
Programming Examples

version 5.6

Chapter 1

Programming Examples

This chapter contains examples on using records, funs, list comprehensions and the bit syntax.

1.1 Records

1.1.1 Records vs Tuples

The main advantage of using records instead of tuples is that fields in a record are accessed by name,
whereas fields in a tuple are accessed by position. To illustrate these differences, suppose that we want
to represent a person with the tuple fName, Address, Phoneg.

We must remember that the Name field is the first element of the tuple, the Address field is the second
element, and so on, in order to write functions which manipulate this data. For example, to extract data
from a variable P which contains such a tuple we might write the following code and then use pattern
matching to extract the relevant fields.

Name = element(1, P),
Address = element(2, P),
...

Code like this is difficult to read and understand and errors occur if we get the numbering of the
elements in the tuple wrong. If we change the data representation by re-ordering the fields, or by
adding or removing a field, then all references to the person tuple, wherever they occur, must be
checked and possibly modified.

Records allow us to refer to the fields by name and not position. We use a record instead of a tuple to
store the data. If we write a record definition of the type shown below, we can then refer to the fields of
the record by name.

-record(person, {name, phone, address}).

For example, if P is now a variable whose value is a person record, we can code as follows in order to
access the name and address fields of the records.

Name = P#person.name,
Address = P#person.address,
...

1Programming Examples

Chapter 1: Programming Examples

Internally, records are represented using tagged tuples:

{person, Name, Phone, Address}

1.1.2 Defining a Record

This definition of a person will be used in many of the examples which follow. It contains three fields,
name, phone and address. The default values for name and phone is “” and [], respectively. The default
value for address is the atom undefined, since no default value is supplied for this field:

-record(person, fname = "", phone = [], addressg).

We have to define the record in the shell in order to be able use the record syntax in the examples:

> rd(person, fname = "", phone = [], addressg).
person

This is due to the fact that record definitions are available at compile time only, not at runtime. See
shell(3) for details on records in the shell.

1.1.3 Creating a Record

A new person record is created as follows:

> #personfphone=[0,8,2,3,4,3,1,2], name="Robert"g.
#personfname = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefinedg

Since the address field was omitted, its default value is used.

There is a new feature introduced in Erlang 5.1/OTP R8B, with which you can set a value to all fields in
a record, overriding the defaults in the record specification. The special field , means “all fields not
explicitly specified”.

> #personfname = "Jakob", = ’ ’g.
#personfname = "Jakob",phone = ’ ’,address = ’ ’g

It is primarily intended to be used in ets:match/2 and mnesia:match object/3, to set record fields to
the atom ’ ’. (This is a wildcard in ets:match/2.)

1.1.4 Accessing a Record Field

> P = #personfname = "Joe", phone = [0,8,2,3,4,3,1,2]g.
#personfname = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefinedg
> P#person.name.
"Joe"

2 Programming Examples

1.1: Records

1.1.5 Updating a Record

> P1 = #personfname="Joe", phone=[1,2,3], address="A street"g.
#personfname = "Joe",phone = [1,2,3],address = "A street"g
> P2 = P1#personfname="Robert"g.
#personfname = "Robert",phone = [1,2,3],address = "A street"g

1.1.6 Type Testing

The following example shows that the guard succeeds if P is record of type person.

foo(P) when is record(P, person) -> a person;
foo() -> not a person.

1.1.7 Pattern Matching

Matching can be used in combination with records as shown in the following example:

> P3 = #personfname="Joe", phone=[0,0,7], address="A street"g.
#personfname = "Joe",phone = [0,0,7],address = "A street"g
> #personfname = Nameg = P3, Name.
"Joe"

The following function takes a list of person records and searches for the phone number of a person
with a particular name:

find_phone([#person{name=Name, phone=Phone} | _], Name) ->
{found, Phone};

find_phone([_| T], Name) ->
find_phone(T, Name);

find_phone([], Name) ->
not_found.

The fields referred to in the pattern can be given in any order.

1.1.8 Nested Records

The value of a field in a record might be an instance of a record. Retrieval of nested data can be done
stepwise, or in a single step, as shown in the following example:

-record(name, ffirst = "Robert", last = "Ericsson"g).
-record(person, fname = #namefg, phoneg).

demo() ->
P = #personfname= #nameffirst="Robert",last="Virding"g, phone=123g,
First = (P#person.name)#name.first.

