
Erlang Run-Time System Application
(ERTS)

version 5.3

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 ERTS User’s Guide 1

1.1 Match specifications in Erlang . 1

1.1.1 Grammar . 1

1.1.2 Function descriptions . 2

1.1.3 Variables and literals . 4

1.1.4 Execution of the match . 5

1.1.5 Differences between match specifications in ETS and tracing 5

1.1.6 Examples . 6

1.2 How to interpret the Erlang crash dumps . 7

1.2.1 General information . 8

1.2.2 Memory information . 9

1.2.3 Internal table information . 9

1.2.4 Allocated areas . 9

1.2.5 Allocator . 9

1.2.6 Process information . 9

1.2.7 Port information . 10

1.2.8 ETS tables . 11

1.2.9 Timers . 11

1.2.10 Distribution information . 11

1.2.11 Loaded module information . 12

1.2.12 Fun information . 12

1.2.13 Process Data . 12

1.2.14 Atoms . 13

1.2.15 Disclaimer . 13

1.3 How to implement an alternative carrier for the erlang distribution 13

1.3.1 Introduction . 13

1.3.2 The driver . 14

1.3.3 Putting it all together . 28

1.4 The Abstract Format . 29

1.4.1 Module declarations and forms . 29

iiiErlang Run-Time System Application (ERTS)

1.4.2 Atomic literals . 30

1.4.3 Patterns . 30

1.4.4 Expressions . 31

1.4.5 Guards . 33

1.4.6 The abstract format after preprocessing . 33

1.5 tty - A command line interface . 34

1.5.1 Normal Mode . 34

1.5.2 Shell Break Mode . 34

1.6 How to implement a driver . 35

1.6.1 Introduction . 35

1.6.2 Sample driver . 35

1.6.3 Compiling and linking a driver . 35

1.6.4 Calling a driver as a port in erlang . 35

1.6.5 The driver structure . 35

1.6.6 Driver callbacks . 36

1.6.7 Threads and drivers . 36

1.6.8 Drivers on specific platforms . 36

1.6.9 Loading drivers . 36

1.6.10 Preloaded drivers . 37

1.6.11 Handling the binary term format with ei . 37

2 ERTS Reference Manual 39

2.1 epmd . 45

2.2 erl . 46

2.3 erlc . 51

2.4 erlsrv . 54

2.5 run erl . 59

2.6 start . 61

2.7 start erl . 62

2.8 werl . 64

2.9 erl set memory block . 65

2.10 erts alloc . 67

2.11 driver entry . 73

2.12 erl driver . 76

List of Tables 87

iv Erlang Run-Time System Application (ERTS)

Chapter 1

ERTS User’s Guide

The Erlang Runtime System Application ERTS.

1.1 Match specifications in Erlang

A “match specification” (match spec) is an Erlang term describing a small “program” that will try to
match something (either the parameters to a function as used in the erlang:trace pattern/2 BIF, or
the objects in an ETS table.). The match spec in many ways works like a small function in Erlang, but is
interpreted/compiled by the Erlang runtime system to something much more efficient than calling an
Erlang function. The match spec is also very limited compared to the expressiveness of real Erlang
functions.

Match specifications are given to the BIF erlang:trace pattern/2 to execute matching of function
arguments as well as to define some actions to be taken when the match succeeds (the MatchBody part).
Match specifications can also be used in ETS, to specify objects to be returned from an ets:select/2
call (or other select calls). The semantics and restrictions differ slightly when using match specifications
for tracing and in ETS, the differences are defined in a separate paragraph below.

The most notable difference between a match spec and an Erlang fun is of course the syntax. Match
specifications are Erlang terms, not Erlang code. A match spec also has a somewhat strange concept of
exceptions. An exception (e.g., badarg) in the MatchCondition part, which resembles an Erlang guard,
will generate immediate failure, while an exception in the MatchBody part, which resembles the body of
an Erlang function, is implicitly caught and results in the single atom ’EXIT’.

1.1.1 Grammar

A match spec can be described in this informal grammar:

� MatchExpression ::= [MatchFunction, ...]

� MatchFunction ::= f MatchHead, MatchConditions, MatchBody g

� MatchHead ::= MatchVariable | ’ ’ | [MatchHeadPart, ...]

� MatchHeadPart ::= term() | MatchVariable | ’ ’

� MatchVariable ::= ’$<number>’

� MatchConditions ::= [MatchCondition, ...] | []

� MatchCondition ::= f GuardFunction g | f GuardFunction, ConditionExpression, ... g

1Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

� BoolFunction ::= is atom | is constant | is float | is integer | is list | is number |
is pid | is port | is reference | is tuple | is binary | is function | is record |
is seq trace | ’and’ | ’or’ | ’not’ | ’xor’ | andalso | orelse

� ConditionExpression ::= ExprMatchVariable | f GuardFunction g | f GuardFunction,
ConditionExpression, ... g | TermConstruct

� ExprMatchVariable ::= MatchVariable (bound in the MatchHead) | ’$ ’ | ’$$’

� TermConstruct = ffgg | ff ConditionExpression, ... gg | [] | [ConditionExpression, ...] |
NonCompositeTerm | Constant

� NonCompositeTerm ::= term() (not list or tuple)

� Constant ::= fconst, term()g

� GuardFunction ::= BoolFunction | abs | element | hd | length | node | round | size | tl |
trunc | ’+’ | ’-’ | ’*’ | ’div’ | ’rem’ | ’band’ | ’bor’ | ’bxor’ | ’bnot’ | ’bsl’ | ’bsr’ |
’>’ | ’>=’ | ’<’ | ’=<’ | ’=:=’ | ’==’ | ’=/=’ | ’/=’ | self | get tcw

� MatchBody ::= [ActionTerm]

� ActionTerm ::= ConditionExpression | ActionCall

� ActionCall ::= fActionFunctiong | fActionFunction, ActionTerm, ...g

� ActionFunction ::= set seq token | get seq token | message | return trace | process dump
| enable trace | disable trace | display | caller | set tcw | silent

1.1.2 Function descriptions

Functions allowed in all types of match specifications

The different functions allowed in match spec work like this:

is atom, is constant, is float, is integer, is list, is number, is pid, is port, is reference, is tuple, is binary,
is function: Like the corresponding guard tests in Erlang, return true or false.

is record: Takes an additional parameter, which SHALL be the result of record info(<record type>,
size), like in fis record, ’$1’, rectype, record info(rectype, size)g.

’not’: Negates its single argument (anything other than false gives false).

’and’: Returns true if all its arguments (variable length argument list) evaluate to true, else false.
Evaluation order is undefined.

’or’: Returns true if any of its arguments evaluates to true. Variable length argument list. Evaluation
order is undefined.

andalso: Like ’and’, but quits evaluating its arguments as soon as one argument evaluates to something
else than true. Arguments are evaluated left to right.

orelse: Like ’or’, but quits evaluating as soon as one of its arguments evaluates to true. Arguments are
evaluated left to right.

’xor’: Only two arguments, of which one has to be true and the other false to return true; otherwise
’xor’ returns false.

abs, element, hd, length, node, round, size, tl, trunc, ’+’, ’-’, ’*’, ’div’, ’rem’, ’band’, ’bor’, ’bxor’, ’bnot’, ’bsl’,
’bsr’, ’>’, ’>=’, ’<’, ’=<’, ’=:=’, ’==’, ’=/=’, ’/=’, self: Work as the corresponding Erlang bif’s (or
operators). In case of bad arguments, the result depends on the context. In the MatchConditions part
of the expression, the test fails immediately (like in an Erlang guard), but in the MatchBody, exceptions
are implicitly caught and the call results in the atom ’EXIT’.

2 Erlang Run-Time System Application (ERTS)

1.1: Match specifications in Erlang

Functions allowed only for tracing

is seq trace: Returns true if a sequential trace token is set for the current process, otherwise false.

set seq token: Works like seq trace:set token/2, but returns true on success and ’EXIT’ on error or
bad argument. Only allowed in the MatchBody part and only allowed when tracing.

get seq token: Works just like seq trace:get token/0, and is only allowed in the MatchBody part when
tracing.

message: Sets an additional message appended to the trace message sent. One can only set one
additional message in the body; subsequent calls will replace the appended message. As a special case,
fmessage, falseg disables sending of trace messages for this function call, which can be useful if only
the side effects of the MatchBody are desired. Another special case is fmessage, trueg which sets the
default behavior, trace message is sent with no extra information (if no other calls to message are placed
before fmessage, trueg, it is in fact a “noop”).

Takes one argument, the message. Returns true and can only be used in the MatchBody part and when
tracing.

return trace: Causes a trace message to be sent upon return from the current function. Takes no
arguments, returns true and can only be used in the MatchBody part when tracing.

NOTE! If the traced function is tail recursive, this match spec function destroys that property. Hence, if
a match spec executing this function is used on a perpetual server process, it may only be active for a
limited time, or the emulator will eventually use all memory in the host machine and crash.

process dump: Returns some textual information about the current process as a binary. Takes no
arguments and is only allowed in the MatchBody part when tracing.

enable trace: With one parameter this function turns on tracing like the Erlang call
erlang:trace(self(), true, [P]), where P is the parameter to enable trace. With two
parameters, the first parameter should be either a process identifier or the registered name of a process.
In this case tracing is turned on for the designated process in the same way as in the Erlang call
erlang:trace(P1, true, [P2]), where P1 is the first and P2 is the second argument. The process P1
gets its trace messages sent to the same tracer as the process executing the statement uses. P1 can not be
one of the atoms all, new or existing (unless, of course, they are registered names). Returns true and
may only be used in the MatchBody part when tracing.

disable trace: With one parameter this function disables tracing like the Erlang call
erlang:trace(self(), false, [P]), where P is the parameter to disable trace. With two
parameters it works like the Erlang call erlang:trace(P1, false, [P2]), where P1 can be either a
process identifier or a registered name and is given as the first argument to the match spec function.
Returns true and may only be used in the MatchBody part when tracing.

caller: Returns the calling function as a tuple fModule, Function, Arityg or the atom undefined if the
calling function cannot be determined. May only be used in the MatchBody part when tracing.

Note that if a “technically built in function” (i.e. a function not written in Erlang) is traced, the caller
function will sometimes return the atom undefined. The calling Erlang function is not available during
such calls.

display: For debugging purposes only; displays the single argument as an Erlang term on stdout, which
is seldom what is wanted. Returns true and may only be used in the MatchBody part when tracing.

get tcw: Takes no argument and returns the value of the node’s trace control word. The same is done by
erlang:system info(trace control word).

The trace control word is an unsigned integer intended for generic trace control. It’s width is
determined by the underlying processor and hardware (today 32 bits). If the value of the trace control
word does not fit in 24 bits it may have to be handled as a big integer, which is not as efficient as a small

3Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

one. The trace control word can be tested and set both from within trace match specifications and with
BIFs. This call is only allowed when tracing.

set tcw: Takes one unsigned integer argument, sets the value of the node’s trace control word to the
value of the argument and returns the previous value. The same is done by
erlang:system flag(trace control word, Value). It is only allowed to use set tcw in the
MatchBody part when tracing.

silent: Takes one argument. If the argument is true, the call trace message mode for the current process
is set to silent for this call and all subsequent, i.e call trace messages are inhibited even if fmessage,
trueg is called in the MatchBody part for a traced function.

This mode can also be activated with the silent flag to erlang:trace/3.

If the argument is false, the call trace message mode for the current process is set to normal
(non-silent) for this call and all subsequent.

If the argument is neither true nor false, the call trace message mode is unaffected.

Note that all “function calls” have to be tuples, even if they take no arguments. The value of self is the
atom() self, but the value of fselfg is the pid() of the current process.

1.1.3 Variables and literals

Variables take the form ’$<number>’ where <number> is an integer between 0 (zero) and 100000000
(1e+8), the behavior if the number is outside these limits is undefined. In the MatchHead part, the
special variable ’ ’ matches anything, and never gets bound (like in Erlang). In the
MatchCondition/MatchBody parts, no unbound variables are allowed, why ’ ’ is interpreted as itself
(an atom). Variables can only be bound in the MatchHead part. In the MatchBody and MatchCondition
parts, only variables bound previously may be used. As a special case, in the
MatchCondition/MatchBody parts, the variable ’$ ’ expands to the whole expression which matched
the MatchHead (i.e., the whole parameter list to the possibly traced function or the whole matching
object in the ets table) and the variable ’$$’ expands to a list of the values of all bound variables in
order (i.e. [’$1’,’$2’, ...]).

In the MatchHead part, all literals (except the variables noted above) are interpreted as is. In the
MatchCondition/MatchBody parts, however, the interpretation is in some ways different. Literals in the
MatchCondition/MatchBody can either be written as is, which works for all literals except tuples, or by
using the special form fconst, Tg, where T is any Erlang term. For tuple literals in the match spec, one
can also use double tuple parentheses, i.e., construct them as a tuple of arity one containing a single
tuple, which is the one to be constructed. The “double tuple parenthesis” syntax is useful to construct
tuples from already bound variables, like in ff’$1’, [a,b,’$2’]gg. Some examples may be needed:

4 Erlang Run-Time System Application (ERTS)

1.1: Match specifications in Erlang

Expression Variable bindings Result

ff’$1’,’$2’gg ’$1’ = a, ’$2’ = b fa,bg

fconst, f’$1’, ’$2’gg doesn’t matter f’$1’, ’$2’g

a doesn’t matter a

’$1’ ’$1’ = [] []

[’$1’] ’$1’ = [] [[]]

[ffagg] doesn’t matter [fag]

42 doesn’t matter 42

”hello” doesn’t matter ”hello”

$1 doesn’t matter 49 (the ASCII value for the character ’1’)

Table 1.1: Literals in the MatchCondition/MatchBody parts of a match spec

1.1.4 Execution of the match

The execution of the match expression, when the runtime system decides whether a trace message
should be sent, goes as follows:

For each tuple in the MatchExpression list and while no match has succeeded:

� Match the MatchHead part against the arguments to the function, binding the ’$<number>’
variables (much like in ets:match/2). If the MatchHead cannot match the arguments, the match
fails.

� Evaluate each MatchCondition (where only ’$<number>’ variables previously bound in the
MatchHead can occur) and expect it to return the atom true. As soon as a condition does not
evaluate to true, the match fails. If any BIF call generates an exception, also fail.

� – If the match spec is executing when tracing:
Evaluate each ActionTerm in the same way as the MatchConditions, but completely ignore
the return values. Regardless of what happens in this part, the match has succeeded.

– If the match spec is executed when selectiing objects from an ETS table:
Evaluate the expressions in order and return the value of the last expression (typically there
is only one expression in this context)

1.1.5 Differences between match specifications in ETS and tracing

ETS match specifications are there to produce a return value. Usually the expression contains one single
ActionTerm which defines the return value without having any side effects. Calls with side effects are
not allowed in the ETS context.

When tracing there is no return value to produce, the match specification either matches or doesn’t.
The effect when the expression matches is a trace messsage rather then a returned term. The
ActionTerm’s are executed as in an imperative language, i.e. for their side effects. Functions with side
effects are also allowed when tracing.

In ETS the match head is a tuple() (or a single match variable) while it is a list (or a single match
variable) when tracing.

5Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.1.6 Examples

Match an argument list of three where the first and third arguments are equal:

[{[’$1’, ’_’, ’$1’],
[],
[]}]

Match an argument list of three where the second argument is a number greater than three:

[{[’_’, ’$1’, ’_’],
[{ ’>’, ’$1’, 3}],
[]}]

Match an argument list of three, where the third argument is a tuple containing argument one and two
or a list beginning with argument one and two (i. e. [a,b,[a,b,c]] or [a,b,fa,bg]):

[{[’$1’, ’$2’, ’$3’],
[{orelse,

{’=:=’, ’$3’, {{’$1’,’$2’}}},
{’and’,
{’=:=’, ’$1’, {hd, ’$3’}},
{’=:=’, ’$2’, {hd, {tl, ’$3’}}}}}],

[]}]

The above problem may also be solved like this:

[{[’$1’, ’$2’, {’$1’, ’$2}], [], []},
{[’$1’, ’$2’, [’$1’, ’$2’ | ’_’]], [], []}]

Match two arguments where the first is a tuple beginning with a list which in turn begins with the
second argument times two (i. e. [f[4,x],yg,2] or [f[8], y, zg,4])

[{[’$1’, ’$2’], [{’=:=’, {’*’, 2, ’$2’}, {hd, {element, 1, ’$1’}}}],
[]}]

Match three arguments. When all three are equal and are numbers, append the process dump to the
trace message, else let the trace message be as is, but set the sequential trace token label to 4711.

[{[’$1’, ’$1’, ’$1’],
[{is_number, ’$1’}],
[{message, {process_dump}}]},
{’_’, [], [{set_seq_token, label, 4711}]}]

As can be noted above, the parameter list can be matched against a single MatchVariable or an ’ ’. To
replace the whole parameter list with a single variable is a special case. In all other cases the MatchHead
has to be a proper list.

Match all objects in an ets table where the first element is the atom ’strider’ and the tuple arity is 3 and
return the whole object.

6 Erlang Run-Time System Application (ERTS)

1.2: How to interpret the Erlang crash dumps

[{{strider,’_’.’_’},
[],
[’$_’]}]

Match all objects in an ets table with arity > 1 and the first element is ’gandalf’, return element 2.

[{’$1’,
[{’==’, gandalf, {element, 1, ’$1’}},{’>=’,{size, ’$1’},2}],
[{element,2,’$1’}]}]

In the above example, if the first element had been the key, it’s much more efficient to match that key
in the MatchHead part than in the MatchConditions part. The search space of the tables is restricted
with regards to the MatchHead so that only objects with the matching key are searched.

Match tuples of 3 elements where the second element is either ’merry’ or ’pippin’, return the whole
objects.

[{{’_’,merry,’_’},
[],
[’$_’]},

{{’_’,pippin,’_’},
[],
[’$_’]}]

The function ets:test ms/2 can be useful for testing complicated ets matches.

1.2 How to interpret the Erlang crash dumps

This document describes the erl crash.dump file generated upon abnormal exit of the Erlang runtime
system.

Important: For OTP release R9C the Erlang crash dump has had a major facelift. This means that the
information in this document will not be directly applicable for older dumps. However, if you use the
Crashdump Viewer tool on older dumps, the crash dumps are translated into a format similar to this.

The system will write the crash dump in the current directory of the emulator or in the file pointed out
by the environment variable (whatever that means on the current operating system)
ERL CRASH DUMP. For a crash dump to be written, there has to be a writable file system mounted.

Crash dumps are written mainly for one of two reasons: either the builtin function erlang:halt/1 is
called explicitly with a string argument from running Erlang code, or else the runtime system has
detected an error that cannot be handled. The most usual reason that the system can’t handle the error
is that the cause is external limitations, such as running out of memory. A crash dump due to an internal
error may be caused by the system reaching limits in the emulator itself (like the number of atoms in
the system, or too many simultaneous ets tables). Usually the emulator or the operating system can be
reconfigured to avoid the crash, which is why interpreting the crash dump correctly is important.

The erlang crash dump is a readable text file, but it might not be very easy to read. Using the
Crashdump Viewer tool in the observer application will simplify the task. This is an HTML based tool
for browsing Erlang crash dumps.

7Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.2.1 General information

The first part of the dump shows the creation time for the dump, a slogan indicating the reason for the
dump, the system version, of the node from which the dump originates, the compile time of the
emulator running the originating node and the number of atoms in the atom table.

Reasons for crash dumps (slogan)

The reason for the dump is noted in the beginning of the file as Slogan: <reason> (the word “slogan” has
historical roots). If the system is halted by the BIF erlang:halt/1, the slogan is the string parameter
passed to the BIF, otherwise it is a description generated by the emulator or the (Erlang) kernel.
Normally the message should be enough to understand the problem, but nevertheless some messages
are described here. Note however that the suggested reasons for the crash are only suggestions. The exact
reasons for the errors may vary depending on the local applications and the underlying operating system.

� “<A>: Cannot allocate <N> bytes of memory (of type ”<T>“).” - The system has run out of
memory. <A> is the allocator that failed to allocate memory, <N> is the number of bytes that
<A> tried to allocate, and <T> is the memory block type that the memory was needed for. The
most common case is that a process stores hugh amounts of data. In this case <T> is most often
heap, old heap, heap frag, or binary. For more information on allocators see erts alloc(3) [page
67].

� “<A>: Cannot reallocate <N> bytes of memory (of type ”<T>“).” - Same as above with the
exception that memory was being reallocated instead of being allocated when the system ran out
of memory.

� “Unexpected op code N” - Error in compiled code, beam file damaged or error in the compiler.

� “Module Name undefined” | “Function Name undefined” | “No function Name:Name/1” | “No
function Name:start/2” - The kernel/stdlib applications are damaged or the start script is damaged.

� “Driver select called with too large file descriptor N” - The number of file descriptors for sockets
exceed 1024 (Unix only). The limit on file-descriptors in some Unix flavors can be set to over
1024, but only 1024 sockets/pipes can be used simultaneously by Erlang (due to limitations in the
Unix select call). The number of open regular files is not affected by this.

� “Received SIGUSR1” - The SIGUSR1 signal was sent to the Erlang machine (Unix only).

� “Kernel pid terminated (Who) (Exit-reason)” - The kernel supervisor has detected a failure, usually
that the application controller has shut down (Who = application controller, Why =
shutdown). The application controller may have shut down for a number of reasons, the most
usual being that the node name of the distributed Erlang node is already in use. A complete
supervisor tree “crash” (i.e., the top supervisors have exited) will give about the same result. This
message comes from the Erlang code and not from the virtual machine itself. It is always due to
some kind of failure in an application, either within OTP or a “user-written” one. Looking at the
error log for your application is probably the first step to take.

� “Init terminating in do boot ()” - The primitive Erlang boot sequence was terminated, most
probably because the boot script has errors or cannot be read. This is usually a configuration error
- the system may have been started with a faulty -boot parameter or with a boot script from the
wrong version of OTP.

