Kernel Application (KERNEL)

version 2.12

Typeset in IATEX from SGML source using the DocBuilder-0.9.7 Document System.

Contents

1 Kernel Reference Manual 1
11 Kernel 32
1.2 application L 36
1.3 auth . . . e e 45
14 COOB . o o 47
15 disklog 56
1.6 erl_bootserver 70
1.7 erl.ddll e 72
1.8 erl_prim_loader 87
1.9 erlang e 90
1.10 errorhandler L e 164
1.11 errorlogger e 166
1.2 file . .. e e 173
113 genssCtp . . . o o o e e 196
114 gen_tCp . . . o o o o e e 209
115 gen_udp 216
116 global 219
1.17 global_group 224
118 heart 228
1.19 Nt . . . e 230
1.20 0nit . .. e 241
121 netladm 246
1.22 netkernel e e 249
123 05 o o e 253
124 packages 256
125 PO2 . o e 259
126 IPC . o o e 261
127 SEQEraCe 268
128 USEI . . o o o e e 276
1.29 wrapdog_reader L 277

Kernel Application (KERNEL) i

1.30
1.31
1.32

zlib .

app .
config

Kernel Application (KERNEL)

Kernel Reference Manual

Short Summaries

e Application kernel [page 32] — The Kernel Application

e Erlang Module application [page 36] — Generic OTP application functions
e Erlang Module auth [page 45] - Erlang Network Authentication Server

e Erlang Module code [page 47] — Erlang Code Server

e Erlang Module disk_log [page 56] — A disk based term logging facility

e Erlang Module erl_boot_server [page 70] — Boot Server for Other Erlang Machines
e Erlang Module erl_ddll [page 72] — Dynamic Driver Loader and Linker

e Erlang Module erl_prim_loader [page 87] — Low Level Erlang Loader

e Erlang Module erlang [page 90] — The Erlang BIFs

e Erlang Module error_handler [page 164] — Default System Error Handler
e Erlang Module error_logger [page 166] — Erlang Error Logger

e Erlang Module file [page 173] - File Interface Module

e Erlang Module gen_sctp [page 196] — The gen_sctp module provides functions for
communicating with sockets using the SCTP protocol.

e Erlang Module gen_tcp [page 209] - Interface to TCP/IP sockets
e Erlang Module gen_udp [page 216] - Interface to UDP sockets
e Erlang Module global [page 219] — A Global Name Registration Facility

e Erlang Module global_group [page 224] — Grouping Nodes to Global Name
Registration Groups

e Erlang Module heart [page 228] — Heartbeat Monitoring of an Erlang Runtime
System

e Erlang Module inet [page 230] — Access to TCP/IP Protocols

e Erlang Module init [page 241] — Coordination of System Startup

e Erlang Module net_adm [page 246] — Various Erlang Net Administration Routines
e Erlang Module net_kernel [page 249] — Erlang Networking Kernel

e Erlang Module os [page 253] — Operating System Specific Functions

e Erlang Module packages [page 256] — Packages in Erlang

e Erlang Module pg2 [page 259] — Distributed Named Process Groups

e Erlang Module rpc [page 261] — Remote Procedure Call Services

e Erlang Module seq_trace [page 268] — Sequential Tracing of Messages

Kernel Application (KERNEL) 1

Kernel Reference Manual

Erlang Module user [page 276] — Standard I/O Server

Erlang Module wrap_log_reader [page 277] — A function to read internally
formatted wrap disk logs

Erlang Module zlib [page 279] — Zlib Compression interface.

File app [page 288] — Application resource file.
File config [page 291] — Configuration file.

kernel

No functions are exported.

application
The following functions are exported:
e get_all_env() -> Env

[page 36] Get the configuration parameters for an application

e get_all env(Application) -> Env
[page 36] Get the configuration parameters for an application

e get_all key() -> {ok, Keys} | []
[page 36] Get the application specification keys

e get_all key(Application) -> {ok, Keys} | undefined
[page 36] Get the application specification keys

e get_application() -> {ok, Application} | undefined
[page 37] Get the name of an application containing a certain process or module

e get_application(Pid | Module) -> {ok, Application} | undefined
[page 37] Get the name of an application containing a certain process or module

e get_env(Par) -> {ok, Val} | undefined
[page 37] Get the value of a configuration parameter

e get_env(Application, Par) -> {ok, Val} | undefined
[page 37] Get the value of a configuration parameter

e get key(Key) -> {ok, Val} | undefined
[page 37] Get the value of an application specification key

e get key(Application, Key) -> {ok, Val} | undefined
[page 37] Get the value of an application specification key

e load(AppDescr) -> ok | {error, Reason}
[page 37] Load an application

e load(AppDescr, Distributed) -> ok | {error, Reason}
[page 37] Load an application

e loaded applications() -> [{Application, Description, Vsn}]
[page 38] Get the currently loaded applications

e permit(Application, Bool) -> ok | {error, Reason}
[page 38] Change an application’s permission to run on a node.

e set_env(Application, Par, Val) -> ok
[page 39] Set the value of a configuration parameter

Kernel Application (KERNEL)

Kernel Reference Manual

e set_env(Application, Par, Val, Timeout) -> ok
[page 39] Set the value of a configuration parameter

e start(Application) -> ok | {error, Reason}
[page 39] Load and start an application

e start(Application, Type) -> ok | {error, Reason}
[page 39] Load and start an application

e start_type() -> StartType | local | undefined
[page 40] Get the start type of an ongoing application startup.

e stop(Application) -> ok | {error, Reason}
[page 40] Stop an application

e takeover(Application, Type) -> ok | {error, Reason}
[page 41] Take over a distributed application

e unload(Application) -> ok | {error, Reason}
[page 41] Unload an application

e unset_env(Application, Par) -> ok
[page 41] Unset the value of a configuration parameter

e unset_env(Application, Par, Timeout) -> ok
[page 41] Unset the value of a configuration parameter

e which_applications() -> [{Application, Description, Vsn}]
[page 42] Get the currently running applications

e which_applications(Timeout) -> [{Application, Description, Vsn}]
[page 42] Get the currently running applications

e Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} |
{error, Reason}

[page 42] Start an application

e Module:start_phase(Phase, StartType, PhaseArgs) -> ok | {error,
Reason}
[page 43] Extended start of an application

e Module:prep_stop(State) -> NewState
[page 43] Prepare an application for termination

e Module:stop(State)
[page 44] Clean up after termination of an application

e Module:config change(Changed, New, Removed) -> ok
[page 44] Update the configuration parameters for an application.

auth

The following functions are exported:

e is_auth(Node) -> yes | no
[page 45] Status of communication authorization (deprecated)

e cookie() -> Cookie
[page 45] Magic cookie for local node (deprecated)

e cookie(TheCookie) -> true
[page 45] Set the magic for the local node (deprecated)

e node_cookie([Node, Cookie]) -> yes | no
[page 45] Set the magic cookie for a node and verify authorization (deprecated)

e node_cookie(Node, Cookie) -> yes | no
[page 45] Set the magic cookie for a node and verify authorization (deprecated)

Kernel Application (KERNEL) 3

Kernel Reference Manual

code

The following functions are exported:
e set_path(Path) -> true | {error, What}
[page 49] Set the code server search path

e get_path() -> Path
[page 49] Return the code server search path

e add_path(Dir) -> true | {error, What}
[page 49] Add a directory to the end of the code path

e add_pathz(Dir) -> true | {error, What}
[page 49] Add a directory to the end of the code path

e add_patha(Dir) -> true | {error, What}
[page 49] Add a directory to the beginning of the code path

e add_paths(Dirs) -> ok
[page 49] Add directories to the end of the code path

e add_pathsz(Dirs) -> ok
[page 49] Add directories to the end of the code path

e add_pathsa(Dirs) -> ok
[page 50] Add directories to the beginning of the code path

e del path(Name | Dir) -> true | false | {error, What}
[page 50] Delete a directory from the code path

e replace path(Name, Dir) -> true | {error, What}
[page 50] Replace a directory with another in the code path

e load file(Module) -> {module, Module} | {error, What}
[page 50] Load a module

e load_abs(Filename) -> {module, Module} | {error, What}
[page 51] Load a module, residing in a given file

e ensure_loaded(Module) -> {module, Module} | {error, What}
[page 51] Ensure that a module is loaded

e load binary(Module, Filename, Binary) -> {module, Module} | {error,
What }
[page 51] Load object code for a module

e delete(Module) -> true | false
[page 51] Removes current code for a module

e purge(Module) -> true | false
[page 52] Removes old code for a module

e soft_purge(Module) -> true | false
[page 52] Removes old code for a module, unless no process uses it

e is loaded(Module) -> {file, Loaded} | false
[page 52] Check if a module is loaded

e all loaded() -> [{Module, Loaded}]
[page 52] Get all loaded modules

e which(Module) -> Which
[page 52] The object code file of a module

e get_object_code(Module) -> {Module, Binary, Filename} | error
[page 53] Get the object code for a module

Kernel Application (KERNEL)

Kernel Reference Manual

root_dir() -> string()

[page 53] Root directory of Erlang/OTP
lib.dir() -> string(

[page 53] Library directory of Erlang/OTP

lib_dir(Name) -> string() | {error, bad name}
[page 53] Library directory for an application

compiler dir() -> string()
[page 54] Library directory for the compiler

priv.dir(Name) -> string() | {error, bad name}
[page 54] Priv directory for an application

objfile_extension() -> ".beam"
[page 54] Obiject code file extension

stick dir(Dir) -> ok | {error, What}
[page 54] Mark a directory as sticky

unstick-dir(Dir) -> ok | {error, What}
[page 54] Remove a sticky directory mark

rehash() -> ok
[page 55] Rehash or create code path cache

where_is_file(Filename) -> Absname | non_existing
[page 55] Full name of a file located in the code path

clash() -> ok
[page 55] Searche for modules with identical names.

disk_log

The following functions are exported:

accessible logs() -> {[Locallog], [DistributedLog]}
[page 58] Return the accessible disk logs on the current node.

alog(Log, Term)
[page 58] Asynchronously log an item onto a disk log.

balog(Log, Bytes) -> ok | {error, Reason}
[page 58] Asynchronously log an item onto a disk log.

alog_terms(Log, TermList)
[page 58] Asynchronously log several items onto a disk log.

balog terms(Log, BytesList) -> ok | {error, Reason}
[page 58] Asynchronously log several items onto a disk log.

block(Log)
[page 59] Block a disk log.

block(Log, QueueLogRecords) -> ok | {error, Reason}
[page 59] Block a disk log.

change header (Log, Header) -> ok | {error, Reason}
[page 59] Change the head or head_func option for an owner of a disk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}
[page 59] Change the notify option for an owner of a disk log.

change_size(Log, Size) -> ok | {error, Reason}

[page 60] Change the size of an open disk log.

Kernel Application (KERNEL)

Kernel Reference Manual

chunk(Log, Continuation)
[page 60] Read a chunk of items written to a disk log.

chunk(Log, Continuation, N) -> {Continuation2, Terms} |
{Continuation2, Terms, Badbytes} | eof | {error, Reason}
[page 60] Read a chunk of items written to a disk log.

bchunk (Log, Continuation)
[page 60] Read a chunk of items written to a disk log.

bchunk(Log, Continuation, N) -> {Continuation2, Binaries}
{Continuation2, Binaries, Badbytes} | eof | {error, Reason}
[page 60] Read a chunk of items written to a disk log.

chunk_info(Continuation) -> Infolist | {error, Reason}
[page 61] Return information about a chunk continuation of a disk log.

chunk step(Log, Continuation, Step) -> {ok, Continuation2} | {error,
Reason}
[page 61] Step forward or backward among the wrap log files of a disk log.

close(Log) -> ok | {error, Reason}
[page 62] Close a disk log.

format_error (Error) -> Chars
[page 62] Return an English description of a disk log error reply.

inc_wrap_file(Log) -> ok | {error, Reason}
[page 62] Change to the next wrap log file of a disk log.

info(Log) -> Infolist | {error, no_such_log}
[page 62] Return information about a disk log.

lclose(Log)
[page 64] Close a disk log on one node.

lclose(Log, Node) -> ok | {error, Reason}
[page 64] Close a disk log on one node.

log(Log, Term)
[page 64] Log an item onto a disk log.

blog(Log, Bytes) -> ok | {error, Reason}
[page 64] Log an item onto a disk log.

log_terms(Log, TermList)
[page 64] Log several items onto a disk log.

blog terms(Log, BytesList) -> ok | {error, Reason}
[page 65] Log several items onto a disk log.

open(ArgL) -> OpenRet | DistOpenRet
[page 65] Open a disk log file.

pid2name (Pid) -> {ok, Log} | undefined
[page 68] Return the name of the disk log handled by a pid.

reopen(Log, File)
[page 68] Reopen a disk log and save the old log.

reopen(Log, File, Head)
[page 68] Reopen a disk log and save the old log.

breopen(Log, File, BHead) -> ok | {error, Reason}
[page 68] Reopen a disk log and save the old log.

sync(Log) -> ok | {error, Reason}
[page 69] Flush the contents of a disk log to the disk.

