
Embedded Systems

version 5.3

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Embedded Systems User’s Guide 1

1.1 Embedded Solaris . 1

1.1.1 Memory Usage . 1

1.1.2 Disk Space Usage . 1

1.1.3 Installation . 2

1.1.4 Starting Erlang . 8

1.1.5 Programs . 8

1.2 Windows NT . 11

1.2.1 Introduction . 11

1.2.2 Memory Usage . 11

1.2.3 Disk Space Usage . 11

1.2.4 Installation . 11

1.2.5 Starting Erlang . 11

1.3 VxWorks . 11

1.3.1 Introduction . 12

1.3.2 Memory Usage . 12

1.3.3 Disk Usage . 12

1.3.4 Installation . 12

1.3.5 OS Specific Functionality/Information . 13

1.3.6 Starting Erlang . 13

List of Tables 15

iiiEmbedded Systems

iv Embedded Systems

Chapter 1

Embedded Systems User’s Guide

This manual describes the issues that are specific for running Erlang on an embedded system. It
describes the differences in installing and starting Erlang compared to how it is done for a
non-embedded system.

Note that this is a supplementary document. You still need to read the Installation Guide.

There is also target architecture specific information in the top level README file of the Erlang
distribution.

1.1 Embedded Solaris

This chapter describes the OS specific parts of OTP which relate to Solaris.

1.1.1 Memory Usage

Solaris takes about 17 Mbyte of RAM on a system with 64 Mbyte of total RAM. This leaves about 47
Mbyte for the applications. If the system utilizes swapping, these figures cannot be improved because
unnecessary daemon processes are swapped out. However, if swapping is disabled, or if the swap space
is of limited resource in the system, it becomes necessary to kill off unnecessary daemon processes.

1.1.2 Disk Space Usage

The disk space required by Solaris can be minimized by using the Core User support installation. It
requires about 80 Mbyte of disk space. This installs only the minimum software required to boot and
run Solaris. The disk space can be further reduced by deleting unnecessary individual files. However,
unless disk space is a critical resource the effort required and the risks involved may not be justified.

1Embedded Systems

Chapter 1: Embedded Systems User’s Guide

1.1.3 Installation

This section is about installing an embedded system. The following topics are considered,

� Creation of user and installation directory,

� Installation of embedded system,

� Configuration for automatic start at reboot,

� Making a hardware watchdog available,

� Changing permission for reboot,

� Patches,

� Configuration of the OS Mon application.

Several of the procedures described below require expert knowledge of the Solaris 2 operating system.
For most of them super user privilege is needed.

Creation of User and Installation Directory

It is recommended that the Embedded Environment is run by an ordinary user, i.e. a user who does not
have super user privileges.

Throughout this section we assume that the user name is otpuser, and that the home directory of that
user is,

/export/home/otpuser

Furthermore, we assume that in the home directory of otpuser, there is a directory named otp, the full
path of which is,

/export/home/otpuser/otp

This directory is the installation directory of the Embedded Environment.

Installation of an Embedded System

The procedure for installation of an embedded system does not differ from that of an ordinary system
(see the Installation Guide), except for the following:

� the (compressed) tape archive file should be extracted in the installation directory as defined
above, and,

� there is no need to link the start script to a standard directory like /usr/local/bin.

2 Embedded Systems

1.1: Embedded Solaris

Configuration for Automatic Start at Boot

A true embedded system has to start when the system boots. This section accounts for the necessary
configurations needed to achieve that.

The embedded system and all the applications will start automatically if the script file shown below is
added to the /etc/rc3.d directory. The file must be owned and readable by root, and its name cannot
be arbitrarily assigned. The following name is recommended,

S75otp.system

For further details on initialization (and termination) scripts, and naming thereof, see the Solaris
documentation.

