cast({free, Ch}, Chs) ->
free(Ch, Chs). % => Chs2

Note the following:

� The code in server can be re-used to build many different servers.

� The name of the server, in this example the atom ch2, is hidden from the users of the client
functions. This means the name can be changed without affecting them.

� The protcol (messages sent to and received from the server) is hidden as well. This is good
programming practice and allows us to change the protocol without making changes to code using
the interface functions.

� We can extend the functionality of server, without having to change ch2 or any other callback
module.

The module server corresponds, greatly simplified, to the Erlang/OTP behaviour gen server.

The standard Erlang/OTP behaviours are:

gen server [page 6 ] For implementing the server of a client-server relation.

gen fsm [page 10 ] For implementing finite state machines.
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gen event [page 14 ] For implementing event handling functionality.

supervisor [page 17 ] For implementing a supervisor in a supervision tree.

The compiler understands the module attribute -behaviour(Behaviour) and will issue warnings about
missing callback functions. Example:

-module(chs3).
-behaviour(gen_server).
...

Code written without making use of behaviours may be more efficient, but the increased efficiency will
be at the expense of generality. The ability to manage all applications in the system in a consistent
manner is very important.

Using behaviours will also make it easier to read and understand code written by other programmers.
Ad hoc programming structures, while possibly more efficient, are always more difficult to understand.

1.1.3 Applications

Erlang/OTP comes with a number of components, each implementing some specific functionality.
Components are with Erlang/OTP terminology called applications. Examples of Erlang/OTP
applications are Mnesia, which has everything needed for programming database services, and
Debugger which is used to debug Erlang programs. The minimal system based on Erlang/OTP consists
of the applications Kernel and STDLIB.

The application concept applies both to program structure (processes) and directory structure
(modules).

The simplest kind of application does not have any processes, but consists of a collection of functional
modules. Such an application is called a library application. An example of a library application is
STDLIB.

An application with processes is easiest implemented as a supervision tree using the standard
behaviours.

How to program applications is described in Applications [page 29].

1.1.4 Releases

A release is a complete system made out from a subset of the Erlang/OTP applications and a set of
user-specific applications.

How to program releases is described in Releases [page 42].

How to install a release in a target environment is described in the chapter about Target Systems in
System Principles.

1.1.5 Release Handling

Release handling is upgrading and downgrading between different releases, in a (possibly) running
system. How to do this is described in Release Handling [page 47].
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1.2 Gen Server Behaviour

This chapter should be read in conjunction with gen server(3), where all interface functions and
callback functions are described in detail.

1.2.1 Client-Server Principles

The client-server model is characterized by a central server and an arbitrary number of clients. The
client-server model is generally used for resource management operations, where several different
clients want to share a common resource. The server is responsible for managing this resource.

Server

Clients

Query

Reply

The Client-server model

Figure 1.2: Client-Server Model

1.2.2 Example

An example of a simple server written in plain Erlang was given in Overview [page 2]. The server can
be re-implemented using gen server, resulting in this callback module:

-module(ch3).
-behaviour(gen_server).

-export([start_link/0]).
-export([alloc/0, free/1]).
-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
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gen_server:start_link({local, ch3}, ch3, [], []).

alloc() ->
gen_server:call(ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

init(_Args) ->
{ok, channels()}.

handle_call(alloc, _From, Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

handle_cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

The code is explained in the next sections.

1.2.3 Starting a Gen Server

In the example in the previous section, the gen server is started by calling ch3:start link():

start_link() ->
gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

start link calls the function gen server:start link/4. This function spawns and links to a new
process, a gen server.

� The first argument flocal, ch3g specifies the name. In this case, the gen server will be locally
registered as ch3.
If the name is omitted, the gen server is not registered. Instead its pid must be used. The name
could also be given as fglobal, Nameg, in which case the gen server is registered using
global:register name/2.

� The second argument, ch3, is the name of the callback module, that is the module where the
callback functions are located.
In this case, the interface functions (start link, alloc and free) are located in the same module
as the callback functions (init, handle call and handle cast). This is normally good
programming practice, to have the code corresponding to one process contained in one module.

� The third argument, [], is a term which is passed as-is to the callback function init. Here, init
does not need any indata and ignores the argument.

� The fourth argument, [], is a list of options. See gen server(3) for available options.

If name registration succeeds, the new gen server process calls the callback function ch3:init([]).
init is expected to return fok, Stateg, where State is the internal state of the gen server. In this
case, the state is the available channels.

init(_Args) ->
{ok, channels()}.

7OTP Design Principles



Chapter 1: OTP Design Principles

Note that gen server:start link is synchronous. It does not return until the gen server has been
initialized and is ready to receive requests.

1.2.4 Synchronous Requests - Call

The synchronous request alloc() is implemented using gen server:call/2:

alloc() ->
gen_server:call(ch3, alloc).

ch3 is the name of the gen server and must agree with the name used to start it. alloc is the actual
request.

The request is made into a message and sent to the gen server. When the request is received, the
gen server calls handle call(Request, From, State) which is expected to return a tuple freply,
Reply, State1g. Reply is the reply which should be sent back to the client, and State1 is a new value
for the state of the gen server.

handle_call(alloc, _From, Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

In this case, the reply is the allocated channel Ch and the new state is the remaining available channels
Chs2.

Thus, the call ch3:alloc() will return the allocated channel Ch and the gen server then waits for new
requests, now with an updated list of available channels.

1.2.5 Asynchronous Requests - Cast

The asynchronous request free(Ch) is implemented using gen server:cast/2:

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

ch3 is the name of the gen server. ffree, Chg is the actual request.

The request is made into a message and sent to the gen server. cast, and thus free, then returns ok.

When the request is received, the gen server calls handle cast(Request, State) which is expected to
return a tuple fnoreply, State1g. State1 is a new value for the state of the server.

handle_call({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

In this case, the new state is the updated list of available channels Chs2. The gen server is now ready for
new requests.
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1.2.6 Stopping

If the gen server is part of a supervision tree, no stop function is needed. The gen server will
automatically be terminated by its supervisor calling exit(Pid, shutdown).

The gen server process does not trap exit signals. If it is necessary to do some cleaning up before
termination, it should be set to trap exit signals in the init function and another callback function
terminate(Reason, State) should be implemented doing the cleaning up:

init(Args) ->
...,
process_flag(trap_exit, true),
...,
{ok, State}.

...

terminate(shutdown, State) ->
..code for cleaning up here..
ok.

If the gen server is not part of a supervision tree, a stop function may be useful. The gen server will
automatically call the callback function terminate(Reason, State) if another of the callback
functions returns fstop, Reason, State2g instead of freply,...g or fnoreply,...g. Example:

...
export([stop/0]).
...

stop() ->
gen_server:cast(ch3, stop).

...

handle_cast(stop, State) ->
{stop, normal, State};

handle_cast({free, Ch}, State) ->
....

...

terminate(normal, State) ->
ok.

1.2.7 Handling Other Messages

If the gen server should be able to receive other messages than requests, the callback function
handle info(Info, State) must be implemented to handle them. Examples on other messages could
be for example timeouts or exit messages, if the gen server is linked to other processes (than the
supervisor) and trapping exit signals.

handle_info({’EXIT’, Pid, Reason}, State) ->
..code to handle exits here..
{noreply, State}.
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1.3 Gen Fsm Behaviour

This chapter should be read in conjunction with gen fsm(3), where all interface functions and callback
functions are described in detail.

1.3.1 Finite State Machines

A finite state machine, FSM, can be described as a set of relations of the form:

State(S) x Event(E) -> Actions(A), State(S’)

These relations are interpreted as meaning:

If we are in state S and the event E occurs, we should perform the actions A and make a
transition to the state S’.

For an FSM implemented using the gen fsm behaviour, the state transition rules are written as a
number of Erlang functions which conform to the following convention:

StateName(Event, StateData) ->
.. code for actions here ...
fnext state, StateName’, StateData’g

1.3.2 Example

A door with a code lock could be viewed as an FSM. Initially, the door is closed. When someone presses
a button, this generates an event. If the button sequence pressed so far is the correct code, the door is
opened and held open for 30 seconds (30000 milliseconds). If the button sequence is incomplete, the
door remains closed and we wait for another button to be pressed. If the button sequence is wrong, we
start all over, waiting for a new button sequence.

Implementing the code lock FSM using gen fsm results in this callback module:

-module(code_lock).
-behaviour(gen_fsm).

-export([start_link/1]).
-export([button/1]).
-export([init/1, closed/2, open/2]).

start_link(Code) ->
gen_fsm:start_link({local, code_lock}, code_lock, Code, []).

button(Digit) ->
gen_fsm:send_event(code_lock, {button, Digit}).

init(Code) ->
{ok, closed, {[], Code}}.

closed({button, Digit}, {SoFar, Code}) ->
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case [Digit|SoFar] of
Code ->

do_open(),
{next_state, open, {[], Code}, 3000};

Incomplete when length(Incomplete)<length(Code) ->
{next_state, closed, {Incomplete, Code}};

_Wrong ->
{next_state, closed, {[], Code}};

end.

open(timeout, State) ->
do_close(),
{next_state, closed, State}.

The code is explained in the next sections.

1.3.3 Starting a Gen Fsm

In the example in the previous section, the gen fsm is started by calling code lock:start link(Code):

start_link(Code) ->
gen_fsm:start_link({local, code_lock}, code_lock, Code, []).

start link calls the function gen fsm:start link/4. This function spawns and links to a new process,
a gen fsm.

� The first argument flocal, code lockg specifies the name. In this case, the gen fsm will be
locally registered as code lock.
If the name is omitted, the gen fsm is not registered. Instead its pid must be used. The name
could also be given as fglobal, Nameg, in which case the gen fsm is registered using
global:register name/2.

� The second argument, code lock, is the name of the callback module, that is the module where
the callback functions are located.
In this case, the interface functions (start link and button) are located in the same module as
the callback functions (init, closed and open). This is normally good programming practice, to
have the code corresponding to one process contained in one module.

� The third argument, Code, is a term which is passed as-is to the callback function init. Here,
init gets the correct code for the lock as indata.

� The fourth argument, [], is a list of options. See gen fsm(3) for available options.

If name registration succeeds, the new gen fsm process calls the callback function
code lock:init(Code). init is expected to return fok, StateName, StateDatag, where StateName
is the name of the initial state of the gen fsm. In this case closed, assuming the door is closed to begin
with. StateData is the internal state of the gen fsm. (For gen fsms, the internal state is often referred to
’state data’ to distinguish it from the state as in states of a state machine.) In this case, the state data is
the button sequence so far (empty to begin with) and the correct code of the lock.

init(Code) ->
{ok, closed, {[], Code}}.

Note that gen fsm:start link is synchronous. It does not return until the gen fsm has been initialized
and is ready to receive notifications.
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1.3.4 Notifying About Events

The function notifying the code lock about a button event is implemented using
gen fsm:send event/2:

button(Digit) ->
gen_fsm:send_event(code_lock, {button, Digit}).

code lock is the name of the gen fsm and must agree with the name used to start it. fbutton, Digitg
is the actual event.

The event is made into a message and sent to the gen fsm. When the event is received, the gen fsm
calls StateName(Event, StateData) which is expected to return a tuple fnext state, StateName1,
StateData1g. StateName is the name of the current state and StateName1 is the name of the next state
to go to. StateData1 is a new value for the state data of the gen fsm.

closed({button, Digit}, {SoFar, Code}) ->
case [Digit|SoFar] of

Code ->
do_open(),
{next_state, open, {[], Code}, 30000};

Incomplete when length(Incomplete)<length(Code) ->
{next_state, closed, {Incomplete, Code}};

_Wrong ->
{next_state, closed, {[], Code}};

end.

open(timeout, State) ->
do_close(),
{next_state, closed, State}.

If the door is closed and a button is pressed, the complete button sequence so far is compared with the
correct code for the lock and, depending on the result, the door is either opened and the gen fsm goes
to state open, or the door remains in state closed.

1.3.5 Timeouts

When a correct code has been givened, the door is opened and the following tuple is returned from
closed/2:

{next_state, open, {[], Code}, 30000};

30000 is a timeout value in milliseconds. After 30000 milliseconds, i.e. 30 seconds, a timeout occurs.
Then StateName(timeout, StateData) is called. In this case, the timeout occurs when the door has
been in state open for 30 seconds and then the door is closed:

open(timeout, State) ->
do_close(),
{next_state, closed, State}.
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1.3.6 All State Events

Sometimes an event can arrive at any state of the gen fsm. Instead of sending the message with
gen fsm:send event/2 and writing one clause handling the event for each state function, the message
can be sent with gen fsm:send all state event/2 and handled with Module:handle event/3:

-module(code_lock).
...
-export([stop/0]).
...

stop() ->
gen_fsm:send_all_state_event(code_lock, stop).

...

handle_event(stop, _StateName, StateData) ->
{stop, normal, StateData}.