� “Could not start kernel pid (Who) ()” - One of the kernel processes could not start. This is
probably due to faulty arguments (like errors in a -config argument) or faulty configuration files.
Check that all files are in their correct location and that the configuration files (if any) are not
damaged. Usually there are also messages written to the controlling terminal and/or the error log
explaining what’s wrong.

8 Erlang Run-Time System Application (ERTS)

1.2: How to interpret the Erlang crash dumps

Other errors than the ones mentioned above may occur, as the erlang:halt/1 BIF may generate any
message. If the message is not generated by the BIF and does not occur in the list above, it may be due
to an error in the emulator. There may however be unusual messages that I haven’t mentioned, that still
are connected to an application failure. There is a lot more information available, so more thorough
reading of the crash dump may reveal the crash reason. The size of processes, the number of ets tables
and the Erlang data on each process stack can be useful for tracking down the problem.

Number of atoms

The number of atoms in the system at the time of the crash is shown as Atoms: <number>. Some ten
thousands atoms is perfectly normal, but more could indicate that the BIF erlang:list to atom/1 is
used to dynamically generate a lot of different atoms, which is never a good idea.

1.2.2 Memory information

Under the tag =memory you will find information similar to what you can obtain on a living node with
erlang:memory().

1.2.3 Internal table information

The tags =hash table:<table name> and =index table:<table name> presents internal tables. These are
mostly of interest for runtime system developers.

1.2.4 Allocated areas

Under the tag =allocated areas you will find information similar to what you can obtain on a living node
with erlang:system info(allocated areas).

1.2.5 Allocator

Under the tag =allocator:<A> you will find various information about allocator <A>. The information
is similar to what you can obtain on a living node with erlang:system info(fallocator, <A>g). For
more information see the documentation of erlang:system info(fallocator, <A>g), and the
erts alloc(3) [page 67] documentation.

1.2.6 Process information

The Erlang crashdump contains a listing of each living Erlang process in the system. The process
information for one process may look like this (line numbers have been added):

The following fields can exist for a process:

=proc:<pid> Heading, states the process identifier

State The state of the process. This can be one of the following:

� Scheduled - The process was scheduled to run but not currently running (“in the run queue”).

� Waiting - The process was waiting for something (in receive).

� Running - The process was currently running. If the BIF erlang:halt/1 was called, this was
the process calling it.

� Exiting - The process was on its way to exit.

9Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

� Garbing - This is bad luck, the process was garbage collecting when the crash dump was
written, the rest of the information for this process is limited.

� Suspended - The process is suspended, either by the BIF erlang:suspend process/1 or
because it is trying to write to a busy port.

Registered name The registered name of the process, if any.

Spawned as The entry point of the process, i.e., what function was referenced in the spawn or
spawn link call that started the process.

Last scheduled in for | Current call The current function of the process. These fields will not always
exist.

Spawned by The parent of the process, i.e. the process which executed spawn or spawn link.

Started The date and time when the process was started.

Message queue length The number of messages in the process’ message queue.

Number of heap fragments The number of allocated heap fragments.

Heap fragment data Size of fragmented heap data. This is data either created by messages being sent
to the process or by the Erlang BIFs. This amount depends on so many things that this field is
utterly uninteresting.

Link list Process id’s of processes linked to this one. May also contain ports. If process monitoring is
used, this field also tells in which direction the monitoring is in effect, i.e., a link being “to” a
process tells you that the “current” process was monitoring the other and a link “from” a process
tells you that the other process was monitoring the current one.

Reductions The number of reductions consumed by the process.

Stack+heap The size of the stack and heap (they share memory segment)

OldHeap The size of the “old heap”. The Erlang virtual machine uses generational garbage collection
with two generations. There is one heap for new data items and one for the data that have
survived two garbage collections. The assumption (which is almost always correct) is that data
that survive two garbage collections can be “tenured” to a heap more seldom garbage collected, as
they will live for a long period. This is a quite usual technique in virtual machines. The sum of
the heaps and stack together constitute most of the process’s allocated memory.

Heap unused, OldHeap unused The amount of unused memory on each heap. This information is
usually useless.

Stack If the system uses shared heap, the fields Stack+heap, OldHeap, Heap unused and OldHeap
unused do not exist. Instead this field presents the size of the process’ stack.

Program counter The current instruction pointer. This is only interesting for runtime system
developers. The function into which the program counter points is the current function of the
process.

CP The continuation pointer, i.e. the return address for the current call. Usually useless for other than
runtime system developers. This may be followed by the function into which the CP points,
which is the function calling the current function.

Arity The number of live argument registers. The argument registers, if any are live, will follow. These
may contain the arguments of the function if they are not yet moved to the stack.

See also the section about process data [page 12].

1.2.7 Port information

This section lists the open ports, their owners, any linked processed, and the name of their driver or
external process.

10 Erlang Run-Time System Application (ERTS)

1.2: How to interpret the Erlang crash dumps

1.2.8 ETS tables

This section contains information about all the ETS tables in the system. The following fields are
interesting for each table:

=ets:<owner> Heading, states the owner of the table (a process identifier)

Table The identifier for the table. If the table is a named table, this is the name.

Name The name of the table, regardless of whether it is a named table or not.

Buckets This occurs if the table is a hash table, i.e. if it is not an ordered set.

Ordered set (AVL tree), Elements This occurs only if the table is an ordered set. (The number of
elements is the same as the number of objects in the table.)

Objects The number of objects in the table

Words The number of words (usually 4 bytes/word) allocated to data in the table.

1.2.9 Timers

This section contains information about all the timers started with the BIFs erlang:start timer/3 and
erlang:send after/3. The following fields exists for each timer:

=timer:<owner> Heading, states the owner of the timer (a process identifier) i.e. the process to
receive the message when the timer expires.

Message The message to be sent.

Time left Number of milliseconds left until the message would have been sent.

1.2.10 Distribution information

If the Erlang node was alive, i.e., set up for communicating with other nodes, this section lists the
connections that were active. The following fields can exist:

=node:<node name> The name of the node

no distribution This will only occur if the node was not distributed.

=visible node:<channel> Heading for a visible nodes, i.e. an alive node with a connection to the node
that crashed. States the channel number for the node.

=hidden node:<channel> Heading for a hidden node. A hidden node is the same as a visible node,
except that it is started with the “-hidden” flag. States the channel number for the node.

=not connected:<channel> Heading for a node which is has been connected to the crashed node
earlier. References (i.e. process or port identitifiers) to the not connected node existed at the time
of the crash. exist. States the channel number for the node.

Name The name of the remote node.

Controller The port which controls the communication with the remote node.

Creation An integer (1-3) which together with the node name identifies a specific instance of the node.

Remote monitoring: <local proc> <remote proc> The local process was monitoring the remote
process at the time of the crash.

Remotely monitored by: <local proc> <remote proc> The remote process was monitoring the local
process at the time of the crash.

Remote link: <local proc> <remote proc> A link existed between the local process and the remote
process at the time of the crash.

11Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.2.11 Loaded module information

This section contains information about all loaded modules. First, the memory usage by loaded code is
summarized. There is one field for “Current code” which is code that is the current latest version of the
modules. There is also a field for “Old code” which is code where there exists a newer version in the
system, but the old version is not yet purged. The memory usage is in bytes.

All loaded modules are then listed. The following fields exist:

=mod:<module name> Heading, and the name of the module.

Current size Memory usage for the loaded code in bytes

Old size Memory usage for the old code, if any.

Current attributes Module attributes for the current code. This field is decoded when looked at by the
Crashdump Viewer tool.

Old attributes Module attributes for the old code, if any. This field is decoded when looked at by the
Crashdump Viewer tool.

Current compilation info Compilation information (options) for the current code. This field is decoded
when looked at by the Crashdump Viewer tool.

Old compilation info Compilation information (options) for the old code, if any. This field is decoded
when looked at by the Crashdump Viewer tool.

1.2.12 Fun information

In this section, all funs are listed. The following fields exist for each fun:

=fun Heading

Module The name of the module where the fun was defined.

Uniq, Index Identifiers

Address The address of the fun’s code.

Native address The address of the fun’s code when HiPE is enabled.

Refc The number of references to the fun.

1.2.13 Process Data

For each process there will be at least one =proc stack and one =proc heap tag followed by the raw
memory information for the stack and heap of the process.

For each process there will also be a =proc messages tag if the process’ message queue is non-empty and
a =proc dictionary tag if the process’ dictionary (the put/2 and get/1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. You will then be able to
see the stack dump, the message queue (if any) and the dictionary (if any).

The stack dump is a dump of the Erlang process stack. Most of the live data (i.e., variables currently in
use) are placed on the stack; thus this can be quite interesting. One has to “guess” what’s what, but as
the information is symbolic, thorough reading of this information can be very useful. As an example we
can find the state variable of the Erlang primitive loader on line (5) in the example below:

12 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

(1) 3cac44 Return addr 0x13BF58 (<terminate process normally>)
(2) y(0) ["/view/siri_r10_dev/clearcase/otp/erts/lib/kernel/ebin","/view/siri_r10_dev/
(3) clearcase/otp/erts/lib/stdlib/ebin"]
(4) y(1) <0.1.0>
(5) y(2) {state,[],none,#Fun<erl_prim_loader.6.7085890>,undefined,#Fun<erl_prim_loader.7.90003
(6) y(3) infinity

When interpreting the data for a process, it is helpful to know that anonymous function objects (funs)
are given a name constructed from the name of the function in which they are created, and a number
(starting with 0) indicating the number of that fun within that function.

1.2.14 Atoms

Now all the atoms in the system are written. This is only interesting if one suspects that dynamic
generation of atoms could be a problem, otherwise this section can be ignored.

Note that the last created atom is printed first.

1.2.15 Disclaimer

The format of the crash dump evolves between releases of OTP. Some information here may not apply
to your version. A description as this will never be complete; it is meant as an explanation of the crash
dump in general and as a help when trying to find application errors, not as a complete specification.

1.3 How to implement an alternative carrier for the erlang
distribution

This document describes how one can implement ones own carrier protocol for the erlang distibution.
The distribution is normally carried by the TCP/IP protocol. Whats explained here is the method for
replacing TCP/IP whith another protocol.

The document is a step by step explanation of the uds dist example application (seated in the kernel
applications examples directory). The uds dist application implements distribution over Unix domain
sockets and is written for the Sun Solaris 2 operating environment. The mechanisms are however
general and applies to any operating system erlang runs on. The reason the C code is not made portable,
is simply readability.

1.3.1 Introduction

To implement a new carrier for the erlang distribution, one must first make the protocol available to the
erlang machine, which involves writing an erlang driver. There is no way one can use a port program,
there has to be an erlang driver. Erlang drivers can either be statically linked to the emulator, which can
be an alternative when using the open source distribution of erlang, or dynamically loaded into the
erlang machines address space, which is the only alternative if a precompiled version of erlang is to be
used.

Writing an erlang driver is by no means easy. The driver is written as a couple of callback functions
called by the erlang emulator when data is sent to the driver or the driver has any data available on a file
descriptor. As the driver callback routines execute in the main thread of the erlang machine, the
callback functions can perform no blocking activity whatsoever. The callbacks should only set up file

13Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

descriptors for waiting and/or read/write available data. All I/O has to be non blocking. Driver callbacks
are however executed in sequence, why a global state can safely be updated within the routines.

When the driver is implemented, one would preferrably write an erlang interface for the driver to be
able to test the functionality of the driver separately. This interface can then be used by the distribution
module which will cover the details of the protocol from the net kernel. The easiest path is to mimic
the inet and gen tcp interfaces, but a lot of functionality in those modules need not be implemented.
In the example application, only a few of the usual interfaces are implemented, and they are much
simplified.

When the protocol is available to erlang throug a driver and an erlang interface module, a distribution
module can be written. The distribution module is a module with well defined callbacks, much like a
gen server (there is no compiler support for checking the callbacks though). The details of finding
other nodes (i.e. talking to epmd or something similar), creating a listen port (or similar), connecting to
other nodes and performing the handshakes/cookie verification are all implemented by this module.
There is however a utility module, dist util, that will do most of the hard work of handling
handshakes, cookies, timers and ticking. Using dist util makes implementing a distribution module
much easier and that’s what we are doing in the example application.

The last step is to create boot scripts to make the protocol implementation available at boot time. The
implementation can be debugged by starting the distribution when all of the system is running, but in a
real system the distribution should start very early, why a bootscript and some command line
parameters are necessary. This last step also implies that the erlang code in the interface and
distribution modules is written in such a way that it can be run in the startup phase. Most notably there
can be no calls to the application module or to any modules not loaded at boottime (i.e. only kernel,
stdlib and the application itself can be used).

1.3.2 The driver

Although erlang drivers in general may be beyond the scope of this document, a brief introduction
seems to be in place.

Drivers in general

An erlang driver is a native code module written in C (or assembler) which serves as an interface for
some special operating system service. This is a general mechanism that is used throughout the erlang
emulator for all kinds of I/O. An erlang driver can be dynamically linked (or loaded) to the erlang
emulator at runtime by using the erl ddll erlang module. Some of the drivers in OTP are however
statically linked to the runtime system, but that’s more an optimization than a necessity.

The driver datatypes and the functions available to the driver writer are defined in the header file
erl driver.h (there is also an deprecated version called driver.h, dont use that one.) seated in
erlang’s include directory (and in $ERL TOP/erts/emulator/beam in the source code distribution).
Refer to that file for function prototypes etc.

When writing a driver to make a communications protocol avalable to erlang, one should know just
about everything worth knowing about that particular protocol. All operation has to be non blocking
and all possible situations should be accounted for in the driver. A non stable driver will affect and/or
crash the whole erlang runtime system, which is seldom what’s wanted.

The emulator calls the driver in the following situations:

� When the driver is loaded. This callback has to have a special name and will infor the emulator of
what callbacks should be used by returning a pointer to a ErlDrvEntry struct, which should be
properly filled in (see below).

14 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

� When a port to the driver is opened (by a open port call from erlang). This routine should set up
internal data structures and return an opaque data entity of the type ErlDrvData, which is a
datatype large enough to hold a pointer. The pointer returned by this function will be the first
argument to all other callbacks concerning this particular port. It is usually called the port handle.
The emulator only stores the handle and doues never try to interpret it, why it can be virtually
anything (well anything not larger than a pointer that is) and can point to anything if it is a
pointer. Usually this pointer will refer to a structure holding information about the particular
port, as i t does in our example.

� When an erlang process sends data to the port. The data will arrive as a buffer of bytes, the
interpretation is not defined, but is up to the implementor. This callback returns nothing to the
caller, answers are sent to the caller as messages (using a routine called driver output available to
all drivers). There is also a way to talk in a syncronous way to drivers, described below. There can
be an additional callback function for handling data that is frgmented (sent in a deep io-list). That
interface will get the data in a form suitable for Unix writev rather than in a single buffer. There
is no need for a distribution driver to implement such a callback, so we wont.

� When a file descriptor is signaled for input. This callback is called when the emulator detects
input on a file descriptor which the driver has marked for monitoring by using the interface
driver select. The mechanism of driver select makes it possible to read non blocking from file
descriptors by calling driver select when reading is needed and then do the actual reading in
this callback (when reading is actually possible). The typical scenario is that driver select is
called when an erlang process orderes a read operation, and that this routine sends the answer
when data is available on the file descriptor.

� When a file descriptor is signaled for output. This callback is called in a similar way as the
previous, but when writing to a file descriptor is possible. The usual scenario is that erlang orders
writing on a file descriptor and that the driver calls driver select. When the descriptor is readu
for output, this callback is called an the driver can try to send the output. There may of course be
queueing involved in such operations, and there are some convenient queue routines available to
the driver writer to use in such situations.

� When a port is closed, either by an erlang process or by the driver calling one of the
driver failure XXX routines. This routine should clean up everything connected to one
particular port. Note that when other callbacks call a driver failure XXX routine, this routine
will be immediately called and the callback routine issuing the error can make no more use of the
data structures for the port, as this routine surely has freed all associated data and closed all file
descriptors. If the queue utility available to driver writes is used, this routine will however not be
called until the queue is empty.

� When an erlang process calls erlang:driver control/2, which is a syncronous interface to
drivers. The control interface is used to set driver options, change states of ports etc. We’ll use this
interface quite a lot in our example.

� When a timer expires. The driver can set timers with the function driver set timer. When such
timers expire, a specific callback function is called. We will not use timers in our example.

� When the whole driver is unloaded. Every resource allocated by the driver should be freed.

The distribution driver’s data structures

The driver used for erlang distribution should implement a reliable, order mainataining, variable length
packet oriented protocol. All error correction, resending and such need to be implemented in the driver
or by the underlying communications protocol. If the protocol is stream oriented (as is the case with
both TCP/IP and our streamed Unix domain sockets), some mechanism for packaging is needed. We
will use the simple method of having a header of four bytes containing the length of the package in a
big endian 32 bit integer (as Unix domain sockets only can be used between processes on the same

15Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

machine, we actually dont need to code the integer in some special endianess, but i’ll do it anyway
brcause in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we dont need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static
ErlDrvEntry structure.

(1) #include <stdio.h>
(2) #include <stdlib.h>
(3) #include <string.h>
(4) #include <unistd.h>
(5) #include <errno.h>
(6) #include <sys/types.h>
(7) #include <sys/stat.h>
(8) #include <sys/socket.h>
(9) #include <sys/un.h>
(10) #include <fcntl.h>

(11) #define HAVE_UIO_H
(12) #include "erl_driver.h"

(13) /*
(14) ** Interface routines
(15) */
(16) static ErlDrvData uds_start(ErlDrvPort port, char *buff);
(17) static void uds_stop(ErlDrvData handle);
(18) static void uds_command(ErlDrvData handle, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handle, ErlDrvEvent event);
(20) static void uds_output(ErlDrvData handle, ErlDrvEvent event);
(21) static void uds_finish(void);
(22) static int uds_control(ErlDrvData handle, unsigned int command,
(23) char* buf, int count, char** res, int res_size);

(24) /* The driver entry */
(25) static ErlDrvEntry uds_driver_entry = {
(26) NULL, /* init, N/A */
(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready_input, called when input descriptor
(31) ready */
(32) uds_output, /* ready_output, called when output
(33) descriptor ready */
(34) "uds_drv", /* char *driver_name, the argument
(35) to open_port */
(36) uds_finish, /* finish, called when unloaded */
(37) NULL, /* void * that is not used (BC) */
(38) uds_control, /* control, port_control callback */
(39) NULL, /* timeout, called on timeouts */
(40) NULL /* outputv, vector output interface */
(41) };

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for
Solaris, we know that the header uio.h exists, why we can define the preprocessor variable HAVE UIO H

16 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

before we include erl driver.h at line 12. The definition of HAVE UIO H will make the I/O vectors
used in erlangs driver queues to correspond to the operating systems dito, which is very convenient.

The different callback functions are declared (“forward declarations”) on line 16 to 23.

The driver structure is similar for statically linked in drivers an dynamically loaded. However some of
the fields should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field
(the init function pointer) is always left blank in a dynamically loaded driver, which can be seen on
line 26. The NULL on line 37 should always be there, the field is no longer used and is retained for
backward compatibility. We use no timers in this driver, why no callback for timers is needed. The last
field (line 40) can be used to implement an interface similar to Unix writev for output. There is no
need for such interface in a distribution driver, so we leave it with a NULL value (We will however use
scatter/gather I/O internally in the driver).

Our defined callbacks thus are:

� uds start, which shall initiate data for a port. We wont create any actual sockets here, just
initialize data structures.

� uds stop, the function called when a port is closed.

� uds command, which will handle messages from erlang. The messages can either be plain data to
be sent or more subtle instructions to the driver. We will use this function mostly for data
pumping.

� uds input, this is the callback which is called when we have something to read from a socket.

� uds output, this is the function called when we can write to a socket.

� uds finish, which is called when the driver is unloaded. A distribution driver will actually (or
hopefully) never be unloaded, but we include this for completeness. Being able to clean up after
oneself is always a good thing.

� uds control, the erlang:port control/2 callback, which will be used a lot in this
implementation.

The ports implemented by this driver will operate in two major modes, which i will call the command
and data modes. In command mode, only passive reading and writing (like gen tcp:recv/gen tcp:send)
can be done, and this is the mode the port will be in during the distribution handshake. When the
connection is up, the port will be switched to data mode and all data will be immediately read and
passed further to the erlang emulator. In data mode, no data arriving to the uds command will be
interpreted, but just packaged and sent out on the socket. The uds control callback will do the
switching between those two modes.

While the net kernel informs different subsystems that the connection is coming up, the port should
accept data to send, but not receive any data, to avoid that data arrives from another node before every
kernel subsystem is prepared to handle it. We have a third mode for this intermediate stage, lets call it
the intermediate mode.

Lets define an enum for the differnt types of ports we have:

(1) typedef enum {
(2) portTypeUnknown, /* An uninitialized port */
(3) portTypeListener, /* A listening port/socket */
(4) portTypeAcceptor, /* An intermidiate stage when accepting
(5) on a listen port */
(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypeIntermediate, /* A connected open port in special
(9) half active mode */
(10) portTypeData /* A connectec open port in data mode */

17Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

(11) } PortType;

Lets look at the different types:

� portTypeUnknown - The type a port has when it’s opened, but not actually bound to any file
descriptor.

� portTypeListener - A port that is connected to a listen socket. This port will not do especially
much, ther will be no data pumping done on this socket, but there will be read data avalable
when one is trying to do an accept on the port.

� portTypeAcceptor - This is a port that is to represent the result of an accept operation. It is
created when one wants to accept from a listen socket, and it will be converted to a
portTypeCommand when the accept succeeds.

� portTypeConnector - Very similar to portTypeAcceptor, an intermediate stage between the
request for a connect operation and that the socket is really connected to ann accepting dito in the
other end. As soon as the sockets are connected, the port will switch type to portTypeCommand.