In this example, demo() evaluates to "Robert".

3Programming Examples

Chapter 1: Programming Examples

1.1.9 Example

%% File: person.hrl

%%---
%% Data Type: person
%% where:
%% name: A string (default is undefined).
%% age: An integer (default is undefined).
%% phone: A list of integers (default is []).
%% dict: A dictionary containing various information
%% about the person.
%% A fKey, Valueg list (default is the empty list).
%%--
-record(person, fname, age, phone = [], dict = []g).

-module(person).
-include("person.hrl").
-compile(export all). % For test purposes only.

%% This creates an instance of a person.
%% Note: The phone number is not supplied so the
%% default value [] will be used.

make hacker without phone(Name, Age) ->
#personfname = Name, age = Age,

dict = [fcomputer knowledge, excellentg,
fdrinks, cokeg]g.

%% This demonstrates matching in arguments

print(#personfname = Name, age = Age,
phone = Phone, dict = Dictg) ->

io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
"Dictionary: ~w.~n", [Name, Age, Phone, Dict]).

%% Demonstrates type testing, selector, updating.

birthday(P) when record(P, person) ->
P#personfage = P#person.age + 1g.

register two hackers() ->
Hacker1 = make hacker without phone("Joe", 29),
OldHacker = birthday(Hacker1),
% The central register server should have
% an interface function for this.
central register server ! fregister person, Hacker1g,
central register server ! fregister person,

OldHacker#personfname = "Robert",
phone = [0,8,3,2,4,5,3,1]gg.

4 Programming Examples

1.2: Funs

1.2 Funs

1.2.1 Example 1 - map

If we want to double every element in a list, we could write a function named double:

double([H|T]) -> [2*H|double(T)];
double([]) -> [].

This function obviously doubles the argument entered as input as follows:

> double([1,2,3,4]).
[2,4,6,8]

We now add the function add one, which adds one to every element in a list:

add_one([H|T]) -> [H+1|add_one(T)];
add_one([]) -> [].

These functions, double and add one, have a very similar structure. We can exploit this fact and write a
function map which expresses this similarity:

map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, []) -> [].

We can now express the functions double and add one in terms of map as follows:

double(L) -> map(fun(X) -> 2*X end, L).
add_one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) is a function which takes a function F and a list L as arguments and returns the new list
which is obtained by applying F to each of the elements in L.

The process of abstracting out the common features of a number of different programs is called
procedural abstraction. Procedural abstraction can be used in order to write several different functions
which have a similar structure, but differ only in some minor detail. This is done as follows:

1. write one function which represents the common features of these functions

2. parameterize the difference in terms of functions which are passed as arguments to the common
function.

5Programming Examples

Chapter 1: Programming Examples

1.2.2 Example 2 - foreach

This example illustrates procedural abstraction. Initially, we show the following two examples written
as conventional functions:

1. all elements of a list are printed onto a stream

2. a message is broadcast to a list of processes.

print_list(Stream, [H|T]) ->
io:format(Stream, "~p~n", [H]),
print_list(Stream, T);

print_list(Stream, []) ->
true.

broadcast(Msg, [Pid|Pids]) ->
Pid ! Msg,
broadcast(Msg, Pids);

broadcast(_, []) ->
true.

Both these functions have a very similar structure. They both iterate over a list doing something to each
element in the list. The “something” has to be carried round as an extra argument to the function which
does this.

The function foreach expresses this similarity:

foreach(F, [H|T]) ->
F(H),
foreach(F, T);

foreach(F, []) ->
ok.

Using foreach, print list becomes:

foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

broadcast becomes:

foreach(fun(Pid) -> Pid ! M end, L)

foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) calls Fun(X) for each
element X in L and the processing occurs in the order in which the elements were defined in L. map does
not define the order in which its elements are processed.

6 Programming Examples

1.2: Funs

1.2.3 The Syntax of Funs

Funs are written with the syntax:

F = fun (Arg1, Arg2, ... ArgN) ->
...

end

This creates an anonymous function of N arguments and binds it to the variable F.