Kernel Application (KERNEL)

Kernel Reference Manual

e truncate(Log)
[page 69] Truncate a disk log.

e truncate(Log, Head)
[page 69] Truncate a disk log.

e btruncate(Log, BHead) -> ok | {error, Reason}
[page 69] Truncate a disk log.

e unblock(Log) -> ok | {error, Reason}
[page 69] Unblock a disk log.

erl_boot_server

The following functions are exported:
e start(Slaves) -> {ok, Pid} | {error, What}
[page 70] Start the boot server

start_link(Slaves) -> {ok, Pid} | {error, What}
[page 70] Start the boot server and links the caller

add_slave(Slave) -> ok | {error, What}
[page 70] Add a slave to the list of allowed slaves

delete_slave(Slave) -> ok | {error, What}
[page 70] Delete a slave from the list of allowed slaves

which slaves() -> Slaves
[page 71] Return the current list of allowed slave hosts

erl_ddll

The following functions are exported:
e demonitor(MonitorRef) -> ok
[page 74] Remove a monitor for a driver

e info() -> AllInfolList
[page 74] Retrieve information about all drivers

e info(Name) -> Infolist
[page 74] Retrieve information about one driver

e info(Name, Tag) -> Value
[page 75] Retrieve specific information about one driver

e load(Path, Name) -> ok | {error, ErrorDesc}
[page 75] Load a driver

e load driver(Path, Name) -> ok | {error, ErrorDesc}
[page 76] Load a driver

e monitor(Tag, Item) -> MonitorRef
[page 77] Create a monitor for a driver

e reload(Path, Name) -> ok | {error, ErrorDesc}

[page 78] Replace a driver

e reload driver(Path, Name) -> ok | {error, ErrorDesc}
[page 79] Replace a driver

Kernel Application (KERNEL)

Kernel Reference Manual

e try load(Path, Name, OptionList) -> {ok,Status} | {ok,
PendingStatus, Ref} | {error, ErrorDesc}
[page 80] Load a driver

e try_unload(Name, OptionList) -> {ok,Status} | {ok, PendingStatus,
Ref} | {error, ErrorAtom}
[page 83] Unload a driver

e unload(Name) -> ok | {error, ErrorDesc}
[page 85] Unload a driver

e unload driver(Name) -> ok | {error, ErrorDesc}
[page 85] Unload a driver

e loaded drivers() -> {ok, Drivers}
[page 86] List loaded drivers

e format_error (ErrorDesc) -> string()
[page 86] Format an error descriptor

erl_prim_loader

The following functions are exported:
e start(Id, Loader, Hosts) -> {ok, Pid} | {error, What}
[page 87] Start the Erlang low level loader

e get_file(File) -> {ok, Bin, FullName} | error
[page 87] Get a file

e get_path() -> {ok, Path}
[page 88] Get the path set in the loader

e set_path(Path) -> ok
[page 88] Set the path of the loader

erlang

The following functions are exported:
e abs(Number) -> int() | float()
[page 90] Arithmetical absolute value

e erlang:append element(Tuplel, Term) -> Tuple2
[page 90] Append an extra element to a tuple

e apply(Fun, Args) -> term() | empty()
[page 91] Apply a function to an argument list

e apply(Module, Function, Args) -> term() | empty()
[page 91] Apply a function to an argument list

e atom_to_list(Atom) -> string()
[page 92] Text representation of an atom

e binary to_list(Binary) -> [char()]
[page 92] Convert a binary to a list

e binary to_list(Binary, Start, Stop) -> [char()]
[page 92] Convert part of a binary to a list

e bitstring to_list(Bitstring) -> [char() |bitstring()]
[page 92] Convert a bitstring to a list

Kernel Application (KERNEL)

Kernel Reference Manual

e binary_to_term(Binary) -> term()
[page 92] Decode an Erlang external term format binary

e bit_size(Bitstring) -> int()
[page 92] Return the size of a bitstring

e erlang:bump_reductions(Reductions) -> void()
[page 93] Increment the reduction counter

e byte_size(Bitstring) -> int()
[page 93] Return the size of a bitstring (or binary)

e erlang:cancel timer(TimerRef) -> Time | false
[page 93] Cancel a timer

e check process_code(Pid, Module) -> bool()
[page 93] Check if a process is executing old code for a module

e concat_binary(ListOfBinaries)
[page 94] Concatenate a list of binaries (deprecated)

e date() -> {Year, Month, Day}
[page 94] Current date

e deletemodule(Module) -> true | undefined
[page 94] Make the current code for a module old

e erlang:demonitor(MonitorRef) -> true
[page 94] Stop monitoring

e erlang:demonitor (MonitorRef, OptionList) -> true

[page 95] Stop monitoring

e disconnectnode(Node) -> bool() | ignored
[page 96] Force the disconnection of a node

e erlang:display(Term) -> true
[page 96] Print a term on standard output

e element (N, Tuple) -> term()
[page 96] Get Nth element of a tuple

e erase() -> [{Key, Val}l
[page 96] Return and delete the process dictionary

e erase(Key) -> Val | undefined
[page 97] Return and delete a value from the process dictionary

e erlang:error(Reason)
[page 97] Stop execution with a given reason

e erlang:error(Reason, Args)
[page 97] Stop execution with a given reason

e exit(Reason)
[page 97] Stop execution with a given reason

e exit(Pid, Reason) -> true
[page 98] Send an exit signal to a process

e erlang:fault(Reason)
[page 98] Stop execution with a given reason

e erlang:fault(Reason, Args)
[page 98] Stop execution with a given reason

e float(Number) -> float()
[page 98] Convert a number to a float

Kernel Application (KERNEL)

Kernel Reference Manual

float_to_list(Float) -> string()
[page 99] Text representation of a float

erlang:fun info(Fun) -> [{Item, Info}]
[page 99] Information about a fun

erlang:fun info(Fun, Item) -> {Item, Info}
[page 100] Information about a fun

erlang:fun to_list(Fun) -> string()
[page 100] Text representation of a fun

erlang:function exported(Module, Function, Arity) -> bool()
[page 100] Check if a function is exported and loaded

garbage_collect() -> true
[page 101] Force an immediate garbage collection of the calling process

garbage_collect(Pid) -> bool()

[page 101] Force an immediate garbage collection of a process
get() -> [{Key, Val}l

[page 101] Return the process dictionary

get(Key) -> Val | undefined
[page 101] Return a value from the process dictionary

erlang:get_cookie() -> Cookie | nocookie

[page 101] Get the magic cookie of the local node

get keys(Val) -> [Key]

[page 101] Return a list of keys from the process dictionary

erlang:get_stacktrace() -> [{Module, Function, Arity | Args}]
[page 102] Get the call stack back-trace of the last exception

group_leader () -> GroupLeader

[page 102] Get the group leader for the calling process

group_leader (GroupLeader, Pid) -> true

[page 102] Set the group leader for a process

halt()

[page 102] Halt the Erlang runtime system and indicate normal exit to the calling
environment

halt(Status)
[page 103] Halt the Erlang runtime system

erlang:hash(Term, Range) -> Hash
[page 103] Hash function (deprecated)

hd(List) -> term()
[page 103] Head of a list

erlang:hibernate(Module, Function, Args)
[page 103] Hibernate a process until a message is sent to it

integer_to_list(Integer) -> string()
[page 104] Text representation of an integer

erlang:integer_to_list(Integer, Base) -> string()
[page 104] Text representation of an integer

iolist_to_binary(IoListOrBinary) -> binary()
[page 104] Convert an iolist to a binary

iolist_size(Item) -> int()
[page 105] Size of an iolist

Kernel Application (KERNEL)

Kernel Reference Manual

e is alive() -> bool()
[page 105] Check whether the local node is alive

e is_atom(Term) -> bool()
[page 105] Check whether a term is an atom

e is binary(Term) -> bool()
[page 105] Check whether a term is a binary

e is bitstring(Term) -> bool()
[page 105] Check whether a term is a bitstring

e is_boolean(Term) -> bool()
[page 105] Check whether a term is a boolean

e erlang:is builtin(Module, Function, Arity) -> bool()
[page 106] Check if a function is a BIF implemented in C

e is float(Term) -> bool()
[page 106] Check whether a term is a float

e is_function(Term) -> bool()
[page 106] Check whether a term is a fun

o is_function(Term, Arity) -> bool()
[page 106] Check whether a term is a fun with a given arity

e is_integer(Term) -> bool()
[page 106] Check whether a term is an integer

e is list(Term) -> bool()
[page 107] Check whether a term is a list

e is_number(Term) -> bool()
[page 107] Check whether a term is a number

e is pid(Term) -> bool()
[page 107] Check whether a term is a pid

e is port(Term) -> bool()
[page 107] Check whether a term is a port

e is process_alive(Pid) -> bool()
[page 107] Check whether a process is alive

e is_record(Term, RecordTag) -> bool()
[page 107] Check whether a term appears to be a record

e is_record(Term, RecordTag, Size) -> bool()
[page 108] Check whether a term appears to be a record

e is reference(Term) -> bool()
[page 108] Check whether a term is a reference

e is_tuple(Term) -> bool()
[page 108] Check whether a term is a tuple

e length(List) -> int()
[page 108] Length of a list

e 1link(Pid) -> true
[page 109] Create a link to another process (or port)

e list_to_atom(String) -> atom()
[page 109] Convert from text representation to an atom

e list_to_binary(IoList) -> binary()
[page 109] Convert a list to a binary

Kernel Application (KERNEL)

Kernel Reference Manual

list_to_bitstring(Bitstringlist) -> bitstring()
[page 109] Convert a list to a bitstring

list_to_existing atom(String) -> atom()
[page 110] Convert from text representation to an atom

list_to_float(String) -> float()
[page 110] Convert from text representation to a float

list_to_integer(String) -> int(Q)
[page 110] Convert from text representation to an integer

erlang:list_to_integer(String, Base) -> int()
[page 110] Convert from text representation to an integer

list_to_pid(String) -> pid()
[page 111] Convert from text representation to a pid

list_to_tuple(List) -> tuple()
[page 111] Convert a list to a tuple

load module(Module, Binary) -> {module, Module} | {error, Reason}
[page 111] Load object code for a module

erlang:loaded() -> [Module]
[page 112] List of all loaded modules

erlang:localtime() -> {Date, Time}
[page 112] Current local date and time

erlang:localtime to_universaltime({Datel, Timel}) -> {Date2, Time2}
[page 112] Convert from local to Universal Time Coordinated (UTC) date and
time

erlang:localtime to_universaltime({Datel, Timel}, IsDst) -> {Date2,
Time2}

[page 112] Convert from local to Universal Time Coordinated (UTC) date and
time

make ref () -> ref()

[page 113] Return an almost unique reference

erlang:make_tuple(Arity, InitialValue) -> tuple()
[page 113] Create a new tuple of a given arity

erlang:md5(Data) -> Digest
[page 113] Compute an MD5 message digest

erlang:md5_final (Context) -> Digest
[page 114] Finish the update of an MD5 context and return the computed MD5
message digest

erlang:md5_init () -> Context
[page 114] Create an MD5 context

erlang:md5 update(Context, Data) -> NewContext
[page 114] Update an MD5 context with data, and return a new context

erlang:memory() -> [{Type, Size}]
[page 114] Information about dynamically allocated memory

erlang:memory(Type | [Typel) -> Size | [{Type, Size}]
[page 116] Information about dynamically allocated memory

module_loaded (Module) -> bool()
[page 116] Check if a module is loaded

Kernel Application (KERNEL)

Kernel Reference Manual

e erlang:monitor(Type, Item) -> MonitorRef
[page 116] Start monitoring

e monitor node(Node, Flag) -> true
[page 118] Monitor the status of a node

e erlang:monitornode(Node, Flag, Options) -> true
[page 118] Monitor the status of a node

e node() -> Node
[page 118] Name of the local node

e node(Arg) -> Node
[page 118] At which node is a pid, port or reference located

e nodes() -> Nodes
[page 119] All visible nodes in the system

e nodes(Arg | [Argl) -> Nodes
[page 119] All nodes of a certain type in the system

e now() -> {MegaSecs, Secs, MicroSecs}
[page 119] Elapsed time since 00:00 GMT

e open_port(PortName, PortSettings) -> port()
[page 119] Open a port

e erlang:phash(Term, Range) -> Hash
[page 122] Portable hash function

e erlang:phash2(Term [, Range]l) -> Hash
[page 122] Portable hash function

e pid_to_list(Pid) -> string()
[page 122] Text representation of a pid

e port_close(Port) -> true
[page 122] Close an open port

e port_command(Port, Data) -> true

[page 123] Send data to a port

e port_connect(Port, Pid) -> true
[page 123] Set the owner of a port

e port_control(Port, Operation, Data) -> Res
[page 124] Perform a synchronous control operation on a port

e erlang:port_call(Port, Operation, Data) -> term()
[page 124] Synchronous call to a port with term data

e erlang:port_info(Port) -> [{Item, Info}] | undefined
[page 125] Information about a port

e erlang:port_info(Port, Item) -> {Item, Info} | undefined | []
[page 125] Information about a port

e erlang:port_to_list(Port) -> string()
[page 125] Text representation of a port identifier

e erlang:ports() -> [port()]
[page 125] All open ports

e pre_loaded() -> [Module]
[page 126] List of all pre-loaded modules

e erlang:process_display(Pid, Type) -> void()
[page 126] Write information about a local process on standard error

Kernel Application (KERNEL)

13

Kernel Reference Manual

14

process_flag(Flag, Value) -> 0ldValue
[page 126] Set process flags for the calling process
process_flag(Pid, Flag, Value) -> 0ldValue
[page 128] Set process flags for a process

process_info(Pid) -> InfoResult
[page 128] Information about a process

process_info(Pid, ItemSpec) -> InfoResult
[page 129] Information about a process

processes() -> [pid()]
[page 131] All processes

purge module (Module) -> void()
[page 131] Remove old code for a module

put (Key, Val) -> 01dVal | undefined
[page 131] Add a new value to the process dictionary

erlang:raise(Class, Reason, Stacktrace)
[page 132] Stop execution with an exception of given class, reason and call stack
backtrace

erlang:read_-timer(TimerRef) -> int() | false
[page 133] Number of milliseconds remaining for a timer

erlang:ref to_list(Ref) -> string()
[page 133] Text representation of a reference

register (RegName, Pid | Port) -> true
[page 133] Register a name for a pid (or port)

registered() -> [RegName]
[page 133] All registered names

erlang:resume_process(Suspendee) -> true
[page 134] Resume a suspended process

round (Number) -> int()
[page 134] Return an integer by rounding a number

self() -> pid()
[page 134] Pid of the calling process

erlang:send(Dest, Msg) -> Msg
[page 134] Send a message

erlang:send(Dest, Msg, [Option]) -> Res
[page 135] Send a message conditionally

erlang:send after(Time, Dest, Msg) -> TimerRef
[page 135] Start a timer

erlang:send nosuspend(Dest, Msg) -> bool()
[page 136] Try to send a message without ever blocking

erlang:sendnosuspend(Dest, Msg, Options) -> bool()
[page 136] Try to send a message without ever blocking

erlang:set_cookie(Node, Cookie) -> true
[page 137] Set the magic cookie of a node

setelement (Index, Tuplel, Value) -> Tuple2
[page 137] Set Nth element of a tuple

size(Item) -> int()
[page 137] Size of a tuple or binary

Kernel Application (KERNEL)