� portTypeCommand - A connected socket (or accepted socket if you want) that is in the command
mode mentioned earlier.

� portTypeIntermediate - The intermediate stage for a connected socket. Ther should be no
processing of input for this socket.

� portTypeData - The mode where data is pumped through the port and the uds command routine
will regard every call as a call where sending is wanted. In this mode all input available will be
read and sent to erlang as soon as it arrives on the socket, much like in the active mode of a
gen tcp socket.

Now lets look at the state we’ll need for our ports. One can note that not all fields are used for all types
of ports and that one could save some space by using unions, but that would clutter the code with
multiple indirections, so i simply use one struct for all types of ports, for readability.

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds_data {
(4) int fd; /* File descriptor */
(5) ErlDrvPort port; /* The port identifier */
(6) int lockfd; /* The file descriptor for a lock file in
(7) case of listen sockets */
(8) Byte creation; /* The creation serial derived from the
(9) lockfile */
(10) PortType type; /* Type of port */
(11) char *name; /* Short name of socket for unlink */
(12) Word sent; /* Bytes sent */
(13) Word received; /* Bytes received */
(14) struct uds_data *partner; /* The partner in an accept/listen pair */
(15) struct uds_data *next; /* Next structure in list */
(16) /* The input buffer and it’s data */
(17) int buffer_size; /* The allocated size of the input buffer */
(18) int buffer_pos; /* Current position in input buffer */
(19) int header_pos; /* Where the current header is in the
(20) input buffer */
(21) Byte *buffer; /* The actual input buffer */
(22) } UdsData;

18 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

This structure is used for all types of ports although some fields are useless for some types. The least
memory consuming solution would be to arrange this structure as a union of structures, but the
multiple indirections in the code to access a field in such a structure will clutter the code to much for an
example.

Let’s look at the fields in our structure:

� fd - The file descriptor of the socket associated with the port.

� port - The port identifier for the port which this structure corresponds to. It is needed for most
driver XXX calls from the driver back to the emulator.

� lockfd - If the socket is a listen socket, we use a separate (reguler) file for two purpouses:

– We want a locking mechanism that gives no race conditions, so that we can be sure of if
another erlang node uses the listen socket name we require or if the file is only left there
from a previous (crashed) session.

– We store the creation serial number in the file. The creation is a number that should change
between different instances of different erlang emulatorors with the same name, so that
process identifiers from one emulator won’t be valid when sent to a new emulator with the
same distribution name. The creation can be between 0 and 3 (two bits) and is stored in
every process identifier sent to another node.
In a system with TCP based distribution, this data is kept in the erlang port mapper daemon
(epmd), which is contacted when a distributed node starts. The lockfile and a convention for
the UDS listen socket’s name will remove the need for epmd when using this distribution
module. UDS is always restricted to one host, why avoiding a port mapper is easy.

� creation - The creation number for a listen socket, which is calculated as (the value found in the
lockfile + 1) rem 4. This creation value is also written back into the lockfile, so that the next
invocation of the emulator will found our value in the file.

� type - The current type/state of the port, which can be one of the values declared above.

� name - The name of the socket file (the path prefix removed), which allows for deletion (unlink)
when the socket is closed.

� sent - How many bytes that have been sent over the socket. This may wrap, but that’s no problem
for the distribution, as the only thing that interests the erlang distribution is if this value has
changed (the erlang net kernel ticker uses this value by calling the driver to fetch it, which is done
through the driver control routine).

� received - How many bytes that are read (received) from the socket, used in similar ways as sent.

� partner - A pointer to another port structure, which is either the listen port from which this port
is accepting a connection or the other way around. The “partner relation” is always bidirectional.

� next - Pointer to next structure in a linked list of all port structures. This list is used when
accepting connections and when the driver is unloaded.

� buffer size, buffer pos, header pos, buffer - data for input buffering. Refer to the source code (in
the kernel/examples directory) for details about the input buffering. That certainly goes beyond
the scope of this document.

Selected parts of the distribution driver implementation

The distribution drivers implementation is not completely covered in this text, details about buffering
and other things unrelated to driver writing are not explained. Likewise are some peculiarities of the
UDS protocol not explained in detail. The chosen protocol is not important.

Prototypes for the driver callback routines can be found in the erl driver.h header file.

19Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

The driver initialization routine is (usually) declared with a macro to make the driver easier to port
between different operating systems (and flavours of systems). This is the only routine that has to have
a well defined name. All other callbacks are reached through the driver structure. The macro to use is
named DRIVER INIT and takes the driver name as parameter.

(1) /* Beginning of linked list of ports */
(2) static UdsData *first_data;

(3) DRIVER_INIT(uds_drv)
(4) {
(5) first_data = NULL;
(6) return &uds_driver_entry;
(7) }

The routine initializes the single global data structure and returns a pointer to the driver entry. The
routine will be called when erl ddll:load driver is called from erlang.

The uds start routine is called when a port is opened from erlang. In our case, we only allocate a
structure and initialize it. Creating the actual socket is left to the uds command routine.

(1) static ErlDrvData uds_start(ErlDrvPort port, char *buff)
(2) {
(3) UdsData *ud;
(4)
(5) ud = ALLOC(sizeof(UdsData));
(6) ud->fd = -1;
(7) ud->lockfd = -1;
(8) ud->creation = 0;
(9) ud->port = port;
(10) ud->type = portTypeUnknown;
(11) ud->name = NULL;
(12) ud->buffer_size = 0;
(13) ud->buffer_pos = 0;
(14) ud->header_pos = 0;
(15) ud->buffer = NULL;
(16) ud->sent = 0;
(17) ud->received = 0;
(18) ud->partner = NULL;
(19) ud->next = first_data;
(20) first_data = ud;
(21)
(22) return((ErlDrvData) ud);
(23) }

Every data item is initialized, so that no problems will arise when a newly created port is closed
(without there being any corresponding socket). This routine is called when open port(fspawn,
"uds drv"g,[]) is called from erlang.

The uds command routine is the routine called when an erlang process sends data to the port. All
asyncronous commands when the port is in command mode as well as the sending of all data when the
port is in data mode is handeled in thi9s routine. Let’s have a look at it:

20 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

(1) static void uds_command(ErlDrvData handle, char *buff, int bufflen)
(2) {
(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeData || ud->type == portTypeIntermediate) {
(5) DEBUGF(("Passive do_send %d",bufflen));
(6) do_send(ud, buff + 1, bufflen - 1); /* XXX */
(7) return;
(8) }
(9) if (bufflen == 0) {
(10) return;
(11) }
(12) switch (*buff) {
(13) case ’L’:
(14) if (ud->type != portTypeUnknown) {
(15) driver_failure_posix(ud->port, ENOTSUP);
(16) return;
(17) }
(18) uds_command_listen(ud,buff,bufflen);
(19) return;
(20) case ’A’:
(21) if (ud->type != portTypeUnknown) {
(22) driver_failure_posix(ud->port, ENOTSUP);
(23) return;
(24) }
(25) uds_command_accept(ud,buff,bufflen);
(26) return;
(27) case ’C’:
(28) if (ud->type != portTypeUnknown) {
(29) driver_failure_posix(ud->port, ENOTSUP);
(30) return;
(31) }
(32) uds_command_connect(ud,buff,bufflen);
(33) return;
(34) case ’S’:
(35) if (ud->type != portTypeCommand) {
(36) driver_failure_posix(ud->port, ENOTSUP);
(37) return;
(38) }
(39) do_send(ud, buff + 1, bufflen - 1);
(40) return;
(41) case ’R’:
(42) if (ud->type != portTypeCommand) {
(43) driver_failure_posix(ud->port, ENOTSUP);
(44) return;
(45) }
(46) do_recv(ud);
(47) return;
(48) default:
(49) return;
(50) }
(51) }

21Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

The command routine takes three parameters; the handle returned for the port by uds start, which is
a pointer to the internal port structure, the data buffer and the length of the data buffer. The buffer is
the data sent from erlang (a list of bytes) converted to an C array (of bytes).

If Erlang sends i.e. the list [$a,$b,$c] to the port, the bufflen variable will be 3 ant the buff veriable
will contain f’a’,’b’,’c’g (no null termination). Usually the first byte is used as an opcode, which is
the case in our driver to (at least when the port is in command mode). The opcodes are defined as:

� ’L’<socketname>: Create and listen on socket with the given name.

� ’A’<listennumber as 32 bit bigendian>: Accept from the listen socket identified by the given
identification number. The idientification number is retrieved with the uds control routine.

� ’C’<socketname>: Connect to the socket named <socketname>.

� ’S’<data>: Send the data <data> on the connected/accepted socket (in command mode). The
sending is acked when the data has left this process.

� ’R’: Receive one packet of data.

One may wonder what is meant by “one packet of data” in the ’R’ command. This driver always sends
data packeted with a 4 byte header containing a big endian 32 bit integer that represents the length of
the data in the packet. There is no need for different packet sizes or soime kind of streamed mode, as
this driver is for the distribuion only. One may wonder why the header word is coded explicitly in big
endian when an UDS socket is local to the host. The answer simply is that I see it as a good practice
when writing a distribution driver, as distribution in practice usually cross the host boundaries.

On line 4-8 we handle the case where the port is in data or intermediate mode, the rest of the routine
handles the different commands. We see (first on line 15) that the routine uses the
driver failure posix() routine to report errors. One important thing to remember is that the failure
routines make a call to our uds stop routine, which will remove the internal port data. The handle
(and the casted handle ud) is therefore invalid pointers after a driver failure call and we should
immediately return. The runtime system will send exit signals to all linked processes.

The uds input routine gets called when data is available on a file descriptor previously passed to the
driver select routine. Typically this happens when a read command is issued and no data is available.
Lets look at the do recv routine:

(1) static void do_recv(UdsData *ud)
(2) {
(3) int res;
(4) char *ibuf;
(5) for(;;) {
(6) if ((res = buffered_read_package(ud,&ibuf)) < 0) {
(7) if (res == NORMAL_READ_FAILURE) {
(8) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 1);
(9) } else {
(10) driver_failure_eof(ud->port);
(11) }
(12) return;
(13) }
(14) /* Got a package */
(15) if (ud->type == portTypeCommand) {
(16) ibuf[-1] = ’R’; /* There is always room for a single byte
(17) opcode before the actual buffer
(18) (where the packet header was) */
(19) driver_output(ud->port,ibuf - 1, res + 1);
(20) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ,0);

22 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

(21) return;
(22) } else {
(23) ibuf[-1] = DIST_MAGIC_RECV_TAG; /* XXX */
(24) driver_output(ud->port,ibuf - 1, res + 1);
(25) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ,1);
(26) }
(27) }
(28) }

The routine tries to read data until a packet is read or the buffered read package routine returns a
NORMAL READ FAILURE (an internally defined constant for the module that means that the read
operation resulted in an EWOULDBLOCK). If the port is in command mode, the reading stops when one
package is read, but if it is in data mode, the reading continues until the socket buffer is empty (read
failure). If no more data can be read and more is wanted (always the case when socket is in data mode)
driver select is called to make the uds input callback be called when more data is available for reading.

When the port is in data mode, all data is sent to erlang in a format that suits the distribution, in fact
the raw data will never reach any erlang process, but will be translated/interpreted by the emulator
itself and then delivered in the correct format to the correct processes. In the current emulator version,
received data should be tagged with a single byte of 100. Thats what the macro DIST MAGIC RECV TAG
is defined to. The tagging of data in the distribution will possibly change in the future.

The uds input routine will handle other input events (like nonblocking accept), but most importantly
handle data arriving at the socket by calling do recv:

(1) static void uds_input(ErlDrvData handle, ErlDrvEvent event)
(2) {
(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeListener) {
(5) UdsData *ad = ud->partner;
(6) struct sockaddr_un peer;
(7) int pl = sizeof(struct sockaddr_un);
(8) int fd;

(9) if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno != EWOULDBLOCK) {
(11) driver_failure_posix(ud->port, errno);
(12) return;
(13) }
(14) return;
(15) }
(16) SET_NONBLOCKING(fd);
(17) ad->fd = fd;
(18) ad->partner = NULL;
(19) ad->type = portTypeCommand;
(20) ud->partner = NULL;
(21) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(22) driver_output(ad->port, "Aok",3);
(23) return;
(24) }
(25) do_recv(ud);
(26) }

23Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

The important line here is the last line in the function, the do read routine is called to handle new
input. The rest of the function handles input on a listen socket, whinc means that there should be
possible to do an accept on the socket, which is also recognized as a read event.

The output mechanisms are similar to the input. Lets first look at the do send routine:

(1) static void do_send(UdsData *ud, char *buff, int bufflen)
(2) {
(3) char header[4];
(4) int written;
(5) SysIOVec iov[2];
(6) ErlIOVec eio;
(7) ErlDrvBinary *binv[] = {NULL,NULL};

(8) put_packet_length(header, bufflen);
(9) iov[0].iov_base = (char *) header;
(10) iov[0].iov_len = 4;
(11) iov[1].iov_base = buff;
(12) iov[1].iov_len = bufflen;
(13) eio.iov = iov;
(14) eio.binv = binv;
(15) eio.vsize = 2;
(16) eio.size = bufflen + 4;
(17) written = 0;
(18) if (driver_sizeq(ud->port) == 0) {
(19) if ((written = writev(ud->fd, iov, 2)) == eio.size) {
(20) ud->sent += written;
(21) if (ud->type == portTypeCommand) {
(22) driver_output(ud->port, "Sok", 3);
(23) }
(24) return;
(25) } else if (written < 0) {
(26) if (errno != EWOULDBLOCK) {
(27) driver_failure_eof(ud->port);
(28) return;
(29) } else {
(30) written = 0;
(31) }
(32) } else {
(33) ud->sent += written;
(34) }
(35) /* Enqueue remaining */
(36) }
(37) driver_enqv(ud->port, &eio, written);
(38) send_out_queue(ud);
(39) }

This driver uses the writev system call to send data onto the socket. A combination of writev and the
driver output queues is very convenient. An ErlIOVec structure contains a SysIOVec (which is
equivalent to the struct iovec structure defined in uio.h. The ErlIOVec also contains an array of
ErlDrvBinary pointers, of the same length as the number of buffers in the I/O vector itself. One can use
this to allocate the binaries for the queue “manually” in the driver, but we’ll just fill the binary array
with NULL values (line 7) , which will make the runtime system allocate it’s own buffers when we call
driver enqv (line 37).

24 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

The routine builds an I/O vector containing the header bytes and the buffer (the opcode has been
removed and the buffer length decreased by the output routine). If the queue is empty, we’ll write the
data directly to the socket (or at least try to). If any data is left, it is stored in the que and then we try to
send the queue (line 38). An ack is sent when the message is delivered completely (line 22). The
send out queue will send acks if the sending is completed there. If the port is in command mode, the
erlang code serializes the send operations so that only one packet can be waiting for delivery at a time.
Therefore the ack can be sent simply whenever the queue is empty.

A short look at the send out queue routine:

(1) static int send_out_queue(UdsData *ud)
(2) {
(3) for(;;) {
(4) int vlen;
(5) SysIOVec *tmp = driver_peekq(ud->port, &vlen);
(6) int wrote;
(7) if (tmp == NULL) {
(8) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_WRITE, 0);
(9) if (ud->type == portTypeCommand) {
(10) driver_output(ud->port, "Sok", 3);
(11) }
(12) return 0;
(13) }
(14) if (vlen > IO_VECTOR_MAX) {
(15) vlen = IO_VECTOR_MAX;
(16) }
(17) if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
(18) if (errno == EWOULDBLOCK) {
(19) driver_select(ud->port, (ErlDrvEvent) ud->fd,
(20) DO_WRITE, 1);
(21) return 0;
(22) } else {
(23) driver_failure_eof(ud->port);
(24) return -1;
(25) }
(26) }
(27) driver_deq(ud->port, wrote);
(28) ud->sent += wrote;
(29) }
(30) }

What we do is simply to pick out an I/O vector from the queue (which is the whole queue as an
SysIOVec). If the I/O vector is to long (IO VECTOR MAX is defined to 16), the vector length is
decreased (line 15), otherwise the writev (line 17) call will fail. Writing is tried and anything written is
dequeued (line 27). If the write fails with EWOULDBLOCK (note that all sockets are in nonblocking mode),
driver select is called to make the uds output routine be called when there is space to write again.

We will continue trying to write until the queue is empty or the writing would block.

The routine above are called from the uds output routine, which looks like this:

(1) static void uds_output(ErlDrvData handle, ErlDrvEvent event)
(2) {
(3) UdsData *ud = (UdsData *) handle;

25Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

(4) if (ud->type == portTypeConnector) {
(5) ud->type = portTypeCommand;
(6) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_WRITE, 0);
(7) driver_output(ud->port, "Cok",3);
(8) return;
(9) }
(10) send_out_queue(ud);
(11) }

The routine is simple, it first handles the fact that the output select will concern a socket in the
buissiness of connectiong (and the connecting blocked). If the socket is in a connected state it simply
sends the output queue, this routine is called when there is possible to write to a socket where we have
an output queue, so there is no question what to do.

The driver implements a control interface, which is a syncronous interface called when erlang calls
erlang:driver control/3. This is the only interface that can control the driver when it is in data
mode and it may be called with the following opcodes:

� ’C’: Set port in command mode.

� ’I’: Set port in intermidiate mode.

� ’D’: Set port in data mode.

� ’N’: Get identification number for listen port, this identification number is used in an accept
command to the driver, it is returned as a big endian 32 bit integer, which happens to be the file
identifier for the listen socket.

� ’S’: Get statistics, which is the number of bytes received, the numer of bytes sent and the number
of bytes pending in the output queue. This data is used when the distribution checks that a
connection is alive (ticking). The statistics is returned as 3 32 bit big endian integers.

� ’T’: Send a tick message, which is a packet of length 0. Ticking is done when the port is in data
mode, so the command for sending data cannot be used (besides it ignores zero length packages in
command mode). This is used by the ticker to send dummy data when no other traffic is present.

� ’R’: Get creation number of listen socket, which is used to dig out the number stored in the lock
file to differentiate between invocations of erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to allocate it’s own buffer is the
provided one is to small. Here is the code for uds control:

(1) static int uds_control(ErlDrvData handle, unsigned int command,
(2) char* buf, int count, char** res, int res_size)
(3) {
(4) /* Local macro to ensure large enough buffer. */
(5) #define ENSURE(N) \n(6) do {

(11) UdsData *ud = (UdsData *) handle;

(12) switch (command) {
(13) case ’S’:
(14) {
(15) ENSURE(13);
(16) **res = 0;
(17) put_packet_length((*res) + 1, ud->received);
(18) put_packet_length((*res) + 5, ud->sent);
(19) put_packet_length((*res) + 9, driver_sizeq(ud->port));

26 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the erlang distribution

(20) return 13;
(21) }
(22) case ’C’:
(23) if (ud->type < portTypeCommand) {
(24) return report_control_error(res, res_size, "einval");
(25) }
(26) ud->type = portTypeCommand;
(27) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(28) ENSURE(1);
(29) **res = 0;
(30) return 1;
(31) case ’I’:
(32) if (ud->type < portTypeCommand) {
(33) return report_control_error(res, res_size, "einval");
(34) }
(35) ud->type = portTypeIntermediate;
(36) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(37) ENSURE(1);
(38) **res = 0;
(39) return 1;
(40) case ’D’:
(41) if (ud->type < portTypeCommand) {
(42) return report_control_error(res, res_size, "einval");
(43) }
(44) ud->type = portTypeData;
(45) do_recv(ud);
(46) ENSURE(1);
(47) **res = 0;
(48) return 1;
(49) case ’N’:
(50) if (ud->type != portTypeListener) {
(51) return report_control_error(res, res_size, "einval");
(52) }
(53) ENSURE(5);
(54) (*res)[0] = 0;
(55) put_packet_length((*res) + 1, ud->fd);
(56) return 5;
(57) case ’T’: /* tick */
(58) if (ud->type != portTypeData) {
(59) return report_control_error(res, res_size, "einval");
(60) }
(61) do_send(ud,"",0);
(62) ENSURE(1);
(63) **res = 0;
(64) return 1;
(65) case ’R’:
(66) if (ud->type != portTypeListener) {
(67) return report_control_error(res, res_size, "einval");
(68) }
(69) ENSURE(2);
(70) (*res)[0] = 0;
(71) (*res)[1] = ud->creation;
(72) return 2;

27Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

(73) default:
(74) return report_control_error(res, res_size, "einval");
(75) }
(76) #undef ENSURE
(77) }

The macro ENSURE (line 5 to 10) is used to ensure that the buffer is large enough for our answer. We
switch on the command and take actions, there is not much to say about this routine. Worth noting is
that we always has read select active on a port in data mode (achieved by calling do recv on lin 45), but
turn off read selection in intermediate and command modes (line 27 and 36).

The rest of the driver is more or less UDS specific and not of general interest.

1.3.3 Putting it all together

To test the distribution, one can use the net kernel:start/1 function, which is useful as it starts the
distribution on a running system, where tracing/debugging can be performed. The
net kernel:start/1 routine takes a list as it’s single argument. The lists first element should be the
node name (without the “@hostname”) as an atom, and the second (and last) element should be one of
the atoms shortnames or longnames. In the example case shortnames is preferred.

For net kernel to find out which distribution module to use, the command line argument -proto dist
is used. The argument is followed bu one or more distribution module names, with the “ dist” suffix
removed, i.e. uds dist as a distribution module is specified as -proto dist uds.

If no epmd (TCP port mapper daemon) is used, one should also specify the command line option
-no epmd, which will make erlang skip the epmd startup, both as a OS process and as an erlang dito.

The path to the directory where the distribution modules reside must be known at boot, which can
either be achieved by specifying -pa <path> on the command line or by building a boot script
containing the applications used for your distribution protocol (in the uds dist protocol, it’s only the
uds dist application that needs to be added to the script).