1.3.7 Stopping

If the gen fsm is part of a supervision tree, no stop function is needed. The gen fsm will automatically
be terminated by its supervisor calling exit(Pid, shutdown).

The gen fsm process does not trap exit signals. If it is necessary to do some cleaning up before
termination, it should be set to trap exit signals in the init function and another callback function
terminate(Reason, State) should be implemented doing the cleaning up:

init(Args) ->
...,
process_flag(trap_exit, true),
...,
{ok, StateName, StateData}.

...

terminate(shutdown, StateName, StateData) ->
..code for cleaning up here..
ok.

If the gen fsm is not part of a supervision tree, a stop function may be useful. The gen fsm will
automatically call the callback function terminate(Reason, StateName, StateData) if another of
the callback functions returns fstop, Reason, State2g instead of fnext state,...g. Example:

-module(code_lock).
...
-export([stop/0]).
...

stop() ->
gen_fsm:send_all_state_event(code_lock, stop).

...
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handle_event(stop, _StateName, StateData) ->
{stop, normal, StateData}.

...

terminate(normal, _StateName, _StateData) ->
ok.

1.3.8 Handling Other Messages

If the gen fsm should be able to receive other messages than events, the callback function
handle info(Info, StateName, StateData) must be implemented to handle them. Examples on
other messages could be exit messages, if the gen fsm is linked to other processes (than the supervisor)
and trapping exit signals.

handle_info({’EXIT’, Pid, Reason}, StateName, StateData) ->
..code to handle exits here..
{next_state, StateName1, StateData1}.

1.4 Gen Event Behaviour

This chapter should be read in conjunction with gen event(3), where all interface functions and
callback functions are described in detail.

1.4.1 Event Handling Principles

In OTP, an event manager is a named object to which events can be sent. An event could be, for
example, an error, an alarm or some information that should be logged.

In the event manager, zero, one or several event handlers are installed. When the event managar is
notified about an event, the event will be processed by all the installed event handlers. For example, an
event manager for handling errors can by default have a handler installed which writes error messages to
the terminal. If the error messages during a certain period should be saved to a file as well, the user adds
another event handler which does this. When logging to file is no longer necessary, this event handler is
deleted.

An event manager is implemented as a process and each event handler is implemented as a callback
module.

The event manager essentially maintains a list of fModule, Stateg pairs, where each Module is an event
handler, and State the internal state of that event handler.
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1.4.2 Example

The callback module for the event handler writing error messages to the terminal could look like:

-module(terminal_logger).
-behaviour(gen_event).

-export([init/1, handle_event/2, terminate/2]).

init(_Args) ->
{ok, []}.

handle_event(ErrorMsg, State) ->
io:format("***Error*** ~p~n", [ErrorMsg]),
{ok, State}.

terminate(_Args, _State) ->
ok.

The callback module for the event handler writing error messages to a file could look like:

-module(file_logger).
-behaviour(gen_event).

-export([init/1, handle_event/2, terminate/2]).

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

handle_event(ErrorMsg, Fd) ->
io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
{ok, Fd}.

terminate(_Args, Fd) ->
file:close(Fd).

The code is explained in the next sections.

1.4.3 Starting an Event Manager

Here is an example of how an event manager for handling errors, as described in the example above, is
started from the shell:

1> gen event:start link(flocal, error mang).
fok,<0.30.0>g
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This function spawns and links to a new process, an event manager.

The argument, flocal, error mang specifies the name. In this case, the event manager will be locally
registered as error man.

If the name is omitted, the event manager is not registered. Instead its pid must be used. The name
could also be given as fglobal, Nameg, in which case the event manager is registered using
global:register name/2.

1.4.4 Adding an Event Handler

2> gen event:add handler(error man, terminal logger, []).
ok

This function sends a message to the event manager registered as error man, telling it to add the event
handler terminal logger. The event manager will call the callback function
terminal logger:init([]), where the argument [] is the third argument to add handler. init is
expected to return fok, Stateg, where State is the internal state fo the event handler.

init(_Args) ->
{ok, []}.

Here, init does not need any indata and ignores its argument. Also, for terminal logger the internal
state is not used. For file logger, the internal state is used to save the open file descriptor.

init(_Args) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

1.4.5 Notifying About Events

3> gen event:notify(error man, no reply).
***Error*** no reply
ok

error man is the name of the event manager and no reply is the event.

The event is made into a message and sent to the event manager. When the event is received, the event
manager calls handle event(Event, State) for each installed event handler, in the same order as they
were added. The function is expected to return a tuple fok, State1g, where State1 is a new value for
the state of the event handler.

In terminal logger:

handle_event(ErrorMsg, State) ->
io:format("***Error*** ~p~n", [ErrorMsg]),
{ok, State}.

In file logger:

handle_event(ErrorMsg, Fd) ->
io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
{ok, Fd}.
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1.4.6 Deleting an Event Handler

4> gen event:delete handler(error man, terminal logger, []).
ok

This function sends a message to the event manager registered as error man, telling it to delete the
event handler terminal logger. The event manager will call the callback function
terminal logger:terminate([], State), where the argument [] is the third argument to
delete handler. terminate should be the opposite of init and do any necessary cleaning up. Its
return value is ignored.

For terminal logger, no cleaning up is necessary:

terminate(_Args, _State) ->
ok.

For file logger, the file descriptor opened in init needs to be closed:

terminate(_Args, Fd) ->
file:close(Fd).

1.4.7 Stopping

If the event manager is part of a supervision tree, no stop function is needed. The event manager will
automatically be terminated by its supervisor calling exit(Pid, shutdown).

An event manager can also be stopped by calling:

> gen event:stop(error man).
ok

When an event manager is stopped, it will give each of the installed event handlers the chance to clean
up by calling terminate/2, the same way as when deleting a handler.

1.5 Supervisor Behaviour

This section should be read in conjunction with supervisor(3), where all details about the supervisor
behaviour is given.

1.5.1 Supervision Principles

A supervisor is responsible for starting, stopping and monitoring its child processes. The basic idea of a
supervisor is that it should keep its child processes alive by restarting them when necessary.

Which child processes to start and monitor is specified by a list of child specifications [page 20]. The
child processes are started in the order specified by this list, and terminated in the reversed order.
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1.5.2 Example

The callback module for a supervisor starting the server from the gen server chapter [page 6] could
look like this:

-module(ch_sup).
-behaviour(supervisor).

-export([start_link/0]).
-export([init/1]).

start_link() ->
supervisor:start_link(ch_sup, []).

init(_Args) ->
{ok, {{one_for_one, 1, 60},

[{ch3, {ch3, start_link, []},
permanent, brutal_kill, worker, [ch3]}]}}.

one for one is the restart strategy [page 18].

1 and 60 defines the maximum restart frequency [page 19].

The tuple fch3, ...g is a child specification [page 20].

1.5.3 Restart Strategy

one for one

If a child process terminates, only that process is restarted.

1

P1 P2 Pn

One for one supervision
If any child dies it is restarted

Figure 1.3: One For One Supervision
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one for all

If a child process terminates, all other child processes are terminated and then all child processes,
including the terminated one, are restarted.

P1 P2 Pn

If any child dies all children
are terminated and all are restarted

a
all-for-one supervision

Figure 1.4: One For All Supervision

rest for one

If a child process terminates, the ’rest’ of the child processes – i.e. the child processes after the
terminated process in start order – are terminated. Then the terminated child process and the rest of
the child processes are restarted.

1.5.4 Maximum Restart Frequency

The supervisors have a built-in mechanism to limit the number of restarts which can occur in a given
time interval. This is determined by the values of the two parameters MaxR and MaxT in the start
specification returned by the callback function init:

init(...) ->
{ok, {{RestartStrategy, MaxR, MaxT},

[ChildSpec, ...]}}.

If more than MaxR number of restarts occur in the last MaxT seconds, then the supervisor terminates all
the child processes and then itself.

When the supervisor terminates, then the next higher level supervisor takes some action. It either
restarts the terminated supervisor, or terminates itself.

The intention of the restart mechanism is to prevent a situation where a process repeatedly dies for the
same reason, only to be restarted again.
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1.5.5 Child Specification

This is the type definition for a child specification:

{Id, StartFunc, Restart, Shutdown, Type, Modules}
Id = term()
StartFunc = {M, F, A}

M = F = atom()
A = [term()]

Restart = permanent | transient | temporary
Shutdown = brutal_kill | integer() &gt;=0 | infinity
Type = worker | supervisor
Modules = [Module] | dynamic

Module = atom()

� Id is a name that is used to identify the child specification internally by the supervisor.

� StartFunc defines the function call used to start the child process. It is a
module-function-arguments tuple used as apply(M, F, A).
It should be (or result in) a call to supervisor:start link, gen server:start link,
gen fsm:start link or gen event:start link. (Or a function compliant with these functions,
see supervisor(3) for details.

� Restart defines when a terminated child process should be restarted.

– A permanent child process is always restarted.

– A temporary child process is never restarted.

– A transient child process is restarted only if it terminates abnormally, i.e. with another exit
reason than normal.

� Shutdown defines how a child process should be terminated.

– brutal kill means the child process is unconditionally terminated using exit(Child,
kill).

– An integer timeout value means that the supervisor tells the child process to terminate by
calling exit(Child, shutdown) and then waits for an exit signal back. If no exit signal is
received within the specified time, the child process is unconditionally terminated using
exit(Child, kill).

– If the child process is another supervisor, it should be set to infinity to give the subtree
enough time to shutdown.

� Type specifies if the child process is a supervisor or a worker.

� Modules should be a list with one element [Module], where Module is the name of the callback
module, if the child process is a supervisor, gen server or gen fsm. If the child process is a
gen event, Modules should be dynamic.
This information is used by the release handler during upgrades and downgrades, see Release
Handling [page 47].

Example: The child specification to start the server ch3 in the example above looks like:

{ch3,
{ch3, start_link, []},
permanent, brutal_kill, worker, [ch3]}

Example: A child specification to start the event manager from the chapter about gen event [page 15]:
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{error_man,
{gen_event, start_link, [{local, error_man}]},
permanent, 5000, worker, dynamic}

Both the server and event manager are registered processes which can be expected to be accessible at all
times, thus they are specified to be permanent.

ch3 does not need to do any cleaning up before termination, thus no shutdown time is needed but
brutal kill should be sufficient. error man may need some time for the event handlers to clean up,
thus Shutdown is set to 5000 ms.

Example: A child specification to start another supervisor:

{sup,
{sup, start_link, []},
transient, infinity, supervisor, [sup]}

1.5.6 Starting a Supervisor

In the example above, the supervisor is started by calling ch sup:start link():

start_link() ->
supervisor:start_link(ch_sup, []).

ch sup:start link calls the function supervisor:start link/2. This function spawns and links to a
new process, a supervisor.

� The first argument, ch sup, is the name of the callback module, that is the module where the
init callback function is located.

� The second argument, [], is a term which is passed as-is to the callback function init. Here, init
does not need any indata and ignores the argument.

In this case, the supervisor is not registered. Instead its pid must be used. A name can be specified by
calling supervisor:start link(flocal, Nameg, Module, Args) or
supervisor:start link(fglobal, Nameg, Module, Args).

The new supervisor process calls the callback function ch sup:init([]). init is expected to return
fok, StartSpecg:

init(_Args) ->
{ok, {{one_for_one, 1, 60},

[{ch3, {ch3, start_link, []},
permanent, brutal_kill, worker, [ch3]}]}}.

The supervisor then starts all its child processes according to the child specifications in the start
specification. In this case there is one child process, ch3.

Note that supervisor:start link is synchronous. It does not return until all child processes have
been started.
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1.5.7 Adding a Child Process

In addition to the static supervision tree, we can also add dynamic child processes to an existing
supervisor with the following call:

supervisor:start_child(Sup, ChildSpec)

Sup is the pid, or name, of the supervisor. ChildSpec is a child specification [page 20].

Child processes added using start child/2 behave in the same manner as the other child processes,
with the following important exception: If a supervisor dies and is re-created, then all child processes
which were dynamically added to the supervisor will be lost.

1.5.8 Stopping a Child Process

Any child process, static or dynamic, can be stopped in accordance with the shutdown specification:

supervisor:terminate_child(Sup, Id)

The child specification for a stopped child process is deleted with the following call:

supervisor:delete_child(Sup, Id)

Sup is the pid, or name, of the supervisor. Id is the id specified in the child specification [page 20].

As with dynamically added child processes, the effects of deleting a static child process is lost if the
supervisor itself restarts.

1.5.9 Simple-One-For-One Supervisors

A supervisor with restart strategy simple one for one is a simplified one for one supervisor, where all
child processes are dynamically added instances of the same process.

Example of a callback module for a simple one for one supervisor:

-module(simple_sup).
-behaviour(supervisor).

