
Inviso

version 0.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.4 Document System.

Contents

1 Inviso User’s Guide 1

1.1 Inviso . 1

1.1.1 Introduction . 1

1.1.2 Incarnation runtime tags . 4

1.1.3 Runtime component state and status . 5

1.1.4 The Runtime Meta Tracer . 5

1.1.5 Runtime Component Autostart . 7

1.1.6 The Dependency Property . 10

1.1.7 Overload Protection . 10

1.1.8 Merging and Formatting Logfiles . 10

1.1.9 Trace Cases . 11

2 Inviso Reference Manual 13

2.1 inviso . 22

2.2 inviso as lib . 38

2.3 inviso lfm . 40

2.4 inviso lfm tpfreader . 42

2.5 inviso rt . 44

List of Figures 49

iiiInviso Application

iv Inviso Application

Chapter 1

Inviso User’s Guide

Inviso, an Erlang trace tool.

1.1 Inviso

1.1.1 Introduction

inviso: (Latin) to go to see, visit, inspect, look at.

The Inviso trace system consists of one or several runtime components supposed to run on each Erlang
node doing tracing and one control component which can run on any node with available processor
power. Inviso may also be part of a higher layer trace tool. See the inviso-tool as an example. The
implementation is spread out over the Runtime tools and the Inviso Erlang/OTP applications. Erlang
modules necessary to run the runtime component are located in Runtime tools and therefore assumed
to be available on any node. Even though Inviso is introduced with Erlang/OTP R11B the runtime
component implementation is done with backward compatibility in mind. Meaning that it is possible to
compile and run it on older Erlang/OTP releases.

1Inviso Application

Chapter 1: Inviso User’s Guide

Figure 1.1: Inviso Trace System Architecture Overview.

This document describes the control and runtime components of the Inviso trace system.

Underlying Mechanisms

Inviso is built on Erlang trace BIFs and standard linked in trace-port drivers for efficient trace message
logging. This means that Inviso can not co-exist in runtime with any other trace tool using the trace
BIFs.

2 Inviso Application

1.1: Inviso

Trace Recepie

This is a short step-by-step description of how tracing using Inviso can be done.

1. Start the Inviso control component at any node. Preferably a node that is not participating in the
“work” done by your “system”. The control component runs independently and normally not
linked to any other process. (Prompt 2 in the example below.)

2. Add all Erlang nodes to the inviso control component where you want to trace. This is starting
runtime components on all involved Erlang nodes. Can include the node where the control
component runs as well. Note that the Runtime Tools application must be running on the nodes
where runtime components shall be started. (Prompt 1 and 3 in the example below.)

3. Initiate tracing on the added nodes. Initiating tracing means “opening” the output to where
trace-messages will be written. Most commonly this is a file. Note that it is not actually necessary
to initiate the same tracing on all nodes. It might for instance be wise to use different filenames on
different nodes. In the example below tracing is initiated on two nodes. The same node as where
the shell is running (node()) and at node2@hurin. Further both “regular” tracing (trace) as well
as trace information (ti) are specified for both nodes. (Prompt 4 in the example below).

4. If needing pid-to-alias translations, activate meta tracing on the necessary functions. This requires
that trace information was specified when initiating tracing. (Prompt 5 in the example below
illustrates using pid to locally registered name translations).

5. Set trace-patterns on the functions that shall be traced. (Prompt 6 in the example below).

6. Set process trace flags on necessary processes. Do not forget to use the timestamp flag in order to
be able to merge log files together in chronological order. (Prompt 7 in the example below).

7. Run your code. (Prompt 8 in the example below).

8. Stop tracing (opposite of initiate tracing) and clear trace-patterns on the nodes. It is actually not
necessary to stop tracing on all nodes at once. Nodes no longer of interest can be made to stop
tracing before others. (Prompt 9 in the example below stops tracing. Prompt 13 removes all trace
flags and trace patterns. Removing trace flags are really not necessary since those will be removed
when the runtime components are stopped. Removing trace patterns may many times be
necessary to “return” the node to a “clean” state from a trace perspective. Trace patterns are never
automatically cleared by the runtime system unless the Erlang module in question is reloaded.)

9. If necessary fetch the log files from the various nodes. (Prompt 10 in the example blow).

10. Merge and format the log files. (Prompt 12 in the example below).

11. Stop the runtime components. This is important if the Erlang nodes are real “live” systems, and
will not necessarily be stopped just because the tracing is completed. (Prompt 14 in the example
below).

This “recepie” is valid also when tracing in a non-distributed environment. The only difference is that
function calls not taking a node-name as argument are used. The runtime component will then of
course run on the same node as the control component.

Simple example illustrating the above listed recipe. It traces on two nodes, node1 where the control
component also runs. And node2 which is a remote node from the control components perspective.
The example uses a mixture of API-calls specifying what nodes to trace on and API functions working
on all added nodes. This is in this example interchangable since all to the control component known
nodes are participating in the same way.

Eshell V5.5 (abort with ^G)
(node1@hurin)1>application:start(runtime tools).
ok
(node1@hurin)2> inviso:start().

3Inviso Application

Chapter 1: Inviso User’s Guide

fok,<0.56.0>g
(node1@hurin)3> inviso:add nodes([node(),node2@hurin],mytag).
fok,[f’node1@hurin’,fok,newgg,

f’node2@hurin’,fok,newgg]g
(node1@hurin)4> inviso:init tracing([fnode(),[ftrace,ffile,"tracefile node1.log"gg,fti,ffile,"trace node
fok,[f’node1@hurin’,fok,[ftrace log,okg,fti log,okg]gg,

f’node2@hurin’,fok,[ftrace log,okg,fti log,okg]gg]g
(node1@hurin)5> inviso:tpm localnames([node(),node2@hurin]).
fok,[f’node1@hurin’,ffok,1g,fok,1ggg,

f’node2@hurin’,ffok,1g,fok,1ggg]g
(node1@hurin)6> inviso:tpl([node(),node2@hurin],code,which,’ ’,[]).
fok,[f’node1@hurin’,fok,[2]gg,

f’node2@hurin’,fok,[2]gg]g
(node1@hurin)7> inviso:tf(all,[call,timestamp]).
fok,[f’node1@hurin’,fok,"/"gg,

f’node2@hurin’,fok,"-"gg]g
(node1@hurin)8> code:which(ordset).
non existing
(node1@hurin)9> inviso:stop tracing().
fok,[f’node1@hurin’,fok,idlegg,

f’node2@hurin’,fok,idlegg]g
(node1@hurin)10> inviso:fetch log([node2@hurin],".","aprefix ").
fok,[f’node2@hurin’,

fcomplete,[ftrace log,[fok,"aprefix tracefile node2.log"g]g,
fti log,[fok,"aprefix trace node2.ti"g]g]gg]g

(node1@hurin)11> inviso:list logs([node()]).
fok,[f’node1@hurin’,

fok,[ftrace log,".",["tracefile node1.log"]g,
fti log,".",["trace node1.ti"]g]gg]g

(node1@hurin)12> inviso lfm:merge([fnode(),[ftrace log,["tracefile node1.log"]g, fti log,["trac
fok,15g
(node1@hurin)13> inviso:clear().
fok,[f’node1@hurin’,fok,fnew,runningggg,

f’node2@hurin’,fok,fnew,runningggg]g
(node1@hurin)14> inviso:stop nodes().
fok,[f’node2@hurin’,okg,

f’node1@hurin’,okg]g
(node1@hurin)15>

1.1.2 Incarnation runtime tags

Incarnation runtime tags are used to identify an incarnation of a runtime component. An incarnation is
one “start-up” of a runtime component on a specific Erlang node. The reason why it can sometimes be
necessary to examine the incarnation runtime tag is that a user wants to connect, adopt, an already
running runtime component. This may be the case if the runtime component has autostarted or
because the control component terminated without killing the runtime component. While the user has
been out of control of the runtime component it may very well have terminated and been restarted. If
it was restarted without the user’s knowledge, its incarnation runtime tag has most likely changed. The
user can therefore, if the current incarnation runtime tag is not what it is supposed to be, conclude that
the runtime component is not “doing” what is expected.

The runtime tag is set at runtime component start-up. This is either done when it is started manually by
a call to inviso:add nodes/X, or according to a specification in one of the autostart configuration files.

4 Inviso Application

1.1: Inviso

1.1.3 Runtime component state and status

A runtime component has a state and a status. The possible states are: new, tracing and idle. A
runtime component that is tracing has (possibly) open log files. A new runtime component has no
current tracer-data. That is it lacks any history of what it has done just recently. An idle runtime
component is no longer tracing. It does therefore have current tracer-data that describes what it did do
when it was tracing.

The status describes if the runtime component is running or suspended. A suspended runtime
component may very well be in state tracing. However the point is that it shall not generate any
processor load. It will therefore refrain from generating any trace messages.

1.1.4 The Runtime Meta Tracer

Meta tracing is a trace mechanism separate from the regular tracing. It is normally used by a trace-tool
to learn about function calls made anywhere in an Erlang node. A typical example is that there is a
possibility in Inviso to get pids translated to registered name in the final formatted trace-log (for
processes having registered names). This is done by meta-tracing on the BIF register/2 to learn about
all name/pid associations made.

Meta tracing in Inviso is done by the inviso rt meta process, which is part of the runtime component
if trace-information, ti, is initiated. See inviso:init tracing/1 [page 24] for details. The runtime meta
tracer opens and controls the so called trace information file. Translations can then be done off-line
using the associations logged in the trace information file. Currently the only type of trace information
file available is a straight binary file. A wrap-file makes no sence since pid-to-name associations made in
the beginning will most likely be lost.

The runtime meta tracer can also be used to translate pids to own identifiers. The only thing needed is
one or several association points in the form of function calls which will only be made if an association
is done in the system. The pid and own-identifier must be arguments and/or return values from the
same function call.

The runtime meta tracer can further more be used to achieve side-effects during tracing, like turning
tracing on or off.

Matching function calls with return values

It may sometimes be necessary to wait for a meta traced function to return before it can be decided
what to do. This may be due to that one piece of information to make the decision is in the arguments
to the function, the other in the return value. This kind of logic can be programmed to be executed by
the inviso meta tracer. In order for the inviso meta tracer to “remember” function-call arguments until
the function return trace message arrives, a public loop data structure is implemented. The public
loop data structure is first created when tracing is initiated (of course only when trace information is
specified in the init tracing call). The public loop data can then later be further initiated each time meta
tracing (tpm and tpm ms) is activated for a certain function.

The default public loop data structure is a tuple of size two. The first element in that tuple is used by
the predefined meta tracing for capturing locally registered names. The second element is free to use for
any other purpose. The elements of the tuple must in the default implementation be lists of tuples.
Where each sub-tuple shall represent one waiting call. The last element of that tuple must be a
now-stamp (as returned by the BIF now/0). See below for an explanation of the now-stamp. The size of
the outer most tuple may be increased as long as the term residing in the first element is left unchanged,
and all other elements follow the above described rules.

The inviso meta tracer “cleans” the public loop data structure approximately once every minute. The
reason for this is that entries in the public loop data structure may become abandoned. If for instance a

5Inviso Application

Chapter 1: Inviso User’s Guide

process crashes while executing the body of a meta traced function, no return value will be generated.
Or in other words, receiving the call meta trace-message can have caused information to have been
written into the public loop data structure. That entry will be used and removed when the return trace
meta trace-message arrives. But if the meta traced function causes an exception, no return trace
message will come. The function which normally removes the entry is then therfore never called.

The default clean-function assumes that every item in the public loop data tuple is a list. Where each
list contains tuples where the last element of those tuples are “now-stamps”. The default clean-function
considers an entry older than 30 seconds to be abandoned.

Making pid/alias entries in the ti-file

When activating meta tracing for a function for the purpose of writing pid-alias associations in the trace
information file, a call-func and possibly also a return-func is specified. These functions will be called
when a meta trace message arrives to the inviso meta tracer as a result of function calls or returns for
this meta traced function. What exactly to write in the trace information file is dictated by the merge
mechanism. This since pid-alias translations are done off line when merging log-files. See the chapter on
merging and formatting log files for more details.

Simple example where the call to the function connection:assoc id(Pid,Ref) will associated Pid
with the id Ref. We will then in a merged log-file see a translation between Pid and Ref. Actually for
all future since there is no unalias function meta traced in this example. The inviso meta tracer will
receive a meta trace message every time connection:assoc id/2 is called. When that message arrives
the meta tracer will call mytrace:call assoc id/3 which must return
fok,NewPublicLoopData,OutPutBinaryg.

-module(mytrace).

call_assoc_id(_CallingPid,[Pid,Ref],PublLoopData) ->
{ok,PublLoopData,term_to_binary({Pid,Ref,alias,now()})}.

(node1@hurin)21> inviso:tpm(connection,assoc id,2,[], fmytrace,call assoc idg).
fok,[f’node1@hurin’,fok,1gg,

f’node2@hurin’,fok,1gg]g
(node1@hurin)22>

Extending the public loop data structure.