The distribution will be started at boot if all the above is specified and an -sname <name> flag is
present at the command line, here follows two examples:

$ erl -pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin -proto_dist uds -no_epmd
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> net_kernel:start([bing,shortnames]).
{ok,<0.30.0>}
(bing@hador)2>

...

$ erl -pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin -proto_dist uds \
-no_epmd -sname bong

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
(bong@hador)1>

One can utilize the ERL FLAGS environment variable to store the complicated parameters in:

28 Erlang Run-Time System Application (ERTS)

1.4: The Abstract Format

$ ERL_FLAGS=-pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin \
-proto_dist uds -no_epmd

$ export ERL_FLAGS
$ erl -sname bang
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
(bang@hador)1>

The ERL FLAGS shuld preferrably not include the name of the node.

1.4 The Abstract Format

This document describes the standard representation of parse trees for Erlang programs as Erlang terms.
This representation is known as the abstract format. Functions dealing with such parse trees are
compile:forms/[1,2] and functions in the modules epp, erl eval, erl lint, erl pp, erl parse, and
io. They are also used as input and output for parse transforms (see the module compile).

We use the function Rep to denote the mapping from an Erlang source construct C to its abstract format
representation R, and write R = Rep(C).

The word LINE below represents an integer, and denotes the number of the line in the source file where
the construction occurred. Several instances of LINE in the same construction may denote different
lines.

Since operators are not terms in their own right, when operators are mentioned below, the
representation of an operator should be taken to be the atom with a printname consisting of the same
characters as the operator.

1.4.1 Module declarations and forms

A module declaration consists of a sequence of forms that are either function declarations or attributes.

� If D is a module declaration consisting of the forms F 1, ..., F k, then Rep(D) = [Rep(F 1), ...,
Rep(F k)].

� If F is an attribute -module(Mod), then Rep(F) = fattribute,LINE,module,Modg.

� If F is an attribute -export([Fun 1/A 1, ..., Fun k/A k]), then Rep(F) =
fattribute,LINE,export,[fFun 1,A 1g, ..., fFun k,A kg]g.

� If F is an attribute -import(Mod,[Fun 1/A 1, ..., Fun k/A k]), then Rep(F) =
fattribute,LINE,import,fMod,[fFun 1,A 1g, ..., fFun k,A kg]gg.

� If F is an attribute -compile(Options), then Rep(F) = fattribute,LINE,compile,Optionsg.

� If F is an attribute -file(File,Line), then Rep(F) = fattribute,LINE,file,fFile,Linegg.

� If F is a record declaration -record(Name,fV 1, ..., V kg), then Rep(F) =
fattribute,LINE,record,fName,[Rep(V 1), ..., Rep(V k)]gg. For Rep(V), see below.

� If F is a wild attribute -A(T), then Rep(F) = fattribute,LINE,A,Tg.

� If F is a function declaration Name(Ps 1) when Gs 1 -> B 1 ; ... ; Name(Ps k) when Gs k
-> B k end, where each Ps i, Gs i and B i is a pattern sequence, a guard sequence and a body,
respectively, and each Ps i has the same length Arity, then Rep(F) =
ffunction,LINE,Name,Arity, [fclause,LINE,Rep(Ps 1),Rep(Gs 1),Rep(B 1)g, ...,
fclause,LINE,Rep(Ps k),Rep(Gs k),Rep(B k)g]g.

29Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

Record fields

Each field in a record declaration may have an optional explicit default initializer expression

� If V is A, then Rep(V) = frecord field,LINE,Rep(A)g.

� If V is A = E, then Rep(V) = frecord field,LINE,Rep(A),Rep(E)g.

Representation of parse errors and end of file

In addition to the representations of forms, the list that represents a module declaration (as returned by
functions in erl parse and epp) may contain tuples ferror,Eg, denoting syntactically incorrect forms,
and feof,LINEg, denoting an end of stream encountered before a complete form had been parsed.

1.4.2 Atomic literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions
and guard expressions:

� If L is an integer or character literal, then Rep(L) = finteger,LINE,Lg.

� If L is a float literal, then Rep(L) = ffloat,LINE,Lg.

� If L is a string literal consisting of the characters C 1, ..., C k, then Rep(L) = fstring,LINE,[C 1,
..., C k]g.

� If L is an atom literal, then Rep(L) = fatom,LINE,Lg.

Note that negative integer and float literals do not occur as such; they are parsed as an application of
the unary negation operator.

1.4.3 Patterns

If Ps is a sequence of patterns P 1, ..., P k, then Rep(Ps) = [Rep(P 1), ..., Rep(P k)]. Such
sequences occur as the list of arguments to a function or fun.

Individual patterns are represented as follows:

� If P is an atomic literal L, then Rep(P) = Rep(L),

� If P is a compound pattern P 1 = P 2, then Rep(P) = fmatch,LINE,Rep(P 1),Rep(P 2)g.

� If P is a variable pattern V, then Rep(P) = fvar,LINE,Ag, where A is an atom with a printname
consisting of the same characters as V.

� If P is a universal pattern , then Rep(P) = fvar,LINE,’ ’g.

� If P is a tuple pattern fP 1, ..., P kg, then Rep(P) = ftuple,LINE,[Rep(P 1), ...,
Rep(P k)]g.

� If P is a nil pattern [], then Rep(P) = fnil,LINEg.

� If P is a cons pattern [P h | P t], then Rep(P) = fcons,LINE,Rep(P h),Rep(P t)g.

� If E is a binary pattern <<P 1:Size 1/TSL 1, ..., P k:Size k/TSL k>>, then Rep(E) =
fbin,LINE,[fbin element,LINE,Rep(P 1),Rep(Size 1),Rep(TSL 1)g, ...,
fbin element,LINE,Rep(P k),Rep(Size k),Rep(TSL k)g]g. For Rep(TSL), see below. An
omitted Size is represented by default. An omitted TSL (type specifier list) is represented by
default.

30 Erlang Run-Time System Application (ERTS)

1.4: The Abstract Format

� If P is P 1 Op P 2, where Op is a binary operator (this is either an occurrence of ++ applied to a
literal string or character list, or an occurrence of an expression that can be evaluated to a number
at compile time), then Rep(P) = fop,LINE,Op,Rep(P 1),Rep(P 2)g.

� If P is Op P 0, where Op is a unary operator (this is an occurrence of an expression that can be
evaluated to a number at compile time), then Rep(P) = fop,LINE,Op,Rep(P 0)g.

� If P is a record pattern #NamefField 1=P 1, ..., Field k=P kg, then Rep(P) =
frecord,LINE,Name, [frecord field,LINE,Rep(Field 1),Rep(P 1)g, ...,
frecord field,LINE,Rep(Field k),Rep(P k)g]g.

Note that every pattern has the same source form as some expression, and is represented the same way
as the corresponding expression.

1.4.4 Expressions

A body B is a sequence of expressions E 1, ..., E k, and Rep(B) = [Rep(E 1), ..., Rep(E k)].

An expression E is one of the following alternatives:

� If P is an atomic literal L, then Rep(P) = Rep(L).

� If E is P = E 0, then Rep(E) = fmatch,LINE,Rep(P),Rep(E 0)g.

� If E is a variable V, then Rep(E) = fvar,LINE,Ag, where A is an atom with a printname consisting
of the same characters as V.

� If E is a tuple skeleton fE 1, ..., E kg, then Rep(E) = ftuple,LINE,[Rep(E 1), ...,
Rep(E k)]g.

� If E is [], then Rep(E) = fnil,LINEg.

� If E is a cons skeleton [E h | E t], then Rep(E) = fcons,LINE,Rep(E h),Rep(E t)g.

� If E is a binary constructor <<V 1:Size 1/TSL 1, ..., V k:Size k/TSL k>>, then Rep(E) =
fbin,LINE,[fbin element,LINE,Rep(V 1),Rep(Size 1),Rep(TSL 1)g, ...,
fbin element,LINE,Rep(V k),Rep(Size k),Rep(TSL k)g]g. For Rep(TSL), see below. An
omitted Size is represented by default. An omitted TSL (type specifier list) is represented by
default.

� If E is E 1 Op E 2, where Op is a binary operator, then Rep(E) =
fop,LINE,Op,Rep(E 1),Rep(E 2)g.

� If E is Op E 0, where Op is a unary operator, then Rep(E) = fop,LINE,Op,Rep(E 0)g.

� If E is #NamefField 1=E 1, ..., Field k=E kg, then Rep(E) = frecord,LINE,Name,
[frecord field,LINE,Rep(Field 1),Rep(E 1)g, ...,
frecord field,LINE,Rep(Field k),Rep(E k)g]g.

� If E is E 0#NamefField 1=E 1, ..., Field k=E kg, then Rep(E) =
frecord,LINE,Rep(E 0),Name, [frecord field,LINE,Rep(Field 1),Rep(E 1)g, ...,
frecord field,LINE,Rep(Field k),Rep(E k)g]g.

� If E is #Name.Field, then Rep(E) = frecord index,LINE,Name,Rep(Field)g.

� If E is E 0#Name.Field, then Rep(E) = frecord field,LINE,Rep(E 0),Name,Rep(Field)g.

� If E is catch E 0, then Rep(E) = f’catch’,LINE,Rep(E 0)g.

� If E is E 0(E 1, ..., E k), then Rep(E) = fcall,LINE,Rep(E 0),[Rep(E 1), ...,
Rep(E k)]g.

� If E is E m:E 0(E 1, ..., E k), then Rep(E) =
fcall,LINE,fremote,LINE,Rep(E m),Rep(E 0)g,[Rep(E 1), ..., Rep(E k)]g.

31Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

� If E is a list comprehension [E 0 || W 1, ..., W k], where each W i is a generator or a filter,
then Rep(E) = flc,LINE,Rep(E 0),[Rep(W 1), ..., Rep(W k)]g. For Rep(W), see below.

� If E is begin B end, where B is a body, then Rep(E) = fblock,LINE,Rep(B)g.

� If E is if Gs 1 -> B 1 ; ... ; Gs k -> B k end, where each Gs i and B i is a guard
sequence and a body, respectively, then Rep(E) =
f’if’,LINE,[fclause,LINE,[],Rep(Gs 1),Rep(B 1)g, ...,
fclause,LINE,[],Rep(Gs k),Rep(B k)g]g.

� If E is case E 0 of P 1 when Gs 1 -> B 1 ; ... ; P k when Gs k -> B k end, where E 0
is an expression and each P i, Gs i and B i is a pattern, a guard sequence and a body, respectively,
then Rep(E) = f’case’,LINE,Rep(E 0), [fclause,LINE,[Rep(P 1)],Rep(Gs 1),Rep(B 1)g,
..., fclause,LINE,[Rep(P k)],Rep(Gs k),Rep(B k)g]g.

� If E is try B t catch CP 1 when CGs 1 -> CB 1 ; ... ; CP k when CGs k -> CB k end,
where B t is a body, each CGs i, CB i and CP i is a guard sequence, a body and a pattern,
respectively, then Rep(E) = f’try’,LINE,Rep(B t),[],
[fclause,LINE,[Rep(CP 1)],Rep(CGs 1),Rep(CB 1)g, ...,
fclause,LINE,[Rep(CP k)],Rep(CGs k),Rep(CB k)g]g.

� If E is try B t of P 1 when Gs 1 -> B 1 ; ... ; P k when Gs k -> B k catch CP 1
when CGs 1 -> CB 1 ; ... ; CP k when CGs k -> CB k end, where B t is a body, each
Gs i, B i and P i is a guard sequence, a body and a pattern, respectively, and each CGs i, CB i and
CP i is a guard sequence, a body and a pattern, respectively, then Rep(E) =
f’try’,LINE,Rep(B t), [fclause,LINE,[Rep(P 1)],Rep(Gs 1),Rep(B 1)g, ...,
fclause,LINE,[Rep(P k)],Rep(Gs k),Rep(B k)g],
[fclause,LINE,[Rep(CP 1)],Rep(CGs 1),Rep(CB 1)g, ...,
fclause,LINE,[Rep(CP k)],Rep(CGs k),Rep(CB k)g]g.

� If E is receive P 1 when Gs 1 -> B 1 ; ... ; P k when Gs k -> B k end, where each P i,
Gs i and B i is a pattern, a guard sequence and a body, respectively, then Rep(E) =
f’receive’,LINE, [fclause,LINE,[Rep(P 1)],Rep(Gs 1),Rep(B 1)g, ...,
fclause,LINE,[Rep(P k)],Rep(Gs k),Rep(B k)g]g.

� If E is receive P 1 when Gs 1 -> B 1 ; ... ; P k when Gs k -> B k after E 0 -> B t
end, where each P i, Gs i and B i is a pattern, a guard sequence and a body, respectively, E 0 is an
expression and B t is a body, then Rep(E) = f’receive’,LINE,
[fclause,LINE,[Rep(P 1)],Rep(Gs 1),Rep(B 1)g, ...,
fclause,LINE,[Rep(P k)],Rep(Gs k),Rep(B k)g], Rep(E 0),Rep(B t)g.

� If E is fun Name/Arity, then Rep(E) = f’fun’,LINE,ffunction,Name,Aritygg.

� If E is fun Ps 1 when Gs 1 -> B 1 ; ... ; Ps k when Gs k -> B k end, where each Ps i,
Gs i and B i is a pattern sequence, a guard sequence and a body, respectively, then Rep(E) =
f’fun’,LINE,fclauses, [fclause,LINE,[Rep(Ps 1)],Rep(Gs 1),Rep(B 1)g, ...,
fclause,LINE,[Rep(Ps k)],Rep(Gs k),Rep(B k)g]gg.

� If E is query [E 0 || W 1, ..., W k] end, where each W i is a generator or a filter, then Rep(E)
= f’query’,LINE,flc,LINE,Rep(E 0),[Rep(W 1), ..., Rep(W k)]gg. For Rep(W), see below.

� If E is E 0.Field, a Mnesia record access inside a query, then Rep(E) =
frecord field,LINE,Rep(E 0),Rep(Field)g.

� If E is (E 0), then Rep(E) = Rep(E 0), i.e., parenthesized expressions cannot be distinguished
from their bodies.

Generators and filters

When W is a generator or a filter (in the body of a list comprehension), then:

32 Erlang Run-Time System Application (ERTS)

1.4: The Abstract Format

� If W is a generator P <- E, where P is a pattern and E is an expression, then Rep(W) =
fgenerate,LINE,Rep(P),Rep(E)g.

� If W is a filter E, which is an expression, then Rep(W) = Rep(E).

Binary element type specifiers

A type specifier list TSL for a binary element is a sequence of type specifiers TS 1 - ... - TS k.
Rep(TSL) = [Rep(TS 1), ..., Rep(TS k)].

When TS is a type specifier for a binary element, then:

� If TS is an atom A, Rep(TS) = A.

� If TS is a couple A:Value where A is an atom and Value is an integer, Rep(TS) = fA, Valueg.

1.4.5 Guards

A guard Gs is a nonempty sequence of guard tests G 1, ..., G k, and Rep(Gs) = [Rep(G 1), ...,
Rep(G k)].

A guard sequence Gss is a sequence of guards Gs 1; ...; Gs k, and Rep(Gss) = [Rep(Gs 1), ...,
Rep(Gs k)]. If the guard sequence is empty, Rep(Gss) = [].

A guard test G is either true, an application of a BIF to a sequence of guard expressions (syntactically
this includes guard record tests), or a binary operator applied to two guard expressions.

� If G is true, then Rep(G) = fatom,LINE,trueg.

� If G is an application A(E 1, ..., E k), where A is an atom and E 1, ..., E k are guard
expressions, then Rep(G) = fcall,LINE,fatom,LINE,Ag,[Rep(E 1), ..., Rep(E k)]g.

� If G is an operator expression E 1 Op E 2, where Op is a binary operator, and E 1, E 2 are guard
expressions, then Rep(G) = fop,LINE,Op,Rep(E 1),Rep(E 2)g.

All guard expressions are expressions and are represented in the same way as the corresponding
expressions.

1.4.6 The abstract format after preprocessing

When Erlang source code is compiled, the abstract code, after some preprocessing, is stored as the
abstract code chunk in the BEAM file, for debugging purposes. The version of the preprocessed
format in OTP R7 is called abstract v1, in R8 abstract v2. The preprocessing changes the
representation so it becomes slightly incompatible with the format described above. The differences are:

� BIF calls in guards are translated to the fremote, ...g form (which is not allowed in source
form).

� Explicit funs are translated to a tuple with an extra element (new in R7):
f’fun’,LINE,fclauses, Clausesg,Extrag. The form of this extra element may change from
one OTP release to the next.

� Implicit funs are translated to a tuple with an extra element (new in R8):
f’fun’,LINE,ffunction,Name,Arityg,Extrag.

33Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.5 tty - A command line interface

tty is a simple command line interface program where keystrokes are collected and interpreted.
Completed lines are sent to the shell for interpretation. There is a simple history mechanism, which
saves previous lines. These can be edited before sending them to the shell. tty is started when Erlang is
started with the command:
erl

tty operates in one of two modes:

� normal mode, in which lines of text can be edited and sent to the shell.

� shell break mode, which allows the user to kill the current shell, start multiple shells etc. Shell
break mode is started by typing Control G.

1.5.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the emacs line
editing commands are supported. The following is a complete list of the supported line editing
commands.
Note: The notation C-a means pressing the control key and the letter a simultaneously. M-f means
pressing the ESC key followed by the letter f.

Key Sequence Function

C-a Beginning of line

C-b Backward character

M-b Backward word

C-d Delete character

M-d Delete word

C-e End of line

C-f Forward character

M-f Forward word

C-g Enter shell break mode

C-k Kill line

C-l Redraw line

C-n Fetch next line from the history buffer

C-p Fetch previous line from the history buffer

C-t Transpose characters

C-y Insert previously killed text

Table 1.2: tty text editing

1.5.2 Shell Break Mode

tty enters shell break mode when you type Control G. In this mode you can:

� Kill or suspend the current shell

� Connect to a suspended shell

� Start a new shell

34 Erlang Run-Time System Application (ERTS)

1.6: How to implement a driver

1.6 How to implement a driver

1.6.1 Introduction

This chapter tells you how to build your own driver for erlang.

A driver in erlang is a library written in C, that is linked to the erlang emulator and called from erlang.
Drivers can be used when C is more suitable than erlang, to speed things up, or to provide access to OS
resources not directly accessible from erlang.

A driver can be dynamically loaded, as a shared library (DLL), or statically loaded, linked with the
emulator when it is compiled and linked. Only dynamically loaded drivers are described here, statically
linked drivers are beyond the scope of this chapter.

When a driver is loaded it is executed in the context of the emulator, shares the same memory and the
same thread. This means that all operations in the driver must be non-blocking, and that any crash in
the driver will bring the whole emulator down. In short: you have to be extremely careful!

1.6.2 Sample driver

...

1.6.3 Compiling and linking a driver

...

1.6.4 Calling a driver as a port in erlang

...

1.6.5 The driver structure

The header file erl driver.h contains all types, macros and prototypes needed for the driver.

The only exported function from the driver is driver init. This function returns the driver entry
structure that points to the other functions in the driver. The driver init function is declared with a
macro DRIVER INIT(drivername). (This is because different OS’s have different names for it.)

The driver structure contains the name of the driver and some 15 function pointers. These pointers are
called at different times by the emulator. Here is the declaration of driver entry:

typedef struct erl_drv_entry {
int (*init)(void); /* called at system start up for statically

linked drivers, and after loading for
dynamically loaded drivers */

ErlDrvData (*start)(ErlDrvPort port, char *command);
/* called when open_port/2 is invoked.

return value -1 means failure. */
void (*stop)(ErlDrvData drv_data);

/* called when port is closed, and when the
emulator is halted. */

void (*output)(ErlDrvData drv_data, char *buf, int len);
/* called when we have output from erlang to

35Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

the port */
void (*ready_input)(ErlDrvData drv_data, ErlDrvEvent event);

/* called when we have input from one of
the driver’s handles) */

void (*ready_output)(ErlDrvData drv_data, ErlDrvEvent event);
/* called when output is possible to one of

the driver’s handles */
char *driver_name; /* name supplied as command

in open_port XXX ? */
void (*finish)(void); /* called before unloading the driver -

DYNAMIC DRIVERS ONLY */
void *handle; /* not used -- here for backwards compatibility */
int (*control)(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf, int rlen);
/* "ioctl" for drivers - invoked by

port_command/3) */
void (*timeout)(ErlDrvData drv_data); /* Handling of timeout in driver */
void (*outputv)(ErlDrvData drv_data, ErlIOVec *ev);

/* called when we have output from erlang
to the port */

void (*ready_async)(ErlDrvData drv_data, ErlDrvThreadData thred_data);
} ErlDrvEntry;

1.6.6 Driver callbacks

The erlang emulator has callbacks that the driver uses.

1.6.7 Threads and drivers

...

1.6.8 Drivers on specific platforms

Solaris

...

Windows

...

VxWorks

...

1.6.9 Loading drivers

...

36 Erlang Run-Time System Application (ERTS)

1.6: How to implement a driver

1.6.10 Preloaded drivers

...

1.6.11 Handling the binary term format with ei

Introduction

ei is a small set of C routines to encode and decode the erlang binary term format. It is just some small
functions that encodes and decodes terms in the binary format. It is generally a lot faster than
erl interface and suitable to use in drivers and port programs.

The functions in ei is provided in library, with some header files. Each function is described in the
reference manual.

...

37Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

38 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

Short Summaries

� Command epmd [page 45] – Erlang Port Mapper Daemon

� Command erl [page 46] – The Erlang Emulator

� Command erlc [page 51] – Compiler

� Command erlsrv [page 54] – Run the Erlang emulator as a service on Windows
NT(R)

� Command run erl [page 59] – Redirect Erlang input and output streams on
Solaris(R)

� Command start [page 61] – OTP start script example for Unix

� Command start erl [page 62] – Start Erlang for embedded systems on Windows
NT(R)

� Command werl [page 64] – The Erlang Emulator

� C Library erl set memory block [page 65] – Custom memory allocation for Erlang
on VxWorks(R)

� C Library erts alloc [page 67] – An Erlang Run-Time System internal memory
allocator library.