Kernel Reference Manual

e spawn(Fun) -> pid()
[page 138] Create a new process with a fun as entry point

o spawn(Node, Fun) -> pid(Q)
[page 138] Create a new process with a fun as entry point on a given node

o spawn(Module, Function, Args) -> pid()
[page 138] Create a new process with a function as entry point

e spawn(Node, Module, Function, ArgumentList) -> pid()
[page 138] Create a new process with a function as entry point on a given node

e spawn_link(Fun) -> pid()
[page 138] Create and link to a new process with a fun as entry point

e spawn_link(Node, Fun) ->
[page 139] Create and link to a new process with a fun as entry point on a
specified node

e spawn_link(Module, Function, Args) -> pid()
[page 139] Create and link to a new process with a function as entry point

e spawn_link(Node, Module, Function, Args) -> pid(Q)
[page 139] Create and link to a new process with a function as entry point on a
given node

e spawnmonitor(Fun) -> {pid(),reference()}
[page 139] Create and monitor a new process with a fun as entry point

e spawnmonitor(Module, Function, Args) -> {pid(),reference()}
[page 139] Create and monitor a new process with a function as entry point

e spawn_opt(Fun, [Option]) -> pid() | {pid(),reference()}

[page 140] Create a new process with a fun as entry point
e spawn_opt(Node, Fun, [Option]) -> pid()

[page 140] Create a new process with a fun as entry point on a given node
e spawn opt(Module, Function, Args, [Option]) -> pid() |

{pid() ,reference ()}

[page 140] Create a new process with a function as entry point

o spawn_opt(Node, Module, Function, Args, [Option]) -> pid()
[page 141] Create a new process with a function as entry point on a given node

e split_binary(Bin, Pos) -> {Binl, Bin2}
[page 142] Split a binary into two

e erlang:start_timer (Time, Dest, Msg) -> TimerRef
[page 142] Start a timer

e statistics(Type) -> Res
[page 142] Information about the system

e erlang:suspend_process(Suspendee, OptList) -> true | false

[page 143] Suspend a process

e erlang:suspend_process(Suspendee) -> true
[page 144] Suspend a process

e erlang:system flag(Flag, Value) -> 0ldValue
[page 145] Set system flags

e erlang:system_info(Type) -> Res
[page 146] Information about the system

e erlang:systemmonitor() -> MonSettings
[page 150] Current system performance monitoring settings

Kernel Application (KERNEL) 15

Kernel Reference Manual

erlang:systemmonitor (undefined | {MonitorPid, Options}) ->
MonSettings

[page 150] Set or clear system performance monitoring options
erlang:systemmonitor(MonitorPid, [Option]) -> MonSettings
[page 150] Set system performance monitoring options
erlang:system profile() -> ProfilerSettings

[page 151] Current system profiling settings

erlang:system profile(ProfilerPid, Options) -> ProfilerSettings
[page 152] Current system profiling settings

term_to_binary(Term) -> ext_binary()

[page 152] Encode a term to an Erlang external term format binary
term_to_binary(Term, [Option]) -> ext_binary()

[page 153] Encode a term to en Erlang external term format binary
throw (Any)

[page 153] Throw an exception

time() -> {Hour, Minute, Second}

[page 153] Current time

tl(Listl) -> List2

[page 154] Tail of a list

erlang:trace(PidSpec, How, FlagList) -> int()

[page 154] Set trace flags for a process or processes
erlang:tracedelivered(Tracee) -> Ref

[page 157] Notification when trace has been delivered
erlang:trace_info(Pid0OrFunc, Item) -> Res

[page 158] Trace information about a process or function
erlang:trace_pattern(MFA, MatchSpec) -> int()

[page 159] Set trace patterns for global call tracing

erlang:trace pattern(MFA, MatchSpec, Flaglist) -> int()
[page 159] Set trace patterns for tracing of function calls

trunc (Number) -> int()

[page 161] Return an integer by the truncating a number
tuple_size(Tuple) -> int()

[page 161] Return the size of a tuple

tuple_to_list(Tuple) -> [term()]

[page 161] Convert a tuple to a list

erlang:universaltime() -> {Date, Time}

[page 161] Current date and time according to Universal Time Coordinated
(UTC)

erlang:universaltime to_localtime({Datel, Timel}) -> {Date2, Time2}
[page 161] Convert from Universal Time Coordinated (UTC) to local date and
time

unlink(Id) -> true

[page 162] Remove a link, if there is one, to another process or port
unregister (RegName) -> true

[page 162] Remove the registered name for a process (or port)
whereis(RegName) -> pid() | port() | undefined

[page 163] Get the pid (or port) with a given registered name
erlang:yield() -> true

[page 163] Let other processes get a chance to execute

Kernel Application (KERNEL)

Kernel Reference Manual

error_handler

The following functions are exported:

undefined function(Module, Function, Args) -> term()
[page 164] Called when an undefined function is encountered

undefined_lambda(Module, Fun, Args) -> term()
[page 164] Called when an undefined lambda (fun) is encountered

error_logger

The following functions are exported:

error_msg(Format) -> ok
[page 166] Send an standard error event to the error logger

error_msg(Format, Data) -> ok
[page 166] Send an standard error event to the error logger

format (Format, Data) -> ok
[page 166] Send an standard error event to the error logger

error_report (Report) -> ok
[page 167] Send a standard error report event to the error logger

error_report(Type, Report) -> ok
[page 167] Send a user defined error report event to the error logger

warning map() -> Tag
[page 167] Return the current mapping for warning events

warning msg(Format) -> ok
[page 168] Send a standard warning event to the error logger

warning msg(Format, Data) -> ok
[page 168] Send a standard warning event to the error logger

warning report (Report) -> ok
[page 168] Send a standard warning report event to the error logger

warning report (Type, Report) -> ok
[page 169] Send a user defined warning report event to the error logger

infomsg(Format) -> ok
[page 169] Send a standard information event to the error logger

infomsg(Format, Data) -> ok
[page 169] Send a standard information event to the error logger

info_report(Report) -> ok
[page 169] Send a standard information report event to the error logger

info_report(Type, Report) -> ok
[page 170] Send a user defined information report event to the error logger

add_report_handler (Handler) -> Result
[page 170] Add an event handler to the error logger

add_report_handler (Handler, Args) -> Result
[page 170] Add an event handler to the error logger

delete report_handler (Handler) -> Result
[page 170] Delete an event handler from the error logger

Kernel Application (KERNEL) 17

Kernel Reference Manual

18

e tty(Flag) -> ok
[page 170] Enable or disable printouts to the tty

e logfile(Request) -> ok | Filename | {error, What}
[page 171] Enable or disable error printouts to a file

file
The following functions are exported:
e change group(Filename, Gid) -> ok | {error, Reason}

[page 173] Change group of a file

e change owner (Filename, Uid) -> ok | {error, Reason}
[page 173] Change owner of a file

e change owner(Filename, Uid, Gid) -> ok | {error, Reason}
[page 174] Change owner and group of a file

e change time(Filename, Mtime) -> ok | {error, Reason}
[page 174] Change the modification time of a file

e change time(Filename, Mtime, Atime) -> ok | {error, Reason}
[page 174] Change the modification and last access time of a file

e close(IoDevice) -> ok | {error, Reason}

[page 174] Close a file

e consult(Filename) -> {ok, Terms} | {error, Reason}
[page 174] Read Erlang terms from a file

e copy(Source, Destination) ->
[page 175] Copy file contents

e copy(Source, Destination, ByteCount) -> {ok, BytesCopied} | {error,
Reason}
[page 175] Copy file contents

e del dir(Dir) -> ok | {error, Reason}
[page 175] Delete a directory

e delete(Filename) -> ok | {error, Reason}

[page 176] Delete a file

e eval(Filename) -> ok | {error, Reason}
[page 176] Evaluate Erlang expressions in a file

e eval(Filename, Bindings) -> ok | {error, Reason}
[page 177] Evaluate Erlang expressions in a file

e file info(Filename) -> {ok, FileInfo} | {error, Reason}
[page 177] Get information about a file (deprecated)

e format_error(Reason) -> Chars
[page 177] Return a descriptive string for an error reason

e get_cwd() -> {ok, Dir} | {error, Reason}
[page 177] Get the current working directory

e get_cwd(Drive) -> {ok, Dir} | {error, Reason}
[page 177] Get the current working directory for the drive specified

e list dir(Dir) -> {ok, Filenames} | {error, Reason}
[page 178] List files in a directory

Kernel Application (KERNEL)

Kernel Reference Manual

e make dir(Dir) -> ok | {error, Reason}
[page 178] Make a directory

e make link(Existing, New) -> ok | {error, Reason}

[page 178] Make a hard link to a file

e make symlink (Namel, Name2) -> ok | {error, Reason}
[page 179] Make a symbolic link to a file or directory

e open(Filename, Modes) -> {ok, IoDevice} | {error, Reason}
[page 179] Open afile

e path consult(Path, Filename) -> {ok, Terms, FullName} | {error,
Reason}
[page 181] Read Erlang terms from a file

e path eval(Path, Filename) -> {ok, FullName} | {error, Reason}
[page 181] Evaluate Erlang expressions in a file

e path open(Path, Filename, Modes) -> {ok, IoDevice, FullName} |
{error, Reason}

[page 182] Open afile

e path script(Path, Filename) -> {ok, Value, FullName} | {error,
Reason}
[page 182] Evaluate and return the value of Erlang expressions in a file

e path_script(Path, Filename, Bindings) -> {ok, Value, FullName}
{error, Reason}
[page 183] Evaluate and return the value of Erlang expressions in a file

e pid2name(Pid) -> string() | undefined
[page 183] Return the name of the file handled by a pid

e position(IoDevice, Location) -> {ok, NewPosition} | {error, Reason}
[page 183] Set position in a file

e pread(IoDevice, LocNums) -> {ok, DatalL} | eof | {error, Reason}
[page 184] Read from a file at certain positions

e pread(IoDevice, Location, Number) -> {ok, Data} | eof | {error,
Reason}
[page 184] Read from a file at a certain position

e purite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}
[page 185] Write to a file at certain positions

e purite(IoDevice, Location, Bytes) -> ok | {error, Reason}
[page 185] Write to a file at a certain position

e read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}
[page 185] Read from a file

e read file(Filename) -> {ok, Binary} | {error, Reason}

[page 185] Read a file

e read file info(Filename) -> {ok, FileInfo} | {error, Reason}
[page 186] Get information about a file

e read_link(Name) -> {ok, Filename} | {error, Reason}
[page 187] See what a link is pointing to

e read link info(Name) -> {ok, FileInfo} | {error, Reason}
[page 187] Get information about a link or file

e rename(Source, Destination) -> ok | {error, Reason}

[page 188] Rename a file

Kernel Application (KERNEL) 19

Kernel Reference Manual

e script(Filename) -> {ok, Value} | {error, Reason}
[page 188] Evaluate and return the value of Erlang expressions in a file

e script(Filename, Bindings) -> {ok, Value} | {error, Reason}
[page 189] Evaluate and return the value of Erlang expressions in a file
e set_cwd(Dir) -> ok | {error,Reason}
[page 189] Set the current working directory
e sync(IoDevice) -> ok | {error, Reason}
[page 189] Synchronizes the in-memory state of a file with that on the physical
medium

e truncate(IoDevice) -> ok | {error, Reason}

[page 189] Truncate a file
e write(IoDevice, Bytes) -> ok | {error, Reason}
[page 190] Write to a file
e write file(Filename, Binary) -> ok | {error, Reason}
[page 190] Write a file
o write file(Filename, Binary, Modes) -> ok | {error, Reason}
[page 190] Write a file

e write file info(Filename, FileInfo) -> ok | {error, Reason}
[page 191] Change information about a file

gen_sctp

The following functions are exported:

e abort(sctpsocket(), Assoc) -> ok | {error, posix()}
[page 197] Abnormally terminate the association given by Assoc, without flushing
of unsent data

e close(sctpsocket()) -> ok | {error, posix()}
[page 197] Completely close the socket and all associations on it

e connect(Socket, IP, Port, Opts) -> {ok,Assoc} | {error, posix()}
[page 197] Same as connect (Socket, IP, Port, Opts, infinity).

e connect(Socket, IP, Port, [Opt], Timeout) -> {ok, Assoc} | {error,
posix()}
[page 197] Establish a new association for the socket Socket, with a peer (SCTP
server socket)

e controlling process(sctpsocket(), pid()) -> ok
[page 198] Assign a new controlling process pid to the socket

e cof (Socket, Assoc) -> ok | {error, Reason}
[page 198] Gracefully terminate the association given by Assoc, with flushing of all
unsent data

e listen(Socket, IsServer) -> ok | {error, Reason}
[page 198] Set up a socket to listen.

e open() -> {ok, Socket} | {error, posix()}
[page 198] Create an SCTP socket and bind it to local addresses

e open(Port) -> {ok, Socket} | {error, posix()}
[page 198] Create an SCTP socket and bind it to local addresses

e open([0pt]) -> {ok, Socket} | {error, posix()}
[page 198] Create an SCTP socket and bind it to local addresses

Kernel Application (KERNEL)

Kernel Reference Manual

recv(sctp_socket()) -> {ok, {FromIP, FromPort, AncData, BinMsg}}
{error, Reason}
[page 199] Receive a message from a socket

recv(sctp_socket(), timeout()) -> {ok, {FromIP, FromPort, AncData,
Data}} | {error, Reason}
[page 199] Receive a message from a socket

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}
[page 200] Send a message using an #sctp-sndrcvinfo{}record

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
[page 201] Send a message over an existing association and given stream

error_string(integer()) -> ok | string() | undefined
[page 201] Translate an SCTP error number into a string

gen_tcp

The following functions are exported:

connect (Address, Port, Options) -> {ok, Socket} | {error, Reason}
[page 210] Connect to a TCP port

connect (Address, Port, Options, Timeout) -> {ok, Socket} | {error,
Reason}
[page 210] Connect to a TCP port

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
[page 211] Set up a socket to listen on a port

accept (ListenSocket) -> {ok, Socket} | {error, Reason}
[page 211] Accept an incoming connection request on a listen socket

accept (ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
[page 211] Accept an incoming connection request on a listen socket

send(Socket, Packet) -> ok | {error, Reason}
[page 212] Send a packet

recv(Socket, Length) -> {ok, Packet} | {error, Reason}
[page 212] Receive a packet from a passive socket

recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}
[page 212] Receive a packet from a passive socket

controlling process(Socket, Pid) -> ok | {error, eperm}
[page 213] Change controlling process of a socket

close(Socket) -> ok | {error, Reason}
[page 213] Close a TCP socket

shutdown (Socket, How) -> ok | {error, Reason}
[page 213] Immediately close a socket

gen_udp

The following functions are exported:

open(Port) -> {ok, Socket} | {error, Reason}
[page 216] Associate a UDP port number with the process calling it