-export([start_link/0]).
-export([init/1]).

start_link() ->
supervisor:start_link(simple_sup, []).

init(_Args) ->
{ok, {{simple_one_for_one, 0, 1},

[{call, {call, start_link, []},
temporary, brutal_kill, worker, [call]}]}}.

When started, the supervisor will not start any child processes. Instead, all child processes are added
dynamically by calling:

supervisor:start_child(Sup, List)
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Sup is the pid, or name, of the supervisor. List is an arbitrary list of terms which will be added to the
list of arguments specified in the child specification. If the start function is specified as fM, F, Ag, then
the child process is started by calling apply(M, F, A++List).

For example, adding a child to simple sup above:

supervisor:start_child(Pid, [id1])

results in the child process being started by calling apply(call, start link, []++[id1]), or actually:

call:start_link(id1)

1.5.10 Stopping

Since the supervisor is part of a supervision tree, it will automatically be terminated by its supervisor.
When asked to shutdown, it will terminate all child processes in reversed start order according to the
respective shutdown specifications, and then terminate itself.

1.6 Sys and Proc Lib

The module sys contains functions for simple debugging of processes implemented using behaviours.
There are also functions that, together with functions in the module proc lib, can be used to
implement a special process, a process which comply to the OTP design principles without making use
of a behaviour.

1.6.1 Simple Debugging

The module sys contains some functions for simple debugging of processes implemented using
behaviours. We use the code lock example from the gen event [page 10] chapter to illustrate this:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1> code lock:start link([1,2,3,4]).
fok,<0.32.0>g
2> sys:statistics(code lock, true).
ok
3> sys:trace(code lock, true).
ok
4> code lock:button(4).
*DBG* code lock got event fbutton,4g in state closed
ok
*DBG* code lock switched to state closed
5> code lock:button(3).
*DBG* code lock got event fbutton,3g in state closed
ok
*DBG* code lock switched to state closed
6> code lock:button(2).
*DBG* code lock got event fbutton,2g in state closed
ok
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*DBG* code lock switched to state closed
7> code lock:button(1).
*DBG* code lock got event fbutton,1g in state closed
ok
OPEN DOOR
*DBG* code lock switched to state open
*DBG* code lock got event timeout in state open
CLOSE DOOR
*DBG* code lock switched to state closed
8> sys:statistics(code lock, get).
fok,[fstart time,ff2003,6,12g,f14,11,40ggg,

fcurrent time,ff2003,6,12g,f14,12,14ggg,
freductions,333g,
fmessages in,5g,
fmessages out,0g]g

9> sys:statistics(code lock, false).
ok
10> sys:trace(code lock, false).
ok
11> sys:get status(code lock).
fstatus,<0.32.0>,

fmodule,gen fsmg,
[[f’$ancestors’,[<0.30.0>]g,

f’$initial call’,fgen,init it,
[gen fsm,
<0.30.0>,
<0.30.0>,
flocal,code lockg,
code lock,
[1,2,3,4],
[]]gg],

running,
<0.30.0>,
[],
[code lock,closed,f[],[1,2,3,4]g,code lock,infinity]]g

1.6.2 Special Processes

This section describes how to write a process which comply to the OTP design principles, without
making use of a behaviour. Such a process should:

� be started in a way that makes the process fit into a supervision tree,

� support the sys debug facilities, and

� take care of system messages.

System messages are messages with special meaning, used in the supervision tree. Typical system
messages are requests for trace output, and requests to suspend or resume process execution (used
during release handling). Processes implemented using behaviours automatically understand these
messages.
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Example

The simple server from the Overview [page 2] chapter, implemented using sys and proc lib so it fits
into a supervision tree:

-module(ch4).
-export([start link/0]).
-export([alloc/0, free/1]).
-export([init/1]).
-export([system continue/3, system terminate/4,

write debug/3]).

start link() ->
proc lib:start link(ch4, init, [self()]).

alloc() ->
ch4 ! fself(), allocg,
receive

fch4, Resg ->
Res

end.

free(Ch) ->
ch4 ! ffree, Chg,
ok.

init(Parent) ->
register(ch4, self()),
Chs = channels(),
Deb = sys:debug options([]),
proc lib:init ack(Parent, fok, self()g),
loop(Chs, Parent, Deb).

loop(Chs, Parent, Deb) ->
receive

fFrom, allocg ->
Deb2 = sys:handle debug(Deb, fch4, write debugg,

ch4, fin, alloc, Fromg),
fCh, Chs2g = alloc(Chs),
From ! fch4, Chg,
Deb3 = sys:handle debug(Deb2, fch4, write debugg,

ch4, fout, fch4, Chg, Fromg),
loop(Chs2, Parent, Deb3);

ffree, Chg ->
Deb2 = sys:handle debug(Deb, fch4, write debugg,

ch4, fin, ffree, Chgg),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);

fsystem, From, Requestg ->
sys:handle system msg(Request, From, Parent,

ch4, Deb, Chs)
end.
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system continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).

system terminate(Reason, Parent, Deb, Chs) ->
exit(Reason).

write debug(Dev, Event, Name) ->
io:format(Dev, "~p event = ~p~n", [Name, Event]).

Example on how the simple debugging functions in sys can be used for ch4 as well:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1> ch4:start link().
fok,<0.30.0>g
2> sys:statistics(ch4, true).
ok
3> sys:trace(ch4, true).
ok
4> ch4:alloc().
ch4 event = fin,alloc,<0.25.0>g
ch4 event = fout,fch4,ch1g,<0.25.0>g
ch1
5> ch4:free(ch1).
ch4 event = fin,ffree,ch1gg
ok
6> sys:statistics(ch4, get).
fok,[fstart time,ff2003,6,13g,f9,47,5ggg,

fcurrent time,ff2003,6,13g,f9,47,56ggg,
freductions,109g,
fmessages in,2g,
fmessages out,1g]g

7> sys:statistics(ch4, false).
ok
8> sys:trace(ch4, false).
ok
9> sys:get status(ch4).
fstatus,<0.30.0>,

fmodule,ch4g,
[[f’$ancestors’,[<0.25.0>]g,f’$initial call’,fch4,init,[<0.25.0>]gg],
running,
<0.25.0>,
[],
[ch1,ch2,ch3]]g
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Starting the Process

A function in the proc lib module should be used to start the process. There are several possible
functions, for example spawn link/3,4 for asynchronous start and start link/3,4,5 for synchronous
start.

A process started using one of these functions will store some information, for example about the
ancestors and initial call, that is needed for a process in a supervision tree.

Also, if the process terminates with another reason than normal or shutdown, a crash report (see SASL
User’s Guide) is generated.

In the example, synchronous start is used. The process is started by calling ch4:start link()

start_link() ->
proc_lib:start_link(ch4, init, [self()]).

start link calls the function proc lib:start link. This functions spawns and links to a new process,
executing ch4:init(Pid), where Pid is the pid of process calling ch4:start link() (the parent
process).

In init, all initialization including name registration is done. The process must also acknowledge that it
has been started to the parent:

init(Parent) ->
...
proc_lib:init_ack(Parent, {ok, self()}),
loop(...).

proc lib:start link is synchronous and does not return until proc lib:init ack has been called.

Debugging

To support the debug facilites in sys, a term Deb is initialized in init using sys:debug options/1:

init(Parent) ->
...
Deb = sys:debug_options([]),
...
loop(Chs, Parent, Deb).

sys:debug options/1 takes a list of options as argument. Here the list is empty, which means no
debugging is enabled initially. See sys(3) for information about possible options.

Then for each system event, the following function should be called:

sys:handle_debug(Deb, Func, Info, Event)

System events are:

� Incoming messages, represented as fin, Msgg or fin, Msg, Fromg.

� Outgoing messages, represented as fout, Msg, Tog.

� The user may define own system events, represented by an arbitrary term.
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Func is a tuple fModule, Nameg (or a fun) and should be a user defined function used to format trace
output. The function is called as Module:Name(Dev, Event, Info).

In the example, handle debug is called for each incoming and outgoing message. The format function
Func is the function ch4:write debug/3 which prints the message using io:format/3.

loop(Chs, Parent, Deb) ->
receive

{From, alloc} ->
Deb2 = sys:handle_debug(Deb, {ch4, write_debug},

ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle_debug(Deb2, {ch4, write_debug},

ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);

{free, Ch} ->
Deb2 = sys:handle_debug(Deb, {ch4, write_debug},

ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);

...
end.

write_debug(Dev, Event, Name) ->
io:format(Dev, "~p event = ~p~n", [Name, Event]).

Handling System Messages

System messages are received as:

{system, From, Request}

The content and meaning of these messages do not need to be interpreted by the process. Instead the
following function should be called:

sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

This function does not return. It will handle the system message and then call:

Module:system_continue(Parent, Deb, State)

if process execution should continue, or:

Module:system_terminate(Reason, Parent, Deb, State)

if the process should terminate. Note that a process in a supervision tree is expected to terminate with
the same reason as its parent.

� Request and From should be passed as-is from the system message to the call to
handle system msg.

� Parent is the pid of the parent.
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� Module is the name of the module.

� Deb is the debug information.

� State is a term describing the internal state and is passed to
system continue/system terminate.

In the example:

loop(Chs, Parent, Deb) ->
receive

...

{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent,

ch4, Deb, Chs)
end.

system_continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).

system_terminate(Reason, Parent, Deb, Chs) ->
exit(Reason).

If the special process is set to trap exits, note that if the parent process terminates, the expected
behaviour is to terminate with the same reason:

init(...) ->
...,
process_flag(trap_exit, true),
...,
loop(...).

loop(...) ->
receive

...

{exit, Parent, Reason} ->
..maybe some cleaning up here..
exit(Reason);

...
end.

1.7 Applications

This chapter should be read in conjunction with app(4) and application(3).
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1.7.1 Application Concept

When we have written code implementing some specific functionality, we might want to make the code
into an application, that is a component that can be started and stopped as a unit, and which can be
re-used in other systems as well.

To do this, we create an application callback module [page 30], where we describe how the application
should be started and stopped.

Then, an application specification is needed, which is put in an application resource file [page 31].
Among other things, we specify which modules the application consists of and the name of the callback
module.

If we use systools, the Erlang/OTP tools for packaging code (see Releases [page 42]), the code for
each application is placed in a separate directory following a pre-defined directory structure [page 32].

1.7.2 Application Callback Module

How to start and stop the code for the application, i.e. the supervision tree, is described by two callback
functions:

start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
stop(State)

start is called when starting the application and should create the supervision tree by starting the top
supervisor. It is expected to return the pid of the top supervisor and an optional term State, which
defaults to []. This term is passed as-is to stop.

StartType is usually the atom normal. It has other values only in the case of a takeover or failover, see
Distributed Applications [page 37]. StartArgs is defined by the key mod in the application resource file.

stop/1 is called after the application has been stopped and should do any necessary cleaning up. Note
that the actual stopping of the application, that is the shutdown of the supervision tree, is handled
automatically as described in Starting and Stopping Applications [page 33].

Example of an application callback module for packaging the supervision tree from the Supervisor
[page 18] chapter:

-module(ch_app).
-behaviour(application).

-export([start/2, stop/1]).

start(_Type, _Args) ->
ch_sup:start_link().

stop(_State) ->
ok.

A library application, which can not be started or stopped, does not need any application callback
module.
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1.7.3 Application Resource File

To define an application, we create an application specification which is put in an application resource file,
or in short .app file:

{application, Application, [Opt1,...,OptN]}.

Application, an atom, is the name of the application. The file must be named Application.app.

Each Opt is a tuple fKey, Valueg which define a certain property of the application. All keys are
optional. Default values are used for any omitted keys.

The contents of a minimal .app file for a library application libapp looks like this:

{application, libapp, []}.

The contents of a minimal .app file ch app.app for a supervision tree application like ch app looks like
this:

{application, ch_app,
[{mod, {ch_app,[]}}]}.

The key mod defines the callback module and start argument of the application, in this case ch app and
[], respectively. This means that

ch_app:start(normal, [])

will be called when the application should be started and

ch_app:stop([])

will be called when the application has been stopped.

When using systools, the Erlang/OTP tools for packaging code (see Releases [page 42]), the keys
description, vsn, modules, registered and applications should also be specified:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
{mod, {ch_app,[]}}

]}.

description A short description, a string. Defaults to “”.

vsn Version number, a string. Defaults to “”.

modules All modules introduced by this application. systools uses this list when generating boot
scripts and tar files. A module must be defined in one and only one application. Defaults to [].

registered All names of registered processes in the application. systools uses this list to detect name
clashes between applications. Defaults to [].

applications All applications which must be started before this application is started. systools uses
this list to generate correct boot scripts. Defaults to [], but note that all applications have
dependencies to at least kernel and stdlib.

The syntax and contents of of the application resource file are described in detail in app(4).
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1.7.4 Directory Structure

When packaging code using systools, the code for each application is placed in a separate directory
lib/Application-Vsn, where Vsn is the version number.