If we have already written a function in the same module and wish to pass this function as an argument,
we can use the following syntax:

F = fun FunctionName/Arity

With this form of function reference, the function which is referred to does not need to be exported
from the module.

We can also refer to a function defined in a different module with the following syntax:

F = {Module, FunctionName}

In this case, the function must be exported from the module in question.

The follow program illustrates the different ways of creating funs:

-module(fun_test).
-export([t1/0, t2/0, t3/0, t4/0, double/1]).
-import(lists, [map/2]).

t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).

t2() -> map(fun double/1, [1,2,3,4,5]).

t3() -> map({?MODULE, double}, [1,2,3,4,5]).

double(X) -> X * 2.

We can evaluate the fun F with the syntax:

F(Arg1, Arg2, ..., Argn)

To check whether a term is a fun, use the test is function/1 in a guard. Example:

f(F, Args) when is_function(F) ->
apply(F, Args);

f(N, _) when is_integer(N) ->
N.

Funs are a distinct type. The BIFs erlang:fun info/1,2 can be used to retrieve information about a fun,
and the BIF erlang:fun to list/1 returns a textual representation of a fun. The check process code/2 BIF
returns true if the process contains funs that depend on the old version of a module.

Note:
In OTP R5 and earlier releases, funs were represented using tuples.

7Programming Examples

Chapter 1: Programming Examples

1.2.4 Variable Bindings Within a Fun

The scope rules for variables which occur in funs are as follows:

� All variables which occur in the head of a fun are assumed to be “fresh” variables.

� Variables which are defined before the fun, and which occur in function calls or guard tests within
the fun, have the values they had outside the fun.

� No variables may be exported from a fun.

The following examples illustrate these rules:

print_list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
file:close(Stream).

In the above example, the variable X which is defined in the head of the fun is a new variable. The value
of the variable Stream which is used within within the fun gets its value from the file:open line.

Since any variable which occurs in the head of a fun is considered a new variable it would be equally
valid to write:

print_list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(File) ->

io:format(Stream,"~p~n",[File])
end, List),

file:close(Stream).

In this example, File is used as the new variable instead of X. This is rather silly since code in the body
of the fun cannot refer to the variable File which is defined outside the fun. Compiling this example
will yield the diagnostic:

./FileName.erl:Line: Warning: variable ’File’
shadowed in ’lambda head’

This reminds us that the variable File which is defined inside the fun collides with the variable File
which is defined outside the fun.

The rules for importing variables into a fun has the consequence that certain pattern matching
operations have to be moved into guard expressions and cannot be written in the head of the fun. For
example, we might write the following code if we intend the first clause of F to be evaluated when the
value of its argument is Y:

f(...) ->
Y = ...
map(fun(X) when X == Y ->

;
(_) ->
...

end, ...)
...

8 Programming Examples

1.2: Funs

instead of

f(...) ->
Y = ...
map(fun(Y) ->

;
(_) ->
...

end, ...)
...

1.2.5 Funs and the Module Lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed
are exported from the module lists.

map

map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, []) -> [].

map takes a function of one argument and a list of terms. It returns the list obtained by applying the
function to every argument in the list.

> Double = fun(X) -> 2 * X end.
#Fun<erl eval.6.72228031>
> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

When a new fun is defined in the shell, the value of the Fun is printed as Fun#<erl eval>.

any

any(Pred, [H|T]) ->
case Pred(H) of

true -> true;
false -> any(Pred, T)

end;
any(Pred, []) ->

false.

any takes a predicate P of one argument and a list of terms. A predicate is a function which returns
true or false. any is true if there is a term X in the list such that P(X) is true.

We define a predicate Big(X) which is true if its argument is greater that 10.

> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl eval.6.72228031>
> lists:any(Big, [1,2,3,4]).
false
> lists:any(Big, [1,2,3,12,5]).
true

9Programming Examples

Chapter 1: Programming Examples

all

all(Pred, [H|T]) ->
case Pred(H) of

true -> all(Pred, T);
false -> false

end;
all(Pred, []) ->

true.

all has the same arguments as any. It is true if the predicate applied to all elements in the list is true.