Kernel Application (KERNEL) 21

Kernel Reference Manual

e open(Port, Options) -> {ok, Socket} | {error, Reason}
[page 216] Associate a UDP port number with the process calling it

e send(Socket, Address, Port, Packet) -> ok | {error, Reason}
[page 217] Send a packet

e recv(Socket, Length) -> {ok, {Address, Port, Packet}} | {error,
Reason}
[page 217] Receive a packet from a passive socket

e recv(Socket, Length, Timeout) -> {ok, {Address, Port, Packet}}
{error, Reason}
[page 217] Receive a packet from a passive socket

e controlling process(Socket, Pid) -> ok
[page 217] Change controlling process of a socket

e close(Socket) -> ok | {error, Reason}
[page 218] Close a UDP socket

global

The following functions are exported:
e del lock(Id)
[page 220] Delete a lock

e del_lock(Id, Nodes) -> void()
[page 220] Delete a lock

e notify_all name(Name, Pidl, Pid2) -> nomne
[page 220] Name resolving function that notifies both pids

e random_exit_name(Name, Pidl, Pid2) -> Pid1l | Pid2
[page 220] Name resolving function that kills one pid

e randomnotify name(Name, Pidl, Pid2) -> Pidl | Pid2
[page 220] Name resolving function that notifies one pid

e register name(Name, Pid)

[page 221] Globally register a name for a pid

e register name(Name, Pid, Resolve) -> yes | no

[page 221] Globally register a name for a pid

e registered names() -> [Name]

[page 221] All globally registered names

e re_register name(Name, Pid)
[page 221] Atomically re-register a name

e re_register name(Name, Pid, Resolve) -> void()
[page 221] Atomically re-register a name

o send(Name, Msg) -> Pid
[page 222] Send a message to a globally registered pid

e set_lock(Id)
[page 222] Set a lock on the specified nodes

e set_lock(Id, Nodes)
[page 222] Set a lock on the specified nodes

e set_lock(Id, Nodes, Retries) -> boolean()
[page 222] Set a lock on the specified nodes

Kernel Application (KERNEL)

Kernel Reference Manual

e sync() -> void()
[page 223] Synchronize the global name server

e trans(Id, Fun)
[page 223] Micro transaction facility

e trans(Id, Fun, Nodes)
[page 223] Micro transaction facility

e trans(Id, Fun, Nodes, Retries) -> Res | aborted
[page 223] Micro transaction facility

e unregister name(Name) -> void()
[page 223] Remove a globally registered name for a pid

o whereis name(Name) -> pid() | undefined

[page 223] Get the pid with a given globally registered name

global_group

The following functions are exported:
e global groups() -> {GroupName, GroupNames} | undefined
[page 225] Return the global group names

e info() -> [{Item, Info}]
[page 225] Information about global groups

e monitor nodes(Flag) -> ok
[page 225] Subscribe to node status changes

e own nodes() -> Nodes

[page 225] Return the group nodes

e registered names(Where) -> Names
[page 226] Return globally registered names

e send(Name, Msg) -> pid() | {badarg, {Name, Msg}}
[page 226] Send a message to a globally registered pid

e send(Where, Name, Msg) -> pid() | {badarg, {Name, Msg}}
[page 226] Send a message to a globally registered pid

e sync() -> ok
[page 226] Synchronize the group nodes

o whereis name(Name) -> pid() | undefined
[page 226] Get the pid with a given globally registered name

e whereis name(Where, Name) -> pid() | undefined
[page 226] Get the pid with a given globally registered name

heart

The following functions are exported:
e set_cmd(Cmd) -> ok | {error, {bad_cmd, Cmd}}
[page 229] Set a temporary reboot command

e clear.cmd() -> ok
[page 229] Clear the temporary boot command

e get_cmd() -> {ok, Cmd}
[page 229] Get the temporary reboot command

Kernel Application (KERNEL) 23

Kernel Reference Manual

inet
The following functions are exported:
e close(Socket) -> ok

[page 231] Close a socket of any type

e get rc() -> [{Par, Val}]
[page 231] Return a list of IP configuration parameters

e format_error(Posix) -> string()
[page 231] Return a descriptive string for an error reason

e getaddr(Host, Family) -> {ok, Address} | {error, posix()}
[page 232] Return the IP-adress for a host

e getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}
[page 232] Return the IP-adresses for a host

e gethostbyaddr (Address) -> {ok, Hostent} | {error, posix()}
[page 232] Return a hostent record for the host with the given address

e gethostbyname(Name) -> {ok, Hostent} | {error, posix()}
[page 232] Return a hostent record for the host with the given name

e gethostbyname (Name, Family) -> {ok, Hostent} | {error, posix()}
[page 232] Return a hostent record for the host with the given name

e gethostname() -> {ok, Hostname}
[page 232] Return the local hostname

e getopts(Socket, Options) -> OptionValues | {error, posix()}
[page 233] Get one or more options for a socket

e peername(Socket) -> {ok, {Address, Port}} | {error, posix()}
[page 234] Return the address and port for the other end of a connection

e port(Socket) -> {ok, Port}
[page 234] Return the local port number for a socket

e sockname(Socket) -> {ok, {Address, Port}} | {error, posix()}
[page 234] Return the local address and port number for a socket

e setopts(Socket, Options) -> ok | {error, posix()}
[page 234] Set one or more options for a socket
init
The following functions are exported:

® boot (BootArgs) -> void()
[page 241] Start the Erlang runtime system

get-args() -> [Arg]
[page 241] Get all non-flag command line arguments

e get_argument (Flag) -> {ok, Arg} | error
[page 241] Get the values associated with a command line user flag

e get_arguments() -> Flags
[page 242] Get all command line user flags

e get_plain arguments() -> [Arg]
[page 242] Get all non-flag command line arguments

Kernel Application (KERNEL)

Kernel Reference Manual

e get_status() -> {InternalStatus, ProvidedStatus}
[page 242] Get system status information

e reboot() -> void()
[page 243] Take down an Erlang node smoothly

e restart() -> void()
[page 243] Restart the running Erlang node

e script_id() -> Id
[page 243] Get the identity of the used boot script

e stop() -> void(O)
[page 243] Take down an Erlang node smoothly<

net_.adm

The following functions are exported:
e dns_hostname(Host) -> {ok, Name} | {error, Host}
[page 246] Official name of a host

e host_file() -> Hosts | {error, Reason}
[page 246] Read the .hosts.erlangfile

e localhost() -> Name
[page 246] Name of the local host

e names() -> {ok, [{Name, Port}1} | {error, Reason}
[page 246] Names of Erlang nodes at a host

e names (Host) -> {ok, [{Name, Port}]} | {error, Reason}
[page 246] Names of Erlang nodes at a host

e ping(Node) -> pong | pang
[page 247] Set up a connection to a node

e world() -> [node()]
[page 247] Lookup and connect to all nodes at all hosts in.hosts.erlang

e world(Arg) -> [node()]
[page 247] Lookup and connect to all nodes at all hosts in.hosts.erlang

e world list(Hosts) -> [node()]
[page 247] Lookup and connect to all nodes at specified hosts

e world list(Hosts, Arg) -> [node()]
[page 247] Lookup and connect to all nodes at specified hosts

net_kernel

The following functions are exported:
e allow(Nodes) -> ok | error
[page 249] Limit access to a specified set of nodes

e connectnode(Node) -> true | false | ignored
[page 249] Establish a connection to a hode

e monitor nodes(Flag) -> ok | Error
[page 250] Subscribe to node status change messages

e monitor nodes(Flag, Options) -> ok | Error
[page 250] Subscribe to node status change messages

Kernel Application (KERNEL)

25

Kernel Reference Manual

26

e getnet_ticktime() -> Res
[page 251] Get net_ticktime

e set_net_ticktime(NetTicktime) -> Res
[page 251] Set net_ticktime

e set_net_ticktime(NetTicktime, TransitionPeriod) -> Res
[page 251] Set net_ticktime

e start([Namel) -> {ok, pid(O} | {error, Reason}
[page 252] Turn an Erlang runtime system into a distributed node

e start([Name, NameTypel) -> {ok, pid()} | {error, Reason}
[page 252] Turn an Erlang runtime system into a distributed node

e start([Name, NameType, Ticktimel) -> {ok, pid()} | {error, Reason}
[page 252] Turn an Erlang runtime system into a distributed node

e stop() -> ok | {error, not_allowed | not_found}
[page 252] Turn a node into a non-distributed Erlang runtime system

oS

The following functions are exported:
e cmd(Command) -> string()
[page 253] Execute a command in a shell of the target OS

e find_executable(Name) -> Filename | false
[page 253] Absolute filename of a program

e find_executable(Name, Path) -> Filename | false
[page 253] Absolute filename of a program

e getenv() -> [string()]
[page 253] List all environment variables

o getenv(VarName) -> Value | false
[page 254] Get the value of an environment variable

e getpid() -> Value
[page 254] Return the process identifier of the emulator process

e putenv(VarName, Value) -> true
[page 254] Set a new value for an environment variable

e type() -> {0Osfamily, Osname} | Osfamily
[page 254] Return the OS family and, in some cases, OS name of the current
operating system

e version() -> {Major, Minor, Release} | VersionString
[page 254] Return the Operating System version

packages

The following functions are exported:

e no functions exported

[page 258] x

Kernel Application (KERNEL)

Kernel Reference Manual

P92
The following functions are exported:
e create(Name) -> void()

[page 259] Create a new, empty process group

e delete(Name) -> void()
[page 259] Delete a process group

e get_closest pid(Name) -> Pid | {error, Reason}
[page 259] Common dispatch function

e get_members(Name) -> [Pid] | {error, Reason}
[page 260] Return all processes in a group

e get_local members(Name) -> [Pid] | {error, Reason}
[page 260] Return all local processes in a group

e join(Name, Pid) -> ok | {error, Reason}
[page 260] Join a process to a group

e leave(Name, Pid) -> ok | {error, Reason}
[page 260] Make a process leave a group

e which_groups() -> [Name]
[page 260] Return a list of all known groups

e start()
[page 260] Start the pg2 server

e start_link() -> {ok, Pid} | {error, Reason}
[page 260] Start the pg2 server

rpc
The following functions are exported:
e call(Node, Module, Function, Args) -> Res | {badrpc, Reason}

[page 261] Evaluate a function call on a node

e call(Node, Module, Function, Args, Timeout) -> Res | {badrpc,
Reason}
[page 261] Evaluate a function call on a node

e block_call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
[page 261] Evaluate a function call on a node in the RPC server’s context

e block_call(Node, Module, Function, Args, Timeout) -> Res | {badrpc,
Reason}
[page 262] Evaluate a function call on a node in the RPC server’s context

e async_call(Node, Module, Function, Args) -> Key
[page 262] Evaluate a function call on a node, asynchrous version

e yield(Key) -> Res | {badrpc, Reason}
[page 262] Deliver the result of evaluating a function call on a node (blocking)

e nb_yield(Key) -> {value, Val} | timeout
[page 262] Deliver the result of evaluating a function call on a node (non-blocking)

e nb_yield(Key, Timeout) -> {value, Val} | timeout
[page 263] Deliver the result of evaluating a function call on a node (non-blocking)

Kernel Application (KERNEL) 27

Kernel Reference Manual

multicall (Module, Function, Args) -> {ResL, BadNodes}
[page 263] Evaluate a function call on a number of nodes

multicall (Nodes, Module, Function, Args) -> {ResL, BadNodes}
[page 263] Evaluate a function call on a number of nodes

multicall (Module, Function, Args, Timeout) -> {ResL, BadNodes}
[page 263] Evaluate a function call on a number of nodes

multicall (Nodes, Module, Function, Args, Timeout) -> {ReslL,
BadNodes}
[page 263] Evaluate a function call on a number of nodes

cast(Node, Module, Function, Args) -> void()
[page 264] Run a function on a node ignoring the result

eval_everywhere(Module, Funtion, Args) -> void()
[page 264] Run a function on all nodes, ignoring the result

eval_everywhere (Nodes, Module, Function, Args) -> void()
[page 264] Run a function on specific nodes, ignoring the result

abcast(Name, Msg) -> void()
[page 265] Broadcast a message asynchronously to a registered process on all nodes

abcast(Nodes, Name, Msg) -> void()
[page 265] Broadcast a message asynchronously to a registered process on specific
nodes

sbcast (Name, Msg) -> {GoodNodes, BadNodes}
[page 265] Broadcast a message synchronously to a registered process on all nodes

sbcast (Nodes, Name, Msg) -> {GoodNodes, BadNodes}
[page 265] Broadcast a message synchronously to a registered process on specific
nodes

server_call(Node, Name, ReplyWrapper, Msg) -> Reply | {error,
Reason}
[page 265] Interact with a server on a node

multi_server _call(Name, Msg) -> {Replies, BadNodes}
[page 266] Interact with the servers on a number of nodes

multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
[page 266] Interact with the servers on a number of nodes

safemulti_server_call (Name, Msg) -> {Replies, BadNodes}
[page 266] Interact with the servers on a number of nodes (deprecated)

safemulti_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
[page 266] Interact with the servers on a number of nodes (deprecated)

parallel_eval (FuncCalls) -> ResL
[page 267] Evaluate several function calls on all nodes in parallel

pmap ({Module, Function}, ExtraArgs, List2) -> Listl
[page 267] Parallell evaluation of mapping a function over a list

pinfo(Pid) -> [{Item, Info}] | undefined
[page 267] Information about a process

pinfo(Pid, Item) -> {Item, Info} | undefined | []
[page 267] Information about a process

Kernel Application (KERNEL)

Kernel Reference Manual

seq_trace

The following functions are exported:
e set_token(Token) -> PreviousToken
[page 268] Set the trace token

e set_token(Component, Val) -> {Component, 01dVal}
[page 268] Set a component of the trace token

e get_token() -> TraceToken
[page 269] Return the value of the trace token

e get_token(Component) -> {Component, Val}
[page 269] Return the value of a trace token component

e print(TraceInfo) -> void()
[page 269] Put the Erlang term TraceInfointo the sequential trace output

e print(Label, TraceInfo) -> void()
[page 269] Put the Erlang term TraceInfointo the sequential trace output

e reset_trace() -> void()
[page 270] Stop all sequential tracing on the local node

e set_system_tracer(Tracer) -> 0ldTracer
[page 270] Set the system tracer

e get_system tracer() -> Tracer
[page 270] Return the pid() or port() of the current system tracer.

user

No functions are exported.

wrap_log_reader

The following functions are exported:

e chunk(Continuation)
[page 277] Read a chunk of objects written to a wrap log.

e chunk(Continuation, N) -> {Continuation2, Terms} | {Continuation2,
Terms, Badbytes} | {Continuation2, eof} | {error, Reason}
[page 277] Read a chunk of objects written to a wrap log.