This may be useful to know, even if systools is not used, since Erlang/OTP itself is packaged according
to the OTP principles and thus comes with this directory structure. The code server (see code(3)) will
automatically use code from the directory with the highest version number, if there are more than one
version of an application present.

The application directory structure can of course be used in the development environment as well. The
version number may then be omitted from the name.

The application directory have the following sub-directories:

� src

� ebin

� priv

� include

src Contains the Erlang source code. If source code is written in several different languages, a
sub-directory with the name e src can be created below the src directory to store the Erlang
source code.

ebin Contains the Erlang object code, the beam files. The application resource file is also placed here.

priv Used for application specific files. For example, C executables are placed here. The function
code:priv dir/1 should be used to access this directory.

include Used for include files.

1.7.5 Application Controller

When an Erlang runtime system is started, a number of processes are started as part of the Kernel
application. One of these processes is the application controller process, registered as
application controller.

All operations on applications are coordinated by the application controller. It is interfaced through the
functions in the module application, see application(3). In particular, applications can be loaded,
unloaded, started and stopped.

1.7.6 Loading and Unloading Applications

Before an application can be started, it must be loaded. The application controller reads and stores the
information from the .app file.

1> application:load(ch app).
ok
2> application:loaded applications().
[fkernel,"ERTS CXC 138 10","2.8.1.3"g,
fstdlib,"ERTS CXC 138 10","1.11.4.3"g,
fch app,"Channel allocator","1"g]

An application that has been stopped, or has never been started, can be unloaded. The information
about the application is erased from the internal database of the application controller.
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3> application:unload(ch app).
ok
4> application:loaded applications().
[fkernel,"ERTS CXC 138 10","2.8.1.3"g,
fstdlib,"ERTS CXC 138 10","1.11.4.3"g]

Note:
Loading/unloading an application does not load/unload the code used by the application. Code
loading is done the usual way.

1.7.7 Starting and Stopping Applications

An application is started by calling:

5> application:start(ch app).
ok
6> application:which applications().
[fkernel,"ERTS CXC 138 10","2.8.1.3"g,
fstdlib,"ERTS CXC 138 10","1.11.4.3"g,
fch app,"Channel allocator","1"g]

If the application is not already loaded, the application controller will first load it similar to calling
application:load/1. It will check the value of the applications key, to ensure that all applications
that should be started before this application are running.

The application controller then creates an application master for the application. The application master
is the group leader of all the processes in the application. The application master starts the application
by calling the application callback function start/2 in the module, and with the start argument,
defined by the mod key in the .app file.

An application is stopped, but not unloaded, by calling:

7> application:stop(ch app).
ok

The application master stops the application by telling the top supervisor to shutdown. The top
supervisor tells all its child processes to shutdown etc. and the entire tree is terminated in reversed start
order. The application master then calls the application callback function stop/1 in the module defined
by the mod key.

33OTP Design Principles



Chapter 1: OTP Design Principles

1.7.8 Configuring an Application

An application can be configured using configuration parameters. These are a list of fPar, Valg tuples
specified by a key env in the .app file.

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
{mod, {ch_app,[]}},
{env, [{file, "/usr/local/log"}]}
]}.

The application can retrieve the value of a configuration parameter by calling
application:get env(App, Par) or a number of similar functions, see application(3).

Example:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1> application:start(ch app).
ok
2> application:get env(ch app, file).
fok,"/usr/local/log"g

The values in the application resource file can be overridden by values in a system configuration file, see
config(4). The command line argument -config Name tells the system to use data in the system
configuration file Name.config.

The system configuration file should contain a list with one element for each application, a tuple
fApplication, [fPar1,Val1g,...,fParN,ValNg]g.

For example, a file test.config could be created with the following contents:

[{ch_app, [{file, "testlog"}]}].

Example:

% erl -config test
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1> application:start(ch app).
ok
2> application:get env(ch app, file).
fok,"testlog"g
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The values in the application resource file, as well as the values in a system configuration file, can be
overridden directly from the command line:

% erl -ApplName Par1 Val1 ... ParN ValN

Example:

% erl -ch app file ’"testlog"’
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1> application:start(ch app).
ok
2> application:get env(ch app, file).
fok,"testlog"g

1.7.9 Application Modes

An application is started in one of three modes. The mode is defined when starting the application using
application:start(Application, Mode) and specifies what happens if the application terminates.

application:start(Application) is the same as calling application:start(Application,
temporary). The mode can also be permanent or transient.

� If a permanent application terminates, all other applications and the runtime system are also
terminated.

� If a transient application terminates with reason normal, this is reported but no other applications
are terminated. If a transient application terminates abnormally, that is with any other reason than
normal, all other applications and the runtime system are also terminated.

� If a temporary application terminates, this is reported but no other applications are terminated.

It is always possible to stop an application explicitly by calling application:stop/1. Regardless of the
mode, no other applications will be affected.

Note that transient mode is of little practical use, since when a supervision tree terminates, the reason is
set to shutdown, not normal.

1.8 Included Applications

1.8.1 Definition

An application can include other applications. An included application has its own application directory
and .app file, but it is started as part of the supervisor tree of another application.

An application can only be included by one other application.

An included application can include other applications.

An application which is not included by any other application is called a primary application.
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Figure 1.5: Primary Application and Included Applications.

The application controller will automatically load any included applications when loading a primary
application, but not start them. Instead, the top supervisor of the included application must be started
by a supervisor in the including application.

This means that when running, an included application is in fact part of the primary application and a
process in an included application will consider itself belonging to the primary application.

1.8.2 Specifying Included Applications

Which applications to include is defined by the included applications key in the .app file.

fapplication, treeapp,
[fdescription, "Tree application"g,
fvsn, "1"g,
fmodules, [treeapp cb, treeapp sup, treeapp server]g,
fregistered, [treeapp server]g,
fincluded applications, [subtreeapp]g,
fapplications, [kernel, stdlib, sasl]g,
fmod, ftreeapp cb,[]gg,
fenv, [ffile, "/usr/local/log"g]g
]g.

1.8.3 Synchronizing Processes During Startup

The supervisor tree of an included application is started as part of the supervisor tree of the including
application. If there is a need for synchronization between processes in the including and included
applications, this can be achieved by using start phases.

Start phases are defined by the start phases key in the .app file.
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fapplication, treeapp,
[fdescription, "Tree application"g,
fvsn, "1"g,
fmodules, [treeapp cb, treeapp sup, treeapp server]g,
fregistered, [treeapp server]g,
fincluded applications, [subtreeapp]g,
fstart phases, [finit,[]g, fgo,[]g]g,
fapplications, [kernel, stdlib, sasl]g,
fmod, ftreeapp cb,[]gg,
fenv, [ffile, "/usr/local/log"g]g

]g.

fapplication, subtreeapp,
[fdescription, "Included application"g,
fvsn, "1"g,
fmodules, [subtreeapp sup, subtreeapp server]g,
fregistered, []g,
fstart phases, [fgo,[]g]g,
fapplications, [kernel, stdlib, sasl]g,
fmod, fsubtreeapp cb,[]gg

]g.

A start phase is defined as a tuple fPhase,PhaseArgsg, where Phase is an atom and PhaseArgs is a
term.

When starting a primary application with included applications, the primary application is started the
normal way: The application controller creates an application master for the application, and the
application master calls Module:start(normal, StartArgs) to start the top supervisor.

Then, for the primary application and each included application in top-down, left-to-right order, the
application master calls Module:start phase(Phase, Type, PhaseArgs) for each phase defined for
for the primary application, in that order. Note that if a phase is not defined for an included application,
the function is not called for this phase and application.

The following requirements apply to the .app file for an included application:

� The fmod, fModule,StartArgsgg option must be included. This option is used to find the
callback module Module of the application. StartArgs is ignored, as Module:start/2 is called
only for the primary application.

� The fstart phases, [fPhase,PhaseArgsg]g option must be included, and the set of specified
phases must be a subset of the set of phases specified for the including application.

1.9 Distributed Applications

1.9.1 Definition

In a distributed system with several Erlang nodes, there may be a need to control applications in a
distributed manner. If the node, where a certain application is running, goes down, the application
should be restarted at another node.

Such an application is called a distributed application. Note that it is the control of the application
which is distributed, all applications can of course be distributed in the sense that they, for example, use
services on other nodes.
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Because a distributed application may move between nodes, some addressing mechanism is required to
ensure that it can be addressed by other applications, regardless on which node it currently executes.
This issue is not addressed here, but the standard Erlang modules global or pg can be used for this
purpose.

1.9.2 Specifying Distributed Applications

Distributed applications are controlled by both the application controller and a distributed application
controller process, dist ac. Both these processes are part of the kernel application. Therefore,
distributed applications are specified by configuring the kernel application, using the following
configuration parameter (see also kernel(6)):

distributed = [fApplication, [Timeout,] NodeDescg] Specifies where the application
Application = atom() may execute. NodeDesc = [Node | fNode,...,Nodeg] is a list of node
names in priority order. The order between nodes in a tuple is undefined.
Timeout = integer() specifies how many milliseconds to wait before restarting the application
at another node. Defaults to 0.

For distribution of application control to work properly, the nodes where a distributed application may
run must contact each other and negotiate where to start the application. This is done using the
following kernel configuration parameters:

sync nodes mandatory = [Node] Specifies which other nodes must be started (within the timeout
specified by sync nodes timeout.

sync nodes optional = [Node] Specifies which other nodes can be started (within the timeout
specified by sync nodes timeout.

sync nodes timeout = integer() | infinity Specifies how many milliseconds to wait for the other
nodes to start.

When started, the node will wait for all nodes specified by sync nodes mandatory and
sync nodes optional to come up. When all nodes have come up, or when all mandatory nodes have
come up and the time specified by sync nodes timeout has elapsed, all applications will be started. If
not all mandatory nodes have come up, the node will terminate.

Example: An application myapp should run at the node cp1@cave. If this node goes down, myapp
should be restarted at cp2@cave or cp3@cave. A system configuration file cp1.config for cp1@cave
could look like:

[{kernel,
[{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
{sync_nodes_mandatory, [cp2@cave, cp3@cave]},
{sync_nodes_timeout, 5000}

]
}

].

The system configuration files for cp2@cave and cp3@cave are identical, except for the list of mandatory
nodes which should be [cp1@cave, cp3@cave] for cp2@cave and [cp1@cave, cp2@cave] for
cp3@cave.

38 OTP Design Principles



1.9: Distributed Applications

Note:
All involved nodes must have the same value for distributed and sync nodes timeout, or the
behaviour of the system is undefined.

1.9.3 Starting Distributed Applications

When all involved (mandatory) nodes have been started, the distributed application can be started by
calling application:start(Application) at all of these nodes.

It is of course also possible to use a boot script (see Releases [page 42]) which automatically starts the
application.

The application will be started at the first node, specified by the distributed configuration parameter,
which is up and running. The application is started as usual. That is, an application master is created
and calls the application callback function:

Module:start(normal, StartArgs)

Example: Continuing the example from the previous section, the three nodes are started, specifying the
system configuration file:

> erl -sname cp1 -config cp1
> erl -sname cp2 -config cp2
> erl -sname cp3 -config cp3

When all nodes are up and running, myapp can be started. This is achieved by calling
application:start(myapp) at all three nodes. It is then started at cp1, as shown in the figure below.

cp2 cp3cp1

myapp

Figure 1.6: Application myapp - Situation 1

1.9.4 Failover

If the node where the application is running goes down, the application is restarted (after the specified
timeout) at the first node, specified by the distributed configuration parameter, which is up and
running. This is called a failover.

The application is started the normal way at the new node, that is, by the application master calling:

Module:start(normal, StartArgs)

Exception: If the application has the start phases key defined (see Included Applications [page 35]),
then the application is instead started by calling:
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Module:start({failover, Node}, StartArgs)

where Node is the terminated node.

Example: If cp1 goes down, the system checks which one of the other nodes, cp2 or cp3, has the least
number of running applications, but waits for 5 seconds for cp1 to restart. If cp1 does not restart and
cp2 runs fewer applications than cp3, then myapp is restarted on cp2.

cp1

myapp

cp2 cp3

cp3cp2

myapp

5 secs.

Figure 1.7: Application myapp - Situation 2

Suppose now that cp2 goes down as well and does not restart within 5 seconds. myapp is now restarted
on cp3.
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cp3cp2

myapp

cp3

myapp

5 secs.

Figure 1.8: Application myapp - Situation 3

1.9.5 Takeover

If a node is started, which has higher priority according to distributed, than the node where a
distributed application is currently running, the application will be restarted at the new node and
stopped at the old node. This is called a takeover.

The application is started by the application master calling:

Module:start({takeover, Node}, StartArgs)

where Node is the old node.