> lists:all(Big, [1,2,3,4,12,6]).
false
> lists:all(Big, [12,13,14,15]).
true

foreach

foreach(F, [H|T]) ->
F(H),
foreach(F, T);

foreach(F, []) ->
ok.

foreach takes a function of one argument and a list of terms. The function is applied to each argument
in the list. foreach returns ok. It is used for its side-effect only.

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
1
2
3
4
ok

foldl

foldl(F, Accu, [Hd|Tail]) ->
foldl(F, F(Hd, Accu), Tail);

foldl(F, Accu, []) -> Accu.

foldl takes a function of two arguments, an accumulator and a list. The function is called with two
arguments. The first argument is the successive elements in the list, the second argument is the
accumulator. The function must return a new accumulator which is used the next time the function is
called.

If we have a list of lists L = ["I","like","Erlang"], then we can sum the lengths of all the strings in
L as follows:

> L = ["I","like","Erlang"].
["I","like","Erlang"]
10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
11

10 Programming Examples

1.2: Funs

foldl works like a while loop in an imperative language:

L = ["I","like","Erlang"],
Sum = 0,
while(L != []){

Sum += length(head(L)),
L = tail(L)

end

mapfoldl

mapfoldl(F, Accu0, [Hd|Tail]) ->
{R,Accu1} = F(Hd, Accu0),
{Rs,Accu2} = mapfoldl(F, Accu1, Tail),
{[R|Rs], Accu2};

mapfoldl(F, Accu, []) -> {[], Accu}.

mapfoldl simultaneously maps and folds over a list. The following example shows how to change all
letters in L to upper case and count them.

First upcase:

> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;
(X) -> X
end.
#Fun<erl eval.6.72228031>
> Upcase word =
fun(X) ->
lists:map(Upcase, X)
end.
#Fun<erl eval.6.72228031>
> Upcase word("Erlang").
"ERLANG"
> lists:map(Upcase word, L).
["I","LIKE","ERLANG"]

Now we can do the fold and the map at the same time:

> lists:mapfoldl(fun(Word, Sum) ->
fUpcase word(Word), Sum + length(Word)g
end, 0, L).
f["I","LIKE","ERLANG"],11g

11Programming Examples

Chapter 1: Programming Examples

filter

filter(F, [H|T]) ->
case F(H) of

true -> [H|filter(F, T)];
false -> filter(F, T)

end;
filter(F, []) -> [].

filter takes a predicate of one argument and a list and returns all element in the list which satisfy the
predicate.

> lists:filter(Big, [500,12,2,45,6,7]).
[500,12,45]

When we combine maps and filters we can write very succinct code. For example, suppose we want to
define a set difference function. We want to define diff(L1, L2) to be the difference between the lists
L1 and L2. This is the list of all elements in L1 which are not contained in L2. This code can be written
as follows:

diff(L1, L2) ->
filter(fun(X) -> not member(X, L2) end, L1).

The AND intersection of the list L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

takewhile

takewhile(Pred, [H|T]) ->
case Pred(H) of

true -> [H|takewhile(Pred, T)];
false -> []

end;
takewhile(Pred, []) ->

[].

takewhile(P, L) takes elements X from a list L as long as the predicate P(X) is true.

> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]

12 Programming Examples

1.2: Funs

dropwhile

dropwhile(Pred, [H|T]) ->
case Pred(H) of

true -> dropwhile(Pred, T);
false -> [H|T]

end;
dropwhile(Pred, []) ->

[].

dropwhile is the complement of takewhile.

> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]

splitwith

splitwith(Pred, L) ->
splitwith(Pred, L, []).

splitwith(Pred, [H|T], L) ->
case Pred(H) of

true -> splitwith(Pred, T, [H|L]);
false -> {reverse(L), [H|T]}

end;
splitwith(Pred, [], L) ->

{reverse(L), []}.

splitwith(P, L) splits the list L into the two sub-lists fL1, L2g, where L = takewhile(P, L) and L2
= dropwhile(P, L).

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
f[200,500,45],[5,3,45,6]g

1.2.6 Funs Which Return Funs

So far, this section has only described functions which take funs as arguments. It is also possible to write
more powerful functions which themselves return funs. The following examples illustrate these type of
functions.

Simple Higher Order Functions

Adder(X) is a function which, given X, returns a new function G such that G(K) returns K + X.

> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl eval.6.72228031>
> Add6 = Adder(6).
#Fun<erl eval.6.72228031>
> Add6(10).
16

13Programming Examples

Chapter 1: Programming Examples

Infinite Lists

The idea is to write something like:

-module(lazy).
-export([ints_from/1]).
ints_from(N) ->

fun() ->
[N|ints_from(N+1)]

end.

Then we can proceed as follows:

> XX = lazy:ints from(1).
#Fun<lazy.0.29874839>
> XX().
[1|#Fun<lazy.0.29874839>]
> hd(XX()).
1
> Y = tl(XX()).
#Fun<lazy.0.29874839>
> hd(Y()).
2

etc. - this is an example of “lazy embedding”.

Parsing

The following examples show parsers of the following type:

Parser(Toks) -> fok, Tree, Toks1g | fail

Toks is the list of tokens to be parsed. A successful parse returns fok, Tree, Toks1g, where Tree is a
parse tree and Toks1 is a tail of Tree which contains symbols encountered after the structure which was
correctly parsed. Otherwise fail is returned.

The example which follows illustrates a simple, functional parser which parses the grammar:

(a | b) & (c | d)

The following code defines a function pconst(X) in the module funparse, which returns a fun which
parses a list of tokens.

pconst(X) ->
fun (T) ->

case T of
[X|T1] -> {ok, {const, X}, T1};
_ -> fail

end
end.

This function can be used as follows:

14 Programming Examples

1.2: Funs

> P1 = funparse:pconst(a).
#Fun<funparse.0.22674075>
> P1([a,b,c]).
fok,fconst,ag,[b,c]g
> P1([x,y,z]).
fail

Next, we define the two higher order functions pand and por which combine primitive parsers to
produce more complex parsers. Firstly pand:

pand(P1, P2) ->
fun (T) ->

case P1(T) of
{ok, R1, T1} ->

case P2(T1) of
{ok, R2, T2} ->

{ok, {’and’, R1, R2}};
fail ->

fail
end;

fail ->
fail

end
end.

Given a parser P1 for grammar G1, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for
the grammar which consists of sequences of tokens which satisfy G1 followed by sequences of tokens
which satisfy G2.

por(P1, P2) returns a parser for the language described by the grammar G1 or G2.

por(P1, P2) ->
fun (T) ->

case P1(T) of
{ok, R, T1} ->

{ok, {’or’,1,R}, T1};
fail ->

case P2(T) of
{ok, R1, T1} ->

{ok, {’or’,2,R1}, T1};
fail ->

fail
end

end
end.

The original problem was to parse the grammar (a | b) & (c | d). The following code addresses this
problem:

grammar() ->
pand(

por(pconst(a), pconst(b)),
por(pconst(c), pconst(d))).

15Programming Examples

Chapter 1: Programming Examples

The following code adds a parser interface to the grammar:

parse(List) ->
(grammar())(List).

We can test this parser as follows:

> funparse:parse([a,c]).
fok,f’and’,f’or’,1,fconst,agg,f’or’,1,fconst,cgggg
> funparse:parse([a,d]).
fok,f’and’,f’or’,1,fconst,agg,f’or’,2,fconst,dgggg
> funparse:parse([b,c]).
fok,f’and’,f’or’,2,fconst,bgg,f’or’,1,fconst,cgggg
> funparse:parse([b,d]).
fok,f’and’,f’or’,2,fconst,bgg,f’or’,2,fconst,dgggg
> funparse:parse([a,b]).
fail

1.3 List Comprehensions

1.3.1 Simple Examples

We start with a simple example:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].
[a,4,b,5,6]

This should be read as follows:

The list of X such that X is taken from the list [1,2,a,...] and X is greater than 3.

The notation X <- [1,2,a,...] is a generator and the expression X > 3 is a filter.

An additional filter can be added in order to restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

> [fX, Yg || X <- [1,2,3], Y <- [a,b]].
[f1,ag,f1,bg,f2,ag,f2,bg,f3,ag,f3,bg]

16 Programming Examples

1.3: List Comprehensions

1.3.2 Quick Sort

The well known quick sort routine can be written as follows:

sort([Pivot|T]) ->
sort([X || X <- T, X < Pivot]) ++
[Pivot] ++
sort([X || X <- T, X >= Pivot]);

sort([]) -> [].