� Erlang Module driver entry [page 73] – The driver-entry structure used by erlang
drivers.

� Erlang Module erl driver [page 76] – API functions for an erlang driver

epmd

The following functions are exported:

� epmd [-daemon] Start a name server as a daemon

� epmd -names Request the names of the registrered Erlang nodes on this host

� epmd -kill Kill the epmd process

� epmd -help List options

erl

The following functions are exported:

� erl <arguments> Start the Erlang system

39Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

erlc

The following functions are exported:

� erlc flags file1.ext file2.ext... Compile files

erlsrv

The following functions are exported:

� erlsrv fset | addg <service-name> [<service options>] Add or modify
an Erlang service

� erlsrv fstart | stop | disable | enableg <service-name>Manipulate
the current service status.

� erlsrv remove <service-name>Remove the service.

� erlsrv list [<service-name>] List all erlang services or all options for one
service.

� erlsrv help Display a brief help text

run erl

The following functions are exported:

� run erl [-daemon] pipe dir/ log dir "exec command
[command arguments]" Start the Erlang emulator without attached terminal

start

The following functions are exported:

� start [data file] This is an example script on how to startup the Erlang
system in embedded mode on Unix.

start erl

The following functions are exported:

� start erl [<erl options>] ++ [<start erl options>] Start the Erlang
emulator with the correct release data

werl

No functions are exported.

40 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

erl set memory block

The following functions are exported:

� int erl set memory block(size t size, void *ptr, int
warn mixed malloc, int realloc always moves, int use reclaim, ...)
Specify parameters for Erlang internal memory allocation.

� int erl memory show(...) A utility similar to VxWorks memShow, but for the
Erlang memory area.

� int erl mem info get(MEM PART STATS *stats) A utility similar to VxWorks
memPartInfoGet, but for the Erlang memory area.

erts alloc

No functions are exported.

driver entry

The following functions are exported:

� int init(void)
[page 73] Called after loading of driver

� int start(ErlDrvPort port, char* command)
[page 73] Called when port is opened

� void stop(ErlDrvData drv data)
[page 73] Called when port is closed

� void output(ErlDrvData drv data, char *buf, int len)
[page 74] Called when port is written to

� void ready input(ErlDrvData drv data, ErlDrvEvent event)
[page 74] Called when the driver event for input or output is signaled

� void ready output(ErlDrvData drv data, ErlDrvEvent event)
[page 74] Called when the driver event for input or output is signaled

� char *driver name
[page 74] The name of the driver

� void finish(void)
[page 74] Called just before the dynamic driver is unloaded

� void *handle
[page 74] Reserved, set to NULL

� int control(ErlDrvData drv data, unsigned int command, char *buf,
int len, char **rbuf, int rlen)
[page 74] Invoked with port control

� void timeout(ErlDrvData drv data)
[page 75] Called when timer reaches 0

� void outputv(ErlDrvData drv data, ErlIOVec *ev)
[page 75] Called when the port is written to

� void ready async(ErlDrvData drv data, ErlDrvThreadData thread data)
[page 75] Called when an asynchronous call has returned

� int call(ErlDrvData drv data, unsigned int command, char *buf, int
len, char **rbuf, int rlen, unsigned int *flags)
[page 75] Synchronous call with term conversion

41Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

erl driver

The following functions are exported:

� ErlDrvBinary
[page 77] A driver biary.

� ErlDrvData
[page 77] Driver specific data

� SysIOVec
[page 77] System I/O vector

� ErlIOVec
[page 77] Erlang I/O vector

� int driver output(ErlDrvPort port, char *buf, int len)
[page 78] Send data from driver to port owner

� int driver output2(ErlDrvPort port, char *hbuf, int hlen, char *buf,
int len)
[page 78] Send data and binary data to port owner

� int driver output binary(ErlDrvPort port, char *hbuf, int hlen,
ErlDrvBinary* bin, int offset, int len)
[page 78] Send data from a driver binary to port owner

� int driver outputv(ErlDrvPort port, char* hbuf, int hlen, ErlIOVec
*ev, int skip)
[page 78] Send vectorized data to port owner

� int driver vec to buf(ErlIOVec *ev, char *buf, int len)
[page 79] Collect data segments into a buffer

� int driver set timer(ErlDrvPort port, unsigned long time)
[page 79] Set a timer to call the driver

� int driver cancel timer(ErlDrvPort port)
[page 79] Cancel a previously set timer

� int driver read timer(ErlDrvPort port, unsigned long *time left)
[page 79] Read the time left before timeout

� int driver select(ErlDrvPort port, ErlDrvEvent event, int mode, int
on)
[page 79] Provide an event for having the emulator call the driver

� void *driver alloc(size t size)
[page 80] Allocate memory

� void *driver realloc(void *ptr, size t size)
[page 80] Resize an allocated memory block

� void driver free(void *ptr)
[page 80] Free an allocated memory block

� ErlDrvBinary* driver alloc binary(int size)
[page 80] Allocate a driver binary

� ErlDrvBinary* driver realloc binary(ErlDrvBinary *bin, int size)
[page 80] Resize a driver binary

� void driver free binary(ErlDrvBinary *bin)
[page 81] Free a driver binary

� int driver enq(ErlDrvPort port, char* buf, int len)
[page 81] Enqueue data in the driver queue

42 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

� int driver pushq(ErlDrvPort port, char* buf, int len)
[page 81] Push data at the head of the driver queue

� int driver deq(ErlDrvPort port, int size)
[page 81] Dequeue data from the head of the driver queue

� int driver sizeq(ErlDrvPort port)
[page 81] Return the size of the driver queue

� int driver enq bin(ErlDrvPort port, ErlDrvBinary *bin, int offset,
int len)
[page 81] Enqueue binary in the driver queue

� int driver pushq bin(ErlDrvPort port, ErlDrvBinary *bin, int offset,
int len)
[page 81] Push binary at the head of the driver queue

� SysIOVec* driver peekq(ErlDrvPort port, int *vlen)
[page 81] Get the driver queue as a vector

� int driver enqv(ErlDrvPort port, ErlIOVec *ev, int skip)
[page 82] Enqueue vector in the driver queue

� int driver pushqv(ErlDrvPort port, ErlIOVec *ev, int skip)
[page 82] Push vector at the head of the driver queue

� void add driver entry(ErlDrvEntry *de)
[page 82] Add a driver entry

� int remove driver entry(ErlDrvEntry *de)
[page 82] Remove a driver entry

� char* erl errno id(int error)
[page 82] Get erlang error atom name from error number

� void set busy port(ErlDrvPort port, int on)
[page 82] Signal or unsignal port as busy

� void set port control flags(ErlDrvPort port, int flags)
[page 82] Set flags on how to handle control entry function

� int driver failure eof(ErlDrvPort port)
[page 82] Fail with EOF

� int driver failure atom(ErlDrvPort port, char *string)
[page 83] Fail with error

� int driver failure posix(ErlDrvPort port, int error)
[page 83] Fail with error

� int driver failure(ErlDrvPort port, int error)
[page 83] Fail with error

� ErlDriverTerm driver connected(ErlDrvPort port)
[page 83] Return the port owner process

� ErlDriverTerm driver caller(ErlDrvPort port)
[page 83] Return the process making the driver call

� int driver output term(ErlDrvPort port, ErlDriverTerm* term, int n)
[page 83] Send term data from driver to port owner

� ErlDriverTerm driver mk atom(char* string)
[page 85] Make an atom from a name

� ErlDriverTerm driver mk port(ErlDrvPort port)
[page 85] Make a erlang term port from a port

43Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

� int driver send term(ErlDrvPort port, ErlDriverTerm receiver,
ErlDriverTerm* term, int n)
[page 85] Send term data to other process than port owner process

� long driver async (ErlDrvPort port, unsigned int* key, void
(*async invoke)(void*), void* async data, void (*async free)(void*))
[page 85] Perform an asynchronous call within a driver

� int driver async cancel(long id)
[page 85] Cancel an asynchronous call

44 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual epmd

epmd
Command

This daemon acts as a name server on all hosts involved in distributed Erlang
computations. When an Erlang node starts, the node has a name and it obtains an
address from the host OS kernel. The name and the address are sent to the epmd
daemon running on the local host. In a TCP/IP environment, the address consists of the
IP address and a port number. The name of the node is an atom on the form of
Name@Node. The job of the epmd daemon is to keep track of which node name listens on
which address. Hence, epmd map symbolic node names to machine addresses.

The daemon is started automatically by the Erlang start-up script.

The program epmd can also be used for a variety of other purposes, for example
checking the DNS (Domain Name System) configuration of a host.

Exports

epmd [-daemon]

Starts a name server as a daemon. If it has no argument, the epmd runs as a normal
program with the controlling terminal of the shell in which it is started. Normally, it
should run as a daemon.

epmd -names

Requests the names of the local Erlang nodes epmd has registered.

epmd -kill

Kills the epmd process.

epmd -help

Write short info about the usage including some debugging options not listed here.

Logging

On some operating systems syslog will be used for error reporting when epmd runs as an
daemon. To enable the error logging you have to edit /etc/syslog.conf file and add an
entry

!epmd
*&ld;TABs>/var/log/epmd.log

where <TABs> are real tab characters. Spaces will silently be ignored.

45Erlang Run-Time System Application (ERTS)

erl ERTS Reference Manual

erl
Command

The erl program starts the Erlang runtime system. The exact details (e.g. whether erl
is a script or a program and which other programs it calls) are system-dependent.

Windows 95/98/2000/NT users will probably want to use the werl program instead,
which run in its own window with scrollbars and supports command-line editing. The
erl program on Windows provides no line editing in its shell, and on Windows 95 there
is no way to scroll back to text which has scrolled off the screen. The erl program must
be used, however, in pipelines or if you want to redirect standard input or output.

Exports

erl <arguments>

Starts the Erlang system.

Any argument starting with a plus sign (+) is always interpreted as a system flag
(described below), regardless of where it occurs on the command line (except after the
flag -extra).

Arguments starting with a hyphen (-) are the start of a flag. A flag includes all following
arguments up to the next argument starting with a hyphen.

Example:

erl -sname arne -myflag 1 -s mod func arg

Here -sname arne is a flag and so are -myflag 1 and -s mod func arg. Note that
these flags are treated differently. -sname arne is interpreted by the OTP system, but it
still included in the list of flags returned by init:get arguments/0. -s mod func arg
is also treated specially and it is not included in the return value for
init:get arguments/0. Finally, -myflag 1 is not interpreted by the OTP system in
any way, but it is included in init:get arguments/0.

Plain arguments are not interpreted in any way. They can be retrieved using
init:get plain arguments/0. Plain arguments can occur in the following places:
Before the first flag argument on the command line, or after a -- argument.
Additionally, the flag -extra causes everything that follows to become plain arguments.

46 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl

Flags

The following flags are supported:

– Any arguments following -- will not be interpreted in any way. They can be retrieved
by init:get plain arguments/0. The exception is arguments starting with a +,
which will be interpreted as system flags (see below).

-AppName Key Value Overrides the Key configuration parameter of the AppName
application. See application(3). This type of flag can also be retrieved using the
init module.

-boot File Specifies the name of the boot script, File.boot, which is used to start the
system. See init(3). Unless File contains an absolute path, the system searches for
File.boot in the current and <ERL INSTALL DIR>/bin directories.
If this flag is omitted, the <ERL INSTALL DIR>/bin/start.boot boot script is
used.

-boot var Var Directory [Var Directory] If the boot script used contains another path
variable than $ROOT, this variable must have a value assigned in order to start the
system. A boot variable is used if user applications have been installed in another
location than underneath the <ERL INSTALL DIR>/lib directory. $Var is
expanded to Directory in the boot script.

-compile mod1 mod2 Makes the Erlang system compile mod1.erl mod2.erl
and then terminate (with non-zero exit code if the compilation of some file didn’t
succeed). Implies -noinput. Not recommended - use erlc(1) instead.

-config Config Reads the Config.config configuration file in order to configure the
system. See application(3).

-connect all false If this flag is present, global will not maintain a fully connected
network of distributed erlang nodes, and then global name registration cannot be
used. See global(3).

-cookie Obsolete flag without any effect and common misspelling for -setcookie. Use
-setcookie Cookie option if want to override the default cookie.

-detached Starts the Erlang system detached from the system console. Useful for
running daemons and backgrounds processes.

-emu args Useful for debugging. Prints out the actual arguments sent to the emulator.
-env Variable Value Sets the HOST OS environment variable Variable to the value

Value of the Erlang system. For example:

% erl -env DISPLAY gin:0

In this example, an Erlang system is started with the DISPLAY environment
variable set to the value gin:0.

-extra Any arguments following -extra will not be interpreted in any way. They can be
retrieved by init:get plain arguments/0.

-heart Starts heart beat monitoring of the Erlang system. See heart(3).
-hidden Starts the Erlang system as a hidden node if the system is run as a distributed

node. Hidden nodes always establish hidden connections to all other nodes except
for nodes in the same global group. Hidden connections aren’t published on
neither of the connected nodes, i.e. neither of the connected nodes are part of the
result from nodes/0 on the other node. See also hidden global groups,
global group(3).

47Erlang Run-Time System Application (ERTS)

erl ERTS Reference Manual

-hosts Hosts Specifies the IP addresses for the hosts on which an Erlang boot servers are
running. This flag is mandatory if the -loader inet flag is present. On each host,
there must be one Erlang node running, on which the boot server must be
started.
The IP addresses must be given in the standard form (four decimal numbers
separated by periods, for example “150.236.20.74”). Hosts names are not
acceptable, but an broadcast address (preferably limited to the local network) is.

-id Id Specifies the identity of the Erlang system. If the system runs as a distributed
node, Id must be identical to the name supplied together with the -sname or
-name distribution flags.

-instr Selects an instrumented Erlang system (virtual machine) to run, instead of the
ordinary one. When running an instrumented system, some resource usage data
can be obtained and analysed using the module instrument. Functionally, it
behaves exactly like an ordinary Erlang system.

-loader Loader Specifies the name of the loader used to load Erlang modules into the
system. See erl prim loader(3). Loader can be efile (use the local file system), or
inet (load using the boot server on another Erlang node). If Loader is something
else, the user supplied Loader port program is started.
If the -loader flag is omitted efile is assumed.

-make Makes the Erlang system invoke make:all() in the current work directory and
then terminate. See make(3). Implies -noinput.

-man Module Displays the manual page for the Erlang module Module. Only supported
on Unix.

-mode Mode The mode flag indicates if the system will load code automatically at
runtime, or if all code is loaded during system initialization. Mode can be either
interactive to allow automatic code loading, or embedded to load all code during
start-up. See code(3).

-name Name Makes the node a distributed node. This flag invokes all network servers
necessary for a node to become distributed. See net kernel(3).
The name of the node will be Name@Host, where Host is the fully qualified host
name of the current host. This flag also ensures that epmd runs on the current host
before Erlang is started. See epmd(1).

-noinput Ensures that the Erlang system never tries to read any input. Implies
-noshell.

-noshell Starts an Erlang system with no shell at all. This flag makes it possible to have
the Erlang system as a component in a series of UNIX pipes.

-nostick Disables the sticky directory facility of the code server. See code(3).

-oldshell Invokes the old Erlang shell from Erlang release 3.3. The old shell can still be
used.

-pa Directories Adds the directories Directories to the head of the search path of the
code server, as if code:add pathsa/1 was called. See code(3).

-pz Directories Adds the directories Directories to the end of the search path of the
code server, as if code:add pathsa/1 was called. See code(3).

-run Mod [Fun [Args]] Passes the -run flag to the init:boot() routine. See init(3).

-s Mod [Fun [Args]] Passes the -s flag to the init:boot() routine. See init(3).

-setcookie Cookie Sets the magic cookie of the current node to Cookie. As
erlang:set cookie(node(),Cookie) is used, all other nodes will also be assumed
to have their cookies set to Cookie. In this way, several nodes can share one magic
cookie. Erlang magic cookies are explained in auth(3).

48 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl

-sname Name This is the same as the -name flag, with the exception that the host name
portion of the node name will not be fully qualified. The following command is
used do start Erlang at the host with the name gin.eua.ericsson.se

% erl -sname klacke
Eshell V4.7 (abort with ^G)
(klacke@gin)1>

Only the host name portion of the node name will be relevant. This is sometimes
the only way to run distributed Erlang if the DNS (Domain Name System) is not
running. There can be no communication between systems running with the
-sname flag and those running with the -name flag, as node names must be unique
in distributed Erlang systems.

-version Makes the system print out its version number.

All these flags are processed during the start-up of the Erlang kernel servers and before
any user processes are started. All flags are passed to init:boot(Args). See init(3). All
additional flags passed to the script will be passed to init:boot/2 as well, and they can
be accessed using the init module.

System Flags

The erl script invokes the code for the Erlang virtual machine. This program supports
the following flags:

+A size Sets the pool size for device driver threads. Default is 0.

+B [i] Without the i option, this flag de-activates the break handler for ^C and ^\ .
With the i option, break signals will be ignored by the emulator.

+h size Sets the default heap size of processes to the size size.

+l Displays info while loading code.

+P Number Sets the maximum number of concurrent processes for this system. By
default this value is 32768. The Number must be in the range [16, 262144].

+M<subflag> <value> Memory allocator specific flags, see erts alloc(3) [page 67] for
further information.

+v Verbose

+V Prints the version of Erlang at start-up.

Note:
The +m, +t, and +T flags have changed to, respectively, +MYm [page 70], +MYtt
[page 70], and +MYtp [page 70]. The +d, and +S* flags have been removed. See
erts alloc(3) [page 67] for further information.

Example:

% erl -name foo +B +l

49Erlang Run-Time System Application (ERTS)

erl ERTS Reference Manual

In this example, a distributed node is started with the break handler turned off and a lot
of info is displayed while the code is loading.

See Also

init(3), erl prim loader(3), erl boot server(3), code(3), application(3), heart(3),
net kernel(3), auth(3), make(3), epmd(1), erts alloc(3) [page 67]

50 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlc

erlc
Command

The erlc program provides a common way to run all compilers in the Erlang system.
Depending on the extension of each input file, erlc will invoke the appropriate
compiler. Regardless of which compiler is used, the same flags are used to provide
parameters such as include paths and output directory.

Exports

erlc flags file1.ext file2.ext...

Erlc compiles one or more files. The files must include the extension, for example .erl
for Erlang source code, or .yrl for Yecc source code. Erlc uses the extension to invoke
the correct compiler.

Generally Useful Flags

The following flags are supported:

-I directory Instructs the compiler to search for include files in the specified directory.
When encountering an -include or -include dir directive, the compiler searches
for header files in the following directories:

1. ".", the current working directory of the file server;
2. the base name of the compiled file;
3. the directories specified using the -I option. The directory specified last is

searched first.

-o directory The directory where the compiler should place the output files. If not
specified, output files will be placed in the current working directory.

-Dname Defines a macro.

-Dname=value Defines a macro with the given value. The value can be any Erlang
term. Depending on the platform, the value may need to be quoted if the shell
itself interprets certain characters. On Unix, terms which contain tuples and list
must be quoted. Terms which contain spaces must be quoted on all platforms.

-W Enables warning messages. Without this switch, only errors will be reported.

-v Enables verbose output.

-b output-type Specifies the type of output file. Generally, output-type is the same as the
file extension of the output file but without the period. This option will be ignored
by compilers that have a a single output format.

51Erlang Run-Time System Application (ERTS)

erlc ERTS Reference Manual

– Signals that no more options will follow. The rest of the arguments will be treated as
file names, even if they start with hyphens.

+term A flag starting with a plus (’+’) rather than a hyphen will be converted to an
Erlang term and passed unchanged to the compiler. For instance, the export all
option for the Erlang compiler can be specified as follows:

erlc +export all file.erl

Depending on the platform, the value may need to be quoted if the shell itself
interprets certain characters. On Unix, terms which contain tuples and list must be
quoted. Terms which contain spaces must be quoted on all platforms.

Special Flags

The flags in this section are useful in special situations such as re-building the OTP
system.

-pa directory Appends directory to the front of the code path in the invoked Erlang
emulator. This can be used to invoke another compiler than the default one.

-pz directory Appends directory to the code path in the invoked Erlang emulator.

Supported Compilers

.erl Erlang source code. It generates a .beam file.
The options -P, -E, and -S are equivalent to +’P’, +’E’, and +’S’, except that it is
not necessary to include the single quotes to protect them from the shell.
Supported options: -I, -o, -D, -v, -W, -b.

.yrl Yecc source code. It generates an .erl file.
Use the -I option with the name of a file to use that file as a customized prologue
file (the fourth argument of the yecc:yecc/4 function).
Supported options: -o, -v, -I (see above).

.mib MIB for SNMP. It generates a .bin file.
Supported options: -I, -o, -W.

.bin A compiled MIB for SNMP. It generates a .hrl file.
Supported options: -o, -v.

.rel Script file. It generates a boot file.
Use the -I to name directories to be searched for application files (equivalent to the
path in the option list for systools:make script/2).
Supported options: -o.

.h A interface definition for IG (Interface Generator). It generates C and Erlang files.
Supported options: -o.

52 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlc

Environment Variables

ERLC EMULATOR The command for starting the emulator. Default is erl in the same
directory as the erlc program itself, or if it doesn’t exist, erl in any of the directories
given in the PATH environment variable.

See Also

erl(1), erl compile(3), compile(3), yecc(3), snmp(3)

53Erlang Run-Time System Application (ERTS)

erlsrv ERTS Reference Manual

erlsrv
Command

This utility is specific to Windows NT(R) It allows Erlang emulators to run as services
on the NT system, allowing embedded systems to start without any user needing to log
in. The emulator started in this way can be manipulated through the Windows NT(R)
services applet in a manner similar to other services.