Example: If myapp is running at cp3, and if cp2 now restarts, it will not restart myapp, because the order
between nodes cp2 and cp3 is undefined.

cp2 cp3

myapp

Figure 1.9: Application myapp - Situation 4
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However, if cp1 restarts as well, the function application:takeover/2 moves myapp to cp1, because
cp1 has a higher priority than cp3 for this application. In this case, Module:start(ftakeover,
cp3@caveg, StartArgs) is executed at cp1 to start the application.

cp2 cp3cp1

myapp

cp2 cp3

myapp

cp1:   application:takeover(myapp, permanent)

Figure 1.10: Application myapp - Situation 5

1.10 Releases

This chapter should be read in conjuction with rel(4), systools(3) and script(4).

1.10.1 Release Concept

When we have written one or more applications, we might want to create a complete system consisting
of these applications and a subset of the Erlang/OTP applications. This is called a release.

To do this, we create a release resource file [page 42] which defines which applications are included in
the release.

The release resource file is used to generate boot scripts and release packages. A system which is
transfered to and installed at another site is called a target system. How to use a release package to create
a target system is described in System Principles.

1.10.2 Release Resource File

To define a release, we create an release resource file, or in short .rel file:

{release, {Name,Vsn}, {erts, EVsn},
[{Application1, AppVsn1},
...

{ApplicationN, AppVsnN}]}.
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The file must be named Rel.rel, where Rel is a unique name.

Name and Vsn (strings) are the name and version of the release.

Evsn (string) is the ERTS version the release is intended for.

Each Application (atom) and AppVsn (string) is the name and version of an application included in the
release. Note the the minimal release based on Erlang/OTP consists of the kernel and stdlib
applications.

Example: We want to make a release of ch app from the Applications [page 29] chapter. It has the
following .app file:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
{mod, {ch_app,[]}}

]}.

The release resource file must also contain kernel, stdlib and sasl, since these applications are
required by ch app. We call the file ch rel-1.rel:

{release,
{"ch_rel", "1"},
{erts, "5.2.3.6"},
[{kernel, "2.8.1.3"},
{stdlib, "1.11.4.3"},
{sasl, "1.9.4"},
{ch_app, "1"}]

}.

1.10.3 Generating Boot Scripts

There are tools in the module systools available to build and check releases. The functions read the
release resource file and the application resource files and performs syntax and dependency checks. The
function systools:make script/1,2 is used to generate a boot script.

1> systools:make script("ch rel-1", [local]).
ok

This creates a boot script ch rel-1.script. "ch rel-1" is the name of the .rel file, minus the
extension. local is an option that means that the directories where the applications are found are used
in the boot script, instead of $ROOT/lib. ($ROOT is the root directory of the installed release.) This is
a useful way to test a generated boot script locally.

A binary version ch rel-1.boot of the script must be generated:

2> systools:script2boot("ch rel-1").
ok
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When starting Erlang/OTP using the boot script, all applications from the .rel file are automatically
started:

% erl -boot ch rel-1
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1>
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===

supervisor: flocal,sasl safe supg
started: [fpid,<0.33.0>g,

fname,alarm handlerg,
fmfa,falarm handler,start link,[]gg,
frestart type,permanentg,
fshutdown,2000g,
fchild type,workerg]

...

=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===
application: sasl
started at: nonode@nohost

...
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===

application: ch app
started at: nonode@nohost

1.10.4 Creating a Release Package

There is a function systools:make tar/1,2 which takes a .rel file as input and creates a zipped
tar-file with the code for the specified applications, a release package.

1> systools:make script("ch rel-1").
ok
2> systools:script2boot("ch rel-1").
ok
3> systools:make tar("ch rel-1").
ok

The release package by default contains the .app files and object code for all applications, structured
according to the application directory structure [page 32], the binary boot script renamed to
start.boot, and the release resource file.

% tar tf ch rel-1.tar
lib/kernel-2.8.1.3/ebin/kernel.app
lib/kernel-2.8.1.3/ebin/application.beam
...
lib/stdlib-1.11.4.3/ebin/stdlib.app
lib/stdlib-1.11.4.3/ebin/beam lib.beam
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...
lib/sasl-1.9.4/ebin/sasl.app
lib/sasl-1.9.4/ebin/sasl.beam
...
lib/ch app-1/ebin/ch app.app
lib/ch app-1/ebin/ch app.beam
lib/ch app-1/ebin/ch sup.beam
lib/ch app-1/ebin/ch3.beam
releases/1/start.boot
releases/ch rel-1.rel

Options can be set to make the release package include source code and the ERTS binary as well.

The release package should be unpacked and installed using the release handler. See System Principles
for how this is done when installing a target system and Release Handling [page 47] for how to do it in
an existing system.

1.10.5 Directory Structure

Directory structure for the code installed by the release handler from a release package:

$ROOTDIR/lib/App1-AVsn1/ebin
/priv

/App2-AVsn2/ebin
/priv

...
/AppN-AVsnN/ebin

/priv
/erts-EVsn/bin
/releases/Vsn
/bin

lib Application directories.

The boot script and relup files should be located in the releases/Vsn directory. Vsn is the release
version found in the release resource file.

erts-EVsn/bin Erlang runtime system executables.

releases/Vsn .rel file.

bin Top level Erlang executable program erl.

Applications are not required to be located under the $ROOTDIR/lib directory. Accordingly, several
installation directories may exist which contain different parts of a system. For example, the previous
example could be extended as follows:

$SECOND ROOT/.../SApp1-SAVsn1/ebin
/priv

/SApp2-SAVsn2/ebin
/priv

...
/SAppN-SAVsnN/ebin

/priv
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$THIRD ROOT/TApp1-TAVsn1/ebin
/priv

/TApp2-TAVsn2/ebin
/priv

...
/TAppN-TAVsnN/ebin

/priv

The $SECOND ROOT and $THIRD ROOT are introduced as variables in the call to the
systools:make script/2 function.

Disk-Less and/or Read-Only Clients

If a complete system consists of some disk-less and/or read-only client nodes, a clients directory should
be added to the $ROOTDIR directory. By a read-only node we mean a node with a read-only file system.

The clients directory should have one sub-directory per supported client node. The name of each
client directory should be the name of the corresponding client node. As a minimum, each client
directory should contain the bin and releases sub-directories. These directories are used to store
information about installed releases and to appoint the current release to the client. Accordingly, the
$ROOTDIR directory contains the following:

$ROOTDIR/...
/clients/ClientName1/bin

/releases/Vsn
/ClientName2/bin

/releases/Vsn
...
/ClientNameN/bin

/releases/Vsn

This structure should be used if all clients are running the same type of Erlang machine. If there are
clients running different types of Erlang machines, or on different operating systems, the clients
directory could be divided into one sub-directory per type of Erlang machine. Alternatively, you can set
up one ROOTDIR per type of machine. For each type, some of the directories specified for the ROOTDIR
directory should be included:

$ROOTDIR/...
/clients/Type1/lib

/erts-EVsn
/bin
/ClientName1/bin

/releases/Vsn
/ClientName2/bin

/releases/Vsn
...
/ClientNameN/bin

/releases/Vsn
...
/TypeN/lib

/erts-EVsn
/bin
...
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With this structure, the root directory for clients of Type1 is $ROOTDIR/clients/Type1.

1.11 Release Handling

1.11.1 Release Handling Principles

A new release is assembled into a release package. Such a package is installed in a running system by
giving commands to the release handler, which is an SASL process. A system has a unique system
version, which is updated whenever a new release is installed. The system version is the version of the
entire system, not just the OTP version.

If the system consists of several nodes, each node has its own system version. Release handling can be
synchronized between nodes, or be done at one node at a time.

Changes may require a node to be brought down. If that is the case and the system consists of several
nodes, the release upgrade can be done as follows;

1. move all applications from the node to be changed to other nodes,

2. take down the node,

3. do the change,

4. restart the node and move the applications back.

There are several different types of releases:

Operating system change. Can only be done by taking down the node. This kind of change is not
supported by the release handler and therefore has to be performed manually. It is not possible to
roll back automatically to a previous release, if there is an error.

Application code or data change. The release is installed without bringing down the running node.
Some changes, for example change of C-programs, may be done by shutting down and restarting
the affected processes.

Erlang emulator change. Can only be made by taking down the node. However, the release handler
supports this type of change.

1.11.2 Administering Releases

This section describes how to build and install releases. Also refer to the SASL Reference Manual,
release handler, for more details.

The following steps are involved in administering releases:

1. A release package is built by using release building commands in the systools module. The
package is assembled from application specification files, code files, data files, and a file, which
describes how the release is installed in the system.

2. The release package is transferred to the target machine, e.g. by using ftp.

3. The release package is unpacked, which makes the system version in the release package available
for installation by the release handler, which interprets the release upgrade script, containing
instructions for updating to the new version. If an installation fails in some way, the entire system
is restarted from the old system version.

4. When the installation is complete, the system version must be made permanent. When
permanent, the new version is used if the system restarts.
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It is also possible to reinstall an old version, or reboot the system from an old version. There are
functions to remove old releases from disk as well.

1.11.3 File Structure

The file structure used in an OTP system is described in Release Directories [page 45]. There are two
ways of using this file structure together with the release handler.

The simplest way is to store all user-defined applications under $OTP ROOT/lib in the same way as other
OTP applications. The release handler takes care of everything, from unpacking a release to the removal
of it. The release packages should be stored in the releases directory (default $OTP ROOT/releases).
This is where release handler:unpack release/1 searches for the packages, and where the release
handler stores its files. Each package is a compressed tar file. The files in the tar file are named relative
to the $OTP ROOT directory. For example, if a new version (say 1.3) of the application snmp is contained
in the release package, the files in the tar file should be named lib/snmp-1.3/*.

The second way is to store all user-defined applications in some other place in the file system. In this
case, some more work has to be done outside the release handler. Specifically, the release packages must
be unpacked in some way and the release handler must be notified of where the new release is located.
The following three functions are available in the module release handler to handle this case:

� set unpacked/2

� set removed/1

� install file/2.

1.11.4 Release Installation Files

The following files must be present when a release is installed. All file names are relative to the releases
directory.

� ReleaseFileName.rel

� Vsn/relup

� Vsn/start.boot

� Vsn/sys.config

The location of the releases directory is specified with the configuration parameter releases dir
(default $OTP ROOT/releases). In a target system, the default location is preferred, but during testing it
may be more convenient to let the release handler write its files in a user specified directory, than in the
$OTP ROOT directory.

The files listed above are either present in the release package, or generated at the target machine and
copied to their correct places using release handler:install file/2.

Vsn is the system version string.
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ReleaseFileName.rel

The ReleaseFileName.rel file contains the name of the system, version of the release, the version of
erts (the Erlang runtime system) and the applications, which are parts of the release. The file must
contain the following Erlang term:

{release, {Name, Vsn}, {erts, EVsn},
[{App, AVsn} | {App, AVsn, AType} | {App, AVsn, [App]} |

{App, AVsn, AType, [App]}]}.

Name, Vsn, EVsn and AVsn are strings, App and AType are atoms. ReleaseFileName is a string given in
the call to release handler:unpack release(ReleaseFileName). Name is the name of the system
(the same as found in the boot file). This file is further described in Release Structure [page 45].

relup

The relup file contains instructions on how to install the new version in the system. It must contain
one Erlang term:

{Vsn, [{FromVsn, Descr, RuScript}], [{ToVsn, Descr, RuScript}]}.

Vsn, FromVsn and ToVsn are strings, RuScript is a release upgrade script. Descr is a user defined
parameter, which is not processed by any release handling functions. It can be used to describe the
release to an operator. Finally, it will be returned by release handler:install release/1 and
release handler:check install release/1.

There is one tuple fFromVsn, Descr, RuScriptg for each old system version which can be upgraded
to the new version, and one tuple fToVsn, Descr, RuScriptg for each old version to which the new
version can be downgraded.

start.boot

The start.boot file is the compiled start.script file. It is used to boot the Erlang machine.

sys.config

The sys.config is the system configuration file.

1.11.5 Release Handling Principles

The following sections describe the principles for updating parts of an OTP system.
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Erlang Code

The code change feature in Erlang is made possible because Erlang allows two versions of a module to
be present in the system: the current version and the old version. There is always a current version of a
loaded module, but an old version of a module only exists if the module has been replaced in run-time
by loading a new version. When a new version is loaded, the previously current version becomes the old
version, and the new version becomes the current version. However, if there are both a current and old
version of a module, a new version cannot be loaded, unless the old version is first explicitly purged.

A global function call is a call where a qualified module name is used, i.e. the call is of the form M:F(A)
(or apply(M, F, A)). A global call causes M:F to be dynamically linked into the run-time code, which
means that M:F(A) will be evaluated using the latest available version of the module, i.e. the current
version.

A local function call is a call without a qualified module name, i.e. the call is of the form F(A). The
reference to F is resolved at compile time (irrespective of whether F is exported or not). By the very
nature of F(A) being a local function call, F can only be called by a function that is defined in the very
same module as that where F is defined. Hence a local function call is always evaluated in the same
version of a module as that of the caller.