It is of course very likely that the public loop data structure must be extended to host all functions
where the meta tracer must delay its action until the function in question returns. What is necessary is
to create your own public loop data structure at trace initialization. This is done by using the TiSpec.
TiSpec=fInitMFA,RemoveMF,CleanMFg, where InitMFA creates the structure, RemoveMF removes it
(must often not necessary unless a database, file or similar is used as storage instead of a tuple). CleanMF
is the function which will be called each every 60 seconds to go over the public loop data structure.
Following the below rules, not much programming will be needed, apart from the InitMFA:

� Make the public loop data structure a tuple of lists, where each list is a list of tuples where the
tuples represents one entry.

� Make the CallFunc (the function called each time a call meta trace message arrives for the
function in question) add a tuple to the correct list where the last element of that tuple is a
now-stamp.

� Make sure that the first element in the loop data structure tuple is left alone for the default
implementation of the handling of registered names.

6 Inviso Application

1.1: Inviso

� Use inviso rt meta:clean std publld/1 (which is exported for this purpose) as CleanMF. This
function is normally the default clean function, if not using the possibility to in detail initiate the
inner workings of the inviso meta tracer.

Simple example where tracing is initiated with a public loop data structure having 10 places for nine
(the locally registered names is mandatory) different functions to be meta traced. Note that the BIF
list to tuple/1 is used as initialization function. And that the Stdlib function lists:duplicate/2 is
used to create something for the initialization function to work on.

(node1@hurin)4> inviso:init tracing([fnode2@hurin,[ftrace,ffile,"tracefile node2.log"gg,fti,ffile,"
fok,[f’node2@hurin’,fok,[ftrace log,okg,fti log,okg]gg]g
(node1@hurin)5>

Using the inviso meta tracer to achieve side effects

Since meta tracing is independent of regular tracing and catches any function call to a particular
function made in any process, it is well suited to be used to turn things on or off during execution. That
trick is done by letting the CallFunc and (if used) ReturnFunc do these sideeffects. One must of course
remember that the inviso meta tracer is a process amongst all other processes in the system. Meaning
that the side effect is not necessarily done exactly when the meta traced function is called. Unless the
side effect can be achieved using a match specification action.

1.1.5 Runtime Component Autostart

In order to trace before any user interaction is possible, an autostart mechanism is implemented. The
runtime component is started by the top supervisor of the Runtime Tools application top supervisor.
Hence the Runtime Tools application must be part of the boot script for autostart tracing to work. The
Runtime Tools applications must of course be started before any application that is to be traced. Do
note that application startup is not entirely synchronous. Meaning that just because the application
controller has begun starting the next application, Runtime Tools is not necessarily fully up and running.

The autostart mechanism is configurable. The runtime component comes with a standard autostart
configuration, only missing two text-files to be completely operational.

Autostart Configuration

The autostart is controlled by the Runtime Tools application configuration parameter
inviso autostart mod. It must be the name of a module exporting an autostart/1 function. The
default value is inviso autostart, a module which is provided with Runtime Tools. See below [page
8] for details.

An autostart/1 function must offer the following:

autostart(RuntimeToolsArg) = {MFA,Options,Tag} | any()

RuntimeToolsArgs is the argument Arg provided to the Runtime Tools application through the
application resource file fmod,fModule,Arggg parameter.

MFA = fAutoMod,AutoFunc,AutoArgsg | any() controls how tracing will be initiated. Note that
initiating tracing is not necessarily the same as starting a runtime component. It is possible to have a
runtime component without doing any tracing. The runtime component is started as long as
autostart/1 returns the proper tuple, and Options does not for instance require a certain non-existing

7Inviso Application

Chapter 1: Inviso User’s Guide

control component. If it is not a proper tuple or there are other faults in the tuple items, the autostart
will terminate. Typically will this happen if there is no autostart/1 function.

If MFA does not properly point out a function possible to call with
spawn(AutoMod,AutoFunc,AutoArg), there will simply be no initialization. (Initialization is done by a
separate process spawned by the runtime component during autostart.) It may be worth reminding that
AutoMod must be present at the node where the runtime component is supposed to run. Not necessarily
the node where the control component usually runs.

Options is the list of options given to the runtime component. See Options in inviso:add nodes/2
[page 23].

Tag is the runtime component incarnation tag. See Tag in inviso:add nodes/2 [page 23].

The Standard Autostart Implementation

As mentioned above, Inviso comes with a complete implementation of autostart sufficient for most
situations.

inviso autostart The default autostart module is inviso autostart, provided as part of the
Runtime Tools application. Since that name is the default module name, it is not really necessary to set
the inviso autostart mod configuration parameter for the Runtime Tools application.

Its autostart/1 function reads a configuration file pointed out by the Runtime Tools application
configuration parameter inviso autostart conf. If the parameter is not present, a default file,
inviso autostart.config in the current working directory, will be consulted.

The config file must be an ascii text file with one or more tuples ended with a dot. The following
parameters are recognized:

frepeat,Ng Optional parameter where N specifies the maximum remaining autostarts. The autostart
functionality will rewrite the configuration decreasing N if present. If N==0 the autostart will be
terminated.

fmfa,fM,F,Argsgg Optional parameter controlling how initialization shall be done. The control
component will spawn a separate process to do the initializations by doing spawn(M,F,Args).

foptions,Optionsg Optional parameter specifying the options for the runtime component itself. See
Options in inviso:add nodes/2 [page 23].

ftag,Tagg Optional parameter specifying the runtime component tag. If missing the default tag will
be default tag.

Example:

{repeat,1}.
{mfa,{inviso_autostart_server,

init,
[[{tracerdata,{file,"mylogfile"}},
{cmdfiles,["a_trace_case.txt"]},
{bindings,[{’M’,mymod},{’F’,’_’},{’Arity’,’_’}]},
{translations,[]}]]}}.

8 Inviso Application

1.1: Inviso

The example file results in the start of a runtime component given no specific options. There will only
be one autostart since the repeat parameter is set to 1. Tracing will be initiated by the standard initiator
(inviso autostart server [page 9]). The initiator will initiate tracing opening a plain trace-port logfile
("mylogfile"). It will further read the "a trace case.txt" file to get instructions on what patterns
and flags to set. If there are variables mentioned in the trace-case file "a trace case.txt", it is
parameterized, the variables M, F and Arity will get the values according to bindings. There will be no
translations done, hence the trace-case file must be written using inviso rt function calls directly.

inviso autostart server To further facilitate the standard autostart implementation a default initiator
is implemented. To use it, simply specify it as mfa in the config file read by the standard autostart
module.

Its init/1 function takes one argument on the form of a list of tuples. The following tuple-parameters
are recognized:

ftracerdata,TracerDatag Specifies how tracing is initiated. See inviso:init tracing/1 [page 24] for
details on TracerData.

fcmdfiles,ListOfFileNamesg Specifies trace-case files which shall be executed to set the patterns and
flags of the trace. See the Trace Cases [page 11] chapter for more details. The files will be
executed in the order specified.

ftranslations,Translationsg Optional parameter specifying how functions in trace-case files shall
be translated. This is useful since trace-cases can be written for higher-layer Inviso tools, but must
during an autostart execute using inviso rt function calls only.

Translations=
[{{Mod1,Func1,Arity},
{Mod2,Func2,{TranslMod,TranslFunc}}},...]

TranslMod:TranslFunc(ListOfOrigArgs)->
ListOfTransformedArgs

Mod1:Func1/Arity specifies the function that shall be translated into Mod2:Func2/Arity. The
actual arguments will be translated with TranslMod:TranslFunc/1. The translation function shall
take a list of the actual arguments, and return a list of new arguments. The return-value list may
for instance have certain arguments removed, if such are not relevant to the Func2 function.
(Such arguments must actually be removed since the return-value list from the translation
function must have the correct amount of elements corresponding to the arity of Func2.)

fbindings,Bindingsg Bindings=[fVar,Valg]
Var=atom(), the name of the variable
Optional parameter specifying the actual values of variables used in the trace-cases. Bindings is a
bindings structure as used by functions in the erl eval module.

The Standard Autostart Utility Library To facilitate creating the configuration file described above,
there are functions in a module named inviso as lib which can both create new files according to
supplied arguments and update existing configuration files.

The node(s) in question must be running since the functionality in the utility library uses distributed
Erlang to access the file system.

9Inviso Application

Chapter 1: Inviso User’s Guide

1.1.6 The Dependency Property

In order to protect real “live” systems from getting a runtime component lingering around without a
control component, a dependency property can be specified at runtime component start-up. The
property specifies a dependency in milliseconds. Meaning that if the property is set to 0 (zero), the
runtime component will terminate immediately if its current control component terminates.

If a control component tries to start a runtime component at an Erlang node where there already is a
runtime component, the control component will adopt the already existing runtime component if it has
no current control component. Otherwise the control component will experience an error, not being
able to start a runtime component at that node.

It must also be noted that an autostart runtime component is running without control component, at
least before any control component adopts it.

1.1.7 Overload Protection

Since Inviso is intended to be used on real “live” systems, it is possible to protect the system against
overload, having Inviso suspend tracing should an overload situation occur.

What indicates an overload situation must be programmed and configured outside of Inviso. Inviso can
initiate an overload protection, call an overload function periodically and clean-up an overload
mechanism should it decide to terminate.

Internally inside the runtime component, suspending tracing means removing all process trace flags and
meta patterns. Reactivating tracing is outside the scoop of Inviso, but can be implemented in a tool
using Inviso.

Simple example adding a runtime component and making it protect its Erlang node from overload.

inviso:add node(my rt tag,
[foverload,ffmy ovl,checkg,

15000,
fmy ovl,start,[my port pgm]g,
fmy ovl,stop,[my port pgm]ggg]).

Immediately when the runtime component is started, it will initiate overload protection by calling
my ovl:start(my port pgm). When tracing (not when in state idle or new), the runtime component
will every 15000 milliseconds call my ovl:check/1. Depending on its return value, the runtime
component will either do nothing or suspend tracing. When the runtime component is stopped,
my ovl:stop(my port pgm) will be called.

1.1.8 Merging and Formatting Logfiles

If logging trace messages to a logfile has been used (decided when tracing is initiated) the various log
files will be located on the different Erlang nodes participating in the trace. The log files must be
merged and formatted for the following reasons:

� The various log files from the different nodes must be merged into one logfile in chronological
order (where trace messages from different nodes will be mixed). If only one Erlang node
participated in the trace, this step is obviously not necessary.

� Trace-port log files are on binary format and must in most cases be transformed in some way. This
can for instance be to a text-file format or inserted into a database for analysis.

10 Inviso Application

1.1: Inviso

� Use trace information data to translate process identifiers to aliases, both standard Erlang ones (as
registered names) as well as own invented.

The first step before any merging can take place is of course to get all log files, including any trace
information files to a location where the logfile merger can access them. This can either be done by
simply copying the files. However if the file systems on the Erlang nodes are not that easily accessed,
there is a fetch log function implemented in the runtime component. It will transfer log files using
distributed Erlang.

Inviso comes with two Erlang modules, inviso lfm and inviso lfm tpfreader, implementing a
standard log file merger and formatter. The log file merger (inviso lfm) uses a file reader process
(implemented in inviso lfm tpfreader) to access log entries in parallel. It is possible to write your
own logfile reader. This is necessary since you may have your own trace-log format and/or own trace
information log format. The logfile merger can further more be configured to use your own formatter,
customizing what to do with a trace message.

Trace messages in the log files must of course be time-stamped for the logfile merger to be capable of
correctly merging them. This means using the timestamp process trace flag.

The standard inviso log-file reader understands the following trace information file entries:

� {Pid,Alias,alias,NowStamp}

� {Pid,Alias,unalias,NowStamp}

The Pid in an alias entry must always be a proper pid. In an unalias entry it may also be the atom
undefined. The latter means that all associations involving Alias shall stop to be valid. The standard
inviso log file reader uses the now-stamp to make sure that associations are only used during time
periods in the log-file when such are valid.

1.1.9 Trace Cases

The idea behind trace cases is that someone knowledgeable of a certain system component can write a
file specifying the trace-patterns and process trace flags necessary to trace on certain items once and for
all. Hence a trace case will most likely be a series of calls to functions setting trace patterns and process
trace flags.

However, the actual Erlang nodes and values of arguments given in the trace function calls can not be
static in order for the trace cases to become useful and reusable. A trace case file must therefore be
possible to parameterize. Introducing variables that will get their values at the time of trace case
execution. It may also be the case that Inviso is used as a component in a higher layer trace tool. Trace
cases may therefore be written calling more complex functions than the low level inviso rt functions
which are available to autostart mechanisms. In a matter of fact, the inviso API itself can be
considered a higher layer. It addresses multiple nodes at once where the inviso rt API can only
address the local node.

This results in that for trace cases to be useful there must be a function call translation mechanism and
an execution environment capable of handling variable bindings.

A trace-case is a text ascii file consisting of function calls written as they could have been done in the
Erlang shell:

modulename:functionname(arg1,arg3,...).

A trace-case may contain any valid function call, including binding new variables which are used later in
the trace-case, but:

� No spawn, send or receive.

11Inviso Application

Chapter 1: Inviso User’s Guide

� No apply or similar (including mod:F(Arg1,Arg2)). This because the variable environment is not
available during the translation. Only during execution.