e close(Continuation) -> ok
[page 278] Close a log

e open(Filename) -> OpenRet
[page 278] Open a log file

e open(Filename, N) -> OpenRet
[page 278] Open a log file

Kernel Application (KERNEL) 29

Kernel Reference Manual

zlib
The following functions are exported:
e open() -> Z

[page 280] Open a stream and return a stream reference

e close(Z) -> ok
[page 280] Close a stream

e deflateInit(Z) -> ok
[page 280] Initialize a session for compression

e deflateInit(Z, Level) -> ok
[page 280] Initialize a session for compression

e deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) -> ok
[page 280] Initialize a session for compression

e deflate(Z, Data) -> Compressed
[page 281] Compress data

e deflate(Z, Data, Flush) ->
[page 281] Compress data

e deflateSetDictionary(Z, Dictionary) -> Adler32
[page 282] Initialize the compression dictionary

e deflateReset(Z) -> ok
[page 282] Reset the deflate session

e deflateParams(Z, Level, Strategy) -> ok
[page 282] Dynamicly update deflate parameters

e deflateEnd(Z) -> ok
[page 283] End deflate session

e inflateInit(Z) -> ok
[page 283] Initialize a session for decompression

e inflateInit(Z, WindowBits) -> ok
[page 283] Initialize a session for decompression

e inflate(Z, Data) -> DeCompressed
[page 283] Decompress data

e inflateSetDictionary(Z, Dictionary) -> ok
[page 283] Initialize the decompression dictionary

e inflateReset(Z) -> ok
[page 284] >Reset the inflate session

e inflateEnd(Z) -> ok
[page 284] End inflate session

e setBufSize(Z, Size) -> ok
[page 284] Set buffer size

e getBufSize(Z) -> Size
[page 284] Get buffer size

e crc32(Z) -> CRC
[page 285] Get current CRC

e crc32(Z, Binary) -> CRC
[page 285] Calculate CRC

Kernel Application (KERNEL)

Kernel Reference Manual

app

crc32(Z, PrevCRC, Binary) -> CRC
[page 285] Calculate CRC

crc32_combine(Z, CRC1, CRC2, Size2) -> CRC
[page 285] Combine two CRC’s

adler32(Z, Binary) -> Checksum
[page 285] Calculate the adler checksum

adler32(Z, PrevAdler, Binary) -> Checksum
[page 286] Calculate the adler checksum

adler32_combine(Z, Adlerl, Adler2, Size2) -> Adler
[page 286] Combine two Adler-32 checksums

compress (Binary) -> Compressed
[page 286] Compress a binary with standard zlib functionality

uncompress (Binary) -> Decompressed
[page 286] Uncompress a binary with standard zlib functionality

zip(Binary) -> Compressed
[page 286] Compress a binary without the zlib headers

unzip(Binary) -> Decompressed
[page 286] Uncompress a binary without the zlib headers

gzip(Data) -> Compressed
[page 287] Compress a binary with gz header

gunzip(Bin) -> Decompressed
[page 287] Uncompress a binary with gz header

No functions are exported.

config

No functions are exported.

Kernel Application (KERNEL)

31

kernel

Kernel Reference Manual

32

kernel

Application

The Kernel application is the first application started. It is mandatory in the sense that
the minimal system based on Erlang/OTP consists of Kernel and STDLIB. The Kernel
application contains the following services:

application controller, see application(3)
code

disk_log

dist_ac, distributed application controller
erl_boot_server

erl ddll

error_logger

file

global

global_group

heart

inet

net_kernel

os

pg2

rpc

seq-trace

user

Error Logger Event Handlers

Two standard error logger event handlers are defined in the Kernel application. These
are described in error_logger(3) [page 166].

Kernel Application (KERNEL)

Kernel Reference Manual kernel

Configuration

The following configuration parameters are defined for the Kernel application. See
app (3) for more information about configuration parameters.

browser_cmd = string() | {M,F,A} When pressing the Help button in a tool such as
Debugger or TV, the help text (an HTML file File) is by default displayed in a
Netscape browser which is required to be up and running. This parameter can be
used to change the command for how to display the help text if another browser
than Netscape is preferred, or another platform than Unix or Windows is used.

If set to a string Command, the command "Command File" will be evaluated using
os:cmd/1.
If set to a module-function-args tuple {M,F, A}, the call apply (M,F, [File|A]) will
be evaluated.
distributed = [Distrib] Specifies which applications are distributed and on which

nodes they may execute. In this parameter:

e Distrib = {App,Nodes} | {App,Time,Nodes}

e App = atom()

e Time = integer()>0

e Nodes = [node() | {node(),...,node()}]

The parameter is described in application(3), function load/2.

dist_auto_connect = Value Specifies when nodes will be automatically connected. If
this parameter is not specified, a node is always automatically connected, e.g when
a message is to be sent to that node. Value is one of:

never Connections are never automatically connected, they must be explicitly
connected. See net_kernel(3).

once Connections will be established automatically, but only once per node. If a
node goes down, it must thereafter be explicitly connected. See
net_kernel(3).

permissions = [Perm] Specifies the default permission for applications when they are
started. In this parameter:
e Perm = {ApplName,Bool}
e ApplName = atom()
e Bool = boolean()
Permissions are described in application(3), function permit/2.
error_logger = Value Value is one of:
tty Installs the standard event handler which prints error reports to stdio. This is

the default option.

{file, FileName} Installs the standard event handler which prints error reports
to the file FileName, where FileName is a string.

false No standard event handler is installed, but the initial, primitive event
handler is kept, printing raw event messages to tty.

silent Error logging is turned off.
global groups = [GroupTuple] Defines global groups, see global_group(3).

e GroupTuple = {GroupName, [Nodel} | {GroupName, PublishType,
[Nodel}
e GroupName = atom()

Kernel Application (KERNEL) 33

kernel

Kernel Reference Manual

34

e PublishType = normal | hidden
e Node = node()

inet_default_connect_options = [{Opt, Val}] Specifies default options for
connect sockets, see inet (3).

inet_default listen options = [{Opt, Val}] Specifies default options for listen
(and accept) sockets, see inet (3).

{inet_dist_use_interface, ip_address()} If the host of an Erlang node has several
network interfaces, this parameter specifies which one to listen on. See inet (3)
for the type definition of ip_address().

{inet.dist_listenmin, First} See below.

{inet_dist_listenmax, Last} Define the First..Last port range for the listener
socket of a distributed Erlang node.

inet_parse_error_log = silent If this configuration parameter is set, no
error_logger messages are generated when erroneous lines are found and skipped
in the various Inet configuration files.

inetrc = Filename The name (string) of an Inet user configuration file. See ERTS
User’s Guide, Inet configuration.

net_setuptime = SetupTime SetupTime must be a positive integer or floating point
number, and will be interpreted as the maximally allowed time for each network
operation during connection setup to another Erlang node. The maximum allowed
value is 120; if higher values are given, 120 will be used. The default value if the
variable is not given, or if the value is incorrect (e.g. not a number), is 7 seconds.
Note that this value does not limit the total connection setup time, but rather each
individual network operation during the connection setup and handshake.

net_ticktime = TickTime Specifies the net _kernel tick time. TickTime is given in
seconds. Once every TickTime/4 second, all connected nodes are ticked (if
anything else has been written to a node) and if nothing has been received from
another node within the last four (4) tick times that node is considered to be
down. This ensures that nodes which are not responding, for reasons such as
hardware errors, are considered to be down.
The time T, in which a node that is not responding is detected, is calculated as:
MinT < T < MaxT where:

MinT = TickTime - TickTime / 4
MaxT TickTime + TickTime / 4

TickTime is by default 60 (seconds). Thus, 45 < T < 75 seconds.
Note: All communicating nodes should have the same TickTime value specified.
Note: Normally, a terminating node is detected immediately.

syncnodes mandatory = [NodeName] Specifies which other nodes must be alive in
order for this node to start properly. If some node in the list does not start within
the specified time, this node will not start either. If this parameter is undefined, it
defaults to [].

syncnodes_optional = [NodeName] Specifies which other nodes can be alive in order
for this node to start properly. If some node in this list does not start within the
specified time, this node starts anyway. If this parameter is undefined, it defaults to
the empty list.

syncnodes_timeout = integer() | infinity Specifies the amount of time (in
milliseconds) this node will wait for the mandatory and optional nodes to start. If
this parameter is undefined, no node synchronization is performed. This option
also makes sure that global is synchronized.

Kernel Application (KERNEL)

Kernel Reference Manual kernel

start_dist_ac = true | false Starts the dist_ac server if the parameter is true.
This parameter should be set to true for systems that use distributed applications.
The default value is false. If this parameter is undefined, the server is started if
the parameter distributed is set.

start_boot_server = true | false Starts the boot_server if the parameter is true
(see erl_boot_server(3)). This parameter should be set to true in an embedded
system which uses this service.

The default value is false.
boot_server slaves = [SlaveIP] If the start boot_server configuration parameter
is true, this parameter can be used to initialize boot_server with a list of slave IP
addresses. SlavelIP = string() | atom |
{integer () ,integer () ,integer () ,integer O}
where 0 <= integer() <=255.
Examples of SlaveIP in atom, string and tuple form are:
’150.236.16.70°, "150,236,16,70", {150,236,16,70}.
The default value is [1.
start_ disk log = true | false Starts the disk log_server if the parameter is true

(see disk_log(3)). This parameter should be set to true in an embedded system
which uses this service.

The default value is false.
start pg2 = true | false Starts the pg2 server (see pg2(3)) if the parameter is

true. This parameter should be set to true in an embedded system which uses
this service.

The default value is false.
start_timer = true | false Starts the timer_server if the parameter is true (see

timer (3)). This parameter should be set to true in an embedded system which
uses this service.

The default value is false.
shutdown_func = {Mod, Func} Where:
e Mod = atom()

e Func = atom()

Sets a function that application controller calls when it starts to terminate.
The function is called as: Mod:Func (Reason), where Reason is the terminate
reason for application_controller, and it must return as soon as possible for
application controller to terminate properly.

See Also

app(4) [page 288], application(3) [page 36], code(3) [page 47], disk_log(3) [page 56],
erl_boot_server(3) [page 70], erl_ddll(3) [page 72], error_logger(3) [page 166], file(3)
[page 173], global(3) [page 219], global_group(3) [page 224], heart(3) [page 228],
inet(3) [page 230], net_kernel(3) [page 249], 0s(3) [page 253], pg2(3) [page 259],
rpc(3) [page 261], seq-trace(3) [page 268], user(3) [page 276]

Kernel Application (KERNEL) 35

application Kernel Reference Manual

application

Erlang Module

In OTP, application denotes a component implementing some specific functionality, that
can be started and stopped as a unit, and which can be re-used in other systems as well.
This module interfaces the application controller, a process started at every Erlang
runtime system, and contains functions for controlling applications (for example
starting and stopping applications), and functions to access information about
applications (for example configuration parameters).

An application is defined by an application specification. The specification is normally
located in an application resource file called Application.app, where Application is
the name of the application. Refer to app(4) [page 288] for more information about
the application specification.

This module can also be viewed as a behaviour for an application implemented
according to the OTP design principles as a supervision tree. The definition of how to
start and stop the tree should be located in an application callback module exporting a
pre-defined set of functions.

Refer to [OTP Design Principles] for more information about applications and
behaviours.

Exports

get_all_env() -> Env
get_all_env(Application) -> Env
Types:
e Application = atom()
e Env = [{Par,Val}]
e Par = atom()
e Val = term()

Returns the configuration parameters and their values for Application. If the argument
is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not
belong to any application, the function returns [].

get_all key() -> {ok, Keys} | []

get_all key(Application) -> {ok, Keys} | undefined
Types:
e Application = atom()
e Keys = [{Key,Val}]

36 Kernel Application (KERNEL)

Kernel Reference Manual application

e Key = atom()

e Val = term()

Returns the application specification keys and their values for Application. If the
argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, the function returns undefined. If the process
executing the call does not belong to any application, the function returns []J.

get_application() -> {ok, Application} | undefined
get_application(Pid | Module) -> {ok, Application} | undefined

Types:

e Pid = pid()

¢ Module = atom()

e Application = atom()

Returns the name of the application to which the process Pid or the module Module
belongs. Providing no argument is the same as calling get_application(self()).

If the specified process does not belong to any application, or if the specified process or
module does not exist, the function returns undefined.

get_env(Par) -> {ok, Val} | undefined
get_env(Application, Par) -> {ok, Val} | undefined

Types:
e Application = atom()
e Par = atom()
e Val = term()

Returns the value of the configuration parameter Par for Application. If the
application argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or the configuration parameter does not exist,
or if the process executing the call does not belong to any application, the function

returns undefined.

get key(Key) -> {ok, Val} | undefined
get key(Application, Key) -> {ok, Val} | undefined
Types:
e Application = atom()
e Key = atom()
e Val = term()

Returns the value of the application specification key Key for Application. If the
application argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or the specification key does not exist, or if the
process executing the call does not belong to any application, the function returns

undefined.

load(AppDescr) -> ok | {error, Reason}
load (AppDescr, Distributed) -> ok | {error, Reason}

Types:

Kernel Application (KERNEL) 37

application

Kernel Reference Manual

e AppDescr = Application | AppSpec

e Application = atom()

e AppSpec = {application,Application,AppSpecKeys}

e AppSpec = [{Key,Val}]

e Key = atom()

e Val =term()

e Distributed = {Application,Nodes} | {Application,Time,Nodes} | default

e Nodes = [node() | {node(),..,node()}]

e Time = integer() > 0

e Reason = term()

Loads the application specification for an application into the application controller. It
will also load the application specifications for any included applications. Note that the
function does not load the actual Erlang object code.

The application can be given by its name Application. In this case the application
controller will search the code path for the application resource file Application.app
and load the specification it contains.

The application specification can also be given directly as a tuple AppSpec. This tuple
should have the format and contents as described in app(4).

If Distributed == {Application, [Time,]Nodes}, the application will be distributed.
The argument overrides the value for the application in the Kernel configuration
parameter distributed. Application must be the name of the application (same as in
the first argument). If a node crashes and Time has been specified, then the application
controller will wait for Time milliseconds before attempting to restart the application on
another node. If Time is not specified, it will default to 0 and the application will be
restarted immediately.

Nodes is a list of node names where the application may run, in priority from left to
right. Node names can be grouped using tuples to indicate that they have the same
priority. Example:

Nodes = [cpl@cave, {cp2@cave, cp3@cavel}]

This means that the application should preferably be started at cpl@cave. If cpl@cave
is down, the application should be started at either cp2@cave or cp3@cave.