The expression [X || X <- T, X < Pivot] is the list of all elements in T, which are less than Pivot.

[X || X <- T, X >= Pivot] is the list of all elements in T, which are greater or equal to Pivot.

To sort a list, we isolate the first element in the list and split the list into two sub-lists. The first sub-list
contains all elements which are smaller than the first element in the list, the second contains all
elements which are greater than or equal to the first element in the list. We then sort the sub-lists and
combine the results.

1.3.3 Permutations

The following example generates all permutations of the elements in a list:

perms([]) -> [[]];
perms(L) -> [[H|T] || H <- L, T <- perms(L--[H])].

We take take H from L in all possible ways. The result is the set of all lists [H|T], where T is the set of all
possible permutations of L with H removed.

> perms([b,u,g]).
[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

1.3.4 Pythagorean Triplets

Pythagorean triplets are sets of integers fA,B,Cg such that A**2 + B**2 = C**2.

The function pyth(N) generates a list of all integers fA,B,Cg such that A**2 + B**2 = C**2 and where
the sum of the sides is equal to or less than N.

pyth(N) ->
[{A,B,C} ||

A <- lists:seq(1,N),
B <- lists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*B == C*C

].

17Programming Examples

Chapter 1: Programming Examples

> pyth(3).
[].
> pyth(11).
[].
> pyth(12).
[f3,4,5g,f4,3,5g]
> pyth(50).
[f3,4,5g,
f4,3,5g,
f5,12,13g,
f6,8,10g,
f8,6,10g,
f8,15,17g,
f9,12,15g,
f12,5,13g,
f12,9,15g,
f12,16,20g,
f15,8,17g,
f16,12,20g]

The following code reduces the search space and is more efficient:

pyth1(N) ->
[{A,B,C} ||

A <- lists:seq(1,N-2),
B <- lists:seq(A+1,N-1),
C <- lists:seq(B+1,N),
A+B+C =< N,
A*A+B*B == C*C].

1.3.5 Simplifications with List Comprehensions

As an example, list comprehensions can be used to simplify some of the functions in lists.erl:

append(L) -> [X || L1 <- L, X <- L1].
map(Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) -> [X || X <- L, Pred(X)].

1.3.6 Variable Bindings in List Comprehensions

The scope rules for variables which occur in list comprehensions are as follows:

� all variables which occur in a generator pattern are assumed to be “fresh” variables

� any variables which are defined before the list comprehension and which are used in filters have
the values they had before the list comprehension

� no variables may be exported from a list comprehension.

As an example of these rules, suppose we want to write the function select, which selects certain
elements from a list of tuples. We might write select(X, L) -> [Y || fX, Yg <- L]. with the
intention of extracting all tuples from L where the first item is X.

Compiling this yields the following diagnostic:

18 Programming Examples

1.4: Bit Syntax

./FileName.erl:Line: Warning: variable ’X’ shadowed in generate

This diagnostic warns us that the variable X in the pattern is not the same variable as the variable X
which occurs in the function head.

Evaluating select yields the following result:

> select(b,[fa,1g,fb,2g,fc,3g,fb,7g]).
[1,2,3,7]

This result is not what we wanted. To achieve the desired effect we must write select as follows:

select(X, L) -> [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into the filter. This now
works as expected:

> select(b,[fa,1g,fb,2g,fc,3g,fb,7g]).
[2,7]

One consequence of the rules for importing variables into a list comprehensions is that certain pattern
matching operations have to be moved into the filters and cannot be written directly in the generators.
To illustrate this, do not write as follows:

f(...) ->
Y = ...
[Expression || PatternInvolving Y <- Expr, ...]
...

Instead, write as follows:

f(...) ->
Y = ...
[Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]
...

1.4 Bit Syntax

1.4.1 Introduction

In Erlang a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the
following syntax:

<<E1, E2, ... En>>

A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to be able to, from a high level,
construct a binary,

Bin = <<E1, E2, ... En>>

in which case all elements must be bound, or to match a binary,

19Programming Examples

Chapter 1: Programming Examples

<<E1, E2, ... En>> = Bin

where Bin is bound, and where the elements are bound or unbound, as in any match.

In R12B, a Bin need not consist of a whole number of bytes.