A fun is a function without a name. Like ordinary functions (i.e. functions which have names) its
implementation is always bound to some module, and therefore funs are affected by code change as
well. A reference to a fun is always indirect, as is the case for a global function call, where the reference
is M:F (through an export table entry for the module), but the reference is not necessarily global. In
fact, if a fun is called in the same module where it is defined, its reference will be resolved in the same
way as a local function call is resolved. If a fun is called from a different module, its reference will be
resolved as if the call was a global call, but with the additional requirement that the reference also
match the particular implementation of the module where the fun was defined.

For each process there is a current function, i.e. the function that the process is currently evaluating.
That function resides in some module. Hence a process has always a reference to at least one module. It
may of course have references to other modules as well, because of nested, not yet finished calls.

Before a new version of a module can be loaded, the current version must be made old. If there is no
old version, the new version is merely loaded, making the previously current version to the old version,
and the new version becomes current. All processes that execute the version, which became old, will
continue to do so, until they have no unfinished calls within the old version.

If there is an old version, it must first be purged to make room for the current version to become old.
However, an old version should not be purged if there are processes that have references to it. Such
processes must either be terminated, or the loading of the new version must be postponed until they
have terminated by themselves or no longer have references to the old version. There are options for
controlling this in release upgrade scripts.

To prevent processes from making calls to other processes during the release installation, they may be
suspended. All processes implemented with the standard behaviors, or with sys, can be suspended.
When suspended a process enters a special suspend loop instead of its usual main process loop. In the
suspend loop, the process can only receive system messages and shut-down messages from its
supervisor. The code change message is a special system message, and this message causes the process to
change code to the new version, and possibly to transform its internal state. After the code change a
process is resumed, i.e. it returns to its main loop.

We highlight here three different types of modules.

Functional module. A module, which does not contain a process loop, i.e. no process has constant
references to this kind of module. lists is an example of a functional module.

Process module. A module, which contains a process loop, i.e. some process has constant reference to
the module. init is an example of a process module.
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Call-back module. A special case of a functional module which serves as a call-back module for a
generic behavior such as gen server. file is an example of a call-back module. A call to a
call-back module is always a global call (i.e. it refers to the latest version of the module). This has
some impacts upon how updates must be handled.

Modules of the above types are handled differently when changing code.

Functional Module If the API of a new version of a functional module is backward compatible, as
may be the case of a bug fix or new functionality, we simply load the new version. After a short while,
when no processes have references to the old version, the old module is purged.

A more complicated situation arises if the API of a functional module is changed so it is not longer
backwards compatible. We must then make sure that no processes, directly or indirectly, try to call
functions that have changed. We do this by writing new versions of all modules that use the API. Then,
when performing the code change, all potential caller processes are suspended, new versions of the
modules that uses the API are loaded, the new version of the functional module is loaded, and finally all
suspended processes are resumed.

There are two alternatives available to manage this type of change:

1. Find all calls to the module, change them, and write dependencies in your release upgrade script.
This may be manageable, if a function that has been incompatibly changed is called from only a
few other functions.

2. Avoid this type of change. This is the only reasonable solution, if an incompatible function is
called from many other modules. Instead a completely new function should be introduced, and
the original function should be kept for backward compatibility. In the next release, when all
other modules are changed as well, the original function can be deleted.

Process Module A process module should never contain global calls to itself (except for code that
makes explicit code change). Therefore, a new version of a process module is merely loaded and all
processes which are executing the module are told to change their code and, if required, to transform
their internal state.

In practice, few modules are pure in the sense that they never contain global calls to themselves. If you
use higher-order functions such as lists:map/2 in a process module, there will be global calls to the
module. Therefore, we cannot merely load the module because a process might, still running the old
version of the module, make a call to the new version, which might be incompatible.

The only safe way to change code for a process module, is to have its implementation to understand
system messages, and to change code by first suspending all processes that run the module, then order
them to change code, and finally resume them.

Call-back Module As long as the type of the internal state of a call-back module has not changed, we
can just simply load the new version of the module without suspending and resuming the processes
involved in the code change. This case is similar to the case of a functional module.

If the type of the internal state has changed, we must first suspend the processes, tell them to change
code and at the same time give them the possibility to transform their states, and finally resume them.
This is similar to the case of a process module.
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Dependencies Between Processes It is possible that a group of processes, which communicate,
must perform code changes while they are suspended. Some of the processes may otherwise use the old
protocol while others use the new protocol. On the other hand, there may be time-out dependencies
which restrict the number of processes that can perform a synchronized code change as one set. The
more processes that are included in the set, the longer the processes are suspended.

There may also be problems with circular dependencies. The following scenario illustrates this situation.

� two modules a and b are dependent on each other,

� each module is executed by one process with the same name as the corresponding module,

� both are updated at the same time because the internal protocol between them has changed.

The following sequence of events may occur:

1. a is suspended.

2. the release handler tries to suspend b, but some microsecond before this happens, b tries to
communicate with a which is now suspended

3. If b hangs in its call to a, the suspension of b fails and only a is updated.

4. If b notices that a does not answer and is able to deal with it, then b receives the suspend message
and is suspended. Then both modules are updated and the processes are resumed.

5. When a resumes, there is a message waiting from b. This message may be of an old format which
a does not recognize.

Situations of the type described, and many others, are highly application dependent. The author of the
release upgrade script has to predict and avoid them. If the consequences are too difficult to manage, it
may be better to entirely shut down and restart all affected processes. This reduces the problem of
introducing new code and removes the need to do a synchronized change.

Finding Processes For each application the .appup file specifies how the application is upgraded.
The file contains specifications of which modules to change, and how to change them. The relup file is
an assembly of all the .appup files.

For each application the release handler searches for all processes that have to perform a code change. It
traverses the application supervision tree to find all child specifications of every supervisor in the tree.
Each child specification lists all modules of the application that the child uses.

Hence it is by combining the list of modules to change with all children of supervisors that the release
handler finds all processes that are subject to code change.

Port Programs

A port program runs as an external program in the operating system. The simplest way to do code
change for a port program is to terminate it, and then start a new version of it.

If that is not adequate, code change may be performed by sending the port program a message telling it
to return any data that must survive the termination. Then the program is terminated, and the new
version is started and the survived data is to the new version of the port program.

Changing code for port programs is very application dependent. There is no special support for it in
SASL.
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Application Specification and Configuration Parameters

In each release, each application specification (i.e. the contents of the .app file of the application) is
known to the release handler. Before any code change is performed for an application, the new
environment variables are are made available for the application, i.e. those parameters specified by the
env tag in the application specification. When the new version of an application is running it will be
informed of any changed, new or removed environment variables (see application(Module) in the
KERNEL Reference Manual). This means that old processes may read new variables before they are
informed of the new release. We advise against the immediate removal of the old variables. Neither do
we recommend that they be syntactically changed, although they may of course change their values.
They can be safely removed in the next release, by which time it is known that no processes will read
the old variables.

Mnesia Data or Schema Changes

Changing data or schemas in Mnesia is similar to changing code for functional modules. Many processes
may read or write in the same table at the same time. If we change a table definition, we must make
sure that all code which uses the table is changed at the same time.

One way of doing it is to let one process be responsible for one or several tables. This process creates
the tables and changes the table definitions or table data. In this way a set of tables is connected with a
module (process module or call-back module). When the process performs a code change, the tables
are changed as well.

Upgrade vs. Downgrade

When a new release is installed, the system is upgraded to the new release. The release handler reads
the relup file of the new release, and finds the upgrade script that corresponds to an upgrade from the
current version to the new version of the system.

When an old release is reinstalled, the release handler reads the relup in the current release, and finds
the downgrade script that corresponds to an downgrade from the current version to the old version of
the system.

Usually a relup file for a new release contains one upgrade script and one downgrade script for each old
version. If a soft downgrade is not wanted (an alternative is to reboot the system from the old release)
the downgrade script is left out.

For each modified module in the new release, there are some instructions that specifies how to install
that module in a system. When performing an upgrade, the following steps are typically involved:

1. Suspend the processes running the module.

2. Load the new code.

3. Tell the processes to switch to new code.

4. Tell the processes to change the internal state. This usually involves calling, in the new module, a
code change function that is responsible for state updates, e.g. transforming the state from the old
format to the new.

5. Resume the processes.
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The code change step is always performed when new code has been loaded and all processes are
running the new code. The reason for this is that it is always the new version of the module that knows
how to change the state from the old version.

When performing a downgrade the situation is different. The old module does not know how to
transform the new state to the old version: the new format is unknown to the old code. Therefore, it is
the responsibility of new code to revert the state back to the old version during downgrade. The
following steps are involved:

1. Suspend the processes running the module.

2. Tell the processes to change the internal state. This usually involves calling, in the current module,
a code change function that is responsible for state reversals, i.e. transforming the state from the
current format to the old.

3. Load the new code.

4. Tell the processes to switch code.

5. Resume the processes.

We note that for a process module, it is possible to load the code before a process change its internal
state (since a process module never contains global calls to itself), thus making the steps needed for
downgrade almost the same as for upgrade. The difference between the two cases is still in the order of
switching code and changing state.

For a call-back module it is not actually necessary to tell the processes to switch code, since all calls to
the call-back module are global calls. The difference between upgrade and downgrade is still in the
order of loading code and performing state change.

The difference between how process modules and a call-back modules are handled in the downgrade
case comes from the fact that a process module never contains global calls to itself. The code is thus
static in the sense that a process executing a process module does not spontaneously switch to new
loaded code. The opposite situation is a dynamic module, where a process executing the module
spontaneously switches to the new code when it is loaded. A call-back module is always dynamic, and a
process module static. A functional module is always dynamic.

1.11.6 Release Handling Instructions

This section describes the release upgrade and downgrade scripts. A script is a list of instructions which
are interpreted by the release handler when an upgrade or downgrade is made.

There are two levels of instructions; the high-level instructions and the low-level instructions. High-
and low-level instructions may be mixed in one script. However, the high-level instructions are
translated to low-level instructions by the systools:make relup/3 command, because the release
handler understands only low-level instructions.

Scripts have to be placed in the .appup file for each application. systools:make relup/3 assembles
the scripts in all .appup files to form a relup file containing low-level instructions.
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High-level Instructions

The high-level instructions are:

� fupdate, Module, Change, PrePurge, PostPurge, [Mod]g | fupdate, Module, Timeout,
Change, PrePurge, PostPurge,[Mod]g | fupdate, Module, ModType, Timeout, Change,
PrePurge, PostPurge,[Mod]g

– Module = atom()

– Timeout = default | infinity | int() > 0

– ModType = static | dynamic

– Change = soft | fadvanced, Extrag

– PrePurge = soft purge | brutal purge

– PostPurge = soft purge | brutal purge

– Mod = atom(). If the module is dependent on changes in other modules, these other
modules are listed here.

The instruction is used to update a process module or a call-back module. All processes that run
the code of Module are suspended, and if the change is advanced they have to transform their
states into the new states. Then the processes are resumed. If Module is dependent on other
modules, the release handler will suspend processes in Module before suspending processes in the
[Mod] modules. In case of circular dependencies, it will suspend processes in the order that
update instructions appear in the script.
soft means backwards compatible changes and advanced means internal data changes, or changes
which are not backwards compatible. Extra is any term, which is used in the argument list of the
code change function in Module (call-back module); otherwise it becomes part of a code change
message (process module).
The optional parameter Timeout defines the time-out for the call to sys:suspend. It specifies
how long to wait for a process to handle a suspend message and to get suspended. If no value is
specified (or default is given), the default value defined in sys is used.
The optional parameter ModType specifies if the code is static or dynamic, as defined in Upgrade
vs. Downgrade [page 53] above. It needs to be specified only in the case of soft downgrades. Its
value defaults to dynamic. Note; if this parameter is specified, Timeout is needed as well.
PrePurge controls what action to take with processes that are executing an old version of this
module. These are processes, which are left since an earlier release upgrade (or downgrade).
Usually there are no such processes. If the value is soft purge and such processes are found, the
release will not be installed and the install release/1 function returns ferror,
fold processes, Modulegg. If the value is brutal purge, the processes which run old code are
killed.
PostPurge controls what action to take with processes that are executing old code when the new
module has been installed. If the value is soft purge, the release handler will purge the old code
when no remaining processes execute the code. If the value is brutal purge, the code is purged
when the release is made permanent. All processes, which still are running old code are killed.
The update instruction can also be used for functional modules. However, no processes will be
suspended because no processes will have the functional module as its main module. Therefore,
no processes perform code change.

� fload module, Module, PrePurge, PostPurge, [Mod]g

– Module = atom().

– PrePurge = soft purge | brutal purge

– PostPurge = soft purge | brutal purge
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– Mod = atom(). If the module is dependent on changes in other modules, these other
modules are listed here.