Example: Trace cases are expected to be written to be executed directly in an Erlang shell (by some
utility reading a text file on trace case format) calling inviso functions. The translations must then
translate inviso function calls to inviso rt function calls, since inviso is not available in the
Runtime Tools applications. It can not be assumed that any trace tools outside the Runtime Tools
application is available on the nodes. Luckily (!) the inviso rt API resembles the inviso API very
much, apart from that the inviso rt API does not take a list of nodes as an argument. Therefore in
most situations the only transformation necessary is to change from inviso to inviso rt and remove
the first argument to the function call.

Assume that we have the following trace-case file:

inviso:tpl(Nodes,mymod,’_’,’_’,MS).
inviso:tf(Nodes,all,[call,timestamp]).

For this to work in an autostart the following translation is needed:

[{{inviso,tpl,5},{inviso_rt,tpl,{erlang,tl}}},
{{inviso,tf,3},{inviso_rt,tf,{erlang,tl}}}]

Since transforming the arguments from inviso calls to inviso rt calls is simply removing the first
argument, there is no need to program any function to do this. The BIF tl/1 can be used directly.

Further there must be a variable binding for MS when executing the trace-case. It is not necessary to
have one for Nodes since that argument is removed from all function calls by the translation.

12 Inviso Application

Inviso Reference Manual

Short Summaries

� Erlang Module inviso [page 22] – Main API Module to the Inviso Tracer

� Erlang Module inviso as lib [page 38] – The Inviso Autostart Utility Library

� Erlang Module inviso lfm [page 40] – An Inviso Off-Line Logfile Merger

� Erlang Module inviso lfm tpfreader [page 42] – Inviso Standard Reader Process to
Standard Logfile Merger

� Erlang Module inviso rt [page 44] – Direct API to the Inviso Runtime Component

inviso

The following functions are exported:

� start() -> fok,pid()g | ferror,Reasong
[page 22] Start a control component at the local node

� start(Options) -> fok,pid()g | ferror,Reasong
[page 22] Start a control component at the local node

� stop() -> shutdown
[page 22] Stop the control component

� add node(RTtag) -> NodeResult | ferror,Reasong
[page 22] Starts or adopts a runtime component at the local node

� add node(RTtag,Options) -> NodeResult | ferror,Reasong
[page 22] Starts or adopts a runtime component at the local node

� add node if ref(RTtag) -> NodeResult |
ferror,fwrong reference,OtherTaggg | ferror,Reasong
[page 23] Start or adopt a runtime component at the local node, provided it has a
certain rttag

� add node if ref(RTtag,Options) -> NodeResult |
ferror,fwrong reference,OtherRefgg | ferror,Reasong
[page 23] Start or adopt a runtime component at the local node, provided it has a
certain rttag

� add nodes(Nodes,RTtag) -> fok,NodeResultsg | ferror,Reasong
[page 23] Start or adopt runtime components at some nodes

� add nodes(Nodes,RTtag,Options) -> fok,NodeResultsg | ferror,Reasong
[page 23] Start or adopt runtime components at some nodes

13Inviso Application

Inviso Reference Manual

� add nodes if ref(Nodes,RTtag) -> NodeResult | ferror,Reasong
[page 24] Start or adopt runtime components at some nodes, provided they have a
certain rttag

� add nodes if ref(Nodes,RTtag,Options) -> NodeResult | ferror,Reasong
[page 24] Start or adopt runtime components at some nodes, provided they have a
certain rttag

� stop nodes() -> fok,NodeResultsg | NodeResult
[page 24] Stop runtime components

� stop nodes(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 24] Stop runtime components

� stop all() = fok,NodeResultsg | NodeResult
[page 24] Stop both control and runtime components

� change options(Options) -> NodeResult | fok,NodeResultsg |
ferror,Reasong
[page 24] Change options for runtime components

� change options(Nodes,Options) -> fok,NodeResultsg | ferror,Reasong
[page 24] Change options for runtime components

� init tracing(TracerData) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 24] Initiate tracing

� init tracing(TracerList) -> fok,NodeResultsg | ferror,Reasong
[page 24] Initiate tracing

� init tracing(Nodes,TracerData) -> fok,NodeResultsg | ferror,Reasong
[page 24] Initiate tracing

� stop tracing(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 26] Stop tracing

� stop tracing() -> fok,NodeResultsg | NodeResult
[page 26] Stop tracing

� clear() -> fok,NodeResultsg | NodeResult
[page 27] Stop tracing and remove meta trace patterns

� clear(Nodes,Options) -> fok,NodeResultsg | ferror,Reasong
[page 27] Stop tracing and remove meta trace patterns

� clear(Options) -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 27] Stop tracing and remove meta trace patterns

� tp(Nodes,Mod,Func,Arity,MatchSpec,Opts) ->
[page 27] Set global trace patterns

� tp(Nodes,Mod,Func,Arity,MatchSpec) -> fok,NodeResultsg |
ferror,Reasong
[page 27] Set global trace patterns

� tp(Mod,Func,Arity,MatchSpec,Opts) ->
[page 27] Set global trace patterns

� tp(Mod,Func,Arity,MatchSpec) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 27] Set global trace patterns

� tp(Nodes,PatternList) -> fok,NodeResultsg | ferror,Reasong
[page 27] Set global trace patterns

14 Inviso Application

Inviso Reference Manual

� tp(PatternList) -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 27] Set global trace patterns

� tpl(Nodes,Mod,Func,Arity,MatchSpec) ->
[page 28] Set local trace patterns

� tpl(Nodes,Mod,Func,Arity,MatchSpec,Opts) -> fok,NodeResultsg |
ferror,Reasong
[page 28] Set local trace patterns

� tpl(Mod,Func,Arity,MatchSpec) ->
[page 28] Set local trace patterns

� tpl(Mod,Func,Arity,MatchSpec,Opts) -> fok,NodeResultsg | NodeResult|
ferror,Reasong
[page 28] Set local trace patterns

� tpl(Nodes,PatternList) -> fok,NodeResultsg | ferror,Reasong
[page 28] Set local trace patterns

� tpl(PatternList) -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 28] Set local trace patterns

� ctp(Nodes,Mod,Func,Arity) -> fok,NodeResultsg | ferror,Reasong
[page 28] Clear global trace patterns

� ctp(Mod,Func,Arity) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 28] Clear global trace patterns

� ctpl(Nodes,Mod,Func,Arity) -> fok,NodeResultsg | ferror,Reasong
[page 28] Clear local trace patterns

� ctpl(Mod,Funct,Arity) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 28] Clear local trace patterns

� tf(Nodes,PidSpec,FlagList) -> fok,NodeResultsg | ferror,Reasong
[page 28] Set process trace flags

� tf(PidSpec,FlagList) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 28] Set process trace flags

� tf(Nodes,TraceConfList) -> fok,NodeResultsg | ferror,Reasong
[page 28] Set process trace flags

� tf(NodeTraceConfList) -> fok,NodeResultsg | ferror,Reasong
[page 28] Set process trace flags

� tf(TraceConfList) -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 28] Set process trace flags

� ctf(Nodes,PidSpec,FlagList) -> fok,NodeResultsg | ferror,Reasong
[page 29] Clear process trace flags

� ctf(PidSpec,FlagList) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 29] Clear process trace flags

� ctf(Nodes,TraceConfList) -> fok,NodeResultsg | ferror,Reasong
[page 29] Clear process trace flags

� ctf(TraceConfList) -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 29] Clear process trace flags

15Inviso Application

Inviso Reference Manual

� ctf all(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 29] Clear all process trace flags

� ctf all() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 29] Clear all process trace flags

� init tpm(Mod,Func,Arity,CallFunc) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 29] Initialize meta tracing

� init tpm(Nodes,Mod,Func,Arity,CallFunc) -> fok,NodeResultsg |
ferror,Reasong
[page 29] Initialize meta tracing

� init tpm(Mod,Func,Arity,InitFunc,CallFunc,ReturnFunc,RemoveFunc) ->
fok,NodeResultsg | NodeResult | ferror,Reasong
[page 29] Initialize meta tracing

� init tpm(Nodes,Mod,Func,Arity,
InitFunc,CallFunc,ReturnFunc,RemoveFunc) -> fok,NodeResultsg |
ferror,Reasong
[page 29] Initialize meta tracing

� tpm(Mod,Func,Arity,MS) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 30] Activate meta tracing

� tpm(Nodes,Mod,Func,Arity,MS) -> fok,NodeResultsg | ferror,Reasong
[page 30] Activate meta tracing

� tpm(Mod,Func,Arity,MS,CallFunc) -> fok,NodeResultsg | NodeResults |
ferror,Reasong
[page 30] Activate meta tracing

� tpm(Nodes,Mod,Func,Arity,MS,CallFunc) -> fok,NodeResultsg |
ferror,Reasong
[page 30] Activate meta tracing

� tpm(Mod,Func,Arity,MS,InitFunc,CallFunc,ReturnFunc,RemoveFunc) ->
fok,NodeResultsg | NodeResults | ferror,Reasong
[page 30] Activate meta tracing

� tpm(Nodes,Mod,Func,Arity,MS,
InitFunc,CallFunc,ReturnFunc,RemoveFunc) -> fok,NodeResultsg |
ferror,Reasong
[page 30] Activate meta tracing

� tpm tracer(Mod,Func,Arity,MS) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 31] Activate meta tracing and at the same time append a ftracer,Tracerg
process trace flag to the enable list in a match specification trace action term

� tpm tracer(Nodes,Mod,Func,Arity,MS) -> fok,NodeResultsg |
ferror,Reasong
[page 31] Activate meta tracing and at the same time append a ftracer,Tracerg
process trace flag to the enable list in a match specification trace action term

� tpm tracer(Mod,Func,Arity,MS,CallFunc) -> fok,NodeResultsg |
NodeResults | ferror,Reasong
[page 31] Activate meta tracing and at the same time append a ftracer,Tracerg
process trace flag to the enable list in a match specification trace action term

16 Inviso Application

Inviso Reference Manual

� tpm tracer(Nodes,Mod,Func,Arity,MS,CallFunc) -> fok,NodeResultsg |
ferror,Reasong
[page 31] Activate meta tracing and at the same time append a ftracer,Tracerg
process trace flag to the enable list in a match specification trace action term

�
tpm tracer(Mod,Func,Arity,MS,InitFunc,CallFunc,ReturnFunc,RemoveFunc)
-> fok,NodeResultsg | NodeResults | ferror,Reasong
[page 31] Activate meta tracing and at the same time append a ftracer,Tracerg
process trace flag to the enable list in a match specification trace action term

� tpm tracer(Nodes,Mod,Func,Arity,MS,
InitFunc,CallFunc,ReturnFunc,RemoveFunc) -> fok,NodeResultsg |
ferror,Reasong
[page 31] Activate meta tracing and at the same time append a ftracer,Tracerg
process trace flag to the enable list in a match specification trace action term

� tpm ms(Mod,Func,Arity,MSname,MS) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 31] Add match specifications

� tpm ms(Nodes,Mod,Func,Arity,MSname,MS) -> fok,NodeResultsg |
ferror,Reasong
[page 31] Add match specifications

� tpm ms tracer(Mod,Func,Arity,MSname,MS) -> fok,NodeResultsg |
NodeResult | ferror,Reasong
[page 32] Add match specifications and at the same time append a ftracer,Tracerg
process trace flag to the enable list in a match specification trace action term

� tpm ms tracer(Nodes,Mod,Func,Arity,MSname,MS) -> fok,NodeResultsg |
ferror,Reasong
[page 32] Add match specifications and at the same time append a ftracer,Tracerg
process trace flag to the enable list in a match specification trace action term

� ctpm ms(Mod,Func,Arity,MSname) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 32] Remove a match specification

� ctpm ms(Nodes,Mod,Func,Arity,MSname) -> fok,NodeResultsg |
ferror,Reasong
[page 32] Remove a match specification

� ctpm(Mod,Func,Arity) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 32] Remove a meta trace pattern

� ctpm(Nodes,Mod,Func,Arity) -> fok,NodeResultsg | ferror,Reasong
[page 32] Remove a meta trace pattern

� tpm localnames() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 32] Set meta trace pattern on register/2

� tpm localnames(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 32] Set meta trace pattern on register/2

� ctpm localnames() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 33] Clear meta trace pattern on register/2

� ctpm localnames(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 33] Clear meta trace pattern on register/2

� tpm globalnames() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 33] Set meta trace pattern on global:register name/2

17Inviso Application

Inviso Reference Manual

� tpm globalnames(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 33] Set meta trace pattern on global:register name/2

� ctpm globalnames() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 33] Clear meta trace pattern on global:register name/2

� ctpm globalnames(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 33] Clear meta trace pattern on global:register name/2

� ctp all() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 33] Clear all (global and local) trace patterns

� ctp all(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 33] Clear all (global and local) trace patterns

� suspend(SReason) -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 34] Suspend runtime components

� suspend(Nodes,SReason) -> fok,NodeResultsg | ferror,Reasong
[page 34] Suspend runtime components

� cancel suspension() -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 34] Reactivate suspended runtime components

� cancel suspend(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 34] Reactivate suspended runtime components

� get status() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 34] Get status of runtime components

� get status(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 34] Get status of runtime components

� get tracerdata() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 34] Get tracerdata of runtime components