A bitstring is a sequence of zero or more bits, where the number of bits doesn’t need to be divisible by
8. If the number of bits is divisible by 8, the bitstring is also a binary.

Each element specifies a certain segment of the bitstring. A segment is a set of contiguous bits of the
binary (not necessarily on a byte boundary). The first element specifies the initial segment, the second
element specifies the following segment etc.

The following examples illustrate how binaries are constructed or matched, and how elements and tails
are specified.

Examples

Example 1: A binary can be constructed from a set of constants or a string literal:

Bin11 = <<1, 17, 42>>,
Bin12 = <<"abc">>

yields binaries of size 3; binary to list(Bin11) evaluates to [1, 17, 42], and
binary to list(Bin12) evaluates to [97, 98, 99].

Example 2: Similarly, a binary can be constructed from a set of bound variables:

A = 1, B = 17, C = 42,
Bin2 = <<A, B, C:16>>

yields a binary of size 4, and binary to list(Bin2) evaluates to [1, 17, 00, 42] too. Here we used
a size expression for the variable C in order to specify a 16-bits segment of Bin2.

Example 3: A Bin can also be used for matching: if D, E, and F are unbound variables, and Bin2 is bound
as in the former example,

<<D:16, E, F/binary>> = Bin2

yields D = 273, E = 00, and F binds to a binary of size 1: binary to list(F) = [42].

Example 4: The following is a more elaborate example of matching, where Dgram is bound to the
consecutive bytes of an IP datagram of IP protocol version 4, and where we want to extract the header
and the data of the datagram:

20 Programming Examples

1.4: Bit Syntax

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = size(Dgram),
case Dgram of

<<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
ID:16, Flgs:3, FragOff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->

OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>> = RestDgram,

...
end.

Here the segment corresponding to the Opts variable has a type modifier specifying that Opts should
bind to a binary. All other variables have the default type equal to unsigned integer.

An IP datagram header is of variable length, and its length - measured in the number of 32-bit words -
is given in the segment corresponding to HLen, the minimum value of which is 5. It is the segment
corresponding to Opts that is variable: if HLen is equal to 5, Opts will be an empty binary.

The tail variables RestDgram and Data bind to binaries, as all tail variables do. Both may bind to empty
binaries.

If the first 4-bits segment of Dgram is not equal to 4, or if HLen is less than 5, or if the size of Dgram is
less than 4*HLen, the match of Dgram fails.

1.4.2 A Lexical Note

Note that “B=<<1>>” will be interpreted as “B =< <1>>”, which is a syntax error. The correct way
to write the expression is “B = <<1>>”.

1.4.3 Segments

Each segment has the following general syntax:

Value:Size/TypeSpecifierList

Both the Size and the TypeSpecifier or both may be omitted; thus the following variations are
allowed:

Value

Value:Size

Value/TypeSpecifierList

Default values will be used for missing specifications. The default values are described in the section
Defaults [page 22].

Used in binary construction, the Value part is any expression. Used in binary matching, the Value part
must be a literal or variable. You can read more about the Value part in the section about constructing
binaries and matching binaries.

The Size part of the segment multiplied by the unit in the TypeSpecifierList (described below)
gives the number of bits for the segment. In construction, Size is any expression that evaluates to an
integer. In matching, Size must be a constant expression or a variable.

The TypeSpecifierList is a list of type specifiers separated by hyphens.

21Programming Examples

Chapter 1: Programming Examples

Type The type can be integer, float, or binary.

Signedness The signedness specification can be either signed or unsigned. Note that signedness only
matters for matching.

Endianness The endianness specification can be either big, little, or native. Native-endian means
that the endian will be resolved at load time to be either big-endian or little-endian, depending on
what is “native” for the CPU that the Erlang machine is run on.

Unit The unit size is given as unit:IntegerLiteral. The allowed range is 1-256. It will be multiplied
by the Size specifier to give the effective size of the segment. In R12B, the unit size specifies the
alignment for binary segments without size (examples will follow).

Example:

X:4/little-signed-integer-unit:8

This element has a total size of 4*8 = 32 bits, and it contains a signed integer in little-endian order.

1.4.4 Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the
value is a literal. For instance, the default type in ’<<3.14>>’ is integer, not float.