The instruction is used to update a functional module or a call-back module. It only loads the
module. A call-back module which must perform a code change, or synchronize by being
suspended, should use update instead.
The object code is fetched in the beginning of the release upgrade, but the module is loaded when
this instruction occurs.

� fadd module, Modg The instruction adds a new module to the system. It loads the module.

� fremove application, Applg Removes an application. It calls application:stop and
application:unload for the application.

� fadd application, Applg Adds a new application. It calls application:load and
application:start for the application.

� frestart application, Applg Restarts an existing application. The current version of the
application is stopped and removed, and the new version of the application is loaded and started.
The instruction is useful when the simplest way to change code for an application is to stop and
restart the whole application.

Low-level instructions

The low-level instructions are:

� fload object code, fLib, LibVsn, [Module]gg Reads each Module from the library
Lib-LibVsn as a binary. It does not install the code, it just reads the files. The instruction should
be placed first in the script in order to read all new code from file. This makes the
suspend-load-resume cycle less time consuming. After this instruction has been executed, the
code server is updated with the new version of Lib. Calls to code:priv dir(Lib) which are
made after this instruction return the new priv dir.
Lib is typically the application name.

� point of no return If a crash occurs after this instruction, the system cannot recover and is
restarted from the old version. The instruction must only occur once in a script. It should be
placed after all load object code operations and after user defined checks, which are performed
with apply. The function check install release/1 tries to evaluate all instructions before this
command occurs in the script. Therefore, user defined checks must not have side effects, as they
may be evaluated many times.

� fload, fModule, PrePurge, PostPurgegg Before this instruction occurs, the Module object
code must have been loaded with with the load object code instruction. This instruction makes
code out of the binary. PrePurge = soft purge | brutal purge, and PostPurge =
soft purge | brutal purge.

� fremove, fModule, PrePurge, PostPurgegg Makes the current version of Module old. When it
has been executed, there is no current version in the system. PrePurge = soft purge |
brutal purge, and PostPurge = soft purge | brutal purge.

� fpurge, [Module]g Kills all processes that run the old versions of the modules in [Module] and
deletes all old versions.

� fsuspend, [Module | fModule, Timeoutg]g Tries to suspend all processes that execute
Module. If a process does not respond, it is ignored. This may cause the process to die, either
because it crashes when it spontaneously switches to new code, or as a result of a purge operation.
If no Timeout is specified (or if default is given), the default time-out defined in the module sys
is used.
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� fcode change, [fModule, Extrag]g | fcode change, Mode, [fModule, Extrag]g This
instruction sends a code change system message using the function change code in the module
sys with the Extra argument to the suspended processes that run this code. Mode is either up or
down. Default is up. In case of an upgrade, the message is sent to the suspended process, after the
new code is loaded (the new version must contain functions to convert from the old internal state,
to the the new internal state). In case of a downgrade, the message is sent to the suspended
process, before the new code is loaded (the current version must contain functions to convert from
the current internal state, to the the old internal state).
Module uses the Extra argument internally in its code change function. Refer to the Reference
Manual, module sys for further details.
One of the arguments to the function sys:change code is OldVsn. In the case of an upgrade it
obtains its value from the attribute vsn in the old code, or undefined if no such attribute was
defined. In the case of downgrade, it is the tuple fdown, Vsng, where Vsn is the version of the
module as defined in the .app file, or undefined otherwise.

� fresume, [Module]g Resumes all previously suspended processes which execute in any of the
modules in the list [Module].

� fstop, [Module]g Stops all processes which are in any of the modules in the list [Module]. The
instruction is useful when the simplest way to change code for the [Module] is to stop and restart
the processes which run the code. If a supervisor is stopped, all its children are stopped as well.

� fstart, [Module]g Starts all previously stopped processes which are in any member of
[Module]. The processes will regain their positions in the supervision tree.

� fsync nodes, Id, [Node] | fM, F, Agg If fM, F, Ag is specified, apply(M, F, A) is
evaluated and must return a list of nodes. The instruction synchronizes the release installation
with other nodes. Each node in the list of nodes must evaluate this command, with the same Id.
The local node waits for all other nodes to evaluate the instruction before execution continues. In
case a node goes down, it is considered to be an unrecoverable error, and the local node is
restarted from the old release. There is no time-out for this instruction, which implies that it may
hang forever if a user defined apply enters an infinite loop at some node. It is up to the user to
ensure that the apply command eventually returns or makes the node to crash.

� fapply, fM, F, Agg Applies the function to the arguments. If the instruction appears before the
point of no return instruction, a failure of the application M:F(A) is caught, causing
release handler:install release/1 to return ferror, f’EXIT’, Reasongg. If ferror,
Errorg is thrown or returned by M:F, install release/1 returns ferror, Errorg.
If the instruction appears after the point of no return instruction, and if the application M:F(A)
fails, the system is restarted.

� restart new emulator Shuts down the current emulator and starts a new one. All processes are
terminated gracefully. The new release must still be made permanent when the new emulator is
up and running. Otherwise, the old emulator is started in case of a emulator restart. This
instruction should be used when a new emulator is introduced, or if a complete reboot of the
system should be done.

1.11.7 Release Handling Examples

This section includes several examples that show how different types of upgrades are handled. In
call-back modules having the gen server behavior, all call-back functions have been provided for
reasons of clarity.
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Update of Erlang Code

Several update examples are shown. Unless otherwise stated, it is assumed that all original modules are
in the application foo, version "1.1", and the updated version is "1.2".

Simple Functional Module This example is about a pure functional module, i.e. a module the
functions of which have no side effects. The original version of the module lists2 has the following
contents:

-module(lists2).
-vsn(1).

-export([assoc/2]).

assoc(Key, [{Key, Val} | _]) -> {ok, Val};
assoc(Key, [H | T]) -> assoc(Key, T);
assoc(Key, []) -> false.

The new version of the module adds a new function:

-module(lists2).
-vsn(2).

-export([assoc/2, multi_map/2]).

assoc(Key, [{Key, Val} | _]) -> {ok, Val};
assoc(Key, [H | T]) -> assoc(Key, T);
assoc(Key, []) -> false.

multi_map(Func, [[] | ListOfLists]) -> [];
multi_map(Func, ListOfLists) ->

[apply(Func, lists:map({erlang, hd}, ListOfLists)) |
multi_map(Func, lists:map({erlang, tl}, ListOfLists))].

The release upgrade instructions are:

[{load_module, lists2, soft_purge, soft_purge, []}]

Alternatively, the low-level instructions are:

[{load_object_code, {foo, "1.2", [lists2]}},
point_of_no_return,
{load, {lists2, soft_purge, soft_purge}}]
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A More Complicated Functional Module Here we have a functional module bar that uses the
module lists2 of the previous example. The original version is only dependent on the original version
of lists2.

-module(bar).
-vsn(1).

-export([simple/1, complicated_sum/1]).

simple(X) ->
case lists2:assoc(simple, X) of

{ok, Val} -> Val;
false -> false

end.

complicated_sum([X, Y, Z]) -> cs(X, Y, Z).

cs([HX | TX], [HY | TY], [HZ | TZ]) ->
NewRes = cs(TX, TY, TZ),
[HX + HY + HZ | NewRes];

cs([], [], []) -> [].

The new version of bar uses the new functionality of lists2 in order to simplify the implementation of
the useful function complicated sum/1. It does not change its API in any way.

-module(bar).
-vsn(2).

-export([simple/1, complicated_sum/1]).

simple(X) ->
case lists2:assoc(simple, X) of

{ok, Val} -> Val;
false -> false

end.

complicated_sum(X) ->
lists2:multi_map(fun(A,B,C) -> A+B+C end, X).

The release upgrade instructions, including instructions for lists2, are as follows:

[{load_module, lists2, soft_purge, soft_purge, []},
{load_module, bar, soft_purge, soft_purge, [lists2]}]

Note:
We must state that bar is dependent on lists2 to make the release handler to load lists2 before it
loads bar.

The low-level instructions are:
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[{load_object_code, {foo, "1.2", [lists2, bar]}},
point_of_no_return,
{load, {lists2, soft_purge, soft_purge}}
{load, {bar, soft_purge, soft_purge}}]

Advanced Functional Module Suppose now that we modify the return value of lists2:assoc/2
from fok, Valg to fKey, Valg. In order to do an upgrade, we would have to find all modules that call
lists2:assoc/2 directly or indirectly, and specify that these modules are dependent on lists2. In
practice this might an unwieldy task, if if many other modules are using the lists2 module, and the
only reasonable way to perform an upgrade which restarts the whole system.

If we insist on doing a soft upgrade, the modification should be made backward compatible by
introducing an new function (assoc2/2, say) that has the new return value, and not make any changes
to the original function at all.

Advanced gen server This example assumes that we have a gen server process that must be
updated because we have introduced a new function, and added a new data field in our internal state.
The contents of the original module are as follows:

-module(gs1).
-vsn(1).
-behaviour(gen_server).

-export([get_data/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

-record(state, {data}).

get_data() ->
gen_server:call(gs1, get_data).

init([Data]) ->
{ok, #state{data = Data}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State}.

handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(_OldVsn, State, _Extra) ->
{ok, State}.

The new module must translate the old state into the new state. Recall that a record is just syntactic
sugar for a tuple:
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-module(gs1).
-vsn(2).
-behaviour(gen_server).

-export([get_data/0, get_time/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

-record(state, {data, time}).

get_data() ->
gen_server:call(gs1, get_data).

get_time() ->
gen_server:call(gs1, get_time).

init([Data]) ->
{ok, #state{data = Data, time = erlang:time()}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State};

handle_call(get_time, _From, State) ->
{reply, {ok, State#state.time}, State}.

handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(1, {state, Data}, _Extra) ->
{ok, #state{data = Data, time = erlang:time()}}.

The release upgrade instructions are as follows:

[{update, gs1, {advanced, []}, soft_purge, soft_purge, []}]

The alternative low-level instructions are:

[{load_object_code, {foo, "1.2", [gs1]}},
point_of_no_return,
{suspend, [gs1]},
{load, {gs1, soft_purge, soft_purge}},
{code_change, [{gs1, []}]},
{resume, [gs1]}]

If we want to handle soft downgrade as well, the code would be as follows:
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-module(gs1).
-vsn(2).
-behaviour(gen_server).

-export([get_data/0, get_time/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

-record(state, {data, time}).

get_data() ->
gen_server:call(gs1, get_data).

get_time() ->
gen_server:call(gs1, get_time).

init([Data]) ->
{ok, #state{data = Data, time = erlang:time()}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State};

handle_call(get_time, _From, State) ->
{reply, {ok, State#state.time}, State}.

handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(1, {state, Data}, _Extra) ->
{ok, #state{data = Data, time = erlang:time()}};

code_change({down, 1}, #state{data = Data}, _Extra) ->
{ok, {state, Data}}.

Note that we take care of translating the new state to the old format as well. The low-level instructions
are:

[{load_object_code, {foo, "1.2", [gs1]}},
point_of_no_return,
{suspend, [gs1]},
{code_change, [{gs1, []}]},
{load, {gs1, soft_purge, soft_purge}},
{resume, [gs1]}]

Advanced gen server with Dependencies This example assumes that we have gen server process
that uses the in gs1 as defined in the previous example.

The contents of the original module are as follows:
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-module(gs2).
-vsn(1).
-behaviour(gen_server).

-export([is_operation_ok/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

is_operation_ok(Op) ->
gen_server:call(gs2, {is_operation_ok, Op}).

init([Data]) ->
{ok, []}.

handle_call({is_operation_ok, Op}, _From, State) ->
Data = gs1:get_data(),
Reply = lists2:assoc(Op, Data),
{reply, Reply, State}.

handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(_OldVsn, State, _Extra) ->
{ok, State}.

The new version does not have to transform the internal state, hence the code change/3 function is not
really needed (it will not be called since the upgrade of gs2 is soft).

-module(gs2).
-vsn(2).
-behaviour(gen_server).

-export([is_operation_ok/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

is_operation_ok(Op) ->
gen_server:call(gs2, {is_operation_ok, Op}).

init([Data]) ->
{ok, []}.

handle_call({is_operation_ok, Op}, _From, State) ->
Data = gs1:get_data(),
Time = gs1:get_time(),
Reply = do_things(lists2:assoc(Op, Data), Time),
{reply, Reply, State}.
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handle_cast(_Request, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change(_OldVsn, State, _Extra) ->
{ok, State}.

do_things({ok, Val}, Time) ->
Val;

do_things(false, Time) ->
{false, Time}.