� get tracerdata(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 34] Get tracerdata of runtime components

� list logs() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 35] Get log file names associated with tracerdata

� list logs(Nodes) -> fok,NodeResultsg | ferror,Reasong
[page 35] Get log file names associated with tracerdata

� list logs(NodeTracerData) -> fok,NodeResultsg | ferror,Reasong
[page 35] Get log file names associated with tracerdata

� list logs(TracerData) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 35] Get log file names associated with tracerdata

� fetch log(LogSpecList,DestDir,Prefix) -> fok,NodeResultsg |
ferror,not distributedg | ferror,Reasong
[page 35] Fetch log files to control component node

� fetch log(DestDir,Prefix) -> fok,NodeResultsg |
ferror,not distributedg | ferror,Reasong
[page 35] Fetch log files to control component node

� delete log(Nodes,TracerData) -> fok,NodeResultsg | ferror,Reasong
[page 36] Delete log files associated with tracerdata

� delete log(NodeSpecList) -> fok,NodeResultsg | ferror,Reasong
[page 36] Delete log files associated with tracerdata

18 Inviso Application

Inviso Reference Manual

� delete log(Spec) -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 36] Delete log files associated with tracerdata

� delete log(TracerData) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 36] Delete log files associated with tracerdata

� delete log() -> fok,NodeResultsg | NodeResult | ferror,Reasong
[page 36] Delete log files associated with tracerdata

� subscribe() -> ok | ferror,Reasong
[page 36] Subscribe to Inviso events

� subscribe(Pid) -> ok | ferror,Reasong
[page 36] Subscribe to Inviso events

� unsubscribe() -> ok
[page 37] Unsubscribe to Inviso events

� unsubscribe(Pid) -> ok
[page 37] Unsubscribe to Inviso events

inviso as lib

The following functions are exported:

� setup autostart(Node, R, Opts, TracerData, CmdFiles, Bindings,
Transl, RTtag) -> ok | ferror, Reasong
[page 38] Create an autostart configuration file

� set repeat(Node, R) -> ok | ferror, Reasong
[page 39] Set the repeat parameter in the autostart file

� inhibit autostart(Node) -> ok | ferror, Reasong
[page 39] Set the repeat parameter in the autostart file to 0

inviso lfm

The following functions are exported:

� merge(Files, OutFile) ->
[page 40] Merge logfiles into one file in chronological order

� merge(Files, WorkHFun, InitHandlerData) ->
[page 40] Merge logfiles into one file in chronological order

� merge(Files, BeginHFun, WorkHFun, EndHFun, InitHandlerData) -> fok,
Countg | ferror, Reasong
[page 40] Merge logfiles into one file in chronological order

inviso lfm tpfreader

The following functions are exported:

� handle logfile sort wrapset(LogFiles) -> FileList2
[page 42] Sort logfiles in chronological order

19Inviso Application

Inviso Reference Manual

inviso rt

The following functions are exported:

� init tracing(TracerData) -> NodeResult | ferror,Reasong
[page 44] Initiate tracing

� tp(Mod,Func,Arity,MatchSpec,Opts) ->
[page 44] Set global trace patterns

� tp(Mod,Func,Arity,MatchSpec) -> NodeResult | ferror,Reasong
[page 44] Set global trace patterns

� tp(PatternList) -> NodeResult | ferror,Reasong
[page 44] Set global trace patterns

� tpl(Mod,Func,Arity,MatchSpec) ->
[page 45] Set local trace patterns

� tpl(Mod,Func,Arity,MatchSpec,Opts) -> NodeResult | ferror,Reasong
[page 45] Set local trace patterns

� tpl(PatternList) -> NodeResult | ferror,Reasong
[page 45] Set local trace patterns

� ctp(Mod,Func,Arity) -> NodeResult | ferror,Reasong
[page 45] Clear global trace patterns

� ctpl(Mod,Func,Arity) -> NodeResult | ferror,Reasong
[page 45] Clear local trace patterns

� tf(PidSpec,FlagList) -> NodeResult | ferror,Reasong
[page 45] Set process trace flags

� tf(TraceConfList) -> NodeResult | ferror,Reasong
[page 45] Set process trace flags

� ctf(PidSpec,FlagList) -> NodeResult | ferror,Reasong
[page 45] Clear process trace flags

� ctf(TraceConfList) -> NodeResult | ferror,Reasong
[page 45] Clear process trace flags

� init tpm(Mod,Func,Arity,CallFunc) -> NodeResult | ferror,Reasong
[page 45] Initialize meta tracing

� init tpm(Mod,Func,Arity,InitFunc,CallFunc,ReturnFunc,RemoveFunc) ->
NodeResult | ferror,Reasong
[page 45] Initialize meta tracing

� tpm(Mod,Func,Arity,MS) -> NodeResult | ferror,Reasong
[page 45] Activate meta tracing

� tpm(Mod,Func,Arity,MS,CallFunc) -> NodeResults | ferror,Reasong
[page 45] Activate meta tracing

� tpm(Mod,Func,Arity,MS,InitFunc,CallFunc,ReturnFunc,RemoveFunc) ->
NodeResults | ferror,Reasong
[page 46] Activate meta tracing

� tpm tracer(Mod,Func,Arity,MS) -> NodeResult | ferror,Reasong
[page 46] Activate meta tracing

� tpm tracer(Mod,Func,Arity,MS,CallFunc) -> NodeResults |
ferror,Reasong
[page 46] Activate meta tracing

20 Inviso Application

Inviso Reference Manual

�
tpm tracer(Mod,Func,Arity,MS,InitFunc,CallFunc,ReturnFunc,RemoveFunc)
-> NodeResults | ferror,Reasong
[page 46] Activate meta tracing

� tpm ms(Mod,Func,Arity,MSname,MS) ->d NodeResult | ferror,Reasong
[page 46] Add match specifications

� tpm ms tracer(Mod,Func,Arity,MSname,MS) ->d NodeResult |
ferror,Reasong
[page 46] Add match specifications

� ctpm ms(Mod,Func,Arity,MSname) -> NodeResult | ferror,Reasong
[page 46] Remove a match specification

� ctpm(Mod,Func,Arity) -> fok,NodeResultsg | NodeResult |
ferror,Reasong
[page 46] Remove a meta trace pattern

� local register() ->NodeResult | ferror,Reasong
[page 46] Set meta trace pattern on register/2

� remove local register() ->NodeResult | ferror,Reasong
[page 47] Clear meta trace pattern on register/2

� global register() ->NodeResult | ferror,Reasong
[page 47] Set meta trace pattern on global:register name/2

� remove global register() ->NodeResult | ferror,Reasong
[page 47] Clear meta trace pattern on global:register name/2

21Inviso Application

inviso Inviso Reference Manual

inviso
Erlang Module

With the inviso API runtime components can be started and tracing managed across a
network of distributed Erlang nodes, using a control component also started with
inviso API functions.

Inviso can be used both in a distributed environment and in a non-distributed. API
functions not taking a list of nodes as argument works on all started runtime
components. If it is the non-distributed case, that is the local runtime component. The
API functions taking a list of nodes as argument, or as part of one of the arguments, can
not be used in a non-distributed environment. Return values named NodeResult refers
to return values from a single Erlang node, and will therefore be the return in the
non-distributed environment.

Exports

start() -> fok,pid()g | ferror,Reasong

start(Options) -> fok,pid()g | ferror,Reasong

Types:

� Options = [Option]

Options may contain both options which will be default options to a runtime
component when started, and options to the control component. See add nodes/3
[page 23] for details on runtime component options. The control component recognizes
the following options:

fsubscribe,Pidg Making the process Pid receive Inviso events from the control
component.
Starts a control component process on the local node. A control component must
be started before runtime components can be started manually or otherwise
accessed through the inviso API.

stop() -> shutdown

Stops the control component. Runtime components are left as is. They will behave
according to their dependency values.

add node(RTtag) -> NodeResult | ferror,Reasong

add node(RTtag,Options) -> NodeResult | ferror,Reasong

Types:

� RTtag = PreviousRTtag = term()

22 Inviso Application

Inviso Reference Manual inviso

� Options = [Option]
� Option – see below
� Option = fdependency,Depg
� Dep = int() | infinity

The timeout, in milliseconds, before the runtime component will terminate if
abandoned by this control component.

� Option = foverload,Overloadg | overload
Controls how and how often overload checks shall be performed. Just overload
specifies that no loadcheck shall be performed.

� Overload = Interval | fLoadMF,Interval,InitMFA,RemoveMFAg

� LoadMF = fMod,Funcg | function()/1
� Interval = int() | infinity

Interval is the time in milliseconds between overload checks.
� InitMFA = RemoveMFA = fMod,Func,ArgListg | void

When starting up the runtime component or when changing options (see
change options/2) the overload mechanism is initialized with a call to the InitMFA
function. It shall return LoadCheckData. Every time a load check is performed,
LoadMF is called with LoadCheckData as its only argument. LoadMF shall return ok or
fsuspend,Reasong. When the runtime component is stopped or made to change
options involving changing overload-check, the RemoveMFA function is called. Its
return value is discarded.

� NodeResult = fok,NAnsg | ferror,Reasong
� NAns = new | fadopted,State,Status,PreviousRTtagg | already added
� State = new | tracing | idle
� Status = running | fsuspended,SReasong

Starts or tries to connect to an existing runtime component at the local node, regardless
if the system is distributed or not. Options will override any default options specified at
start-up of the control component.

The PreviousRTtag can indicate if the incarnation of the runtime component at the
node in question was started by “us” and then can be expected to do tracing according
to “our” instructions or not.

add node if ref(RTtag) -> NodeResult | ferror,fwrong reference,OtherTaggg |
ferror,Reasong

add node if ref(RTtag,Options) -> NodeResult | ferror,fwrong reference,OtherRefgg |
ferror,Reasong

Types:

� OtherRef = term()
rttag of the running incarnation

As add node/1,2 [page 22] but will only adopt the runtime component if its rttag is
RTtag.

add nodes(Nodes,RTtag) -> fok,NodeResultsg | ferror,Reasong

add nodes(Nodes,RTtag,Options) -> fok,NodeResultsg | ferror,Reasong

Types:

� Nodes = [Node]
� NodeResults = [fNode,NodeResultg]

23Inviso Application

inviso Inviso Reference Manual

As add node/1,2 [page 22] but for a distributed environment.

add nodes if ref(Nodes,RTtag) -> NodeResult | ferror,Reasong

add nodes if ref(Nodes,RTtag,Options) -> NodeResult | ferror,Reasong

Types:

� Nodes = [Node]
� NodeResults = [fNode,NodeResultg]

As add node if ref/1,2 [page 23] but for a distributed environment.

stop nodes() -> fok,NodeResultsg | NodeResult

stop nodes(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

Stops runtime component on Nodes. stop nodes/0 will if the control component is
running on a distributed node stop all runtime components. And if running on a non
distributed node, stop the local and only runtime component.

stop all() = fok,NodeResultsg | NodeResult

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

A combination of stop/0 [page 22] and stop nodes/0 [page 24].

change options(Options) -> NodeResult | fok,NodeResultsg | ferror,Reasong

change options(Nodes,Options) -> fok,NodeResultsg | ferror,Reasong

Types:

� Nodes = [Node]
� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

Changes the options for one or several runtime components. If for instance overload is
redefined, the previous overload will be stopped and the new started. See add node/1
[page 22] for details on Options.

init tracing(TracerData) -> fok,NodeResultsg | NodeResult | ferror,Reasong

init tracing(TracerList) -> fok,NodeResultsg | ferror,Reasong

init tracing(Nodes,TracerData) -> fok,NodeResultsg | ferror,Reasong

Types:

� TracerData = [ftrace,LogTDg [,fti,TiTDg] g] | LogTD
� LogTD = fHandlerFun,Data1g | collector | frelayer,CollectingNodeg |
fip,IPPortParametersg | ffile,FilePortParametersg

� TiTD = ffile,FileNameg | ffile,FileName,TiSpecg | frelay,Nodeg
� TiSpec = fInitMFA,RemoveMF,CleanMFg
� InitMFA = fMi,Fi,Argsig

24 Inviso Application

Inviso Reference Manual inviso

� RemoveMF = fMr,Frg | void
� CleanMF = fMc,Fcg
� Mi = Fi = Mr = Fr = Mc = Fd = atom()
� Argsi = [term()]
� TracerList = [fNode,TracerDatag]
� IPPortParameters = Portno | fPortno,Qsizeg
� Portno = tcp portno()
� Qsize = int()
� FilePortParameters = fFilename,wrap,Tail,ftime,WrapTimeg,WrapCntg |
fFileName,wrap,Tail,WrapSize,WrapCntg | fFileName,wrap,Tail,WrapSizeg |
fFileName,wrap,Tailg | FileName

� FileName = string()
� Tail = string() =/= ””
� WrapTime = WrapCnt = WrapSize = int() >0
� TracerList = [fNode,TracerDatag]
� Nodes = [Node]
� HandlerFun = function()/2;
� HandlerFun(TraceMsg,Data1) -> NewData
� CollectingNode = pid() | node()
� NodeResults = [fNode,NodeResultg]
� NodeResult = fok,LogResultsg | ferror,NReasong
� LogResults = [LogResult]
� LogResult = ftrace log,LogResg | fti log,LogResg
� LogRes = ok | ferror,Reasong

Starts the tracing at the specified nodes, meaning that the runtime components transits
from the state new or idle to tracing. For trace messages to be generated, there must
of course also be trace pattern and/or trace flags set. Such can not be set before tracing
has been initiated with init tracing/1,2.