If Distributed == default, the value for the application in the Kernel configuration
parameter distributed will be used.

loaded applications() -> [{Application, Description, Vsn}]

Types:

e Application = atom()

e Description = string()

e Vsn = string()

Returns a list with information about the applications which have been loaded using
load/1,2, also included applications. Application is the application name.

Description and Vsn are the values of its description and vsn application
specification keys, respectively.

permit (Application, Bool) -> ok | {error, Reason}

38

Types:

Kernel Application (KERNEL)

Kernel Reference Manual application

e Application = atom()

¢ Bool = bool()

e Reason = term()

Changes the permission for Application to run at the current node. The application
must have been loaded using load/1, 2 for the function to have effect.

If the permission of a loaded, but not started, application is set to false, start will
return ok but the application will not be started until the permission is set to true.

If the permission of a running application is set to false, the application will be
stopped. If the permission later is set to true, it will be restarted.

If the application is distributed, setting the permission to false means that the
application will be started at, or moved to, another node according to how its
distribution is configured (see 1oad/2 above).

The function does not return until the application is started, stopped or successfully
moved to another node. However, in some cases where permission is set to true the
function may return ok even though the application itself has not started. This is true
when an application cannot start because it has dependencies to other applications
which have not yet been started. When they have been started, Application will be
started as well.

By default, all applications are loaded with permission true on all nodes. The
permission is configurable by using the Kernel configuration parameter permissions.

set_env(Application, Par, Val) -> ok
set_env(Application, Par, Val, Timeout) -> ok

Types:

e Application = atom()

e Par = atom()

e Val = term()

e Timeout = int() | infinity

Sets the value of the configuration parameter Par for Application.

set_env/3 uses the standard gen_server timeout value (5000 ms). A Timeout

argument can be provided if another timeout value is useful, for example, in situations
where the application controller is heavily loaded.

Warning:

Use this function only if you know what you are doing, that is, on your own
applications. It is very application and configuration parameter dependent when and
how often the value is read by the application, and careless use of this function may
put the application in a weird, inconsistent, and malfunctioning state.

start (Application) -> ok | {error, Reason}

start (Application, Type) -> ok | {error, Reason}
Types:
e Application = atom()
e Type = permanent | transient | temporary

Kernel Application (KERNEL) 39

application

Kernel Reference Manual

e Reason = term()

Starts Application. If it is not loaded, the application controller will first load it using
load/1. It will make sure any included applications are loaded, but will not start them.
That is assumed to be taken care of in the code for Application.

The application controller checks the value of the application specification key
applications, to ensure that all applications that should be started before this
application are running. If not, {error,{not_started,App}} is returned, where App is
the name of the missing application.

The application controller then creates an application master for the application. The
application master is the group leader of all the processes in the application. The
application master starts the application by calling the application callback function
Module:start/2 as defined by the application specification key mod.

The Type argument specifies the type of the application. If omitted, it defaults to
temporary.

o If a permanent application terminates, all other applications and the entire Erlang
node are also terminated.

o If a transient application terminates with Reason == normal, this is reported but
no other applications are terminated. If a transient application terminates
abnormally, all other applications and the entire Erlang node are also terminated.

e If a temporary application terminates, this is reported but no other applications are
terminated.

Note that it is always possible to stop an application explicitly by calling stop/1.
Regardless of the type of the application, no other applications will be affected.

Note also that the transient type is of little practical use, since when a supervision tree
terminates, the reason is set to shutdown, Nnot normal.

start_type() -> StartType | local | undefined

Types:
e StartType = normal | {takeover,Node} | {failover,Node}
e Node = node()

This function is intended to be called by a process belonging to an application, when
the application is being started, to determine the start type which is either StartType
or local.

See Module:start/2 for a description of StartType.

local is returned if only parts of the application is being restarted (by a supervisor), or
if the function is called outside a startup.

If the process executing the call does not belong to any application, the function returns
undefined.

stop(Application) -> ok | {error, Reason}

40

Types:
e Application = atom()
e Reason = term()

Kernel Application (KERNEL)

Kernel Reference Manual application

Stops Application. The application master calls Module:prep_stop/1, if such a
function is defined, and then tells the top supervisor of the application to shutdown (see
supervisor(3)). This means that the entire supervision tree, including included
applications, is terminated in reversed start order. After the shutdown, the application
master calls Module:stop/1. Module is the callback module as defined by the
application specification key mod.

Last, the application master itself terminates. Note that all processes with the
application master as group leader, i.e. processes spawned from a process belonging to
the application, thus are terminated as well.

When stopped, the application is still loaded.

In order to stop a distributed application, stop/1 has to be called on all nodes where it
can execute (that is, on all nodes where it has been started). The call to stop/1 on the
node where the application currently executes will stop its execution. The application
will not be moved between nodes due to stop/1 being called on the node where the
application currently executes before stop/1 is called on the other nodes.

takeover (Application, Type) -> ok | {error, Reason}
Types:
e Application = atom()
e Type = permanent | transient | temporary
e Reason = term()
Performs a takeover of the distributed application Application, which executes at
another node Node. At the current node, the application is restarted by calling
Module:start ({takeover,Node},StartArgs). Module and StartArgs are retrieved
from the loaded application specification. The application at the other node is not

stopped until the startup is completed, i.e. when Module:start/2 and any calls to
Module:start_phase/3 have returned.

Thus two instances of the application will run simultaneously during the takeover,
which makes it possible to transfer data from the old to the new instance. If this is not
acceptable behavior, parts of the old instance may be shut down when the new instance
is started. Note that the application may not be stopped entirely however, at least the
top supervisor must remain alive.

See start/1,2 for a description of Type.

unload (Application) -> ok | {error, Reason}
Types:

e Application = atom()
¢ Reason = term()

Unloads the application specification for Application from the application controller.
It will also unload the application specifications for any included applications. Note that
the function does not purge the actual Erlang object code.

unset_env(Application, Par) -> ok
unset_env(Application, Par, Timeout) -> ok
Types:
e Application = atom()
e Par = atom()

Kernel Application (KERNEL) 41

application Kernel Reference Manual

e Timeout = int() | infinity
Removes the configuration parameter Par and its value for Application.
unset_env/2 uses the standard gen_server timeout value (5000 ms). A Timeout

argument can be provided if another timeout value is useful, for example, in situations
where the application controller is heavily loaded.

Warning:

Use this function only if you know what you are doing, that is, on your own
applications. It is very application and configuration parameter dependent when and
how often the value is read by the application, and careless use of this function may
put the application in a weird, inconsistent, and malfunctioning state.

which applications() -> [{Application, Description, Vsn}]
which applications(Timeout) -> [{Application, Description, Vsn}]

Types:

e Application = atom()

e Description = string()

e Vsn = string()

e Timeout = int() | infinity

Returns a list with information about the applications which are currently running.

Application is the application name. Description and Vsn are the values of its
description and vsn application specfication keys, respectively.

which_applications/0 uses the standard gen_server timeout value (5000 ms). A
Timeout argument can be provided if another timeout value is useful, for example, in
situations where the application controller is heavily loaded.

CALLBACK MODULE

The following functions should be exported from an application callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error, Reason}

Types:

e StartType = normal | {takeover,Node} | {failover,Node}
e Node = node()

e StartArgs = term()

e Pid = pid()

e State = term()

42 Kernel Application (KERNEL)

Kernel Reference Manual application

This function is called whenever an application is started using
application:start/1,2,and should start the processes of the application. If the
application is structured according to the OTP design principles as a supervision tree,
this means starting the top supervisor of the tree.

StartType defines the type of start:

e normal if its a normal startup.

e normal also if the application is distributed and started at the current node due to
a failover from another node, and the application specification key start_phases
== undefined.

e {takeover,Node} if the application is distributed and started at the current node
due to a takeover from Node, either because application:takeover/2 has been
called or because the current node has higher priority than Node.

e {failover,Node} if the application is distributed and started at the current node
due to a failover from Node, and the application specification key start_phases
/= undefined.

StartArgs is the StartArgs argument defined by the application specification key mod.

The function should return {ok,Pid} or {ok,Pid,State} where Pid is the pid of the
top supervisor and State is any term. If omitted, State defaults to []. If later the
application is stopped, State is passed to Module:prep-stop/1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types:
e Phase = atom()
e StartType = normal | {takeover,Node} | {failover,Node}
e Node = node()
e PhaseArgs = term()
e Pid = pid()
e State = state()

This function is used to start an application with included applications, when there is a
need for synchronization between processes in the different applications during startup.

The start phases is defined by the application specification key start_phases ==
[{Phase,PhaseArgs}]. For included applications, the set of phases must be a subset of
the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary appliction) for the
primary application and all included applications, for which the start phase is defined.

See Module:start/2 for a description of StartType.

Module:prep_stop(State) -> NewState
Types:
e State = NewsState = term()

Kernel Application (KERNEL) 43

application

Kernel Reference Manual

This function is called when an application is about to be stopped, before shutting
down the processes of the application.

State is the state returned from Module:start/2, or [] if no state was returned.
NewState is any term and will be passed to Module:stop/1.

The function is optional. If it is not defined, the processes will be terminated and then
Module:stop(State) is called.

Module:stop(State)

Types:
e State = term()

This function is called whenever an application has stopped. It is intended to be the
opposite of Module:start/2 and should do any necessary cleaning up. The return value
is ignored.

State is the return value of Module:prep-_stop/1, if such a function exists. Otherwise
State is taken from the return value of Module:start/2.

Module:config change (Changed, New, Removed) -> ok

44

Types:

e Changed = [{Par,Val}]
e New = [{Par,Val}]

e Removed = [Par]

e Par = atom()

e Val =term()

This function is called by an application after a code replacement, if there are any
changes to the configuration parameters.

Changed is a list of parameter-value tuples with all configuration parameters with
changed values, New is a list of parameter-value tuples with all configuration parameters
that have been added, and Removed is a list of all parameters that have been removed.

SEE ALSO

[OTP Design Principles], kernel(6) [page 32], app(4) [page 288]

Kernel Application (KERNEL)

Kernel Reference Manual auth

auth

Erlang Module

This module is deprecated. For a description of the Magic Cookie system, refer to
[Distributed Erlang] in the Erlang Reference Manual.

Exports

is_auth(Node) -> yes | no

Types:
e Node = node()

Returns yes if communication with Node is authorized. Note that a connection to Node

will be established in this case. Returns no if Node does not exist or communication is
not authorized (it has another cookie than auth thinks it has).

Use net_adm:ping(Node) [page 247] instead.
cookie() -> Cookie
Types:
e Cookie = atom()

Use erlang:get_cookie() [page 101] instead.

cookie(TheCookie) -> true
Types:

e TheCookie = Cookie | [Cookie]

The cookie may also be given as a list with a single atom element
e Cookie = atom()

Use erlang:set_cookie(node(), Cookie) [page 137] instead.

node_cookie([Node, Cookie]) -> yes | no
Types:

e Node = node()
e Cookie = atom()

Equivalent to node_cookie(Node, Cookie) [page 45].

node_cookie(Node, Cookie) -> yes | no

Types:
¢ Node = node()

Kernel Application (KERNEL) 45

auth Kernel Reference Manual

e Cookie = atom()
Sets the magic cookie of Node to Cookie, and verifies the status of the authorization.
Equivalent to calling erlang:set_cookie(Node, Cookie) [page 137], followed by

auth:is_auth(Node) [page 45].

46 Kernel Application (KERNEL)

Kernel Reference Manual code

code

Erlang Module

This module contains the interface to the Erlang code server, which deals with the
loading of compiled code into a running Erlang runtime system.

The runtime system can be started in either embedded or interactive mode. Which one is
decided by the command line flag -mode.

% erl -mode interactive

Default mode is interactive.

¢ In embedded mode, all code is loaded during system start-up according to the boot
script. (Code can also be loaded later by explicitly ordering the code server to do
S0).

¢ In interactive mode, only some code is loaded during system startup-up, basically
the modules needed by the runtime system itself. Other code is dynamically loaded
when first referenced. When a call to a function in a certain module is made, and
the module is not loaded, the code server searches for and tries to load the module.

To prevent accidently reloading modules affecting the Erlang runtime system itself, the
kernel, stdlib and compiler directories are considered sticky. This means that the
system issues a warning and rejects the request if a user tries to reload a module residing
in any of them. The feature can be disabled by using the command line flag -nostick.

Code Path

In interactive mode, the code server maintains a search path — usually called the code
path — consisting of a list of directories, which it searches sequentially when trying to
load a module.

Initially, the code path consists of the current working directory and all Erlang object
code directories under the library directory $0TPROOT/1ib, where $0TPROOT is the
installation directory of Erlang/OTP, code:root_dir (). Directories can be named
Name [-Vsn] and the code server, by default, chooses the directory with the highest
version number among those which have the same Name. The -Vsn suffix is optional. If
an ebin directory exists under Name [-Vsn], it is this directory which is added to the
code path.

Kernel Application (KERNEL) 47

code

Kernel Reference Manual

48

Code Path Cache

The code server incorporates a code path cache. The cache functionality is disabled by
default. To activate it, start the emulator with the command line flag -code path_cache
or call code:rehash(). When the cache is created (or updated), the code server
searches for modules in the code path directories. This may take some time if the the
code path is long. After the cache creation, the time for loading modules in a large
system (one with a large directory structure) is significantly reduced compared to having
the cache disabled. The code server is able to look up the location of a module from the
cache in constant time instead of having to search through the code path directories.

Application resource files (. app files) are also stored in the code path cache. This
feature is used by the application controller (see application(3) [page 36]) to load
applications efficiently in large systems.

Note that when the code path cache is created (or updated), any relative directory
names in the code path are converted to absolute.

Current and Old Code

The code of a module can exists in two variants in a system: current code and old code.
When a module is loaded into the system for the first time, the code of the module
becomes ’current’ and the global export table is updated with references to all functions
exported from the module.

If then a new instance of the module is loaded (perhaps because of the correction of an
error), then the code of the previous instance becomes ’old’, and all export entries
referring to the previous instance are removed. After that the new instance is loaded as
if it was loaded for the first time, as described above, and becomes ’current’.

Both old and current code for a module are valid, and may even be evaluated
concurrently. The difference is that exported functions in old code are unavailable.
Hence there is no way to make a global call to an exported function in old code, but old
code may still be evaluated because of processes lingering in it.

If a third instance of the module is loaded, the code server will remove (purge) the old
code and any processes lingering in it will be terminated. Then the third instance
becomes ’current’ and the previously current code becomes ’old’.

For more information about old and current code, and how to make a process switch
from old to current code, refer to [Erlang Reference Manual].