#!/bin/sh
#
File name: S75otp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Author: janne@erlang.ericsson.se
Resides in: /etc/rc3.d
#

if [! -d /usr/bin]
then # /usr not mounted

exit
fi

killproc() f # kill the named process(es)
pid=‘/usr/bin/ps -e |

/usr/bin/grep -w $1 |
/usr/bin/sed -e ’s/^ *//’ -e ’s/ .*//’‘

["$pid" != ""] && kill $pid
g

Start/stop processes required for Erlang

case "$1" in
’start’)

Start the Erlang emulator
#
su - otpuser -c "/export/home/otpuser/otp/bin/start" &
;;

’stop’)
killproc beam
;;

*)
echo "Usage: $0 f start | stop g"
;;

esac

3Embedded Systems

Chapter 1: Embedded Systems User’s Guide

The file /export/home/otpuser/otp/bin/start referred to in the above script, is precisely the script
start described in the section Starting Erlang below. The script variable OTP ROOT in that start script
corresponds to the example path

/export/home/otpuser/otp

used in this section. The start script should be edited accordingly.

Use of the killproc procedure in the above script could be combined with a call to erl call, e.g.

$SOME PATH/erl call -n Node init stop

In order to take Erlang down gracefully see the erl call(1) reference manual page for further details
on the use of erl call. That however requires that Erlang runs as a distributed node which is not
always the case.

The killproc procedure should not be removed: the purpose is here to move from run level 3
(multi-user mode with networking resources) to run level 2 (multi-user mode without such resources),
in which Erlang should not run.

Hardware Watchdog

For Solaris running on VME boards from Force Computers, there is a possibility to activate the onboard
hardware watchdog, provided a VME bus driver is added to the operating system (see also Installation
Problems below).

See also the heart(3) reference manual page in Kernel.

Changing Permissions for Reboot

If the HEART COMMAND environment variable is to be set in the start script in the section, Starting
Erlang, and if the value shall be set to the path of the Solaris reboot command, i.e.

HEART COMMAND=/usr/sbin/reboot

the ownership and file permissions for /usr/sbin/reboot must be changed as follows,

chown 0 /usr/sbin/reboot
chmod 4755 /usr/sbin/reboot

See also the heart(3) reference manual page in Kernel.

4 Embedded Systems

1.1: Embedded Solaris

The TERM Environment Variable

When the Erlang runtime system is automatically started from the S75otp.system script the TERM
environment variable has to be set. The following is a minimal setting,

TERM=sun

which should be added to the start script described in the section.

Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version specific patch
with number 103640-02 must be added to the operating system. There may be other patches needed,
see the release README file <ERL INSTALL DIR>/README.

Installation of Module os sup in Application OS Mon

The following four installation procedures require super user privilege.

Installation

1. Make a copy the Solaris standard configuration file for syslogd.

� Make a copy the Solaris standard configuration file for syslogd. This file is usually named
syslog.conf and found in the /etc directory.

� The file name of the copy must be syslog.conf.ORIG but the directory location is optional.
Usually it is /etc.
A simple way to do this is to issue the command

cp /etc/syslog.conf /etc/syslog.conf.ORIG

2. Make an Erlang specific configuration file for syslogd.

� Make an edited copy of the back-up copy previously made.

� The file name must be syslog.conf.OTP and the path must be the same as the back-up
copy.

� The format of the configuration file is found in the man page for syslog.conf(5), by issuing
the command man syslog.conf.

� Usually a line is added which should state:

– which types of information that will be supervised by Erlang,
– the name of the file (actually a named pipe) that should receive the information.

� If e.g. only information originating from the unix-kernel should be supervised, the line
should begin with kern.LEVEL (for the possible values of LEVEL see syslog.conf(5)).

� After at least one tab-character, the line added should contain the full name of the named
pipe where syslogd writes its information. The path must be the same as for the
syslog.conf.ORIG and syslog.conf.OTP files. The file name must be syslog.otp.

� If the directory for the syslog.conf.ORIG and syslog.conf.OTP files is /etc the line in
syslog.conf.OTP will look like:

kern.LEVEL /etc/syslog.otp

5Embedded Systems

Chapter 1: Embedded Systems User’s Guide

3. Check the file privileges of the configuration files.

� The configuration files should have rw-r--r-- file privileges and be owned by root.