TracerData controls how the runtime component will handle generated trace messages.
The trace tag controls how regular trace messages are handled. The ti tag controls if
and how trace information will be stored and the meta tracer will be activated. That is if
ti is omitted, no meta tracer will be started as part of the runtime component. It is
possible to have ti without trace, but most likely not useful.

The ip and file trace tracerdata instructions results in using the built in trace ip-port
and file-port respectively. relayer will result in that all regular trace messages are
forwarded to a runtime component at the specified node. Using a HandlerFun will
result in that every incoming regular trace message is applied to the HandlerFun.
collector can be used to use this runtime component to receive relayed trace messages
and print them to the shell.

The trace information can be configured to either write trace information to a plain
trace information file or to relay it to another inviso meta tracer on another node. The
inviso meta tracer is capable of matching function calls with their function returns (only
if return trace is activated in the meta trace match specification for the function in
question). This is necessary since it may not be possible to decide what to do, if
anything shall be done at all, until the return value of the function call is examined.

To be able to match calls with returns a state can be saved when detecting a function
call in a public loop data structure kept by the inviso meta tracer. The public loop data
structure is given as argument to a handler-function called whenever a meta trace

25Inviso Application

inviso Inviso Reference Manual

message arrives to the inviso meta tracer (both function calls and function returns). The
public loop data structure is first initiated by the Mi:Fi function which takes the items
in Argsi as arguments. Fi shall return the initial public loop data structure. When meta
tracing is stopped, either because tracing is stopped or because tracing is suspended, the
Mr:Fr(PublicLoopData) is called to offer a possibility to clean-up. Note that for every
function meta-tracing is activated, a public loop data modification function can be
speficied. That function will prepare the current loop data structure for this particular
function.

Further there is a risk that function call states becomes abandoned inside the public
loop data structure. This will happen if a function call is entered into the public loop
data structure, but no function return occurs. To prevent the public loop data structure
from growing infinitely the clean function Fc will periodically be called with the public
loop data structure as argument. Elements entered into the public loop data structure as
a result of a function call must contain a timestamp for the Fc to be able to conclude if
it is abandoned or not. Fc shall return a new public loop data structure.

When initiating tracing involving trace information without a TiSpec, a default public
loop data structure will be initiated to handle locally registered process aliases. The
default public loop data structure is a two-tuple where the first element is used by the
meta tracing on the BIF register/2. The second element is left for user usage.

The default public loop data structure may be extended with more element positions.
The first position must be left to the implementation of registered-name translations. If
the public loop data structure is changed no longer meeting this requirement, the
tpm localnames/0,1 [page 32] and tpm globalnames/0,1 [page 33] can no longer be
used.

A wrap files specification is used to limit the disk space consumed by the trace. The
trace is written to a limited number of files each with a limited size. The actual
filenames are Filename ++ SeqCnt ++ Tail, where SeqCnt counts as a decimal string
from 0 to WrapCnt and then around again from 0. When a trace message written to the
current file makes it longer than WrapSize, that file is closed, if the number of files in
this wrap trace is as many as WrapCnt the oldest file is deleted then a new file is opened
to become the current. Thus, when a wrap trace has been stopped, there are at most
WrapCnt trace files saved with a size of at least WrapSize (but not much bigger), except
for the last file that might even be empty. The default values are WrapSize ==
128*1024 and WrapCnt == 8.

The SeqCnt values in the filenames are all in the range 0 through WrapCnt with a gap in
the circular sequence. The gap is needed to find the end of the trace.

If the WrapSize is specified as ftime,WrapTimeg, the current file is closed when it has
been open more than WrapTime milliseconds, regardless of it being empty or not.

The ip trace driver has a queue of QSize messages waiting to be delivered. If the driver
cannot deliver messages as fast as they are produced by the runtime system, they are
dropped. The number of dropped messages are indicated in the trace log as separate
trace message.

stop tracing(Nodes) -> fok,NodeResultsg | ferror,Reasong

stop tracing() -> fok,NodeResultsg | NodeResult

Types:

� Nodes = [Node]
� NodeResults = [fNode,NodeResultg]
� NodeResult = fok,Stateg | ferror,Reasong

26 Inviso Application

Inviso Reference Manual inviso

� State = new | idle

Stops tracing on all or specified Nodes. Flushes the trace buffer if a trace-port is used,
closes the trace-port and removes all trace flags and meta-patterns. The nodes are called
in parallel.

Stopping tracing means going to state idle<c>. If the runtime component was
already in state <c>new, it will of course remain in state new (then there was no
tracing to stop).

clear() -> fok,NodeResultsg | NodeResult

clear(Nodes,Options) -> fok,NodeResultsg | ferror,Reasong

clear(Options) -> fok,NodeResultsg | NodeResult | ferror,Reasong

Types:

� Nodes = [Node]
� Options = [Option]
� Option = keep trace patterns | keep log files
� NodeResults = [fNode,NodeResultg]
� NodeResult = fok,fnew,Statusgg | ferror,Reasong
� Status = running | fsuspended,SReasong

Stops all tracing including removing meta-trace patterns. Removes all trace patterns. If
the node is tracing or idle, trace-logs belonging to the current tracerdata are removed.
Hence the node is returned to state new. Note that the node can still be suspended.

Various options can make the node keep set trace patterns and log-files. The node still
enters the new state.

tp(Nodes,Mod,Func,Arity,MatchSpec,Opts) ->

tp(Nodes,Mod,Func,Arity,MatchSpec) -> fok,NodeResultsg | ferror,Reasong

tp(Mod,Func,Arity,MatchSpec,Opts) ->

tp(Mod,Func,Arity,MatchSpec) -> fok,NodeResultsg | NodeResult | ferror,Reasong

tp(Nodes,PatternList) -> fok,NodeResultsg | ferror,Reasong

tp(PatternList) -> fok,NodeResultsg | NodeResult | ferror,Reasong

Types:

� Nodes = [Node]
� Mod = Func = atom() | ’ ’
� Arity = int() | ’ ’
� MatchSpec = true | false | [] | matchspec()
� PatternList = [Pattern],
� Pattern = fMod,Func,Arity,MatchSpec,Optsg
� Opts = [Opt]
� Opt = only loaded
� NodeResults = [NodeResult]
� NodeResult = fok,[Ans]g | ferror,Reasong
� Ans = int() | ferror,Reasong

27Inviso Application

inviso Inviso Reference Manual

Set trace pattern (global) on specified or all nodes. The integer replied if the call was
successfully describes the number of matched functions. The functions without a Nodes
argument means all nodes, in a non-distributed environment it means the local node.
Using wildcards follows the rules for wildcards of erlang:trace pattern/3. It is for
instance illegal to specify M == ’ ’ while F is not ’ ’.

When calling several nodes, the nodes are called in parallel.

The option only loaded will prevent modules not loaded (yet) into the runtime system
to become loaded just as a result of that a trace pattern is requested to be set on it.
Otherwise modules are automatically loaded if not already loaded (since the module
must be present for a trace pattern to be set on it). The latter does not apply if the
wildcard ’ ’ is used as module specification.

tpl(Nodes,Mod,Func,Arity,MatchSpec) ->

tpl(Nodes,Mod,Func,Arity,MatchSpec,Opts) -> fok,NodeResultsg | ferror,Reasong

tpl(Mod,Func,Arity,MatchSpec) ->

tpl(Mod,Func,Arity,MatchSpec,Opts) -> fok,NodeResultsg | NodeResult| ferror,Reasong

tpl(Nodes,PatternList) -> fok,NodeResultsg | ferror,Reasong

tpl(PatternList) -> fok,NodeResultsg | NodeResult | ferror,Reasong

See tp/N [page 27] function above for details on arguments and return values.

Set local trace pattern on specified functions. When calling several nodes, the nodes are
called in parallel.

ctp(Nodes,Mod,Func,Arity) -> fok,NodeResultsg | ferror,Reasong

ctp(Mod,Func,Arity) -> fok,NodeResultsg | NodeResult | ferror,Reasong

See tp/N [page 27] for argument descriptions.

Clear global trace patterns. When calling several nodes, the nodes are called in parallel.

ctpl(Nodes,Mod,Func,Arity) -> fok,NodeResultsg | ferror,Reasong

ctpl(Mod,Funct,Arity) -> fok,NodeResultsg | NodeResult | ferror,Reasong

See tp/N [page 27] for argument description.

Clear local trace patterns. When calling several nodes, the nodes are called in parallel.

tf(Nodes,PidSpec,FlagList) -> fok,NodeResultsg | ferror,Reasong

tf(PidSpec,FlagList) -> fok,NodeResultsg | NodeResult | ferror,Reasong

tf(Nodes,TraceConfList) -> fok,NodeResultsg | ferror,Reasong

tf(NodeTraceConfList) -> fok,NodeResultsg | ferror,Reasong

tf(TraceConfList) -> fok,NodeResultsg | NodeResult | ferror,Reasong

Types:

� Nodes = [Node]
� NodeTraceConfList = [fNode,TraceConfListg]
� TraceConfList = [fPidSpec,FlagListg]
� FlagList = [Flag]
� PidSpec = all | new| existing | pid() | locally registered name()
� Flag – see erlang:trace/3
� NodeResult = fok,[Ans]g | ferror,Reasong

28 Inviso Application

Inviso Reference Manual inviso

� Ans = int() | ferror,Reasong

Set process trace flags on processes on all or specified nodes. The integer returned if the
call was successful describes the matched number of processes. The functions without a
Nodes argument means all nodes, in a non-distributed environment it means the local
node.

There are many combinations which does not make much sense. For instance specifying
a certain process identifier at all nodes. Or an empty TraceConfList for all nodes.

When calling several nodes, the nodes are called in parallel.

ctf(Nodes,PidSpec,FlagList) -> fok,NodeResultsg | ferror,Reasong

ctf(PidSpec,FlagList) -> fok,NodeResultsg | NodeResult | ferror,Reasong

ctf(Nodes,TraceConfList) -> fok,NodeResultsg | ferror,Reasong

ctf(TraceConfList) -> fok,NodeResultsg | NodeResult | ferror,Reasong

See tf/N [page 28] for arguments and return value description.

Clear process trace flags on all or specified nodes. When calling several nodes, the nodes
are called in parallel.

ctf all(Nodes) -> fok,NodeResultsg | ferror,Reasong

ctf all() -> fok,NodeResultsg | NodeResult | ferror,Reasong

Types:

� Nodes = [Node]
� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

Clears all trace flags on all or specified nodes. Just for convenience.

init tpm(Mod,Func,Arity,CallFunc) -> fok,NodeResultsg | NodeResult | ferror,Reasong

init tpm(Nodes,Mod,Func,Arity,CallFunc) -> fok,NodeResultsg | ferror,Reasong

init tpm(Mod,Func,Arity,InitFunc,CallFunc,ReturnFunc,RemoveFunc) -> fok,NodeResultsg
| NodeResult | ferror,Reasong

init tpm(Nodes,Mod,Func,Arity, InitFunc,CallFunc,ReturnFunc,RemoveFunc) ->
fok,NodeResultsg | ferror,Reasong

Types:

� Mod = Func = atom()
� Arity = int()
� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong
� InitFunc,RemoveFunc = fModule,Functiong | function()/4 | void
� CallFunc = ReturnFunc = fModule,Functiong | function()/3 | void

29Inviso Application

inviso Inviso Reference Manual

Initializes Mod:Func/Arity for meta tracing without setting any meta trace patterns.
This is necessary if the named match specs will be used (see tpm ms/5,6 [page 31]).
Otherwise initialization of public loop data can be done at the same time as setting
meta trace patterns using tpm/8,9 [page 30].

Note that we can not use wildcards here (even if it is perfectly legal in Erlang). It also
sets the CallFunc and ReturnFunc for the meta traced function. That is the functions
which will be called when a function call and a return trace meta trace message
respectively arrives to the inviso meta tracer for Mod:Func/Arity.

This function is also available without InitFunc and RemoveFunc. That means that no
initialization of the public loop data structure will be done and that CallFunc and
ReturnFunc must either use already existing parts of public loop data structure or not
use it at all.

The InitFunc initializes the already existing public loop data structure for use with
Mod:Func/Arity. InitFunc(Mod,Func,Arity,PublLD) ->
fok,NewPublLD,Outputgwhere OutPut can be a binary which will then be written to
the trace information file. If it is not a binary, no output will be done. RemoveFunc will
be called when the meta tracing is cleared with ctpm/3,4 [page 32].
RemoveFunc(Mod,Func,Arity,PublLD) -> fok,NewPublLDg.