Argument Types and Invalid Arguments

Generally, module and application names are atoms, while file and directory names are
strings. For backward compatibility reasons, some functions accept both strings and
atoms, but a future release will probably only allow the arguments that are documented.

From the R12B release, functions in this module will generally fail with an exception if
they are passed an incorrect type (for instance, an integer or a tuple where an atom was
expected). An error tuple will be returned if type of argument was correct, but there
was some other error (for instance, a non-existing directory given to set_path/1.

Kernel Application (KERNEL)

Kernel Reference Manual code

Exports

set_path(Path) -> true | {error, What}
Types:
e Path = [Dir]
e Dir = string()
e What = bad_directory | bad_path
Sets the code path to the list of directories Path.

Returns true if successful, or {error, bad_directory} if any Dir is not the name of a
directory, or {error, bad_path} if the argument is invalid.

get_path() -> Path
Types:
e Path = [Dir]
e Dir =string()
Returns the code path

add_path(Dir) -> true | {error, What}
add_pathz(Dir) -> true | {error, What}
Types:
e Dir = string()
e What = bad_directory

Adds Dir to the code path. The directory is added as the last directory in the new path.
If Dir already exists in the path, it is not added.

Returns true if successful, or {error, bad directory} if Dir is not the name of a
directory.

add_patha(Dir) -> true | {error, What}
Types:

e Dir = string()
e What = bad_directory

Adds Dir to the beginning of the code path. If Dir already exists, it is removed from the
old position in the code path.

Returns true if successful, or {error, bad_directory} if Dir is not the name of a
directory.

add_paths(Dirs) -> ok
add_pathsz(Dirs) -> ok
Types:
¢ Dirs = [Dir]
e Dir =string()

Kernel Application (KERNEL) 49

code Kernel Reference Manual

Adds the directories in Dirs to the end of the code path. If a Dir already exists, it is not
added. This function always returns ok, regardless of the validity of each individual Dir.

add_pathsa(Dirs) -> ok
Types:
e Dirs = [Dir]
e Dir = string()
Adds the directories in Dirs to the beginning of the code path. If a Dir already exists, it

is removed from the old position in the code path. This function always returns ok,
regardless of the validity of each individual Dir.

del path(Name | Dir) -> true | false | {error, What}

Types:

e Name = atom()

e Dir = string()

¢ What = bad_name

Deletes a directory from the code path. The argument can be an atom Name, in which
case the directory with the name . ../Name[-Vsn] [/ebin] is deleted from the code
path. It is also possible to give the complete directory name Dir as argument.

Returns true if successful, or false if the directory is not found, or {error,
bad_name} if the argument is invalid.

replace_path(Name, Dir) -> true | {error, What}

Types:

e Name = atom()

e Dir = string()

e What = bad_name | bad_directory | {badarg, term()}

This function replaces an old occurrence of a directory named

.../Name [-Vsn] [/ebin], in the code path, with Dir. If Name does not exist, it adds the
new directory Dir last in the code path. The new directory must also be named

.. ./Name [-Vsn] [/ebin]. This function should be used if a new version of the

directory (library) is added to a running system.

Returns true if successful, or {error, bad name} if Name is not found, or {error,
bad_directory} if Dir does not exist, or {error, {badarg, [Name, Dir]}} if Name or
Dir is invalid.

load_file(Module) -> {module, Module} | {error, What}

Types:
e Module = atom()
e What = nofile | sticky_directory | badarg | term()

50 Kernel Application (KERNEL)

Kernel Reference Manual code

Tries to load the Erlang module Module, using the code path. It looks for the object
code file with an extension that corresponds to the Erlang machine used, for example
Module.beam. The loading fails if the module name found in the object code differs
from the name Module. load_binary/3 [page 51] must be used to load object code with
a module name that is different from the file name.

Returns {module, Module} if successful, or {error, nofile} if no object code is
found, or {error, sticky directory} if the object code resides in a sticky directory,
or {error, badarg} if the argument is invalid. Also if the loading fails, an error tuple is
returned. See erlang:load_module/2 [page 111] for possible values of What.

load_abs(Filename) -> {module, Module} | {error, What}

Types:

e Filename = string()

¢ Module = atom()

e What = nofile | sticky_directory | badarg | term()

Does the same as 1oad _file(Module), but Filename is either an absolute file name, or
a relative file name. The code path is not searched. It returns a value in the same way as

load_file/1 [page 50]. Note that Filename should not contain the extension (for
example " .beam"); load_abs/1 adds the correct extension itself.

ensure_loaded (Module) -> {module, Module} | {error, What}

Types:

¢ Module = atom()

e What = nofile | sticky_directory | embedded | badarg | term()

Tries to to load a module in the same way as load_file/1 [page 50]. In embedded mode,

however, it does not load a module which is not already loaded, but returns {error,
embedded} instead.

load binary(Module, Filename, Binary) -> {module, Module} | {error, What}

Types:

¢ Module = atom()

e Filename = string()

e What = sticky_directory | badarg | term()

This function can be used to load object code on remote Erlang nodes. It can also be
used to load object code where the file name and module name differ. This, however, is
a very unusual situation and not recommended. The parameter Binary must contain
object code for Module. Filename is only used by the code server to keep a record of

from which file the object code for Module comes. Accordingly, Filename is not opened
and read by the code server.

Returns {module, Module} if successful, or {error, sticky directory} if the object
code resides in a sticky directory, or {error, badarg} if any argument is invalid. Also if
the loading fails, an error tuple is returned. See erlang:load_module/2 [page 111] for
possible values of What.

delete(Module) -> true | false

Types:

Kernel Application (KERNEL) 51

code Kernel Reference Manual

e Module = atom()

Removes the current code for Module, that is, the current code for Module is made old.
This means that processes can continue to execute the code in the module, but that no
external function calls can be made to it.

Returns true if successful, or false if there is old code for Module which must be
purged first, or if Module is not a (loaded) module.

purge (Module) -> true | false
Types:
e Module = atom()

Purges the code for Module, that is, removes code marked as old. If some processes still
linger in the old code, these processes are killed before the code is removed.

Returns true if successful and any process needed to be killed, otherwise false.

soft_purge(Module) -> true | false
Types:
e Module = atom()

Purges the code for Module, that is, removes code marked as old, but only if no
processes linger in it.

Returns false if the module could not be purged due to processes lingering in old code,
otherwise true.

is_loaded(Module) -> {file, Loaded} | false
Types:
e Module = atom()

e Loaded = Absname | preloaded | cover_compiled
e Absname = string()

Checks if Module is loaded. Ifitis, {file, Loaded} is returned, otherwise false.

Normally, Loaded is the absolute file name Absname from which the code was obtained.
If the module is preloaded (see [script(4)]), Loaded==preloaded. If the module is
Cover compiled (see [cover(3)]), Loaded==cover_compiled.

all loaded() -> [{Module, Loaded}]
Types:
e Module = atom()

e Loaded = Absname | preloaded | cover_compiled
e Absname = string()

Returns a list of tuples {Module, Loaded} for all loaded modules. Loaded is normally
the absolute file name, as described for is_loaded/1 [page 52].
which(Module) -> Which

Types:
e Module = atom()
¢ Which = Filename | non_existing | preloaded | cover_compiled

52 Kernel Application (KERNEL)

Kernel Reference Manual code

e Filename = string()

If the module is not loaded, this function searches the code path for the first file which
contains object code for Module and returns the absolute file name. If the module is
loaded, it returns the name of the file which contained the loaded object code. If the
module is pre-loaded, preloaded is returned. If the module is Cover compiled,
cover_compiled is returned. non_existing is returned if the module cannot be found.

get_object_code(Module) -> {Module, Binary, Filename} | error

Types:

e Module = atom()

e Binary = binary()

e Filename = string()

Searches the code path for the object code of the module Module. It returns {Module,
Binary, Filename} if successful, and error if not. Binary is a binary data object
which contains the object code for the module. This can be useful if code is to be

loaded on a remote node in a distributed system. For example, loading module Module
on a node Node is done as follows:

{_Module, Binary, Filename} = code:get_object_code(Module),
rpc:call(Node, code, load_binary, [Module, Filename, Binary]),

root_dir() -> string()

libdir() ->

Returns the root directory of Erlang/OTP, which is the directory where it is installed.

> code:root.dir().
"/usr/local/otp"

string()

Returns the library directory, $0TPROOT/1ib, where $0TPROOT is the root directory of
Erlang/OTP.

> code:1lib dir().
"/usr/local/otp/lib"

lib dir (Name) -> string() | {error, bad name}

Types:
¢ Name = atom()

This function is mainly intended for finding out the path for the “library directory”, the
top directory, for an application Name located under $0TPROOT/1ib.

If there is a directory called Name in the code path, optionally with a -Vsn suffix and/or
an ebin subdirectory, the name of this directory is returned.

> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Kernel Application (KERNEL) 53

code Kernel Reference Manual

Returns {error, bad name} if Name is not the name of an application under
$0TPROOT/1ib. Fails with an exception if Name has the wrong type.

Warning:
For backward compatibiliy, Name is also allowed to be a string. That will probably
change in a future release.

compiler dir() -> string()

Returns the compiler library directory. Equivalent to code:1ib dir(compiler).

priv_dir(Name) -> string() | {error, badname}
Types:
e Name = atom()

This function is mainly intended for finding out the path for the priv directory for an
application Name located under $0TPROOT/11b.

If there is a directory called Name in the code path, optionally with a -Vsn suffix and/or
an ebin subdirectory, the function returns the name of this directory with priv
appended. It is not checked if this directory really exists.

> code:priv.dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2/priv"

Returns {error, bad name} if Name is not the name of an application under
$0TPROOT/1ib. Fails with an exception if Name has the wrong type.

Warning:
For backward compatibiliy, Name is also allowed to be a string. That will probably
change in a future release.

objfile_extension() -> ".beam"

Returns the object code file extension that corresponds to the Erlang machine used,
namely " .beam".

stick-dir(Dir) -> ok | {error, What}
Types:
e Dir = string()
e What = term()
This function marks Dir as sticky.
Returns ok if successful, and an error tuple otherwise.

unstickdir(Dir) -> ok | {error, What}

54 Kernel Application (KERNEL)

Kernel Reference Manual code

Types:

e Dir =string()

e What = term()

This function unsticks a directory which has been marked as sticky.
Returns ok if successful, and an error tuple otherwise.

rehash() -> ok

This function creates or rehashes the code path cache.

where_is_file(Filename) -> Absname | non_existing
Types:
e Filename = Absname = string()

Searches the code path for Filename, a file of arbitrary type. If found, the full name is
returned. non_existing is returned if the file cannot be found. The function can be
useful, for example, to locate application resource files. If the code path cache is used,
the code server will efficiently read the full name from the cache, provided that
Filename is an object code file or an . app file.

clash() -> ok

Searches the entire code space for module names with identical names and writes a
report to stdout.

Kernel Application (KERNEL) 55

disk_log

Kernel Reference Manual

56

disk_log

Erlang Module

disk_log is a disk based term logger which makes it possible to efficiently log items on
files. Two types of logs are supported, halt logs and wrap logs. A halt log appends items
to a single file, the size of which may or may not be limited by the disk log module,
whereas a wrap log utilizes a sequence of wrap log files of limited size. As a wrap log file
has been filled up, further items are logged onto to the next file in the sequence, starting
all over with the first file when the last file has been filled up. For the sake of efficiency,
items are always written to files as binaries.

Two formats of the log files are supported, the internal format and the external format.
The internal format supports automatic repair of log files that have not been properly
closed, and makes it possible to efficiently read logged items in chunks using a set of
functions defined in this module. In fact, this is the only way to read internally
formatted logs. The external format leaves it up to the user to read the logged deep byte
lists. The disk log module cannot repair externally formatted logs. An item logged to an
internally formatted log must not occupy more than 4 GB of disk space (the size must
fit in 4 bytes).

For each open disk log there is one process that handles requests made to the disk log;
the disk log process is created when open/1 is called, provided there exists no process
handling the disk log. A process that opens a disk log can either be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and the
disk log is closed by the owner should the owner terminate. Owners can subscribe to
notifications, messages of the form {disk_log, Node, Log, Info} that are sent from
the disk log process when certain events occur, see the commands below and in
particular the open/1 option notify [page 66]. There can be several owners of a log, but
a process cannot own a log more than once. One and the same process may, however,
open the log as a user more than once. For a disk log process to properly close its file
and terminate, it must be closed by its owners and once by some non-owner process for
each time the log was used anonymously; the users are counted, and there must not be
any users left when the disk log process terminates.

Items can be logged synchronously by using the functions log/2, blog/2, log_-terms/2
and blog_terms/2. For each of these functions, the caller is put on hold until the items
have been logged (but not necessarily written, use sync/1 to ensure that). By adding an
a to each of the mentioned function names we get functions that log items
asynchronously. Asynchronous functions do not wait for the disk log process to actually
write the items to the file, but return the control to the caller more or less immediately.

When using the internal format for logs, the functions log/2, log_terms/2, alog/2,
and alog_terms/2 should be used. These functions log one or more Erlang terms. By
prefixing each of the functions with a b (for “binary”) we get the corresponding blog
functions for the external format. These functions log one or more deep lists of bytes or,
alternatively, binaries of deep lists of bytes. For example, to log the string "hello" in
ASCII format, we can use disk log:blog(Log, "hello"), or disk_log:blog(Log,
list_to_binary("hello")). The two alternatives are equally efficient. The blog

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

functions can be used for internally formatted logs as well, but in this case they must be
called with binaries constructed with calls to term_to_binary/1. There is no check to
ensure this, it is entirely the responsibility of the caller. If these functions are called with
binaries that do not correspond to Erlang terms, the chunk/2,3 and automatic repair
functions will fail. The corresponding terms (not the binaries) will be returned when
chunk/2, 3 is called.

A collection of open disk logs with the same name running on different nodes is said to
be a a distributed disk log if requests made to any one of the logs are automatically made
to the other logs as well. The members of such a collection will be called individual
distributed disk logs, or just distributed disk logs if there is no risk of confusion. There is
no order between the members of such a collection. For instance, logged terms are not
necessarily written onto the node where the request was made before written onto the
other nodes. One could note here that there are a few functions that do not make
requests to all members of distributed disk logs, namely info, chunk, bchunk,
chunk_step and 1close. An open disk log that is not a distributed disk log is said to be
a local disk log. A local disk log is accessible only from the node where the disk log
process runs, whereas a distributed disk log is accessible from all nodes in the Erlang
system, with exception for those nodes where a local disk log with the same name as
the distributed disk log exists. All processes on nodes that have access to a local or
distributed disk log can log items or otherwise change, inspect or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items;
there is no attempt made to synchronize the contents of the files. However, as long as at
least one of the involved nodes is alive at each time, all items will be logged. When
logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If all nodes are down, the disk log functions reply with a
nonode Error.