The release upgrade instructions are:

[{update, gs1, {advanced, []}, soft_purge, soft_purge, []},
{update, gs2, soft, soft_purge, soft_purge, [gs1]},

The corresponding low-level instructions are:

[{load_object_code, {foo, "1.2", [gs1, gs2]}},
point_of_no_return,
{suspend, [gs1, gs2]},
{load, {gs1, soft_purge, soft_purge}},
{load, {gs2, soft_purge, soft_purge}},
{code_change, [{gs1, []}]}, % No gs2 here!
{resume, [gs1, gs2]}]

Other Worker Processes All other worker processes in a supervision tree, such as processes of the
types gen event, gen fsm, and processes implemented by using proc lib and sys, are handled in
exactly the same way as processes of type gen server are handled. Examples follow.

Simple gen event This example shows how an event handler may be updated. We do not make any
assumptions about which event manager processes the handler is installed in, it is the responsibility of
the release handler to find them. The contents of the original module is as follows:

-module(ge_h).
-vsn(1).
-behaviour(gen_event).

-export([get_events/1]).
-export([init/1, handle_event/2, handle_call/2, handle_info/2,

terminate/2, code_change/3]).

get_events(Mgr) ->
gen_event:call(Mgr, ge_h, get_events).
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init(_) -> {ok, undefined}.

handle_event(Event, _LastEvent) ->
{ok, Event}.

handle_call(get_events, LastEvent) ->
{ok, [LastEvent], LastEvent}.

handle_info(Info, LastEvent) ->
{ok, LastEvent}.

terminate(Arg, LastEvent) ->
ok.

code_change(_OldVsn, LastEvent, _Extra) ->
{ok, LastEvent}.

The new module decides to keep the two latest events in a list and must translate the old state into the
new state.

-module(ge_h).
-vsn(2).
-behaviour(gen_event).

-export([get_events/1]).
-export([init/1, handle_event/2, handle_call/2, handle_info/2,

terminate/2, code_change/3]).

get_events(Mgr) ->
gen_event:call(Mgr, ge_h, get_events).

init(_) -> {ok, []}.

handle_event(Event, []) ->
{ok, [Event]};

handle_event(Event, [Event1 | _]) ->
{ok, [Event, Event1]}.

handle_call(get_events, Events) ->
Events.

handle_info(Info, Events) ->
{ok, Events}.

terminate(Arg, Events) ->
ok.

code_change(1, undefined, _Extra) ->
{ok, []};

code_change(1, LastEvent, _Extra) ->
{ok, [LastEvent]}.
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The release upgrade instructions are:

[{update, ge_h, {advanced, []}, soft_purge, soft_purge, []}]

The low-level instructions are:

[{load_object_code, {foo, "1.2", [ge_h]}},
point_of_no_return,
{suspend, [ge_h]},
{load, {ge_h, soft_purge, soft_purge}},
{code_change, [{ge_h, []}]},
{resume, [ge_h]}]

Note:
These instructions are identical to those used for the gen server.

Process Implemented with sys and proc lib Processes implemented with sys and proc lib are
changed in the same way as processes that are implemented according to the gen server behavior
(which should not come as surprise, since gen server et al. are implemented on top of sys and
proc lib). However, the code change function is defined differently. The original is as follows:

-module(sp).
-vsn(1).

-export([start/0, get_data/0]).
-export([init/1, system_continue/3, system_terminate/4]).

-record(state, {data}).

start() ->
Pid = proc_lib:spawn_link(?MODULE, init, [self()]),
{ok, Pid}.

get_data() ->
sp_server ! {self(), get_data},
receive

{sp_server, Data} -> Data
end.

init(Parent) ->
register(sp_server, self()),
process_flag(trap_exit, true),
loop(#state{}, Parent).

loop(State, Parent) ->
receive

{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent, ?MODULE, [], State);
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{’EXIT’, Parent, Reason} ->
cleanup(State),
exit(Reason);

{From, get_data} ->
From ! {sp_server, State#state.data},
loop(State, Parent);

_Any ->
loop(State, Parent)

end.

cleanup(State) -> ok.

%% Here are the sys call back functions
system_continue(Parent, _, State) ->

loop(State, Parent).

system_terminate(Reason, Parent, _, State) ->
cleanup(State),
exit(Reason).

The new code, which takes care of up- and downgrade is as follows:

-module(sp).
-vsn(2).

-export([start/0, get_data/0, set_data/1]).
-export([init/1, system_continue/3, system_terminate/4,

system_code_change/4]).

-record(state, {data, last_pid}).

start() ->
Pid = proc_lib:spawn_link(?MODULE, init, [self()]),
{ok, Pid}.

get_data() ->
sp_server ! {self(), get_data},
receive

{sp_server, Data} -> Data
end.

set_data(Data) ->
sp_server ! {self(), set_data, Data}.

init(Parent) ->
register(sp_server, self()),
process_flag(trap_exit, true),
loop(#state{last_pid = no_one}, Parent).

loop(State, Parent) ->
receive

{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent,
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?MODULE, [], State);
{’EXIT’, Parent, Reason} ->

cleanup(State),
exit(Reason);

{From, get_data} ->
From ! {sp_server, State#state.data},
loop(State, Parent);

{From, set_data, Data} ->
loop(State#state{data = Data, last_pid = From}, Parent);

_Any ->
loop(State, Parent)

end.

cleanup(State) -> ok.

%% Here are the sys call back functions
system_continue(Parent, _, State) ->

loop(State, Parent).

system_terminate(Reason, Parent, _, State) ->
cleanup(State),
exit(Reason).

system_code_change({state, Data}, _Mod, 1, _Extra) ->
{ok, #state{data = Data, last_pid = no_one}};

system_code_change(#state{data = Data}, _Mod, {down, 1}, _Extra) ->
{ok, {state, Data}}.

The release upgrade instructions are:

[{update, sp, static, default, {advanced, []}, soft_purge, soft_purge, []}]

The low-level instructions are the same for upgrade and downgrade:

[{load_object_code, {foo, "1.2", [sp]}},
point_of_no_return,
{suspend, [sp]},
{load, {sp, soft_purge, soft_purge}},
{code_change, [{sp, []}]},
{resume, [sp]}]

Supervisor This example assumes that a new version of an application adds a new process, and
deletes one process from a supervisor. The original code is as follows:

-module(sup).
-vsn(1).
-behaviour(supervisor).
-export([init/1]).

init([]) ->
SupFlags = {one_for_one, 4, 3600},
Server = {my_server, {my_server, start_link, []},
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permanent, 2000, worker, [my_server]},
GS1 = {gs1, {gs1, start_link, []}, permanent, 2000, worker, [gs1]},
{ok, {SupFlags, [Server, GS1]}}.

The new code is as follows:

-module(sup).
-vsn(2).
-behaviour(supervisor).
-export([init/1]).

init([]) ->
SupFlags = {one_for_one, 4, 3600},
GS1 = {gs1, {gs1, start_link, []}, permanent, 2000, worker, [gs1]},
GS2 = {gs2, {gs2, start_link, []}, permanent, 2000, worker, [gs2]},
{ok, {SupFlags, [GS1, GS2]}}.

The release upgrade instructions are:

[{update, sup, {advanced, []}, soft_purge, soft_purge, []}
{apply, {supervisor, terminate_child, [sup, my_server]}},
{apply, {supervisor, delete_child, [sup, my_server]}},
{apply, {supervisor, restart_child, [sup, gs2]}}]

The low-level instructions are:

[{load_object_code, {foo, "1.2", [sup]}},
point_of_no_return,
{suspend, [sup]},
{load, {sup, soft_purge, soft_purge}},
{code_change, [{sup, []}]},
{resume, [sup]},
{apply, {supervisor, terminate_child, [sup, my_server]}},
{apply, {supervisor, delete_child, [sup, my_server]}},
{apply, {supervisor, restart_child, [sup, gs2]}}]

High-level update instruction for a supervisor is mapped to a low-level advanced code change
instruction. In the code change function of the supervisor, the new child specification is installed, but
no children are explicitly terminated or started. Therefore, children must be terminated, deleted and
started by using the apply instruction.

Complex Dependencies As already mentioned, sometimes the simplest and safest way to introduce
a new release is to terminate parts of the system, load the new code, and restart that part. However,
individual processes cannot simply be killed, since their supervisors will restart them again. Instead
supervisors must first be ordered to stop their children before now code can be loaded. Then supervisors
are ordered to restart their children. All this is done by issuing the stop and start instructions.

The following example assumes that we have a supervisor a with two children b and c, where b is a
worker and c is a supervisor for d. We want to restart all processes except for a. The upgrade
instructions are as follows:
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[{load_object_code, {foo, "1.2", [b,c,d]}},
point_of_no_return,
{stop, [b, c]},
{load, {b, soft_purge, soft_purge}},
{load, {c, soft_purge, soft_purge}},
{load, {d, soft_purge, soft_purge}},
{start, [b, c]}]

Note:
We do not need to explicitly stop d, this is done by the supervisor c.

A whole application cannot be stopped and started with the stop and start instructions. The
instruction restart application has to be used instead.

New Application The examples shown so far have dealt with changing an existing application. In
order to introduce a completely new application we just have to have an add application instruction,
but we also have to make sure that the boot file of the new release contains enough in order to start it.
The following example shows how to to introduce the application new appl, which has just one
module: new mod.

The release upgrade instructions are:

[{add_application, new_appl}]

The corresponding low-level instructions are as follows (note that the application specification is used
as argument to application:start application/1):

[{load_object_code, {new_appl, "1.0", [new_mod]}},
point_of_no_return,
{load, {new_mod, soft_purge, soft_purge}},
{apply, {application, start,

[{application, new_appl,
[{description, "NEW APPL"},
{vsn, "1.0"},
{modules, [new_mod]},
{registered, []},
{applications, [kernel, foo]},
{env, []},
{mod, {new_mod, start_link, []}}]},

permanent]}}].

Remove an Application An application is removed in the same way as new applications are
introduced. This example assumes that we want to remove the new appl application:

[{remove_application, new_appl}]

The corresponding low level instructions are:

[point_of_no_return,
{apply, {application, stop, [new_appl]}},
{remove, {new_mod, soft_purge, soft_purge}}].
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Update of Port Programs

Each port program is controlled by a Erlang process called the port controller. A port program is updated
by the port controller process. It is always done by terminating the old port program, and starting the
new one.

Port Controller In this example we have a port controller process, where we must take care of the
termination and restart of the port program ourselves. Also, we may prepare for the possibility of
changing the Erlang code of the port controller only. The gen server behavior is used to implement
the port controller. The contents of the original module is as follows.

-module(portc).
-vsn(1).
-behaviour(gen_server).

-export([get_data/0]).
-export([init/1, handle_call/3, handle_info/2, code_change/3]).

-record(state, {port, data}).

get_data() -> gen_server:call(portc, get_data).

init([]) ->
PortProg = code:priv_dir(foo) ++ "/bin/portc",
Port = open_port({spawn, PortProg}, [binary, {packet, 2}]),
{ok, #state{port = Port}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State}.

handle_info({Port, Cmd}, State) ->
NewState = do_cmd(Cmd, State),
{noreply, NewState}.

code_change(_, State, change_port_only) ->
State#state.port ! close,
receive

{Port, closed} -> true
end,
NPortProg = code:priv_dir(foo) ++ "/bin/portc", % get new version
NPort = open_port({spawn, NPortProg}, [binary, {packet, 2}]),
{ok, State#state{port = NPort}}.

To change the port program without changing the Erlang code, we can use the following code:

[point_of_no_return,
{suspend, [portc]},
{code_change, [{portc, change_port_only}]},
{resume, [portc]}]
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Here we used low-level instructions only. In this example we also make use of the Extra argument of
the code change/3 function.

Suppose now that we wish to change only the Erlang code. The new version of portc is as follows:

-module(portc).
-vsn(2).
-behaviour(gen_server).

-export([get_data/0]).
-export([init/1, handle_call/3, handle_info/2, code_change/3]).

-record(state, {port, data}).

get_data() -> gen_server:call(portc, get_data).

init([]) ->
PortProg = code:priv_dir(foo) ++ "/bin/portc",
Port = open_port({spawn, PortProg}, [binary, {packet, 2}]),
{ok, #state{port = Port}}.

handle_call(get_data, _From, State) ->
{reply, {ok, State#state.data}, State}.

handle_info({Port, Cmd}, State) ->
NewState = do_cmd(Cmd, State),
{noreply, NewState}.

code_change(_, State, change_port_only) ->
State#state.port ! close,
receive

{Port, closed} -> true
end,
NPortProg = code:priv_dir(foo) ++ "/bin/portc", % get new version
NPort = open_port({spawn, NPortProg}, [binary, {packet, 2}]),
{ok, State#state{port = NPort}};

code_change(1, State, change_erl_only) ->
NState = transform_state(State),
{ok, NState}.

The high-level instruction is:

[{update, portc, {advanced, change_erl_only}, soft_purge, soft_purge, []}]

The corresponding low-level instructions are:

[{load_object_code, {portc, 2, [portc]}},
point_of_no_return,
{suspend, [portc]},
{load, {portc, soft_purge, soft_purge}},
{code_change, [{portc, change_erl_only}]},
{resume, [portc]}]
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