See tpm/N [page 30] for details on CallFunc and ReturnFunc.

tpm(Mod,Func,Arity,MS) -> fok,NodeResultsg | NodeResult | ferror,Reasong

tpm(Nodes,Mod,Func,Arity,MS) -> fok,NodeResultsg | ferror,Reasong

tpm(Mod,Func,Arity,MS,CallFunc) -> fok,NodeResultsg | NodeResults | ferror,Reasong

tpm(Nodes,Mod,Func,Arity,MS,CallFunc) -> fok,NodeResultsg | ferror,Reasong

tpm(Mod,Func,Arity,MS,InitFunc,CallFunc,ReturnFunc,RemoveFunc) -> fok,NodeResultsg |
NodeResults | ferror,Reasong

tpm(Nodes,Mod,Func,Arity,MS, InitFunc,CallFunc,ReturnFunc,RemoveFunc) ->
fok,NodeResultsg | ferror,Reasong

Types:

� Mod = Func = atom()
� Arity = int()
� MS = [match spec()]
� Nodes = [Node]
� InitFunc = RemoveFunc = fModule,Functiong | function()/4 | void
� CallFunc = ReturnFunc = fModule,Functiong | function()/3 | void
� NodeResults = [fNode,NodeResultg]
� NodeResult = fok,1g | fok,0g | ferror,Reasong1

Activates meta-tracing in the inviso rt meta tracer. Except when using tpm/6, tpm/8
and tpm/9 the Mod:Func/Arity must first have been initiated using init tpm/N [page
29]. When calling several nodes, the nodes are called in parallel.

CallFunc will be called every time a meta trace message arrives to the inviso meta
tracer because of a call to Func. CallFunc(CallingPid,ActualArgList,PublLD) ->
fok,NewPrivLD,Outputgwhere Output can be a binary or void. If it is a binary it will
be written to the trace information file.

ReturnFunc will be called every time a meta return trace message arrives to the inviso
meta tracer because of a return trace of a call to Func.
ReturnFunc(CallingPid,ReturnValue,PublLD) -> fok,NewPrivLD,Outputg.
Further the ReturnFunc must handle the fact that a return trace message arrives for a

30 Inviso Application

Inviso Reference Manual inviso

call which was never noticed. This because the message queue of the meta tracer may
have been emptied.

tpm tracer(Mod,Func,Arity,MS) -> fok,NodeResultsg | NodeResult | ferror,Reasong

tpm tracer(Nodes,Mod,Func,Arity,MS) -> fok,NodeResultsg | ferror,Reasong

tpm tracer(Mod,Func,Arity,MS,CallFunc) -> fok,NodeResultsg | NodeResults |
ferror,Reasong

tpm tracer(Nodes,Mod,Func,Arity,MS,CallFunc) -> fok,NodeResultsg | ferror,Reasong

tpm tracer(Mod,Func,Arity,MS,InitFunc,CallFunc,ReturnFunc,RemoveFunc) ->
fok,NodeResultsg | NodeResults | ferror,Reasong

tpm tracer(Nodes,Mod,Func,Arity,MS, InitFunc,CallFunc,ReturnFunc,RemoveFunc) ->
fok,NodeResultsg | ferror,Reasong

See tpm/X for details on arguments and return values.

Same as tpm/X but all match specs in MS containing a trace action term will have a
ftracer,Tracerg appended to its enable-list. Tracer will be the current output for
regular trace messages as specified when tracing was initiated. This function is useful
when setting a meta trace pattern on a function with the intent that its execution shall
turn tracing on for the process executing the match-spec in the meta trace pattern. The
reason the tracer process trace flag can not be explicitly written in the action term by
the user is that it may be difficult to learn its exact value for a remote node. Further
more inviso functions are made to work on several nodes at the same time, requiering
different match specs to be set for different nodes.

Simple example: We want any process executing the function mymod:init(1234) (with
the argument, exactly the integer 1234) to begin function-call tracing. In the example,
if the process is found to be one that shall start call tracing, we also first disable all
process trace flags to ensure that we have full control over what the process traces. void
in the example specifies that the meta-tracer (inviso rt meta) will not call any function
when meta trace messages for mymod:init/1 arrives. There is no need for a CallFunc
since the side-effect (start call-tracing) is achieved immediately with the match-spec.

inviso:tpm_tracer(mymod,init,1,[{[1234],[],[{trace,[all],[call]}]}],void).

This will internally, by the meta tracer on each Erlang node, be translated to:

erlang:trace_pattern({mymod,init,1},[{[1234],[],[{trace,[all],[call,{{tracer,T}}]}

Where T is the tracer for regular trace messages (most often a trace-port, but can be the
runtime component inviso rt process), and P is the meta tracer (the inviso rt meta
process).

tpm ms(Mod,Func,Arity,MSname,MS) -> fok,NodeResultsg | NodeResult | ferror,Reasong

tpm ms(Nodes,Mod,Func,Arity,MSname,MS) -> fok,NodeResultsg | ferror,Reasong

Types:

� Nodes = [Node]<v> <v>Mod = Func = atom()<v> <v>Arity = int()<v>
<v>MSname = term()<v> <v>MS = [match spec()]<v> <v>NodeResults =
[fNode,NodeResultg]<v><v>NodeResult = fok,1g | fok,0g | ferror,Reasong<v>

31Inviso Application

inviso Inviso Reference Manual

This function adds a list of match-specs to the already existing ones. It uses an internal
database to keep track of existing match-specs. This set of match specs can hereafter be
referred to with the name MSname. If the match-spec does not result in any meta traced
functions (for whatever reason), the MS is not saved in the database. The previously
known match-specs are not removed. If MSname is already in use as a name refering to a
set of match-specs for this particular meta-traced function, the previous set of
match-specs are replaced with MS.

Mod:Func/Arity must previously have been initiated in order for this function to add a
match-spec.

When calling several nodes, the nodes are called in parallel. fok,1g indicates success.

tpm ms tracer(Mod,Func,Arity,MSname,MS) -> fok,NodeResultsg | NodeResult |
ferror,Reasong

tpm ms tracer(Nodes,Mod,Func,Arity,MSname,MS) -> fok,NodeResultsg | ferror,Reasong

See tpm ms/X for details on arguments and return values, and tpm tracer/X for
explanations about the appending of ftracer,Tracerg process trace flag.

ctpm ms(Mod,Func,Arity,MSname) -> fok,NodeResultsg | NodeResult | ferror,Reasong

ctpm ms(Nodes,Mod,Func,Arity,MSname) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

Removes a named match-spec from the meta traced function. Note that it never is a
fault to remove a match spec. Not even from a function which is non existent.

When calling several nodes, the nodes are called in parallel.

ctpm(Mod,Func,Arity) -> fok,NodeResultsg | NodeResult | ferror,Reasong

ctpm(Nodes,Mod,Func,Arity) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

Removes the meta trace pattern for the function, means stops generating output for this
function. The public loop data structure may be cleared by the previously entered
RemoveFunc.

When calling several nodes, the nodes are called in parallel.

tpm localnames() -> fok,NodeResultsg | NodeResult | ferror,Reasong

tpm localnames(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = fR1,R2g
� R1 = R2 = fok,0g | fok,1g | ferror,Reasong

32 Inviso Application

Inviso Reference Manual inviso

Quick version for setting meta-trace patterns on erlang:register/2. It uses a default
CallFunc and ReturnFunc in the meta-tracer server. The main purpose of this function
is to create ti-log entries for associations between pids and registered name aliases. The
implementation uses return trace to see if the registration was successful or not, before
actually making the ti-log alias entry. Further the implementation also meta traces the
BIF unregister/1.

If both N1 and N2 is 1, function call was successful. N1 and N2 represent setting meta
trace pattern on register/2 and unregister/1.

ctpm localnames() -> fok,NodeResultsg | NodeResult | ferror,Reasong

ctpm localnames(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = fR1,R2g
� R1 = R2 = ok | ferror,Reasong

Function for removing previously set patters by tpm localnames/0 [page 32]. The two
results R1 and R2 represents that meta pattern is removed from both register/2 and
unregister/1.

tpm globalnames() -> fok,NodeResultsg | NodeResult | ferror,Reasong

tpm globalnames(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = fR1,R2g
� R1 = R2 = fok,0g | fok,1g | ferror,Reasong

Quick version for setting meta-trace patterns capable of learning the association of a pid
with a globally registered name (registered using global:register name). The
implementation meta-traces on
global:handle call(fregister,’ ’,’ ’,’ ’g,’ ’,’ ’) and
global:delete global name/2. The N1 and N2 represents the success of the two
sub-tmp calls.

ctpm globalnames() -> fok,NodeResultsg | NodeResult | ferror,Reasong

ctpm globalnames(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = fR1,R2g | ferror,Reasong
� R1 = R2 = ok | ferror,Reasong

Function for removing previously set meta patters by tpm globalnames/0,1 [page 33].
The two results R1 and R2 represents that meta pattern are removed from both
global:handle call/3 and global:delete global name/1.

ctp all() -> fok,NodeResultsg | NodeResult | ferror,Reasong

ctp all(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]

33Inviso Application

inviso Inviso Reference Manual

� NodeResult = ok | ferror,Reasong

Clears all, both global and local trace patterns. Does not clear meta trace patterns.
Equivalent to a call to ctp/3,4 [page 28] and to ctpl/3,4 [page 28] with wildcards ’ ’
for all modules, functions and arities.

suspend(SReason) -> fok,NodeResultsg | NodeResult | ferror,Reasong

suspend(Nodes,SReason) -> fok,NodeResultsg | ferror,Reasong

Types:

� SReason = term()
� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

Suspends the runtime components. SReason will become the suspend-reason replied in
for instance a get status/0,1 [page 34] call. A runtime component that becomes
suspended removes all trace flags and all meta trace patterns. In that way trace output is
no longer generated. The task of reactivating a suspended runtime component is outside
the scoop of inviso. It can for instance be implemented by a higher layer trace-tool
“remembering” all trace flags and meta patterns set.

cancel suspension() -> fok,NodeResultsg | NodeResult | ferror,Reasong

cancel suspend(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

Makes the runtime components running again (as opposite to suspended). Since
reactivating previous trace flags and meta trace patterns is outside the scoop of inviso,
cancelling suspension is simply making it possible to set trace flags and meta trace
patterns again.

get status() -> fok,NodeResultsg | NodeResult | ferror,Reasong

get status(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = fok,fState,Statusgg | ferror,Reasong
� State = new | idle | tracing
� Status = running | fsuspended,SReasong
� SReason = term()

Finds out the state and status of a runtime component. A runtime component is in state
new before it has been initiated to do any tracing the first time. There are clear-functions
which can make a runtime component become new again without having to restart. A
runtime component becomes idle after tracing is stopped.

get tracerdata() -> fok,NodeResultsg | NodeResult | ferror,Reasong

get tracerdata(Nodes) -> fok,NodeResultsg | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]

34 Inviso Application

Inviso Reference Manual inviso

� NodeResult = fok,NResultg | ferror,Reasong
� NResult = TracerData | no tracerdata

Returns the current tracerdata of a runtime component. A runtime component in state
new can not have tracerdata. An idle runtime component does have tracerdata, the last
active tracerdata. TracerData will be a term as specified to init tracing when tracing
was initiated for the runtime component.

list logs() -> fok,NodeResultsg | NodeResult | ferror,Reasong

list logs(Nodes) -> fok,NodeResultsg | ferror,Reasong

list logs(NodeTracerData) -> fok,NodeResultsg | ferror,Reasong

list logs(TracerData) -> fok,NodeResultsg | NodeResult | ferror,Reasong

Types:

� TracerData – see init tracing/1,2
� NodeResults = [fNode,NodeResultg]
� NodeResult = fok,FileListg | fok,no logg | ferror,Reasong
� FileList = [FileType]
� FileType = ftrace log,Dir,Filesg | fti log,Dir,Filesg
� Files = [FileNameWithOutPath]

Returns the actually existing log files associated with TracerData. If a tracerdata is not
specified, current tracerdata is used for that particular runtime component. Files will
be a list of one or more files should it be a wrap-set. Otherwise the it is a list of only one
filename.

This function is useful to learn the name and path of all files belonging to a trace. This
information can later be used to move those files for merging. Note that since it is
possible to ask on other tracerdata than the current, it is possible to learn filenames of
previously done traces, under the circumstances that they have not been removed.

fetch log(LogSpecList,DestDir,Prefix) -> fok,NodeResultsg | ferror,not distributedg |
ferror,Reasong

fetch log(DestDir,Prefix) -> fok,NodeResultsg | ferror,not distributedg |
ferror,Reasong

Types:

� DestDir = string()
� Prefix = string()
� LogSpecList = [LogSpec]
� LogSpec = fNode,FileSpecListg | Node | fNode,TracerDatag
� TracerData = see init tracing/1,/2
� FileSpecList = [ftrace log,Dir,FileListg,fti log,Dir,FileListg] |

[ftrace log,Dir,FileListg]
� FileList = [RemoteFileName]
� NodeResult = fConclusion,ResultFileSpecg | no log | ferror,NReasong
� NReason = own node | Reason
� Conclusion = complete | incomplete
� ResultFileSpec = [ftrace log,FileResultsg,fti log,FileResultsg]
� FileResults = [FileResult]
� FileResult = fok,FileNameg | ferror,FReasong

35Inviso Application

inviso Inviso Reference Manual

� FReason = ffile open,fposix(),FileNamegg | ffile open,fposix(),RemoteFileNamegg
| ffile open,fposix(),[DestDir,Prefix,RemoteFileName]gg |
ffile write,fposix(),FileNamegg | ftruncated,FileNameg |
ftruncated,fReason,FileNamegg

� posix() = atom()

Copies log files over distributed erlang to the control component node. This function
can only be used in a distributed system.