The default Size depends on the type. For integer it is 8. For float it is 64. For binary it is all of the
binary. In matching, this default value is only valid for the very last element. All other binary elements
in matching must have a size specification.

The default unit depends on the the type. For integer, float, and bitstring it is 1. For binary it is 8.

The default signedness is unsigned.

The default endianness is big.

1.4.5 Constructing Binaries and Bitstrings

This section describes the rules for constructing binaries using the bit syntax. Unlike when constructing
lists or tuples, the construction of a binary can fail with a badarg exception.

There can be zero or more segments in a binary to be constructed. The expression ’<<>>’ constructs a
zero length binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual
segments of type integer and float. For binaries and bitstrings without size, the unit specifies the
alignment. Since the default alignment for the binary type is 8, the size of a binary segment must be a
multiple of 8 bits (i.e. only whole bytes). Example:

<<Bin/binary,Bitstring/bitstring>>

22 Programming Examples

1.4: Bit Syntax

The variable Bin must contain a whole number of bytes, because the binary type defaults to unit:8. A
badarg exception will be generated if Bin would consist of (for instance) 17 bits.

On the other hand, the variable Bitstring may consist of any number of bits, for instance 0, 1, 8, 11,
17, 42, and so on, because the default unit for bitstrings is 1.

Warning:
For clarity, it is recommended not to change the unit size for binaries, but to use binary when you
need byte alignment, and bitstring when you need bit alignment.

The following example

<<X:1,Y:6>>

will successfully construct a bitstring of 7 bits. (Provided that all of X and Y are integers.)

As noted earlier, segments have the following general syntax:

Value:Size/TypeSpecifierList

When constructing binaries, Value and Size can be any Erlang expression. However, for syntactical
reasons, both Value and Size must be enclosed in parenthesis if the expression consists of anything
more than a single literal or variable. The following gives a compiler syntax error:

<<X+1:8>>

This expression must be rewritten to

<<(X+1):8>>

in order to be accepted by the compiler.

Including Literal Strings

As syntactic sugar, an literal string may be written instead of a element.

<<"hello">>

which is syntactic sugar for

<<$h,$e,$l,$l,$o>>

23Programming Examples

Chapter 1: Programming Examples

1.4.6 Matching Binaries

This section describes the rules for matching binaries using the bit syntax.

There can be zero or more segments in a binary pattern. A binary pattern can occur in every place
patterns are allowed, also inside other patterns. Binary patterns cannot be nested.

The pattern ’<<>>’ matches a zero length binary.

Each segment in a binary can consist of zero or more bits.

A segment of type binary must have a size evenly divisible by 8 (or divisible by the unit size, if the unit
size has been changed).

A segment of type bitstring has no restrictions on the size.

As noted earlier, segments have the following general syntax:

Value:Size/TypeSpecifierList

When matching Value value must be either a variable or an integer or floating point literal. Expressions
are not allowed.

Size must be an integer literal, or a previously bound variable. Note that the following is not allowed:

foo(N, <<X:N,T/binary>>) ->
{X,T}.

The two occurrences of N are not related. The compiler will complain that the N in the size field is
unbound.

The correct way to write this example is like this:

foo(N, Bin) ->
<<X:N,T/binary>> = Bin,
{X,T}.

Getting the Rest of the Binary or Bitstring

To match out the rest of a binary, specify a binary field without size:

foo(<<A:8,Rest/binary>>) ->

The size of the tail must be evenly divisible by 8.

To match out the rest of a bitstring, specify a field without size:

foo(<<A:8,Rest/bitstring>>) ->

There is no restriction on the number of bits in the tail.

24 Programming Examples

1.4: Bit Syntax

1.4.7 Appending to a Binary

In R12B, the following function for creating a binary out of a list of triples of integers is now efficient:

triples_to_bin(T) ->
triples_to_bin(T, <<>>).

triples_to_bin([{X,Y,Z} | T], Acc) ->
triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>); % inefficient before R12B

triples_to_bin([], Acc) ->
Acc.

In previous releases, this function was highly inefficient, because the binary constructed so far (Acc) was
copied in each recursion step. That is no longer the case. See the Efficiency Guide for more information.

25Programming Examples

Chapter 1: Programming Examples

26 Programming Examples