� A simple way to do this is to issue the commands

chmod 644 /etc/syslog.conf
chmod 644 /etc/syslog.conf.ORIG
chmod 644 /etc/syslog.conf.OTP

� Note: If the syslog.conf.ORIG and syslog.conf.OTP files are not in the /etc directory, the
file path in the second and third command must be modified.

4. Modify file privileges and ownership of the mod syslog utility.

� The file privileges and ownership of the mod syslog utility must be modified.

� The full name of the binary executable file is derived from the position of the os mon
application if the file system by adding /priv/bin/mod syslog. The generic full name of the
binary executable file is thus

<OTP_ROOT>/lib/os_mon-<REV>/priv/bin/mod_syslog

Example: If the path to the otp-root is /usr/otp, thus the path to the os mon application is
/usr/otp/lib/os mon-1.0 (assuming revision 1.0) and the full name of the binary
executable file is /usr/otp/lib/os mon-1.0/priv/bin/mod syslog.

� The binary executable file must be owned by root, have rwsr-xr-x file privileges, in
particular the setuid bit of user must be set.

� A simple way to do this is to issue the commands

cd <OTP_ROOT>/lib/os_mon-<REV>/priv/bin/mod_syslog
chmod 4755 mod_syslog
chown root mod_syslog

Testing the Application Configuration File The following procedure does not require root privilege.

� Ensure that the configuration parameters for the os sup module in the os mon application are
correct.

� Browse the application configuration file (do not edit it). The full name of the application
configuration file is derived from the position of the OS Mon application if the file system by
adding /ebin/os mon.app.
The generic full name of the file is thus

<OTP_ROOT>/lib/os_mon-<REV>/ebin/os_mon.app.

Example: If the path to the otp-root is /usr/otp, thus the path to the os mon application is
/usr/otp/lib/os mon-1.0 (assuming revision 1.0) and the full name of the binary executable
file is /usr/otp/lib/os mon-1.0/ebin/os mon.app.

� Ensure that the following configuration parameters are bound to the correct values.

6 Embedded Systems

1.1: Embedded Solaris

Parameter Function Standard value

start os sup Specifies if os sup will be started or not. true for the first instance on the
hardware; false for the other in-
stances.

os sup own The directory for (1)the back-up copy, (2)
the Erlang specific configuration file for
syslogd.

"/etc"

os sup syslogconf The full name for the Solaris standard con-
figuration file for syslogd

"/etc/syslog.conf"

error tag The tag for the messages that are sent to
the error logger in the Erlang runtime sys-
tem.

std error

Table 1.1: Configuration Parameters

If the values listed in the os mon.app do not suit your needs, you should not edit that file. Instead you
should override values in a system configuration file, the full pathname of which is given on the command
line to erl.

Example: The following is an example of the contents of an application configuration file.

[fos mon, [fstart os sup, trueg, fos sup own, "/etc"g,
fos sup syslogconf, "/etc/syslog.conf"g, fos sup errortag, std errorg]g].

Related Documents See also the os mon(3), application(3) and erl(1) reference manual pages.

Installation Problems

The hardware watchdog timer which is controlled by the heart port program requires the FORCEvme
package, which contains the VME bus driver, to be installed. This driver, however, may clash with the
Sun mcp driver and cause the system to completely refuse to boot. To cure this problem, the following
lines should be added to /etc/system:

� exclude: drv/mcp

� exclude: drv/mcpzsa

� exclude: drv/mcpp

Warning:
It is recommended that these lines be added to avoid the clash described, which may make it
completely impossible to boot the system.

7Embedded Systems

Chapter 1: Embedded Systems User’s Guide

1.1.4 Starting Erlang

This section describes how an embedded system is started. There are four programs involved, and they
all normally reside in the directory <ERL INSTALL DIR>/bin. The only exception is the program
start, which may be located anywhere, and also is the only program that must be modified by the user.