The resulting transferred files will have the prefix Prefix and will be located in
DestDir. The source files can either be pointed out using a FileListSpec or tracerdata.
If no files are explicitly specified, current tracerdata for that node will be used. Note
that if source files have the same name (on several nodes) they will overwrite each other
at DestDir.

delete log(Nodes,TracerData) -> fok,NodeResultsg | ferror,Reasong

delete log(NodeSpecList) -> fok,NodeResultsg | ferror,Reasong

delete log(Spec) -> fok,NodeResultsg | NodeResult | ferror,Reasong

delete log(TracerData) -> fok,NodeResultsg | NodeResult | ferror,Reasong

delete log() -> fok,NodeResultsg | NodeResult | ferror,Reasong

Types:

� Nodes = [Node]
� NodeSpecList = [fNode,Specg]
� Spec = [AbsPathFileName] | LogSpecs
� LogSpecs = [LogSpec]
� LogSpec = ftrace log,Dir,[FileNameWithoutPath]g |
fti log,Dir,[FileNameWithoutPath]g

� TracerData – see init tracing/1,/2
� NodeResults = [fNode,NodeResultg]
� NodeResult = fok,no logg | fok,LogInfosg | fok,FileInfosg
� LogInfos = [LogInfo]
� LogInfo = ftrace log,FileInfosg | fti log,FileInfosg
� FileInfos = [FileInfo]
� FileInfo = fok,FileNameg | ferror,Reasong

Deletes listed files or files corresponding to tracerdata. If no tracerdata or list of files are
specified in the call, current tracerdata at the runtime components will be used to
identify files to delete. All filenames shall be strings.

FileName can either be an absolute path or just a filename depending on if
AbsPathFileName or a LogSpec was used to identify the file.

subscribe() -> ok | ferror,Reasong

subscribe(Pid) -> ok | ferror,Reasong

Types:

� Pid = pid()

Adds Pid or self() if using subscribe/0 to the inviso-event sending list. Note that it
is possible to add a pid several times and that the Pid then will receive multiple copies
of inviso-event messages.

All events will be sent to all subscribers in the event sending list.

36 Inviso Application

Inviso Reference Manual inviso

Event = {inviso_event,ControllerPid,erlang:localtime(),Msg}
Msg = {connected, Node, {RTtag, {State,Status}}}

| {disconnected, Node, NA}
| {state_change,Node,{State,Status}}
| {port_down,Node,Reason}

Node = node() | local_runtime

Subscribing to inviso-event may be necessary for a higher layer trace-tool using inviso to
follow the runtime components. local runtime will be used for a runtime component
running in a non-distributed environment.

unsubscribe() -> ok

unsubscribe(Pid) -> ok

Removes Pid (once) from the subscription list.

37Inviso Application

inviso as lib Inviso Reference Manual

inviso as lib
Erlang Module

The purpose of the Inviso autostart utility library is to facilitate the creation and
modification of autostart configuration files used by the standard autostart.

Exports

setup autostart(Node, R, Opts, TracerData, CmdFiles, Bindings, Transl, RTtag) -> ok |
ferror, Reasong

Types:

� Node = atom()
� R = int()
� Opts – see inviso:add nodes/2,3
� TracerData – see inviso:init tracing/1,2
� CmdFiles = [CmdFile]
� CmdFile = string()
� Bindings = [fVar,Valg]
� Var = atom()
� Val = term()
� Transl = [ffM1,F1,Arityg, fM2,F2,fMt,Ftggg]
� M1 = F1 = M2 = F2 = Mt = Ft = atom()
� Arity = int()
� RTtag = term()
� Reason = term()

Creates an autostart configuration file on Node. The name of the file is automatically
deducted from consulting the Runtime Tools configuration parameters at Node.

R is the number of allowed autostarts remaining.

Opts is the options which shall be given to the runtime component. See
inviso:add nodes/2,3 [page 23].

TracerData is used when initiating tracing on this node. See inviso:init tracing/1,2
[page 24].

CmdFiles points out files containing instructions understood by the
inviso autostart server implementation of an autostart initiator.

Bindings is a list of fVar, Valg tuples, where Var is the name of a variable and Val the
actual value of the variable.

Transl means that M1:F1/Arity shall be translated into M2:F2.

38 Inviso Application

Inviso Reference Manual inviso as lib

RTtag is the incarnation tag of the runtime component. See See inviso:add nodes/2,3
[page 23].

set repeat(Node, R) -> ok | ferror, Reasong

Types:

� Node = atom()
� R = int()
� Reason = term()

Sets the repeat parameter in the autostart file at Node without changing any of its other
contents. The autostart configuration file must exist.

R is the number of allowed autostarts remaining.

inhibit autostart(Node) -> ok | ferror, Reasong

Types:

� Node = atom()
� Reason = term()

Sets the repeat parameter in the autostart file at Node to 0. Equivalent to
set repeat(Node, 0).

39Inviso Application

inviso lfm Inviso Reference Manual

inviso lfm
Erlang Module

Implements an off-line logfile merger, merging binary trace-log files from several nodes
together in chronological order. The logfile merger can also do pid-to-alias translations.

The logfile merger is supposed to be called from the Erlang shell or a higher layer trace
tool. For it to work, all logfiles and trace information files (containing the pid-alias
associations) must be located in the file system accessible from this node and organized
according to the API description.

The logfile merger starts a process, the output process, which in its turn starts one
reader process for every node it shall merge logfiles from. Note that the reason for a
process for each node is not remote communication, the logfile merger is an off-line
utility, it is to sort the logfile entries in chronological order.

The logfile merger can be customized both when it comes to the implementation of the
reader processes and the output the output process shall generate for every logfile entry.

Exports

merge(Files, OutFile) ->

merge(Files, WorkHFun, InitHandlerData) ->

merge(Files, BeginHFun, WorkHFun, EndHFun, InitHandlerData) -> fok, Countg | ferror,
Reasong

Types:

� Files = [FileDescription]
� FileDescription = FileSet | freader,RMod,RFunc,FileSetg
� FileSet = fNode, LogFilesg
� Node = atom()
� LogFiles = [ftrace log, [FileName]g | fti log, [FileName]g]
� FileName = string()
� RMod = RFunc = atom()
� OutFile = string()
� BeginHFun = fun(InitHandlerData) -> fok, NewHandlerDatag | ferror, Reasong
� WorkHFun = fun(Node, LogEntry, PidMappings, HandlerData) -> fok,

NewHandlerDatag
� LogEntry = tuple()
� PidMappings = term()
� EndHFun = fun(HandlerData) -> ok | ferror, Reasong
� Count = int()
� Reason = term()

40 Inviso Application

Inviso Reference Manual inviso lfm

Merges the logfiles in Files together into one file in chronological order. The logfile
merger consists of an output process and one or several reader processes.

Returns fok, Countg where Count is the total number of log entries process, if
successful.

When specifying LogFiles, currently the standard reader-process only supports:

� one single file

� a list of wraplog files, following the naming convention
<Prefix><Nr><Suffix>.

FileDescription == freader,RMod,RFunc,FileSetg indicates that spawn(RMod,
RFunc, [OutputPid,LogFiles]) shall create a reader process.

The output process is customized with BeginHFun, WorkHFun and EndHFun. If using
merge/2 a default output process configuration is used, basically creating a text file and
writing the output line by line. BeginHFun is called once before requesting log entries
from the reader processes. WorkHFun is called for every log entry (trace message)
LogEntry. Here the log entry typically gets written to the output. PidMappings is the
translations produced by the reader process. EndHFun is called when all reader processes
have terminated.

The standard reader process is implemented in the module inviso lfm tpreader (trace
port reader). It understands Erlang linked in trace-port driver generated trace-logs and
inviso rt meta generated trace information files.

Writing Your Own Reader Process

Writing a reader process is not that difficult. It must:

� Export an init-like function accepting two arguments, pid of the output process
and the LogFiles component. LogFiles is actually only used by the reader
processes, making it possible to redefine LogFiles if implementing an own reader
process.

� Respond to fget next entry, OutputPidg messages with fnext entry,
self(), PidMappings, NowTimeStamp, Termg or fnext entry, self(),
ferror,Reasongg.

� Terminate normally when no more log entries are available.

� Terminate on an incoming EXIT-signal from OutputPid.

The reader process must of course understand the format of a logfile written by the
runtime component.

41Inviso Application

inviso lfm tpfreader Inviso Reference Manual

inviso lfm tpfreader
Erlang Module

Implements the standard reader process to the standard logfile merger inviso lfm.

The reader process reads logfiles belonging to the same set (normally one node) in
chronological order and delivers logged trace messages one by one to the output
process. Before any trace messages are delivered, the inviso lfm tpreader
implementation reads the entire trace information file (if in use) and builds a database
over pid-to-alias associations.

The inviso lfm tpreader implementation is capable of considering that an alias may
have been used for several processes during different times. An alias may also be in use
for several pids at the same time, on purpose. If a process has generated a trace message,
all associations between that pid and aliases will be presented as the list PidMappings in
the message sent to the output process.

Exports

handle logfile sort wrapset(LogFiles) -> FileList2

Types:

� LogFiles = [ftrace log, FileListg]
� FileList = FileList2 = [FileName]
� FileName = string()

Only one ftrace log, FileListg tuple is expected in LogFiles, all other tuples are
ignored. FileList must:

� contain one single file name, or

� a list of wraplog files, following the naming convention
<Prefix><Nr><Suffix>.

Sorts the files in FileList in chronological order beginning with the oldest. Sorting is
only relevant if FileList is a list of wraplogs. The sorting is done on finding the
modulo-counter in the filename and not on filesystem timestamps.

This function is exported for convenience should an own reader process be
implemented.

42 Inviso Application

Inviso Reference Manual inviso lfm tpfreader

The Trace Information File Protocol

The format of a trace information file is dictated by the meta tracer process. The
inviso lfm tpfreader implementation of a reader process understands the following
trace information entries. Note that the inviso rt meta trace information file is on
binary format prefixing every entry with a 4 byte length indicator.

fPid, Alias, alias, NowStampg Pid = pid()
Alias = term()
NowStamp = term(), but in current implementation as returned from
erlang:now/0

This message indicates that from now on shall Pid be associated with Alias.

fMaybePid, Alias, unalias, NowStampg MaybePid = pid() | undefined
Alias = term()
NowStamp = term(), see above
This message indicates that, if MaybePid is a pid, this pid shall no longer be
associated with Alias. If it is undefined, all associations with Alias from now
shall be considered invalid.
Also note that there are many situations where unalias entries will be missing.
For instance if a process terminates without making explicit function calls
removing its associations first. This is seldom a problem unless the pid is reused.

43Inviso Application

inviso rt Inviso Reference Manual

inviso rt
Erlang Module

The inviso rt API is normally only used when programming autostart scripts or similar
mechanisms. The reason is that the runtime component is part of the Runtime tools
application and will therefore always be available. But the regular inviso API is part of
the Inviso application not necessarily available on the node doing an autostart. It is of
course possible to runt a “lean” tracer only using the runtime component manually (i.e
not through autostart). The runtime component shall otherwise be controlled through
the control component, which is accessed with the inviso API.

Exports

init tracing(TracerData) -> NodeResult | ferror,Reasong

See inviso:init tracing/2 [page 24] for details.

tp(Mod,Func,Arity,MatchSpec,Opts) ->

tp(Mod,Func,Arity,MatchSpec) -> NodeResult | ferror,Reasong

tp(PatternList) -> NodeResult | ferror,Reasong

Types:

� Mod,Func = atom() | ’ ’ | ModRegExp | fDirRegExp,ModRegExpg
� ModRegExp = regexp string()
� DirRegExp = regexp string()
� Arity = int() | ’ ’
� MatchSpec = true | false | [] | matchspec()
� PatternList = [Pattern],
� Pattern = fMod,Func,Arity,MatchSpec,Optsg
� Opts = [Opt]
� Opt = only loaded
� NodeResult = fok,[Ans]g | ferror,Reasong
� Ans = int() | ferror,Reasong

Set global trace patterns. The integer replied if the call was successfull describes the
number of matched functions. Using wildcards follows the rules for wildcards of
erlang:trace pattern. It is for instance illegal to specify M==’ ’ while F is not ’ ’.

Modules can also be specified using Erlang regular expressions as described in the
regexp module. If fDirRegExp,ModRegExpg is used, module selection will further be
restricted by that the module must be loaded from a location containing DirRegExp
somewhere in the path. This can be used to for instance trace on all modules belonging
to a certain application.

44 Inviso Application

Inviso Reference Manual inviso rt

tpl(Mod,Func,Arity,MatchSpec) ->

tpl(Mod,Func,Arity,MatchSpec,Opts) -> NodeResult | ferror,Reasong

tpl(PatternList) -> NodeResult | ferror,Reasong

See tp/N [page 44] function above for details on arguments and return values.