As well as being the actual service, erlsrv also provides a command line interface for
registering, changing, starting and stopping services.

To manipulate services, the logged in user should have Administrator privileges on the
machine. The Erlang machine itself is (default) run as the local administrator. This can
be changed with the Services applet in Windows NT(R).

The processes created by the service can, as opposed to normal services, be “killed” with
the task manager. Killing a emulator that is started by a service will trigger the “OnFail”
action specified for that service, which may be a reboot.

The following parameters may be specified for each Erlang service:

� StopAction: This tells erlsrv how to stop the Erlang emulator. Default is to kill
it (Win32 TerminateProcess), but this action can specify any Erlang shell
command that will be executed in the emulator to make it stop. The emulator is
expected to stop within 30 seconds after the command is issued in the shell. If the
emulator is not stopped, it will report a running state to the service manager.

� OnFail: This can be either of reboot, restart, restart always or ignore (the
default). In case of reboot, the NT system is rebooted whenever the emulator
stops (a more simple form of watchdog), this could be useful for less critical
systems, otherwise use the heart functionality to accomplish this. The restart value
makes the Erlang emulator be restarted (with whatever parameters are registered
for the service at the occasion) when it stops. If the emulator stops again within 10
seconds, it is not restarted to avoid an infinite loop which could completely hang
the NT system. restart always is similar to restart, but does not try to detect
cyclic restarts, it is expected that some other mechanism is present to avoid the
problem. The default (ignore) just reports the service as stopped to the service
manager whenever it fails, it has to be manually restarted.
On a system where release handling is used, this should always be set to ignore.
Use heart to restart the service on failure instead.

� Machine: The location of the Erlang emulator. The default is the erl.exe located
in the same directory as erlsrv.exe. Do not specify werl.exe as this emulator, it
will not work.
If the system uses release handling, this should be set to a program similar to
start erl.exe.

54 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlsrv

� Env: Specifies an additional environment for the emulator. The environment
variables specified here are added to the system wide environment block that is
normally present when a service starts up. Variables present in both the system
wide environment and in the service environment specification will be set to the
value specified in the service.

� WorkDir: The working directory for the Erlang emulator, has to be on a local drive
(there are no network drives mounted when a service starts). Default working
directory for services is %SystemDrive%%SystemPath%. Debug log files will be
placed in this directory.

� Priority: The process priority of the emulator, this can be one of realtime,
high, low or default (the default). Real-time priority is not recommended, the
machine will possibly be inaccessible to interactive users. High priority could be
used if two Erlang nodes should reside on one dedicated system and one should
have precedence over the other. Low process priority may be used if interactive
performance should not be affected by the emulator process.

� SName or Name: Specifies the short or long node-name of the Erlang emulator.
The Erlang services are always distributed, default is to use the service name as
(short) node-name.

� DebugType: Can be one of none (default), new, reuse or console. Specifies that
output from the Erlang shell should be sent to a “debug log”. The log file is named
<servicename>.debug or <servicename>.debug.<N>, where <N> is an integer
between 1 and 99. The logfile is placed in the working directory of the service (as
specified in WorkDir). The reuse option always reuses the same log file
(<servicename>.debug) and the new option uses a separate log file for every
invocation of the service (<servicename>.debug.<N>). The console option
opens an interactive Windows NT(R) console window for the Erlang shell of the
service. The console option automatically disables the StopAction and a service
started with an interactive console window will not survive logouts. If no
DebugType is specified (none), the output of the Erlang shell is discarded.

� Args: Additional arguments passed to the emulator startup program erl.exe (or
start erl.exe). Arguments that cannot be specified here are -noinput
(StopActions would not work), -name and -sname (they are specified in any way.
The most common use is for specifying cookies and flags to be passed to init:boot()
(-s).

The naming of the service in a system that uses release handling has to follow the
convention NodeName Release, where NodeName is the first part of the Erlang
nodename (up to, but not including the “@”) and Release is the current release of the
application.

Exports

erlsrv fset | addg <service-name> [<service options>]

The set and add commands adds or modifies a Erlang service respectively. The simplest
form of an add command would be completely without options in which case all
default values (described above) apply. The service name is mandatory.

Every option can be given without parameters, in which case the default value is
applied. Values to the options are supplied only when the default should not be used

55Erlang Run-Time System Application (ERTS)

erlsrv ERTS Reference Manual

(i.e. erlsrv set myservice -prio -arg sets the default priority and removes all
arguments).

The following service options are currently available:

-st[opaction [<erlang shell command>]] Defines the StopAction, the command given
to the erlang shell when the service is stopped. Default is none.

-on[fail [freboot | restart | restart alwaysg]] Specifies the action to take when the
erlang emulator stops unexpectedly. Default is to ignore.

-m[achine [<erl-command>]] The complete path to the erlang emulator, never use the
werl program for this. Default is the erl.exe in the same directory as erlsrv.exe.
When release handling is used, this should be set to a program similar to
start erl.exe.

-e[nv [<variable>[=<value>]] ...] Edits the environment block for the service. Every
environment variable specified will add to the system environment block. If a
variable specified here has the same name as a system wide environment variable,
the specified value overrides the system wide. Environment variables are added to
this list by specifying <variable>=<value> and deleted from the list by specifying
<variable> alone. The environment block is automatically sorted. Any number of
-env options can be specified in one command. Default is to use the system
environment block unmodified (except for two additions, see below [page 57]).

-w[orkdir [<directory>]] The initial working directory of the erlang emulator. Default
is the system directory.

-p[riority [flow|high|realtimeg]] The priority of the erlang emulator. The default is
the Windows NT(R) default priority.

f-sn[ame | -n[ame]g [<node-name>]] The node-name of the erlang machine,
distribution is mandatory. Default is -sname <service name>.

-d[ebugtype [fnew|reuse|consoleg]] Specifies where shell output should be sent,
default is that shell output is discarded.

-ar[gs [<limited erl arguments>]] Additional arguments to the erlang emulator, avoid
-noinput, -noshell and -sname/-name. Default is no additional arguments.
Remember that the services cookie file is not necessarily the same as the
interactive users. The service runs as the local administrator. All arguments should
be given together in one string, use double quotes (“) to give an argument string
containing spaces and use quoted quotes (\”) to give an quote within the argument
string if necessary.

erlsrv fstart | stop | disable | enableg <service-name>

These commands are only added for convenience, the normal way to manipulate the
state of a service is through the control panels services applet. The start and stop
commands communicates with the service manager for stopping and starting a service.
The commands wait until the service is actually stopped or started. When disabling a
service, it is not stopped, the disabled state will not take effect until the service actually
is stopped. Enabling a service sets it in automatic mode, that is started at boot. This
command cannot set the service to manual.

erlsrv remove <service-name>

This command removes the service completely with all its registered options. It will be
stopped before it is removed.

56 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlsrv

erlsrv list [<service-name>]

If no service name is supplied, a brief listing of all erlang services is presented. If a
service-name is supplied, all options for that service are presented.

erlsrv help

ENVIRONMENT

The environment of an erlang machine started as a service will contain two special
variables, ERLSRV SERVICE NAME, which is the name of the service that started the
machine and ERLSRV EXECUTABLE which is the full path to the erlsrv.exe that can be
used to manipulate the service. This will come in handy when defining a heart
command for your service. A command file for restarting a service will simply look like
this:

@echo off
%ERLSRV_EXECUTABLE% stop %ERLSRV_SERVICE_NAME%
%ERLSRV_EXECUTABLE% start %ERLSRV_SERVICE_NAME%

This command file is then set as heart command.

The environment variables can also be used to detect that we are running as a service
and make port programs react correctly to the control events generated on logout (see
below).

PORT PROGRAMS

When a program runs in the service context, it has to handle the control events that is
sent to every program in the system when the interactive user logs off. This is done in
different ways for programs running in the console subsystem and programs running as
window applications. An application which runs in the console subsystem (normal for
port programs) uses the win32 function SetConsoleCtrlHandler to a control handler
that returns TRUE in answer to the CTRL LOGOFF EVENT. Other applications just
forward WM ENDSESSION and WM QUERYENDSESSION to the default window procedure.
Here is a brief example in C of how to set the console control handler:

#include <windows.h>
/*
** A Console control handler that ignores the log off events,
** and lets the default handler take care of other events.
*/
BOOL WINAPI service_aware_handler(DWORD ctrl){

if(ctrl == CTRL_LOGOFF_EVENT)
return TRUE;

return FALSE;
}

void initialize_handler(void){
char buffer[2];
/*
* We assume we are running as a service if this
* environment variable is defined

57Erlang Run-Time System Application (ERTS)

erlsrv ERTS Reference Manual

*/
if(GetEnvironmentVariable("ERLSRV_SERVICE_NAME",buffer,

(DWORD) 2)){
/*
** Actually set the control handler
*/
SetConsoleCtrlHandler(&service_aware_handler, TRUE);

}
}

NOTES

Even though the options are described in a Unix-like format, the case of the options or
commands is not relevant, and the “/” character for options can be used as well as the “-”
character.

Note that the program resides in the emulators bin-directory, not in the bin-directory
directly under the erlang root. The reasons for this are the subtle problem of upgrading
the emulator on a running system, where a new version of the runtime system should
not need to overwrite existing (and probably used) executables.

To easily manipulate the erlang services, put the
<erlang root>\erts-<version>\bin directory in the path instead of
<erlang root>\bin. The erlsrv program can be found from inside erlang by using the
os:find executable/1 erlang function.

For release handling to work, use start erl as the Erlang machine. It is also worth
mentioning again that the name of the service is significant (see above [page 55]).

SEE ALSO

start erl(1), release handler(3)

58 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual run erl

run erl
Command

This describes the run erl program specific to Solaris/Linux. This program redirect the
standard input and standard output streams so that all output can be logged. It also let
the program to erl connect to the Erlang console making it possible to monitor and
debug an embedded system remotely.

You can read more about the use in the Embedded System User’s Guide.

Exports

run erl [-daemon] pipe dir/ log dir "exec command [command arguments]"

The run erl program arguments are:

-daemon This option is highly recommended. It makes run erl run in the background
completely detached from any controlling terminal and the command returns to
the caller immediately. Without this option, run erl must be started using several
tricks in the shell to detach it completely from the terminal in use when starting it.
The option must be the first argument to run erl on the command line.

pipe dir This is where to put the named pipe, usually /tmp/. It shall be suffixed by a /
(slash), i.e. not /tmp/epipies, but /tmp/epipes/.

log dir This is where the log files are written. There will be one log file, run erl.log
that log progress and warnings from the run erl program itself and there will be
up to five log files at maximum 100KB each (both number of logs and sizes can be
changed by environment variables, see below) with the content of the standard
streams from and to the command. When the logs are full run erl will delete and
reuse the oldest log file.

“exec command [command arguments ”] In the third argument command is the to
execute where everything written to stdin and stdout is logged to log dir.

Notes concerning the log files

While running, run erl (as stated earlier) sends all output, uninterpreted, to a log file.
The file is called erlang.log.N, where N is a number. When the log is “full”, default
after 100KB, run erl starts to log in file erlang.log.(N+1), until N reaches a certain
number (default 5), where after N starts at 1 again and the oldest files start getting
overwritten. If no output comes from the erlang shell, but the erlang machine still
seems to be alive, an “ALIVE” message is written to the log, it is a timestamp and is
written, by default, after 15 minutes of inactivity. Also, if output from erlang is logged
but it’s been more than 5 minutes (default) since last time we got anything from erlang,
a timestamp is written in the log. The “ALIVE” messages look like this:

59Erlang Run-Time System Application (ERTS)

run erl ERTS Reference Manual

===== ALIVE <date-time-string>

while the other timestamps look like this:

===== <date-time-string>

The date-time-string is the date and time the message is written, default in local
time (can be changed to GMT if one wants to) and is formatted with the ANSI-C
function strftime using the format string %a %b %e %T %Z %Y, which produces
messages on the line of ===== ALIVE Thu May 15 10:13:36 MEST 2003, this can be
changed, see below.

Environment variables

The following environment variables are recognized by run erl and change the logging
behavior. Also see the notes above to get more info on how the log behaves.

RUN ERL LOG ALIVE MINUTES How long to wait for output (in minutes) before
writing an “ALIVE” message to the log. Default is 15, can never be less than 1.

RUN ERL LOG ACTIVITY MINUTES How long erlang need to be inactive before
output will be preceded with a timestamp. Default is
RUN ERL LOG ALIVE MINUTES div 3, but never less than 1.

RUN ERL LOG ALIVE FORMAT Specifies another format string to be used in the
strftime C library call. i.e specifying this to "%e-%b-%Y, %T %Z" will give log
messages with timestamps looking like 15-May-2003, 10:23:04 MET etc. See the
documentation for the C library function strftime for more information. Default is
"%a %b %e %T %Z %Y".

RUN ERL LOG ALIVE IN UTC If set to anything else than “0”, it will make all times
displayed by run erl to be in UTC (GMT,CET,MET, without DST), rather than in
local time. This does not affect data coming from erlang, only the logs output
directly by run erl. The application sasl can be modified accordingly by setting
the erlang application variable utc log to true.

RUN ERL LOG GENERATIONS Controls the number of log files written before
older files are being reused. Default is 5, minimum is 2, maximum is 1000.

RUN ERL LOG MAXSIZE The size (in bytes) of a log file before switching to a new
log file. Default is 100000, minimum is 1000 and maximum is approximately
2^30.

SEE ALSO

start(1), start erl(1)

60 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual start

start
Command

This describes the start script that is an example script on how to startup the Erlang
system in embedded mode on Unix.

You can read more about the use in the Embedded System User’s Guide.

Exports

start [data file]

In the example there is one argument

data file Optional, specifies what start erl.data file to use.

There is also an environment variable RELDIR that can be set prior to calling this
example that set the directory where to find the release files.

SEE ALSO

run erl(1), start erl(1)

61Erlang Run-Time System Application (ERTS)

start erl ERTS Reference Manual

start erl
Command

This describes the start erl program specific to Windows NT. Although there exists
programs with the same name on other platforms, their functionality is not the same.

The start erl program is distributed both in compiled form (under <Erlang
root>\erts-<version>\bin) and in source form (under <Erlang
root>\erts-<version>\src). The purpose of the source code is to make it possible to
easily customize the program for local needs, such as cyclic restart detection etc. There
is also a “make”-file, written for the nmake program distributed with Microsoft(R) Visual
C++(R). The program can however be compiled with any Win32 C compiler (possibly
with slight modifications).

The purpose of the program is to aid release handling on Windows NT(R). The program
should be called by the erlsrv program, read up the release data file start erl.data and
start Erlang. Certain options to start erl are added and removed by the release handler
during upgrade with emulator restart (more specifically the -data option).

Exports

start erl [<erl options>] ++ [<start erl options>]

The start erl program in its original form recognizes the following options:

++ Mandatory, delimits start erl options from normal Erlang options. Everything on the
command line before the ++ is interpreted as options to be sent to the erl program.
Everything after ++ is interpreted as options to start erl itself.

-reldir <release root> Mandatory if the environment variable RELDIR is not specified.
Tells start erl where the root of the release tree is placed in the file-system (like
<Erlang root>\releases). The start erl.data file is expected to be placed in this
directory (if not otherwise specified).

-data <data file name> Optional, specifies another data file than start erl.data in the
<release root>. It is specified relative to the <release root> or absolute
(includeing drive letter etc.). This option is used by the release handler during
upgrade and should not be used during normal operation. The release data file
should not normally be named differently.

-bootflags <boot flags file name> Optional, specifies a file name relative to actual
release directory (that is the subdirectory of <release root> where the .boot file
etc. are placed). The contents of this file is appended to the command line when
Erlang is started. This makes it easy to start the emulator with different options for
different releases.

62 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual start erl

NOTES

As the source code is distributed, it can easily be modified to accept other options. The
program must still accept the -data option with the semantics described above for the
release handler to work correctly.

The Erlang emulator is found by examining the registry keys for the emulator version
specified in the release data file. The new emulator needs to be properly installed before
the upgrade for this to work.

Although the program is located together with files specific to emulator version, it is not
expected to be specific to the emulator version. The release handler does not change the
-machine option to erlsrv during emulator restart. Place the (possibly customized)
start erl program so that it is not overwritten during upgrade.

The erlsrv program’s default options are not sufficient for release handling. The
machine erlsrv starts should be specified as the start erl program and the arguments
should contain the ++ followed by desired options.

SEE ALSO

erlsrv(1), release handler(3)

63Erlang Run-Time System Application (ERTS)

werl ERTS Reference Manual

werl
Command

On Windows 95/NT, the preferred way to start the Erlang system is:

werl <script-flags> <user-flags>

This will start Erlang in its own window, which is nice for interactive use
(command-line editing will work and there are scrollbars). All flags except the
-oldshell flag work as in erl.

In cases there you want to redirect standard input and/or standard output or use Erlang
in a pipeline, the werl is not suitable, and the erl program should be used instead.

64 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl set memory block

erl set memory block
C Module

This documentation is specific to VxWorks.

The erl set memory block function/command initiates custom memory allocation for
the Erlang emulator. It has to be called before the Erlang emulator is started and makes
Erlang use one single large memory block for all memory allocation.

The memory within the block can be utilized by other tasks than Erlang. This is
accomplished by calling the functions sys alloc, sys realloc and sys free instead of
malloc, realloc and free respectively.

The purpose of this is to avoid problems inherent in the VxWorks systems malloc
library. The memory allocation within the large memory block avoids fragmentation by
using an “address order first fit” algorithm. Another advantage of using a separate
memory block is that resource reclamation can be made more easily when Erlang is
stopped.

The erl set memory block function is callable from any C program as an ordinary 10
argument function as well as from the commandline.

Exports

int erl set memory block(size t size, void *ptr, int warn mixed malloc, int
realloc always moves, int use reclaim, ...)

The function is called before Erlang is started to specify a large memory block where
Erlang can maintain memory internally.

Parameters:

size t size The size in bytes of Erlang’s internal memory block. Has to be specified.
Note that the VxWorks system uses dynamic memory allocation heavily, so leave
some memory to the system.

void *ptr A pointer to the actual memory block of size size. If this is specified as 0
(NULL), Erlang will allocate the memory when starting and will reclaim the
memory block (as a whole) when stopped.
If a memory block is allocated and provided here, the sys alloc etc routines can
still be used after the Erlang emulator is stopped. The Erlang emulator can also be
restarted while other tasks using the memory block are running without destroying
the memory. If Erlang is to be restarted, also set the use reclaim flag.
If 0 is specified here, the Erlang system should not be stopped while some other
task uses the memory block (has called sys alloc).

int warn mixed malloc If this flag is set to true (anything else than 0), the system will
write a warning message on the console if a program is mixing normal malloc with
sys realloc or sys free.

65Erlang Run-Time System Application (ERTS)

erl set memory block ERTS Reference Manual

int realloc always moves If this flag is set to true (anything else than 0), all calls to
sys realloc result in a moved memory block. This can in certain conditions give
less fragmentation. This flag may be removed in future releases.

int use reclaim If this flag is set to true (anything else than 0), all memory allocated
with sys alloc is automatically reclaimed as soon as a task exits. This is very
useful to make writing port programs (and other programs as well) easier.
Combine this with using the routines save open etc. specified in the reclaim.h file
delivered in the Erlang distribution.

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0.

int erl memory show(...)

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0.

int erl mem info get(MEM PART STATS *stats)

Parameter:

MEM PART STATS *stats A pointer to a MEM PART STATS structure as defined in
<memLib.h>. A successful call will fill in all fields of the structure, on error all
fields are left untouched.

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0

NOTES

The memory block used by Erlang actually does not need to be inside the area known to
ordinary malloc. It is possible to set the USER RESERVED MEM preprocessor symbol when
compiling the wind kernel and then use user reserved memory for Erlang. Erlang can
therefor utilize memory above the 32 Mb limit of VxWorks on the PowerPC
architecture.

Example:

In config.h for the wind kernel:

#undef LOCAL_MEM_AUTOSIZE
#undef LOCAL_MEM_SIZE
#undef USER_RESERVED_MEM

#define LOCAL_MEM_SIZE 0x05000000
#define USER_RESERVED_MEM 0x03000000

In the start-up script/code for the VxWorks node:

erl_set_memory_block(sysPhysMemTop()-sysMemTop(),sysMemTop(),0,0,1);

Setting the use reclaim flag decreases performance of the system, but makes
programming much easier. Other similar facilities are present in the Erlang system even
without using a separate memory block. The routines called save malloc,
save realloc and save free provide the same facilities by using VxWorks own
malloc. Similar routines exist for files, see the file reclaim.h in the distribution.

66 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erts alloc

erts alloc
C Module

erts alloc is an Erlang Run-Time System internal memory allocator library.
erts alloc provides the Erlang Run-Time System with a number of memory allocators.

Allocators

Currently the following allocators are present:

temp alloc Allocator used for temporary allocations.

eheap alloc Allocator used for Erlang heap data, such as Erlang process heaps.

binary alloc Allocator used for Erlang binary data.

ets alloc Allocator used for ETS data.

sl alloc Allocator used for memory blocks that are expected to be short-lived.

ll alloc Allocator used for memory blocks that are expected to be long-lived, for
example Erlang code.

fix alloc A very fast allocator used for some fix-sized data. fix alloc manages a set
of memory pools from which memory blocks are handed out. fix alloc allocates
memory pools from ll alloc. Memory pools that have been allocated are never
deallocated.

std alloc Allocator used for most memory blocks not allocated via any of the other
allocators described above.

sys alloc This is normally the default malloc implementation used on the specific OS.

mseg alloc A memory segment allocator. mseg alloc is used by other allocators for
allocating memory segments and is currently only available on systems that have
the mmap system call. Memory segments that are deallocated are kept for a while in
a segment cache before they are destroyed. When segments are allocated, cached
segments are used if possible instead of creating new segments. This in order to
reduce the number of system calls made.

sys alloc and fix alloc are always enabled and cannot be disabled. mseg alloc is
always enabled if it is available and an allocator that uses it is enabled. All other
allocators can be enabled or disabled [page 70]. By default temp alloc, eheap alloc,
and ll alloc are enabled, and the other disabled. When an allocator is disabled,
sys alloc is used instead of the disabled allocator.