In an embedded system there usually is no interactive shell. However, it is possible for an operator to
attach to the Erlang system by giving the command to erl. He is then connected to the Erlang shell,
and may give ordinary Erlang commands. All interaction with the system through this shell is logged in
a special directory.

Basically, the procedure is as follows. The program start is called when the machine is started. It calls
run erl, which sets things up so the operator can attach to the system. It calls start erl which calls
the correct version of erlexec (which is located in <ERL INSTALL DIR>/erts-EVsn/bin) with the
correct boot and config files.

1.1.5 Programs

start

This program is called when the machine is started. It may be modified or re-written to suit a special
system. By default, it must be called start and reside in <ERL INSTALL DIR>/bin. Another start
program can be used, by using the configuration parameter start prg in the application sasl.

The start program must call run erl as shown below. It must also take an optional parameter which
defaults to <ERL INSTALL DIR>/releases/start erl.data.

This program should set static parameters and environment variables such as -sname Name and
HEART COMMAND to reboot the machine.

The <RELDIR> directory is where new release packets are installed, and where the release handler keeps
information about releases. See release handler(3) in the application sasl for further information.

The following script illustrates the default behaviour of the program.

#!/bin/sh
Usage: start [DataFile]
#
ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]
then

RELDIR=$ROOTDIR/releases
fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start_erl \
$ROOTDIR $RELDIR $START_ERL_DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and the
environment variables HEART COMMAND and TERM have been added to the above script.

8 Embedded Systems

1.1: Embedded Solaris

#!/bin/sh
Usage: start [DataFile]
#
HEART_COMMAND=/usr/sbin/reboot
TERM=sun
export HEART_COMMAND TERM

ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]
then

RELDIR=$ROOTDIR/releases
fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start_erl \
$ROOTDIR $RELDIR $START_ERL_DATA -heart -sname cp1" > /dev/null 2>&1 &

If a diskless and/or read-only client node is about to start the start erl.data file is located in the client
directory at the master node. Thus, the START ERL DATA line should look like:

CLIENTDIR=$ROOTDIR/clients/clientname
START_ERL_DATA=${1:-$CLIENTDIR/bin/start_erl.data}

run erl

This program is used to start the emulator, but you will not be connected to the shell. to erl is used to
connect to the Erlang shell.

Usage: run_erl pipe_dir/ log_dir "exec command [parameters ...]"

Where pipe dir/ should be /tmp/ (to erl uses this name by default) and log dir is where the log
files are written. command [parameters] is executed, and everything written to stdin and stdout is
logged in the log dir.

In the log dir, log files are written. Each logfile has a name of the form: erlang.log.N where N is a
generation number, ranging from 1 to 5. Each logfile holds up to 100kB text. As time goes by the
following logfiles will be found in the logfile directory

erlang.log.1
erlang.log.1, erlang.log.2
erlang.log.1, erlang.log.2, erlang.log.3
erlang.log.1, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1
...

with the most recent logfile being the right most in each row of the above list. That is, the most recent
file is the one with the highest number, or if there are already four files, the one before the skip.

When a logfile is opened (for appending or created) a time stamp is written to the file. If nothing has
been written to the log files for 15 minutes, a record is inserted that says that we’re still alive.

9Embedded Systems

Chapter 1: Embedded Systems User’s Guide

to erl

This program is used to attach to a running Erlang runtime system, started with run erl.

Usage: to_erl [pipe_name | pipe_dir]

Where pipe name defaults to /tmp/erlang.pipe.N.

To disconnect from the shell without exiting the Erlang system, type Ctrl-D.

start erl

This program starts the Erlang emulator with parameters -boot and -config set. It reads data about
where these files are located from a file called start erl.data which is located in the <RELDIR>. Each
new release introduces a new data file. This file is automatically generated by the release handler in
Erlang.

The following script illustrates the behaviour of the program.