Set local trace pattern on specified functions.

ctp(Mod,Func,Arity) -> NodeResult | ferror,Reasong

See tp/N [page 44] for argument descriptions.

Clear global trace patterns.

ctpl(Mod,Func,Arity) -> NodeResult | ferror,Reasong

See tp/N [page 44] for argument description.

Clear local trace patterns.

tf(PidSpec,FlagList) -> NodeResult | ferror,Reasong

tf(TraceConfList) -> NodeResult | ferror,Reasong

Types:

� TraceConfList = [fPidSpec,FlagListg]
� FlagList = [Flag]
� PidSpec = all | new| existing | pid() | locally registered name()
� Flag = all process trace flags allowed.
� NodeResult = fok,[Ans]g | ferror,Reasong
� Ans = int() | ferror,Reasong

Set process trace flags. The integer returned if the call was successful describes the
matched number of processes.

ctf(PidSpec,FlagList) -> NodeResult | ferror,Reasong

ctf(TraceConfList) -> NodeResult | ferror,Reasong

See tf/1,2 [page 45] for arguments and return value description.

Clear process trace flags.

init tpm(Mod,Func,Arity,CallFunc) -> NodeResult | ferror,Reasong

init tpm(Mod,Func,Arity,InitFunc,CallFunc,ReturnFunc,RemoveFunc) -> NodeResult |
ferror,Reasong

Types:

� Mod = Func = atom()
� Arity = int()
� NodeResult = ok | ferror,Reasong
� InitFunc = RemoveFunc = fModule,Functiong | function()/4 | void

See inviso:init tpm/5,7 [page 29] for details.

tpm(Mod,Func,Arity,MS) -> NodeResult | ferror,Reasong

tpm(Mod,Func,Arity,MS,CallFunc) -> NodeResults | ferror,Reasong

45Inviso Application

inviso rt Inviso Reference Manual

tpm(Mod,Func,Arity,MS,InitFunc,CallFunc,ReturnFunc,RemoveFunc) -> NodeResults |
ferror,Reasong

Types:

� Mod = Func = atom() =/= ’ ’
� Arity = int()
� MS = match spec()
� InitFunc = CallFunc = ReturnFunc = RemoveFunc = fModule,Functiong | function()
� NodeResult = fok,1g | fok,0g | ferror,Reasong

See inviso:tpm/4,5,8 [page 30] for details.

tpm tracer(Mod,Func,Arity,MS) -> NodeResult | ferror,Reasong

tpm tracer(Mod,Func,Arity,MS,CallFunc) -> NodeResults | ferror,Reasong

tpm tracer(Mod,Func,Arity,MS,InitFunc,CallFunc,ReturnFunc,RemoveFunc) -> NodeResults
| ferror,Reasong

See inviso:tpm tracer/4,5,8 for details.

tpm ms(Mod,Func,Arity,MSname,MS) ->d NodeResult | ferror,Reasong

Types:

� Mod = Func = atom()
� Arity = int()
� MSname = term()
� MatchSpec = [match spec()]
� NodeResult = fok,1g | fok,0g | ferror,Reasong

See inviso:tpm ms/5 [page 31] for details.

tpm ms tracer(Mod,Func,Arity,MSname,MS) ->d NodeResult | ferror,Reasong

See inviso:tpm ms tracer/5 for details.

ctpm ms(Mod,Func,Arity,MSname) -> NodeResult | ferror,Reasong

Types:

� NodeResult = ok | ferror,Reasong

See inviso:ctpm ms/4 [page 32] for details.

ctpm(Mod,Func,Arity) -> fok,NodeResultsg | NodeResult | ferror,Reasong

Types:

� NodeResults = [fNode,NodeResultg]
� NodeResult = ok | ferror,Reasong

See inviso:ctpm/3 [page 32] for details.

local register() ->NodeResult | ferror,Reasong

Types:

� NodeResult = fR1,R2g
� R1 = R2 = fok,0g | fok,1g | ferror,Reasong

46 Inviso Application

Inviso Reference Manual inviso rt

See inviso:tpm localnames/0 [page 32] for details.

remove local register() ->NodeResult | ferror,Reasong

Types:

� NodeResult = fR1,R2g | ferror,Reasong
� R1 = R2 = ok | ferror,Reasong

See inviso:ctpm localnames/0 [page 33] for details.

global register() ->NodeResult | ferror,Reasong

Types:

� NodeResult = fR1,R2g | ferror,Reasong
� R1 = R2 = fok,0g | fok,1g | ferror,Reasong

See inviso:tpm globalnames/0 [page 33] for details.

remove global register() ->NodeResult | ferror,Reasong

Types:

� NodeResult = fR1,R2g | ferror,Reasong
� R1 = R2 = ok | ferror,Reasong

See inviso:ctpm globalnames/0 [page 33] for details.

47Inviso Application

inviso rt Inviso Reference Manual

48 Inviso Application

List of Figures

1.1 Inviso Trace System Architecture Overview. 2

49Inviso Application

List of Figures

50 Inviso Application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

add_node/1
inviso , 22

add_node/2
inviso , 22

add_node_if_ref/1
inviso , 23

add_node_if_ref/2
inviso , 23

add_nodes/2
inviso , 23

add_nodes/3
inviso , 23

add_nodes_if_ref/2
inviso , 24

add_nodes_if_ref/3
inviso , 24

cancel_suspend/1
inviso , 34

cancel_suspension/0
inviso , 34

change_options/1
inviso , 24

change_options/2
inviso , 24

clear/0
inviso , 27

clear/1
inviso , 27

clear/2
inviso , 27

ctf/1
inviso , 29
inviso rt , 45

ctf/2
inviso , 29
inviso rt , 45

ctf/3
inviso , 29

ctf_all/0
inviso , 29

ctf_all/1
inviso , 29

ctp/3
inviso , 28
inviso rt , 45

ctp/4
inviso , 28

ctp_all/0
inviso , 33

ctp_all/1
inviso , 33

ctpl/3
inviso , 28
inviso rt , 45

ctpl/4
inviso , 28

ctpm/3
inviso , 32
inviso rt , 46

ctpm/4
inviso , 32

ctpm_globalnames/0
inviso , 33

ctpm_globalnames/1
inviso , 33

ctpm_localnames/0
inviso , 33

51Inviso Application

Index of Modules and Functions

ctpm_localnames/1
inviso , 33

ctpm_ms/4
inviso , 32
inviso rt , 46

ctpm_ms/5
inviso , 32

delete_log/0
inviso , 36

delete_log/1
inviso , 36

delete_log/2
inviso , 36

fetch_log/2
inviso , 35

fetch_log/3
inviso , 35

get_status/0
inviso , 34

get_status/1
inviso , 34

get_tracerdata/0
inviso , 34

get_tracerdata/1
inviso , 34

global_register/0
inviso rt , 47

handle_logfile_sort_wrapset/1
inviso lfm tpfreader , 42

inhibit_autostart/1
inviso as lib , 39

init_tpm/4
inviso , 29
inviso rt , 45

init_tpm/5
inviso , 29

init_tpm/7
inviso , 29
inviso rt , 45

init_tpm/8

inviso , 29

init_tracing/1
inviso , 24
inviso rt , 44

init_tracing/2
inviso , 24

inviso
add_node/1, 22
add_node/2, 22
add_node_if_ref/1, 23
add_node_if_ref/2, 23
add_nodes/2, 23
add_nodes/3, 23
add_nodes_if_ref/2, 24
add_nodes_if_ref/3, 24
cancel_suspend/1, 34
cancel_suspension/0, 34
change_options/1, 24
change_options/2, 24
clear/0, 27
clear/1, 27
clear/2, 27
ctf/1, 29
ctf/2, 29
ctf/3, 29
ctf_all/0, 29
ctf_all/1, 29
ctp/3, 28
ctp/4, 28
ctp_all/0, 33
ctp_all/1, 33
ctpl/3, 28
ctpl/4, 28
ctpm/3, 32
ctpm/4, 32
ctpm_globalnames/0, 33
ctpm_globalnames/1, 33
ctpm_localnames/0, 33
ctpm_localnames/1, 33
ctpm_ms/4, 32
ctpm_ms/5, 32
delete_log/0, 36
delete_log/1, 36
delete_log/2, 36
fetch_log/2, 35
fetch_log/3, 35
get_status/0, 34
get_status/1, 34
get_tracerdata/0, 34
get_tracerdata/1, 34
init_tpm/4, 29

52 Inviso Application

Index of Modules and Functions

init_tpm/5, 29
init_tpm/7, 29
init_tpm/8, 29
init_tracing/1, 24
init_tracing/2, 24
list_logs/0, 35
list_logs/1, 35
start/0, 22
start/1, 22
stop/0, 22
stop_all/0, 24
stop_nodes/0, 24
stop_nodes/1, 24
stop_tracing/0, 26
stop_tracing/1, 26
subscribe/0, 36
subscribe/1, 36
suspend/1, 34
suspend/2, 34
tf/1, 28
tf/2, 28
tf/3, 28
tp/1, 27
tp/2, 27
tp/4, 27
tp/5, 27
tp/6, 27
tpl/1, 28
tpl/2, 28
tpl/4, 28
tpl/5, 28
tpl/6, 28
tpm/4, 30
tpm/5, 30
tpm/6, 30
tpm/8, 30
tpm/9, 30
tpm_globalnames/0, 33
tpm_globalnames/1, 33
tpm_localnames/0, 32
tpm_localnames/1, 32
tpm_ms/5, 31
tpm_ms/6, 31
tpm_ms_tracer/5, 32
tpm_ms_tracer/6, 32
tpm_tracer/4, 31
tpm_tracer/5, 31
tpm_tracer/6, 31
tpm_tracer/8, 31
tpm_tracer/9, 31
unsubscribe/0, 37
unsubscribe/1, 37

inviso as lib
inhibit_autostart/1, 39
set_repeat/2, 39
setup_autostart/8, 38

inviso lfm
merge/2, 40
merge/3, 40
merge/5, 40

inviso lfm tpfreader
handle_logfile_sort_wrapset/1, 42

inviso rt
ctf/1, 45
ctf/2, 45
ctp/3, 45
ctpl/3, 45
ctpm/3, 46
ctpm_ms/4, 46
global_register/0, 47
init_tpm/4, 45
init_tpm/7, 45
init_tracing/1, 44
local_register/0, 46
remove_global_register/0, 47
remove_local_register/0, 47
tf/1, 45
tf/2, 45
tp/1, 44
tp/4, 44
tp/5, 44
tpl/1, 45
tpl/4, 45
tpl/5, 45
tpm/4, 45
tpm/5, 45
tpm/8, 46
tpm_ms/5, 46
tpm_ms_tracer/5, 46
tpm_tracer/4, 46
tpm_tracer/5, 46
tpm_tracer/8, 46

list_logs/0
inviso , 35

list_logs/1
inviso , 35

local_register/0
inviso rt , 46

merge/2
inviso lfm , 40

53Inviso Application

Index of Modules and Functions

merge/3
inviso lfm , 40

merge/5
inviso lfm , 40

remove_global_register/0
inviso rt , 47

remove_local_register/0
inviso rt , 47

set_repeat/2
inviso as lib , 39

setup_autostart/8
inviso as lib , 38

start/0
inviso , 22

start/1
inviso , 22

stop/0
inviso , 22

stop_all/0
inviso , 24

stop_nodes/0
inviso , 24

stop_nodes/1
inviso , 24

stop_tracing/0
inviso , 26

stop_tracing/1
inviso , 26

subscribe/0
inviso , 36

subscribe/1
inviso , 36

suspend/1
inviso , 34

suspend/2
inviso , 34

tf/1
inviso , 28
inviso rt , 45

tf/2
inviso , 28
inviso rt , 45

tf/3
inviso , 28

tp/1
inviso , 27
inviso rt , 44

tp/2
inviso , 27

tp/4
inviso , 27
inviso rt , 44

tp/5
inviso , 27
inviso rt , 44

tp/6
inviso , 27

tpl/1
inviso , 28
inviso rt , 45

tpl/2
inviso , 28

tpl/4
inviso , 28
inviso rt , 45

tpl/5
inviso , 28
inviso rt , 45

tpl/6
inviso , 28

tpm/4
inviso , 30
inviso rt , 45

tpm/5
inviso , 30
inviso rt , 45

tpm/6
inviso , 30

tpm/8
inviso , 30
inviso rt , 46

tpm/9
inviso , 30

tpm_globalnames/0
inviso , 33

tpm_globalnames/1
inviso , 33

54 Inviso Application

Index of Modules and Functions

tpm_localnames/0
inviso , 32

tpm_localnames/1
inviso , 32

tpm_ms/5
inviso , 31
inviso rt , 46

tpm_ms/6
inviso , 31

tpm_ms_tracer/5
inviso , 32
inviso rt , 46

tpm_ms_tracer/6
inviso , 32

tpm_tracer/4
inviso , 31
inviso rt , 46

tpm_tracer/5
inviso , 31
inviso rt , 46

tpm_tracer/6
inviso , 31

tpm_tracer/8
inviso , 31
inviso rt , 46

tpm_tracer/9
inviso , 31

unsubscribe/0
inviso , 37

unsubscribe/1
inviso , 37

55Inviso Application

Index of Modules and Functions

56 Inviso Application