The main idea with the erts alloc library is to separate memory blocks that are used
differently into different memory areas, and by this achieving less memory
fragmentation. By putting less effort in finding a good fit for memory blocks that are
frequently allocated than for those less frequently allocated, a performance gain can be
achieved.

67Erlang Run-Time System Application (ERTS)

erts alloc ERTS Reference Manual

The alloc util framework

Internally a framework called alloc util is used for implementing allocators.
sys alloc, fix alloc, and mseg alloc do not use this framework; hence, the following
does not apply to them.

An allocator manages multiple areas, called carriers, in which memory blocks are
placed. A carrier is either placed in a separate memory segment (allocated via
mseg alloc) or in the heap segment (allocated via sys alloc). Multiblock carriers are
used for storage of several blocks. Singleblock carriers are used for storage of one block.
Blocks that are larger than the value of the singleblock carrier threshold (sbct [page 71])
parameter are placed in singleblock carriers. Blocks smaller than the value of the sbct
parameter are placed in multiblock carriers. Normally an allocator creates a “main
multiblock carrier”. Main multiblock carriers are never deallocated. The size of the
main multiblock carrier is determined by the value of the mmbcs [page 71] parameter.

Sizes of multiblock carriers allocated via mseg alloc are decided based on the values of
the largest multiblock carrier size (lmbcs [page 70]), the smallest multiblock carrier size
(smbcs [page 71]), and the multiblock carrier growth stages (mbcgs [page 71])
parameters. If nc is the current number of multiblock carriers (the main multiblock
carrier excluded) managed by an allocator, the size of the next mseg alloc multiblock
carrier allocated by this allocator will roughly be smbcs+nc*(lmbcs-smbcs)/mbcgs
when nc <= mbcgs, and lmbcs when nc > mbcgs. If the value of the sbct parameter
should be larger than the value of the lmbcs parameter, the allocator may have to create
multiblock carriers that are larger than the value of the lmbcs parameter, though.
Singleblock carriers allocated via mseg alloc are sized to whole pages.

Sizes of carriers allocated via sys alloc are decided based on the value of the
sys alloc carrier size (ycs [page 71]) parameter. The size of a carrier is the least
number of multiples of the value of the ycs parameter that satisfies the request.

Coalescing of free blocks are always performed immediately. Boundary tags (headers
and footers) in free blocks are used which makes the time complexity for coalescing
constant.

The memory allocation strategy used for multiblock carriers by an allocator is
configurable via the as [page 70] parameter. Currently the following strategies are
available:

Best fit Strategy: Find the smallest block that satisfies the requested block size.
Implementation: A balanced binary search tree is used. The time complexity is
proportional to log N, where N is the number of sizes of free blocks.

Address order best fit Strategy: Find the smallest block that satisfies the requested
block size. If multiple blocks are found, choose the one with the lowest address.
Implementation: A balanced binary search tree is used. The time complexity is
proportional to log N, where N is the number of free blocks.

Good fit Strategy: Try to find the best fit, but settle for the best fit found during a
limited search.
Implementation: The implementation uses segregated free lists with a maximum
block search depth (in each list) in order to find a good fit fast. When the
maximum block search depth is small (by default 3) this implementation has a
time complexity that is constant. The maximum block search depth is configurable
via the mbsd [page 70] parameter.

68 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erts alloc

A fit Strategy: Do not search for a fit, inspect only one free block to see if it satisfies the
request. This strategy is only intended to be used for temporary allocations.
Implementation: Inspect the first block in a free-list. If it satisfies the request, it is
used; otherwise, a new carrier is created. The implementation has a time
complexity that is constant.
NOTE: Do not use this strategy for other allocators than temp alloc. If you do,
you will run into trouble.

System Flags Effecting erts alloc

Warning:
Only use these flags if you are absolutely sure what you are doing. Unsuitable settings
may cause serious performance degradation and even a system crash at any time
during operation.

Memory allocator system flags have the following syntax: +M<S><P> <V> where <S>
is a letter identifying a subsystem, <P> is a parameter, and <V> is the value to use. The
flags can be passed to the Erlang emulator (erl [page 46]) as command line arguments.

System flags effecting specific allocators have an upper-case letter as <S>. The
following letters are used for the currently present allocators:

� B: binary alloc

� D: std alloc

� E: ets alloc

� F: fix alloc

� H: eheap alloc

� L: ll alloc

� M: mseg alloc

� S: sl alloc

� T: temp alloc

� Y: sys alloc

The following flags are available for configuration of mseg alloc:

+MMamcbf <size> Absolute max cache bad fit (in kilobytes). A segment in the
memory segment cache is not reused if its size exceeds the requested size with
more than the value of this parameter. Default value is 4096.

+MMrmcbf <ratio> Relative max cache bad fit (in percent). A segment in the memory
segment cache is not reused if its size exceeds the requested size with more than
relative max cache bad fit percent of the requested size. Default value is 20.

+MMmcs <amount> Max cached segments. The maximum number of memory
segments stored in the memory segment cache. Valid range is 0-30. Default value
is 5.

69Erlang Run-Time System Application (ERTS)

erts alloc ERTS Reference Manual

+MMcci <time> Cache check interval (in milliseconds). The memory segment cache is
checked for segments to destroy at an interval determined by this parameter.
Default value is 1000.

The following flags are available for configuration of fix alloc:

+MFe true Enable fix alloc. Note: fix alloc cannot be disabled.

The following flags are available for configuration of sys alloc:

+MYe true Enable sys alloc. Note: sys alloc cannot be disabled.

+MYm libc|elib malloc library to use. Currently at most these malloc libraries are
available: libc, and elib. libc enables the standard libc malloc
implementation. elib enables an ERTS internal malloc implementation called
elib malloc. Some malloc libraries may not be available on some operating
systems. By default libc is used.

+MYtt <size> Trim threshold size (in kilobytes). This is the maximum amount of
free memory at the top of the heap (allocated by sbrk) that will be kept by
malloc (not released to the operating system). When the amount of free memory
at the top of the heap exceeds the trim threshold, malloc will release it (by calling
sbrk). Trim threshold is given in kilobytes. Default trim threshold is 128. Note:
This flag will only have any effect when the emulator has been linked with the
GNU C library, and uses its malloc implementation.

+MYtp <size> Top pad size (in kilobytes). This is the amount of extra memory that
will be allocated by malloc when sbrk is called to get more memory from the
operating system. Default top pad size is 0. Note: This flag will only have any
effect when the emulator has been linked with the GNU C library, and uses its
malloc implementation.

The following flags are available for configuration of specific allocators based on
alloc util (i.e. <S> is either B, D, E, H, L, S, or T):

+M<S>as bf|aobf|gf|af Allocation strategy. Valid strategies are bf (best fit), aobf
(address order best fit), gf (good fit), and af (a fit). See the description of
allocation strategies [page 68] in “the alloc util framework” section.

+M<S>asbcst <size> Absolute singleblock carrier shrink threshold (in kilobytes).
When a block located in an mseg alloc singleblock carrier is shrunk, the carrier
will be left unchanged if the amount of unused memory is less than this threshold;
otherwise, the carrier will be shrunk. See also rsbcst [page 71].

+M<S>e true|false Enable allocator <S>.

+M<S>lmbcs <size> Largest (mseg alloc) multiblock carrier size (in kilobytes). See
the description on how sizes for mseg alloc multiblock carriers are decided [page
68] in “the alloc util framework” section.

+M<S>mbcgs <ratio> (mseg alloc) multiblock carrier growth stages. See the
description on how sizes for mseg alloc multiblock carriers are decided [page 68]
in “the alloc util framework” section.

+M<S>mbsd <depth> Max block search depth. This flag has effect only if the good fit
strategy has been selected for allocator <S>. When the good fit strategy is used,
free blocks are placed in segregated free-lists. Each free list contains blocks of sizes
in a specific range. The max block search depth sets a limit on the maximum
number of blocks to inspect in a free list during a search for suitable block
satisfying the request.

70 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erts alloc

+M<S>mmbcs <size> Main multiblock carrier size. Sets the size of the main
multiblock carrier for allocator <S>. The main multiblock carrier is allocated via
sys alloc and is never deallocated.

+M<S>mmmbc <amount> Max mseg alloc multiblock carriers. Maximum number of
multiblock carriers allocated via mseg alloc by allocator <S>. When this limit
has been reached, new multiblock carriers will be allocated via sys alloc.

+M<S>mmsbc <amount> Max mseg alloc singleblock carriers. Maximum number of
singleblock carriers allocated via mseg alloc by allocator <S>. When this limit
has been reached, new singleblock carriers will be allocated via sys alloc.

+M<S>rsbcmt <ratio> Relative singleblock carrier move threshold (in percent).
When a block located in a singleblock carrier is shrunk to a size smaller than the
value of the sbct [page 71] parameter, the block will be left unchanged in the
singleblock carrier if the ratio of unused memory is less than this threshold;
otherwise, it will be moved into a multiblock carrier.

+M<S>rsbcst <ratio> Relative singleblock carrier shrink threshold (in percent).
When a block located in an mseg alloc singleblock carrier is shrunk, the carrier
will be left unchanged if the ratio of unused memory is less than this threshold;
otherwise, the carrier will be shrunk. See also asbcst [page 70].

+M<S>sbct <size> Singleblock carrier threshold. Blocks larger than this threshold
will be placed in singleblock carriers. Blocks smaller than this threshold will be
placed in multiblock carriers.

+M<S>smbcs <size> Smallest (mseg alloc) multiblock carrier size (in kilobytes).
See the description on how sizes for mseg alloc multiblock carriers are decided
[page 68] in “the alloc util framework” section.

Currently the following flags are available for configuration of alloc util, i.e. all
allocators based on alloc util will be effected:

+Muycs <size> sys alloc carrier size. Carriers allocated via sys alloc will be
allocated in sizes which are multiples of the sys alloc carrier size. This is not true
for main multiblock carriers and carriers allocated during a memory shortage,
though.

+Mummc <amount> Max mseg alloc carriers. Maximum number of carriers placed in
separate memory segments. When this limit has been reached, new carriers will be
placed in memory retrieved from sys alloc.

Instrumentation flags:

+Mim true|false A map over current allocations is kept by the emulator. The
allocation map can be retrieved via the instrument module. +Mim true implies
+Mis true. +Mim true is the same as -instr [page 48].

+Mis true|false Status over allocated memory is kept by the emulator. The
allocation status can be retrieved via the instrument module.

+Mit true|false Reserved for future use. Do not use this flag.

Note:
When instrumentation of the emulator is enabled, the emulator uses more memory
and runs slower.

Other flags:

71Erlang Run-Time System Application (ERTS)

erts alloc ERTS Reference Manual

+Mea min|max|r10b min disables all allocators that can be disabled. max enables all
allocators. r10b configures all allocators as we currently expect the OTP R10B
release to be configured. Currently r10b is the same as max, but this may change.

Only some default values have been presented here.
erlang:system info(allocator), and erlang:system info(fallocator, Allocg)
can be used in order to obtain currently used settings and current status of the
allocators. See the erlang(3) man page.

Note:
Most of these flags are highly implementation dependent, and they may be changed
or removed without prior notice.

erts alloc is not obliged to strictly use the settings that have been passed to it (it
may even ignore them).

See Also

erl(1) [page 46], instrument(3), erlang(3)

72 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual driver entry

driver entry
Erlang Module

The driver entry structure is a C struct that all erlang drivers defines. It contains entry
points for the erlang driver that are called by the erlang emulator when erlang code
accesses the driver.

All functions are function pointers. The driver init function returns a pointer to the
driver entry structure. The name in the structure must correspond to the name of the
driver, and the driver library file name (without file extension).

The erl driver driver API functions needs a port handle that identifies the driver
instance (and the port in the emulator). This is only passed to the start function, but
not to the other functions. The start function returns a driver-defined handle that is
passed to the other functions. A common practice is to have the start function
allocating some application-defined structure and stash the port handle in it, to use it
later with the driver API functions.

The driver call-back functions are called synchronously from the erlang emulator. If
they take too long before completing, they can cause timeouts in the emulator. Use the
queue or asynchronous calls if nessecary, since the emulator must be responsive.

Exports

int init(void)

This is called directly after the driver has been loaded by erl ddll:load driver/2.
(Actually when the driver is added to the driver list.) The driver should return 0, or if
the driver can’t initialize, -1.

int start(ErlDrvPort port, char* command)

This is called when the driver is instantiated, when open port/2 is called. The driver
should return a number >= 0 or a pointer, or if the driver can’t be started, one of three
error codes should be returned:

ERL DRV ERROR GENERAL - general error, no error code

ERL DRV ERROR ERRNO - error with error code in erl errno

ERL DRV ERROR BADARG - error, badarg

If an error code is returned, the port isn’t started.

void stop(ErlDrvData drv data)

This is called when the port is closed, with port close/1 or Port ! fself(),
closeg. Note that terminating the port owner process also closes the port.

73Erlang Run-Time System Application (ERTS)

driver entry ERTS Reference Manual

void output(ErlDrvData drv data, char *buf, int len)

This is called when an erlang process has sent data to the port. The data is pointed to by
buf, and is len bytes. Data is sent to the port with Port ! fself(), fcommand,
Datagg, or with port command/2. Depending on how the port was opened, it should be
either a list of integers 0...255 or a binary. See open port/3 and port command/2.

void ready input(ErlDrvData drv data, ErlDrvEvent event)

void ready output(ErlDrvData drv data, ErlDrvEvent event)

This is called when a driver event (given in the event parameter) is signaled. This is
used to help asynchronous drivers “wake up” when something happens.

On unix the event is a pipe or socket handle (or something that the select system call
understands).

On Windows the event is an Event or Semaphore (or something that the
WaitForMultipleObjectsAPI function understands). (Some trickery in the emulator
allows more than the built-in limit of 64 Events to be used.)

To use this with threads and asynchronous routines, create a pipe on unix and an Event
on Windows. When the routine completes, write to the pipe (use SetEvent on
Windows), this will make the emulator call ready input or ready output.

char *driver name

This is the name of the driver, it must correspond to the atom used in open port, and
the name of the driver library file (without the extension).

void finish(void)

This function is called by the erl ddll driver when the driver is unloaded. (It is only
called in dynamic drivers.)

The driver is only unloaded as a result of calling unload driver/1, or when the
emulator halts.

void *handle

This field is not used, it’s still around only for historical reasons. It should be NULL.
Don’t use it.

int control(ErlDrvData drv data, unsigned int command, char *buf, int len, char
**rbuf, int rlen)

This is a special routine invoked with the erlang function port control/3. It works a
little like an “ioctl” for erlang drivers. The data given to port control/3 arrives in buf
and len. The driver may send data back as a driver binary, using *rbuf and rlen.

This is the fastest way of calling a driver and get a response. It won’t make any context
switch in the erlang emulator, and requires no message passing. It is suitable for calling
C function to get faster execution, when erlang is too slow.

If the driver wants to return data, it should return it in rbuf. When control is called,
rbuf points to a pointer to a buffer of rlen bytes, which can be used to return data.
Data is returned depending of the port control flags (those that are set with
set port control flags [page 82]). If the flag is set to PORT CONTROL FLAG BINARY, then
rbuf should point to a driver binary or be NULL. Note that this binary must be freed.
If rbuf is set to NULL, an empty list will be returned.

74 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual driver entry

If the flag is set to 0, rbuf points to a char* containing data, that is returned as a list of
integers. Using binaries is faster if more than a few bytes are returned.

The return value is the number of bytes returned in *rbuf.

void timeout(ErlDrvData drv data)

This function is called any time after the driver’s timer reaches 0. The timer is
activeated with driver set timer. There are no priorities or ordering among drivers,
so if several drivers time out at the same time, any one of them is called first.

void outputv(ErlDrvData drv data, ErlIOVec *ev)

This function is called whenever the port is written to. If it is NULL, the output function
is called instead. This function is faster than output, because it takes an ErlIOVec
directly, which requires no copying of the data. The port should be in binary mode, see
open port/2.

The ErlIOVec contains both a SysIOVec, suitable for writev, and one or more binaries.
If these binaries should be retained, when the driver returns from outputv, they can be
queued (using driver enq bin [page 81] for instance), or if they are kept in a static or
global variable, the reference counter can be incremented.

void ready async(ErlDrvData drv data, ErlDrvThreadData thread data)

This function is called after an asynchronous call has completed. The asynchronous call
is started with driver async [page 85]. This function is called from the erlang emulator
thread, as opposed to the asynchronous function, which is called in some thread (if
multithreading is enabled).

int call(ErlDrvData drv data, unsigned int command, char *buf, int len, char **rbuf,
int rlen, unsigned int *flags)

This function is called from erlang:port call/3. It works a lot like the control
call-back, but uses the external term format for input and output.

command is an integer, obtained from the call from erlang (the second argument to
erlang:port call/3).

buf and len provide the arguments to the call (the third argument to
erlang:port call/3). They can be decoded using ei functions.

rbuf points to a return buffer, rlen bytes long. The return data should be a valid erlang
term in the external (binary) format. This is converted to an erlang term and returned
by erlang:port call/3 to the caller. If more space than rlen bytes is needed to return
data, *rbuf can be set to memory allocated with driver alloc. This memory will be
freed automatically after call has returned.

The return value is the number of bytes returned in *rbuf. If ERL DRV ERROR GENERAL
is returned (or in fact, anything <= 0), erlang:port call/3 will throw a BAD ARG.

See Also

erl driver(3), erl ddll(3), kernel(3), erlang(3)

75Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

erl driver
Erlang Module

The driver calls back to the emulator, using the API functions declared in
erl driver.h. They are used for outputting data from the driver, using timers, etc.

A driver is a library with a set of function that the emulator calls, in response to erlang
functions and message sending. There may be multiple instances of a driver, each
instance is connected to an erlang port. Every port has a port owner process.
Communication with the port is normally done through the port owner process.

Most of the functions takes the port handle as an argument. This identifies the driver
instance. Note that this port handle must be stored by the driver, it is not given when
the driver is called from the emulator (see driver entry [page 73]).

Some of the functions takes a parameter of type ErlDrvBinary, a driver binary. It
should be both allocated and freed by the caller. Using a binary directly avoid one extra
copying of data.

Many of the output functions has a “header buffer”, with hbuf and hlen parameters.
This buffer is sent as a list before the binary (or list, depending on port mode) that is
sent. This is convenient when matching on messages received from the port. (Although
in the latest versions of erlang, there is the binary syntax, that enables you to match on
the beginning of a binary.)

Functionality

All functions that a driver needs to do with erlang are performed through driver API
functions. There are functions for the following functionality:

Timer functions Timer functions are used to control the timer that a driver may use.
The timer will have the emulator call the timeout [page 75] entry function after a
specified time. Only one timer is available for each driver instance.

Queue handling Every driver has an associated queue. This queue is a SysIOVec that
works as a buffer. It’s mostly used for the driver to buffer data that should be
written to a device, it is a byte stream. If the port owner process closes the driver,
and the queue is not empty, the driver will not be closed. This enables the driver
to flush its buffers before closing.

Output functions With the output functions, the driver sends data back the emulator.
They will be received as messages by the port owner process, see open port/2.
The vector function and the function taking a driver binary is faster, because thet
avoid copying the data buffer. There is also a fast way of sending terms from the
driver, without going through the binary term format.

Failure The driver can exit and signal errors up to erlang. This is only for severe errors,
when the driver can’t possibly keep open.

76 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

Asynchronous calls The latest erlang versions (R7B and later) has provision for
asynchonous function calls, using a thread pool provided by erlang. There is also a
select call, that can be used for asynchronous drivers.

Adding / remove drivers A driver can add and later remove drivers.

Exports

ErlDrvBinary

Types:

� int orig size
� int refc
� char orig bytes[]

The ErlDrvBinary structure is a binary, as sent between the emulator and the driver.
All binaries are reference counted; when driver binary free is called, the refc field is
decremented, when it reaches zero, the binary is deallocated. The orig size is the size
of the binary, and orig bytes is the buffer. The ErlDrvBinary does not have a fixed
size, its size is orig size + 2 * sizeof(int).

Some driver calls, such as driver enq binary, increments the driver ref-count, and
others, such as driver deq decrements it.

Using a driver binary instead of a normal buffer, is often faster, since the emulator
doesn’t need to copy the data, only the pointer is used.

A driver binary allocated in the driver, with driver alloc binary, should be freed in
the driver, with driver free binary. (Note that this doesn’t necessarily deallocate it, if
the driver is still referred in the emulator, the ref-count will not go to zero.)

Driver binaries are used in the driver output2 and driver outputv calls, and in the
queue. Also the driver call-back outputv [page 75] uses driver binaries.

If the driver of some reason or another, wants to keep a driver binary around, in a static
variable for instance, the ref-count in the refc field should be incremented, and the
binary can later be freed in the stop [page 73] call-back, with driver free binary.

Note that since a driver binary is shared by the driver and the emulator, a binary
received from the emulator or sent to the emulator, shouldn’t be changed by the driver.

ErlDrvData

The ErlDrvData is a handle to driver-specific data, passed to the driver call-backs. It is a
pointer, and is most often casted to a specific pointer in the driver.

SysIOVec

This is a system I/O vector, as used by writev on unix and WSASend on Win32. It is
used in ErlIOVec.

ErlIOVec

Types:

� int vsize
� int size

77Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

� SysIOVec* iov
� ErlDrvBinary** binv

The I/O vector used by the emulator and drivers, is a list of binaries, with a SysIOVec
pointing to the buffers of the binaries. It is used in driver outputv and the outputv
[page 75] driver call-back. Also, the driver queue is an ErlIOVec.

int driver output(ErlDrvPort port, char *buf, int len)

The driver output function is used to send data from the driver up to the emulator.
The data will be received as terms or binary data, depending on how the driver port was
opened.