#!/bin/sh
#
This program is called by run_erl. It starts
the Erlang emulator and sets -boot and -config parameters.
It should only be used at an embedded target system.
#
Usage: start_erl RootDir RelDir DataFile [ErlFlags ...]
#
ROOTDIR=$1
shift
RELDIR=$1
shift
DataFile=$1
shift

ERTS_VSN=‘awk ’{print $1}’ $DataFile‘
VSN=‘awk ’{print $2}’ $DataFile‘

BINDIR=$ROOTDIR/erts-$ERTS_VSN/bin
EMU=beam
PROGNAME=‘echo $0 | sed ’s/.*\///’‘
export EMU
export ROOTDIR
export BINDIR
export PROGNAME
export RELDIR

exec $BINDIR/erlexec -boot $RELDIR/$VSN/start -config $RELDIR/$VSN/sys $*

If a diskless and/or read-only client node with the sasl configuration parameter static emulator set
to true is about to start the -boot and -config flags must be changed. As such a client cannot read a
new start erl.data file (the file is not possible to change dynamically) the boot and config files are
always fetched from the same place (but with new contents if a new release has been installed). The
release handler copies this files to the bin directory in the client directory at the master nodes
whenever a new release is made permanent.

10 Embedded Systems

1.2: Windows NT

Assuming the same CLIENTDIR as above the last line should look like:

exec $BINDIR/erlexec -boot $CLIENTDIR/bin/start \
-config $CLIENTDIR/bin/sys $*

1.2 Windows NT

This chapter describes the OS specific parts of OTP which relate to Windows NT.

1.2.1 Introduction

A normal installation of NT 4.0, with service pack 4 or later, is required for an embedded Windows NT
running OTP.

1.2.2 Memory Usage

RAM memory of 96 MBytes is recommended to run OTP on NT. A system with less than 64 Mbytes of
RAM is not recommended.

1.2.3 Disk Space Usage

A minimum NT installation with networking needs 250 MB, and an additional 130 MB for the swap file.

1.2.4 Installation

Normal NT installation is performed. No additional application programs are needed, such as Internet
explorer or web server. Networking with TCP/IP is required.
Service pack 4 or later must be installed.

Hardware Watchdog

For Windows NT running on standard PCs with ISA and/or PCI bus there is a possibility to install an
extension card with a hardware watchdog.

See also the heart(3) reference manual page in Kernel.

1.2.5 Starting Erlang

On an embedded system, the erlsrv module should be used, to install the erlang process as a Windows
system service. This service can start after NT has booted. See documentation for erlsrv.

1.3 VxWorks

This chapter describes the OS specific parts of OTP which relate to VxWorks.

11Embedded Systems

Chapter 1: Embedded Systems User’s Guide

1.3.1 Introduction

The Erlang/OTP distribution for VxWorks is limited to what Switchboard requires (Switchboard is a
general purpose switching hardware developed by Ericsson).

Please consult the README file, included at root level in the installation, for latest information on the
distribution.

1.3.2 Memory Usage

Memory required is 32 Mbyte.

1.3.3 Disk Usage

The disk space required is 22 Mbyte, the documentation included.

1.3.4 Installation

OTP/VxWorks is supplied in a distribution file named <PREFIX>.tar.gz; i.e. a tar archive that is
compressed with gzip. <PREFIX> represents the name of the release, e.g.
otp LXA12345 vxworks cpu32 R42A. Assuming you are installing to a Solaris file system, the installation
is performed by following these steps: <

� Change to the directory where you want to install OTP/VxWorks (<ROOTDIR>): cd <ROOTDIR>

� Make a directory to put OTP/VxWorks in: mkdir otp vxworks cpu32 (or whatever you want to
call it)

� Change directory to the newly created one: cd otp vxworks cpu32

� Copy the distribution file there from where it is located (<RELDIR>): cp
<RELDIR>/<PREFIX>.tar.gz .

� Unzip the distribution file: gunzip <PREFIX>.tar.gz

� Untar <PREFIX>.tar: tar xvf <PREFIX>.tar

� Create a bin directory: mkdir bin

� Copy the VxWorks Erlang/OTP start-up script to the bin directory: cp erts-Vsn/bin/erl
bin/.

� Copy the example start scripts to the bin directory: cp releases/R42A/*.boot bin/.

If you use VxWorks nfs mounting facility to mount the Solaris file system, this installation may be
directly used. An other possibility is to copy the installation to a local VxWorks DOS file system, from
where it is used.

12 Embedded Systems

1.3: VxWorks

1.3.5 OS Specific Functionality/Information

There are a couple of files that are unique to the VxWorks distribution of Erlang/OTP, these files are
described here.

� README - this files has some information on VxWorks specifics that you are advised to consult.
This includes the latest information on what parts of OTP are included in the VxWorks
distribution of Erlang/OTP. If you want us to include more parts, please contact us to discuss this.

� erts-Vsn/bin/resolv.conf - A resolver configuration EXAMPLE file. You have to edit this file.

� erts-Vsn/bin/erl - This is an EXAMPLE start script for VxWorks. You have to edit this file to suit
your needs.

� erts-Vsn/bin/erl io - One possible solution to the problem of competing Erlang and VxWorks
shell. Contains the function ’start erl’ called by the erl script. Also contains the function ’to erl’
to be used when connecting to the Erlang shell from VxWorks’ shell.

� erts-Vsn/bin/erl exec - Rearranges command line arguments and starts Erlang.

� erts-Vsn/bin/vxcall - Allows spawning of standard VxWorks shell functions (which is just about
any function in the system...) from open port/2. E.g. open port(fspawn, ’vxcall func arg1 arg2’g,
[]) will cause the output that ’func arg1, arg2’ would have given in the shell to be received from
the port.

� erts-Vsn/bin/rdate - Set the time from a networked host, like the SunOS command. Nothing
Erlang-specific, but nice if you want date/0 and time/0 to give meaningful values (you also need a
TIMEZONE environment setting if GMT isn’t acceptable). For example: putenv
"TIMEZONE=CET::-60:033002:102603" sets central european time.

� erts-Vsn/src - Contains source for the above files, and additionally config.c, driver.h, preload.c and
reclaim.h. Reclaim.h defines the interface to a simple mechanism for “resource reclamation” that
is part of the Erlang runtime system - may be useful to “port program” writers (and possibly
others). Take careful note of the caveats listed in the file!

1.3.6 Starting Erlang

Start (and restart) of the system depends on what file system is used. To be able to start the system
from a nfs mounted file system you can use VxWorks start script facility to run a start script similar to
the example below. Note that the Erlang/OTP start-up script is run at the end of this script.

start.script v1.0 1997/09/08 patrik
#
File name: start.script
Purpose: Starting the VxWorks/cpu32 erlang/OTP
Author: patrik@erix.ericsson.se
Resides in: ~tornado/wind/target/config/ads360/

#
Set shell prompt
#
shellPromptSet("sauron-> ")

#
Set default gateway
#
hostAdd "router-20","150.236.20.251"

13Embedded Systems

Chapter 1: Embedded Systems User’s Guide

routeAdd "0","router-20"

#
Mount /home from gandalf
#
hostAdd "gandalf","150.236.20.16"
usergroup=10
nfsAuthUnixSet("gandalf", 452, 10, 1, &usergroup)
nfsMount("gandalf", "/export/home", "/home")

#
Load and run rdate.o to set correct date on the target
#
ld < /home/gandalf/tornado/wind/target/config/ads360/rdate.o
rdate("gandalf")

#
Setup timezone information (Central European time)
#
putenv "TIMEZONE=CET::-60:033002:102603"

#
Run the Erlang/OTP start script
#
cd "/home/gandalf/tornado/wind/target/erlang_cpu32_R42A/bin"
<erl

14 Embedded Systems

List of Tables

1.1 Configuration Parameters . 7

15Embedded Systems