The data is queued in the port owner process’ message queue. Note that this does not
yield to the emulator. (Since the driver and the emulator runs in the same thread.)

The parameter buf points to the data to send, and len is the number of bytes.

The return value for all output functions is 0. (Unless the driver is used for distribution,
in which case it can fail and return -1. For normal use, the output function always
returns 0.)

int driver output2(ErlDrvPort port, char *hbuf, int hlen, char *buf, int len)

The driver output2 function first sends hbuf (length in hlen) data as a list, regardless
of port settings. Then buf is sent as a binary or list. E.g. if hlen is 3 then the port owner
process will receive [H1, H2, H3 | T].

The point of sending data as a list header, is to facilitate matching on the data received.

The return value is 0 for normal use.

int driver output binary(ErlDrvPort port, char *hbuf, int hlen, ErlDrvBinary* bin, int
offset, int len)

This function sends data to port owner process from a driver binary, it has a header
buffer (hbuf and hlen) just like driver output2. The hbuf parameter can be NULL.

The parameter offset is an offset into the binary and len is the number of bytes to
send.

Driver binaries are created with driver alloc binary.

The data in the header is sent as a list and the binary as an erlang binary in the tail of the
list.

E.g. if hlen is 2, then the port owner process will receive [H1, H2 | <<T>>].

The return value is 0 for normal use.

Note that, using the binary syntax in erlang, the driver application can match the header
directly from the binary, so the header can be put in the binary, and hlen can be set to 0.

int driver outputv(ErlDrvPort port, char* hbuf, int hlen, ErlIOVec *ev, int skip)

78 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

This function sends data from an IO vector, ev, to the port owner process. It has a
header buffer (hbuf and hlen), just like driver output2.

The skip parameter is a number of bytes to skip of the ev vector from the head.

You get vectors of ErlIOVec type from the driver queue (see below), and the outputv
[page 75] driver entry function. You can also make them yourself, if you want to send
several ErlDriverBinary buffers at once. Often it is faster to use driver output or
driver output binary.

E.g. if hlen is 2 and ev points to an array of three binaries, the port owner process will
receive [H1, H2, <<B1>>, <<B2>> | <<B3>>].

The return value is 0 for normal use.

The comment for driver output binary applies for driver outputv too.

int driver vec to buf(ErlIOVec *ev, char *buf, int len)

This function collects several segments of data, referenced by ev, by copying them in
order to the buffer buf, of the size len.

If the data is to be sent from the driver to the port owner process, it is faster to use
driver outputv.

The return value is the space left in the buffer, i.e. if the ev contains less than len bytes
it’s the difference, and if ev contains len bytes or more, it’s 0. This is faster if there is
more than one header byte, since the binary syntax can construct integers directly from
the binary.

int driver set timer(ErlDrvPort port, unsigned long time)

This function sets a timer on the driver, which will count down and call the driver when
it is timed out. The time parameter is the time in milliseconds before the timer expires.

When the timer reaches 0 and expires, the driver entry function timeout [page 73] is
called.

Note that there is only one timer on each driver instance; setting a new timer will
replace an older one.

Return value i 0 (-1 only when the timeout driver function is NULL).

int driver cancel timer(ErlDrvPort port)

This function cancels a timer set with driver set timer.

The return value is 0.

int driver read timer(ErlDrvPort port, unsigned long *time left)

This function reads the current time of a timer, and places the result in time left. This
is the time in milliseconds, before the timeout will occur.

The return value is 0.

int driver select(ErlDrvPort port, ErlDrvEvent event, int mode, int on)

79Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

The driver select is used by the driver to provide the emulator with an event to
check for. This enables the emulator to call the driver when something has happened
asynchronously.

The event parameter is used in the emulator cycle in a select call. If the event is set
then the driver is called. The mode parameter can be either ON READ or ON WRITE, and
specifies whether ready output [page 74] or ready input [page 74] will be called when
the event is fired. Note that this is just a convention, they don’t have to read or write
anything.

The on parameter should be 1 for adding the event and 0 for removing it.

On unix systems, the function select is used. The event must be a socket or pipe (or
other object that select can use).

On windows, the Win32 API function WaitForMultipleObjects is used. This places
other restriction on the event. Refer to the Win32 SDK documentation.

The return value is 0 (Failure, -1, only if the ready input/ready output is NULL.

void *driver alloc(size t size)

This function allocates a memory block of the size specified in size, and returns it. This
only fails on out of memory, in that case NULL is returned. (This is most often a wrapper
for malloc).

Memory allocated must be explicitly freed. Every driver alloc call must have a
corresponding driver free.

void *driver realloc(void *ptr, size t size)

This function resizes a memory block, either in place, or by allocating a new block,
copying the data and freeing the old block. A pointer is returned to the reallocated
memory. On failure (out of memory), NULL is returned. (This is most ofthen a wrapper
for realloc.)

void driver free(void *ptr)

This function frees the memory pointed to by ptr. The memory should have been
allocated with driver alloc. All allocated memory should be deallocated, just once.
There is no garbage collection in drivers.

ErlDrvBinary* driver alloc binary(int size)

This function allocates a driver binary with a memory block of at least size bytes, and
returns a pointer to it, or NULL on failure (out of memory). When a driver binary has
been sent to the emulator, it shouldn’t be altered. Every allocated binary should be
freed.

Note that a driver binary has an internal reference counter, this means that calling
driver free binary it may not actually dispose of it. If it’s sent to the emulator, it may
be referenced there.

The driver binary has a field, orig bytes, which marks the start of the data in the
binary.

ErlDrvBinary* driver realloc binary(ErlDrvBinary *bin, int size)

80 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

This function resizes a driver binary, while keeping the data. The resized driver binary is
returned. On failure (out of memory), NULL is returned.

void driver free binary(ErlDrvBinary *bin)

This function frees a driver binary bin, allocated previously with driver alloc binary.
Since binaries in erlang are reference counted, the binary may still be around. Every call
to driver alloc binary should have a matching call to driver free binary.

int driver enq(ErlDrvPort port, char* buf, int len)

This function enqueues data in the driver queue. The data in buf is copied (len bytes)
and placed at the end of the driver queue. The driver queue is normally used in a FIFO
way.

The driver queue is available to queue output from the emulator to the driver (data
from the driver to the emulator is queued by the emulator in normal erlang message
queues). This can be useful if the driver has to wait for slow devices etc, and wants to
yield back to the emulator. The driver queue is implemented as an ErlIOVec.

When the queue contains data, the driver won’t close, until the queue is empty.

The return value is 0.

int driver pushq(ErlDrvPort port, char* buf, int len)

This function puts data at the head of the driver queue. The data in buf is copied (len
bytes) and placed at the beginning of the queue.

The return value is 0.

int driver deq(ErlDrvPort port, int size)

This function dequeues data by moving the head pointer forward in the driver queue by
size bytes. The data in the queue will be dealloced.

The return value is 0.

int driver sizeq(ErlDrvPort port)

This function returns the number of bytes currently in the driver queue.

int driver enq bin(ErlDrvPort port, ErlDrvBinary *bin, int offset, int len)

This function enqueues a driver binary in the driver queue. The data in bin at offset
with length len is placed at the end of the queue. This function is most often faster
than driver enq, because the data doesn’t have to be copied.

The return value is 0.

int driver pushq bin(ErlDrvPort port, ErlDrvBinary *bin, int offset, int len)

This function puts data in the binary bin, at offset with length len at the head of the
driver queue. It is most often faster than driver pushq, because the data doesn’t have
to be copied.

The return value is 0.

SysIOVec* driver peekq(ErlDrvPort port, int *vlen)

81Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

This function retrieves the driver queue as a pointer to an array of SysIOVecs. It also
returns the number of elements in vlen. This is the only way to get data out of the
queue.

Nothing is remove from the queue by this function, that must be done with
driver deq.

The returned array is suitable to use with the unix system call writev.

int driver enqv(ErlDrvPort port, ErlIOVec *ev, int skip)

This function enqueues the data in ev, skipping the first skip bytes of it, at the end of
the driver queue. It is faster than driver enq, because the data doesn’t have to be
copied.

The return value is 0.

int driver pushqv(ErlDrvPort port, ErlIOVec *ev, int skip)

This function puts the data in ev, skipping the first skip bytes of it, at the head of the
driver queue. It is faster than driver pushq, because the data doesn’t have to be copied.

The return value is 0.

void add driver entry(ErlDrvEntry *de)

This function adds a driver entry to the list of drivers known by erlang. The init [page
73] function of the de parameter is called.

int remove driver entry(ErlDrvEntry *de)

This function removes a driver entry de previously added with add driver entry.

char* erl errno id(int error)

This function returns the atom name of the erlang error, given the error number in
error. Error atoms are: einval, enoent, etc. It can be used to make error terms from
the driver.

void set busy port(ErlDrvPort port, int on)

This function set and resets the busy status of the port. If on is 1, the port is set to busy,
if it’s 0 the port is set to not busy.

When the port is busy, sending to it with Port ! Data or port command/2, will block
the port owner process, until the port is signaled as not busy.

void set port control flags(ErlDrvPort port, int flags)

This function sets flags for how the control [page 74] driver entry function will return
data to the port owner process. (The control function is called from port control/3
in erlang.)

Currently there are only two meaningful values for flags: 0 means that data is returned
in a list, and PORT CONTROL FLAG BINARY means data return from control is sent to the
port owner process.

int driver failure eof(ErlDrvPort port)

82 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

This function signals to erlang that the driver has encountered an EOF and should be
closed, unless the port was opened with the eof option, in that case eof is sent to the
port. Otherwise, the port is close and an ’EXIT’ message is sent to the port owner
process.

The return value is 0.

int driver failure atom(ErlDrvPort port, char *string)

int driver failure posix(ErlDrvPort port, int error)

int driver failure(ErlDrvPort port, int error)

These functions signal to erlang that the driver has encountered an error and should be
closed. The port is closed and the tuple f’EXIT’, error, Errg, is sent to the port
owner process, where error is an error atom (driver failure atom and
driver failure posix), or an integer (driver failure).

The driver should fail only when in severe error situations, when the driver cannot
possibly kepp open, for instance buffer allocation gets out of memory. Normal errors is
more appropriate to handle with sending error codes with driver output.

The return value is 0.

ErlDriverTerm driver connected(ErlDrvPort port)

This function returns the port owner process.

ErlDriverTerm driver caller(ErlDrvPort port)

This function returns the process that made the current call to the driver. This can be
used with driver send term to send back data to the caller. (This is the process that
called one of erlang:send/2, erlang:port command/2 or erlang:port control/3).

int driver output term(ErlDrvPort port, ErlDriverTerm* term, int n)

This functions sends data in the special driver term format. This is a fast way to deliver
term data to from a driver. It also needs no binary conversion, so the port owner process
receives data as normal erlang terms.

The term parameter points to an array of ErlDriverTerm, with n elements. This array
contains terms described in the driver term format. Every term consists of one to four
elements in the array. The term first has a term type, and then arguments.

Tuple and lists (with the exception of strings, see below), are built in reverse polish
notation, so that to build a tuple, the elements are given first, and then the tuple term,
with a count. Likewise for lists.

A tuple must be specified with the number of elements. (The elements precedes the
ERL DRV TUPLE term.)

A list must be specified with the number of elements, including the tail, which is the
last term preceding ERL DRV LIST.

The special term ERL DRV STRING CONS is used to “splice” in a string in a list, a string
given this way is not a list per se, but the elements are elements of the surrounding list.

83Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

Term type Argument(s)
===
ERL DRV NIL None
ERL DRV ATOM driver mk atom(string)
ERL DRV INT int
ERL DRV PORT driver mk port(ix)
ERL DRV BINARY ErlDriverBinary*, int len, int offset
ERL DRV STRING char*, int len
ERL DRV TUPLE int size
ERL DRV LIST int size
ERL DRV PID driver connected,...
ERL DRV STRING CONS char*, int len

To build the tuple ftcp, Port, [100 | Binary]g, the following call could be made.

ErlDriverBinary* bin = ...
ErlDriverPort port = ...
ErlDriverTerm spec[] = {

ERL_DRV_ATOM, driver_mk_atom("tcp"),
ERL_DRV_PORT, driver_mk_port(port),

ERL_DRV_INT, 100,
ERL_DRV_BINARY, bin, 50, 0,
ERL_DRV_LIST, 2,

ERL_DRV_TUPLE, 3,
};
driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

Where bin is a driver binary of length at least 50 and port is a port handle. Note that
the ERL DRV LIST comes after the elements of the list, likewise the ERL DRV TUPLE.

The term ERL DRV STRING CONS is a way to construct strings. It works differently from
how ERL DRV STRING works. ERL DRV STRING CONS builds a string list in reverse order,
(as opposed to how ERL DRV LIST works), concatenating the strings added to a list. The
tail must be given before ERL DRV STRING CONS.

The ERL DRV STRING constructs a string, and ends it. (So it’s the same as ERL DRV NIL
followed by ERL DRV STRING CONS.)

/* to send [x, "abc", y] to the port: */
ErlDriverTerm spec[] = {

ERL_DRV_ATOM, driver_mk_atom("x"),
ERL_DRV_STRING, (ErlDriverTerm)"abc", 3,
ERL_DRV_ATOM, driver_mk_atom("y"),
ERL_DRV_NIL,
ERL_DRV_LIST, 4

};
driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

/* to send "abc123" to the port: */
ErlDriverTerm spec[] = {

ERL_DRV_NIL, /* with STRING_CONS, the tail comes first */
ERL_DRV_STRING_CONS, (ErlDriverTerm)"123", 3,
ERL_DRV_STRING_CONS, (ErlDriverTerm)"abc", 3,

};
driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

84 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

ErlDriverTerm driver mk atom(char* string)

This function returns an atom given a name string. The atom is created and won’t
change, so the return value may be saved and reused, which is faster than looking up the
atom several times.

ErlDriverTerm driver mk port(ErlDrvPort port)

This function converts a port handle to the erlang term format, usable in the
driver output send function.

int driver send term(ErlDrvPort port, ErlDriverTerm receiver, ErlDriverTerm* term, int
n)

This function is the only way for a driver to send data to other processes than the port
owner process. The receiver parameter specifies the process to receive the data.

The parameters term and n does the same thing as in driver output term [page 83].

long driver async (ErlDrvPort port, unsigned int* key, void (*async invoke)(void*),
void* async data, void (*async free)(void*))

This function performs an asynchronous call. The function async invoke is invoked in
a thread separate from the emulator thread. This enables the driver to perform
time-consuming, blocking operations without blocking the emulator.

Normally, erlang is started without a thread pool. A start argument to the emulator,
specifies how many threads that should be available (e.g. +A 5, gives five extra driver
threads). If no thread pool is available, the call is made synchronously, in the emulator
thread.

If there is a thread pool available, a thread will be used. If the key argument is null, the
threads from the pool are used in a round-robin way, each call to driver async uses the
next thread in the pool. With the key argument set, this behaviour is changed. The two
same values of *key always get the same thread.

To make sure that a driver instance always uses the same thread, the following call can
be used:

r = driver_async(myPort, (unsigned char*)&myPort, myData, myFunc);

If a thread is already working, the calls will be queued up and executed in order. Using
the same thread for each driver instance ensures that the calls will be made in sequence.

The async data is the argument to the functions async invoke and async free. It’s
typically a pointer to a structure that contains a pipe or event that can be used to signal
that the async operation completed. The data should be freed in async free, because
it’s called if driver async cancel is called.

When the async operation is done, ready async [page 75] driver entry function is called.
If async ready is null in the driver entry, the async free function is called instead.

The return value is a handle to the asynchronous task, which can be used as argument
to driver async cancel.

int driver async cancel(long id)

This function cancels an asynchronous operation, by removing it from the queue. Only
functions in the queue can be cancelled; if a function is executing, it’s too late to cancel
it. The async free function is also called.

The return value is 1 if the operation was removed from the queue, otherwise 0.

85Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

See Also

driver entry(3), erl ddll(3), erlang(3)

An Alternative Distribution Driver (ERTS User’s Guide Ch. 3)

86 Erlang Run-Time System Application (ERTS)

List of Tables

1.1 Literals in the MatchCondition/MatchBody parts of a match spec 5

1.2 tty text editing . 34

87Erlang Run-Time System Application (ERTS)

List of Tables

88 Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

char *driver_name
driver entry , 74

char* erl_errno_id/1
erl driver , 82

driver entry
char *driver_name, 74
int call/7, 75
int control/6, 74
int init/1, 73
int start/2, 73
void *handle, 74
void finish/1, 74
void output/3, 74
void outputv/2, 75
void ready_async/2, 75
void ready_input/2, 74
void ready_output/2, 74
void stop/1, 73
void timeout/1, 75

epmd (Command)
epmd , 45

epmd
epmd (Command), 45

erl (Command)
erl , 46

erl
erl (Command), 46

erl driver
char* erl_errno_id/1, 82
ErlDriverTerm driver_caller/1, 83
ErlDriverTerm driver_connected/1, 83
ErlDriverTerm driver_mk_atom/1, 85
ErlDriverTerm driver_mk_port/1, 85
ErlDrvBinary, 77
ErlDrvBinary* driver_alloc_binary/1,

80

ErlDrvBinary* driver_realloc_binary/2,
80

ErlDrvData, 77
ErlIOVec, 77
int driver_async_cancel/1, 85
int driver_cancel_timer/1, 79
int driver_deq/2, 81
int driver_enq/3, 81
int driver_enq_bin/4, 81
int driver_enqv/3, 82
int driver_failure/2, 83
int driver_failure_atom/2, 83
int driver_failure_eof/1, 82
int driver_failure_posix/2, 83
int driver_output/3, 78
int driver_output2/5, 78
int driver_output_binary/6, 78
int driver_output_term/3, 83
int driver_outputv/5, 78
int driver_pushq/3, 81
int driver_pushq_bin/4, 81
int driver_pushqv/3, 82
int driver_read_timer/2, 79
int driver_select/4, 79
int driver_send_term/4, 85
int driver_set_timer/2, 79
int driver_sizeq/1, 81
int driver_vec_to_buf/3, 79
int remove_driver_entry/1, 82
long driver_async/3, 85
SysIOVec, 77
SysIOVec* driver_peekq/2, 81
void *driver_alloc/1, 80
void *driver_realloc/2, 80
void add_driver_entry/1, 82
void driver_free/1, 80
void driver_free_binary/1, 81
void set_busy_port/2, 82
void set_port_control_flags/2, 82

erl_mem_info_get/1 (C function)

89Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

erl set memory block , 66

erl_memory_show/1 (C function)
erl set memory block , 66

erl set memory block
erl_mem_info_get/1 (C function), 66
erl_memory_show/1 (C function), 66
erl_set_memory_block/6 (C function),

65

erl_set_memory_block/6 (C function)
erl set memory block , 65

erlc (Command)
erlc , 51

erlc
erlc (Command), 51

ErlDriverTerm driver_caller/1
erl driver , 83

ErlDriverTerm driver_connected/1
erl driver , 83

ErlDriverTerm driver_mk_atom/1
erl driver , 85

ErlDriverTerm driver_mk_port/1
erl driver , 85

ErlDrvBinary
erl driver , 77

ErlDrvBinary* driver_alloc_binary/1
erl driver , 80

ErlDrvBinary* driver_realloc_binary/2
erl driver , 80

ErlDrvData
erl driver , 77

ErlIOVec
erl driver , 77

erlsrv (Command)
erlsrv , 55–57

erlsrv
erlsrv (Command), 55–57

int call/7
driver entry , 75

int control/6
driver entry , 74

int driver_async_cancel/1
erl driver , 85

int driver_cancel_timer/1

erl driver , 79

int driver_deq/2
erl driver , 81

int driver_enq/3
erl driver , 81

int driver_enq_bin/4
erl driver , 81

int driver_enqv/3
erl driver , 82

int driver_failure/2
erl driver , 83

int driver_failure_atom/2
erl driver , 83

int driver_failure_eof/1
erl driver , 82

int driver_failure_posix/2
erl driver , 83

int driver_output/3
erl driver , 78

int driver_output2/5
erl driver , 78

int driver_output_binary/6
erl driver , 78

int driver_output_term/3
erl driver , 83

int driver_outputv/5
erl driver , 78

int driver_pushq/3
erl driver , 81

int driver_pushq_bin/4
erl driver , 81

int driver_pushqv/3
erl driver , 82

int driver_read_timer/2
erl driver , 79

int driver_select/4
erl driver , 79

int driver_send_term/4
erl driver , 85

int driver_set_timer/2
erl driver , 79

int driver_sizeq/1
erl driver , 81

90 Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

int driver_vec_to_buf/3
erl driver , 79

int init/1
driver entry , 73

int remove_driver_entry/1
erl driver , 82

int start/2
driver entry , 73

long driver_async/3
erl driver , 85

run_erl (Command)
run erl , 59

run erl
run_erl (Command), 59

start (Command)
start , 61

start
start (Command), 61

start_erl (Command)
start erl , 62

start erl
start_erl (Command), 62

SysIOVec
erl driver , 77

SysIOVec* driver_peekq/2
erl driver , 81

void *driver_alloc/1
erl driver , 80

void *driver_realloc/2
erl driver , 80

void *handle
driver entry , 74

void add_driver_entry/1
erl driver , 82

void driver_free/1
erl driver , 80

void driver_free_binary/1
erl driver , 81

void finish/1
driver entry , 74

void output/3
driver entry , 74

void outputv/2
driver entry , 75

void ready_async/2
driver entry , 75

void ready_input/2
driver entry , 74

void ready_output/2
driver entry , 74

void set_busy_port/2
erl driver , 82

void set_port_control_flags/2
erl driver , 82

void stop/1
driver entry , 73

void timeout/1
driver entry , 75

91Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

92 Erlang Run-Time System Application (ERTS)