Note:

In some applications it may not be acceptable that replies from individual logs are
ignored. An alternative in such situations is to use several local disk logs instead of
one distributed disk log, and implement the distribution without use of the disk log
module.

Errors are reported differently for asynchronous log attempts and other uses of the disk
log module. When used synchronously the disk log module replies with an error
message, but when called asynchronously, the disk log module does not know where to
send the error message. Instead owners subscribing to notifications will receive an
error_status Imessage.

The disk log module itself does not report errors to the error_logger module; it is up
to the caller to decide whether the error logger should be employed or not. The
function format_error/1 can be used to produce readable messages from error replies.
Information events are however sent to the error logger in two situations, namely when
a log is repaired, or when a file is missing while reading chunks.

The error message no_such_log means that the given disk log is not currently open.
Nothing is said about whether the disk log files exist or not.

Kernel Application (KERNEL) 57

disk_log

Kernel Reference Manual

Note:

If an attempt to reopen or truncate a log fails (see reopen and truncate) the disk log
process immediately terminates. Before the process terminates links to to owners and
blocking processes (see block) are removed. The effect is that the links work in one
direction only; any process using a disk log has to check for the error message
no_such_log if some other process might truncate or reopen the log simultaneously.

Exports

accessible logs() -> {[Locallogl, [DistributedLog]}

Types:
e LocalLog = DistributedLog = term()

The accessible_logs/0 function returns the names of the disk logs accessible on the
current node. The first list contains local disk logs, and the second list contains
distributed disk logs.

alog(Log, Term)

balog(Log, Bytes) -> ok | {error, Reason}

Types:

e Log =term()

e Term = term()

e Bytes = binary() | [Byte]

e Byte = [Byte] | 0 =< integer() =< 255
e Reason = no_such_log

The alog/2 and balog/2 functions asynchronously append an item to a disk log. The
function alog/2 is used for internally formatted logs, and the function balog/2 for
externally formatted logs. balog/2 can be used for internally formatted logs as well

p

rovided the binary was constructed with a call to term_to_binary/1.

The owners that subscribe to notifications will receive the message read only,

blocked_log Or format_external in case the item cannot be written on the log, and
possibly one of the messages wrap, full and error_status if an item was written on
the log. The message error_status is sent if there is something wrong with the header
function or a file error occurred.

alog terms(Log, TermList)

balog terms(Log, BytesList) -> ok | {error, Reason}

58

Types:

Log = term()

TermList = [term()]

BytesList = [Bytes]

Bytes = binary() | [Byte]

Byte = [Byte] | 0 =< integer() =< 255
Reason = no_such_log

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

The alog_terms/2 and balog_terms/2 functions asynchronously append a list of items
to a disk log. The function alog_terms/2 is used for internally formatted logs, and the
function balog_terms/2 for externally formatted logs. balog terms/2 can be used for
internally formatted logs as well provided the binaries were constructed with calls to
term_to_binary/1.

The owners that subscribe to notifications will receive the message read_only,
blocked log or format_external in case the items cannot be written on the log, and
possibly one or more of the messages wrap, full and error_status if items were
written on the log. The message error_status is sent if there is something wrong with
the header function or a file error occurred.

block(Log)
block(Log, QueueLogRecords) -> ok | {error, Reason}

Types:

e Log=term()

¢ QueuelLogRecords = bool()

e Reason = no_such_log | nonode | {blocked_log, Log}

With a call to block/1,2 a process can block a log. If the blocking process is not an
owner of the log, a temporary link is created between the disk log process and the

blocking process. The link is used to ensure that the disk log is unblocked should the
blocking process terminate without first closing or unblocking the log.

Any process can probe a blocked log with info/1 or close it with close/1. The
blocking process can also use the functions chunk/2, 3, bchunk/2, 3, chunk_step/3, and
unblock/1 without being affected by the block. Any other attempt than those hitherto
mentioned to update or read a blocked log suspends the calling process until the log is
unblocked or returns an error message {blocked_log, Log}, depending on whether the
value of QueueLogRecords is true or false. The default value of QueueLogRecords is
true, which is used by block/1.

change header(Log, Header) -> ok | {error, Reason}
Types:
Log = term()
Header = {head, Head} | {head_func, {M,F,A}}
e Head = none | term() | binary() | [Byte]
Byte = [Byte] | 0 =< integer() =< 255
Reason = no_such_log | nonode | {read_only_-mode, Log} | {blocked_log, Log} |
{badarg, head}

The change_header/2 function changes the value of the head or head_func option of a
disk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}
Types:

Log = term()
Owner = pid()
Notify = bool()

Reason = no_such_log | nonode | {blocked_log, Log} | {badarg, notify} |
{not_owner, Owner}

Kernel Application (KERNEL) 59

disk_log Kernel Reference Manual

The change notify/3 function changes the value of the notify option for an owner of
a disk log.

change size(Log, Size) -> ok | {error, Reason}
Types:
e Log =term()
e Size = integer() > 0 | infinity | {MaxNoBytes, MaxNoFiles}
e MaxNoBytes = integer() > 0
e MaxNoFiles = integer() > 0
e Reason = no_such_log | nonode | {read-only_mode, Log} | {blocked_log, Log} |
{new_size_too_small, CurrentSize} | {badarg, size} | {file_error, FileName, FileError}

The change_size/2 function changes the size of an open log. For a halt log it is always
possible to increase the size, but it is not possible to decrease the size to something less
than the current size of the file.

For a wrap log it is always possible to increase both the size and number of files, as long
as the number of files does not exceed 65000. If the maximum number of files is
decreased, the change will not be valid until the current file is full and the log wraps to
the next file. The redundant files will be removed next time the log wraps around, i.e.
starts to log to file number 1.

As an example, assume that the old maximum number of files is 10 and that the new
maximum number of files is 6. If the current file number is not greater than the new
maximum number of files, the files 7 to 10 will be removed when file number 6 is full
and the log starts to write to file number 1 again. Otherwise the files greater than the
current file will be removed when the current file is full (e.g. if the current file is 8, the
files 9 and 10); the files between new maximum number of files and the current file (i.e.
files 7 and 8) will be removed next time file number 6 is full.

If the size of the files is decreased the change will immediately affect the current log. It
will not of course change the size of log files already full until next time they are used.

If the log size is decreased for instance to save space, the function inc_wrap_file/1 can
be used to force the log to wrap.

chunk(Log, Continuation)

chunk(Log, Continuation, N) -> {Continuation2, Terms} | {Continuation2, Terms,
Badbytes} | eof | {error, Reason}

bchunk (Log, Continuation)

bchunk(Log, Continuation, N) -> {Continuation2, Binaries} | {Continuation2, Binaries,
Badbytes} | eof | {error, Reason}

Types:

e Log =term()

e Continuation = start | cont()

e N =integer() > 0 | infinity

e Continuation2 = cont()

e Terms = [term()]

e Badbytes = integer()

e Reason = no_such_log | {format_external, Log} | {blocked_log, Log} | {badarg,

continuation} | {not_internal_wrap, Log} | {corrupt_log_file, FileName} | {file_error,
FileName, FileError}

60 Kernel Application (KERNEL)

Kernel Reference Manual disk_log

e Binaries = [binary()]

The chunk/2, 3 and bchunk/2, 3 functions make it possible to efficiently read the terms
which have been appended to an internally formatted log. It minimizes disk 1/0 by
reading 64 kilobyte chunks from the file. The bchunk/2, 3 functions return the binaries
read from the file; they do not call binary_to_term. Otherwise the work just like
chunk/2, 3.

The first time chunk (or bchunk) is called, an initial continuation, the atom start, must
be provided. If there is a disk log process running on the current node, terms are read

from that log, otherwise an individual distributed log on some other node is chosen, if
such a log exists.

When chunk/3 is called, N controls the maximum number of terms that are read from
the log in each chunk. Default is infinity, which means that all the terms contained in
the 64 kilobyte chunk are read. If less than N terms are returned, this does not
necessarily mean that the end of the file has been reached.

The chunk function returns a tuple {Continuation2, Terms}, where Terms is a list of
terms found in the log. Continuation?2 is yet another continuation which must be
passed on to any subsequent calls to chunk. With a series of calls to chunk it is possible
to extract all terms from a log.

The chunk function returns a tuple {Continuation2, Terms, Badbytes} if the log is
opened in read-only mode and the read chunk is corrupt. Badbytes is the number of
bytes in the file which were found not to be Erlang terms in the chunk. Note also that
the log is not repaired. When trying to read chunks from a log opened in read-write
mode, the tuple {corrupt_log file, FileName} is returned if the read chunk is
corrupt.

chunk returns eof when the end of the log is reached, or {error, Reason} if an error
occurs. Should a wrap log file be missing, a message is output on the error log.

When chunk/2, 3 is used with wrap logs, the returned continuation may or may not be
valid in the next call to chunk. This is because the log may wrap and delete the file into
which the continuation points. To make sure this does not happen, the log can be
blocked during the search.

chunk_info(Continuation) -> Infolist | {error, Reason}
Types:
e Continuation = cont()
¢ Reason = {no_continuation, Continuation}

The chunk_info/1 function returns the following pair describing the chunk
continuation returned by chunk/2, 3, bchunk/2, 3, or chunk step/3:

e {node, Node}. Terms are read from the disk log running on Node.

chunk step(Log, Continuation, Step) -> {ok, Continuation2} | {error, Reason}
Types:

Log = term()

Continuation = start | cont()

Step = integer()

Continuation2 = cont()

Kernel Application (KERNEL) 61

disk_log

Kernel Reference Manual

e Reason = no_such_log | end_of_log | {format_external, Log} | {blocked_log, Log} |
{badarg, continuation} | {file_error, FileName, FileError}

The function chunk_step can be used in conjunction with chunk/2,3 and bchunk/2,3
to search through an internally formatted wrap log. It takes as argument a continuation
as returned by chunk/2, 3, bchunk/2, 3, or chunk_step/3, and steps forward (or
backward) Step files in the wrap log. The continuation returned points to the first log
item in the new current file.

If the atom start is given as continuation, a disk log to read terms from is chosen. A
local or distributed disk log on the current node is preferred to an individual distributed
log on some other node.

If the wrap log is not full because all files have not been used yet, {error, end of_log}
is returned if trying to step outside the log.

close(Log) -> ok | {error, Reason}

Types:
e Reason = no_such_log | nonode | {file_error, FileName, FileError}

The function close/1 closes a local or distributed disk log properly. An internally
formatted log must be closed before the Erlang system is stopped, otherwise the log is
regarded as unclosed and the automatic repair procedure will be activated next time the
log is opened.

The disk log process in not terminated as long as there are owners or users of the log. It
should be stressed that each and every owner must close the log, possibly by
terminating, and that any other process - not only the processes that have opened the
log anonymously - can decrement the users counter by closing the log. Attempts to
close a log by a process that is not an owner are simply ignored if there are no users.

If the log is blocked by the closing process, the log is also unblocked.

format_error (Error) -> Chars

Types:
e Chars = [char() | Chars]

Given the error returned by any function in this module, the function format_error
returns a descriptive string of the error in English. For file errors, the function
format_error/1in the file module is called.

inc_wrap file(Log) -> ok | {error, Reason}

Types:

e Reason = no_such_log | nonode | {read_only_mode, Log} | {blocked_log, Log} |
{halt_log, Log} | {invalid_header, InvalidHeader} | {file_error, FileName, FileError}

The inc_wrap_file/1 function forces the internally formatted disk log to start logging
to the next log file. It can be used, for instance, in conjunction with change_size/2 to
reduce the amount of disk space allocated by the disk log.

The owners that subscribe to notifications will normally receive a wrap message, but in
case of an error with a reason tag of invalid header or file error an error_status
message will be sent.

info(Log) -> Infolist | {error, no_such_log}

62

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

The info/1 function returns a list of {Tag, Value} pairs describing the log. If there is a
disk log process running on the current node, that log is used as source of information,
otherwise an individual distributed log on some other node is chosen, if such a log exists.

The following pairs are returned for all logs:

{name, Log}, where Log is the name of the log as given by the open/1 option
name.

{file, File}. For halt logs File is the filename, and for wrap logs File is the
base name.

{type, Type}, where Type is the type of the log as given by the open/1 option
type.

{format, Format}, where Format is the format of the log as given by the open/1
option format.

{size, Size}, where Size is the size of the log as given by the open/1 option
size, or the size set by change_size/2. The value set by change size/2is
reflected immediately.

{mode, Mode}, where Mode is the mode of the log as given by the open/1 option
mode.

{owners, [{pid(), Notify}]} where Notify is the value set by the open/1
option notify or the function change notify/3 for the owners of the log.

{users, Users} where Users is the number of anonymous users of the log, see
the open/1 option linkto [page 66].

{status, Status}, where Status is ok or {blocked, QueueLogRecords} as set
by the functions block/1,2 and unblock/1.

{node, Node}. The information returned by the current invocation of the info/1
function has been gathered from the disk log process running on Node.

{distributed, Dist}. If the log is local on the current node, then Dist has the
value local, otherwise all nodes where the log is distributed are returned as a list.

The following pairs are returned for all logs opened in read write mode:

{head, Head}. Depending of the value of the open/1 options head and head_func
or set by the function change_header/2, the value of Head is none (default),
{head, H} (head option) or {M,F,A} (head_func option).

{no_written_items, NoWrittenItems}, where NoWrittenItems isthe number of
items written to the log since the disk log process was created.

The following pair is returned for halt logs opened in read write mode:

{full, Full}, where Full is true or false depending on whether the halt log is
full or not.

The following pairs are returned for wrap logs opened in read write mode:

{no_current bytes, integer() >= 0} is the number of bytes written to the
current wrap log file.

{no_current_items, integer() >= 0} is the number of items written to the
current wrap log file, header inclusive.

{no_items, integer() >= 0} is the total number of items in all wrap log files.

Kernel Application (KERNEL) 63

disk_log Kernel Reference Manual

e {current_file, integer ()} is the ordinal for the current wrap log file in the
range 1. .MaxNoFiles, Where MaxNoFiles is given by the open/1 option size or
set by change_size/2.

e {no_overflows, {SincelLogWasOpened, SincelLastInfo}}, where
SinceLogWasOpened (SinceLastInfo) is the number of times a wrap log file has
been filled up and a new one opened or inc_wrap_file/1 has been called since the
disk log was last opened (info/1 was last called). The first time info/2 is called
after a log was (re)opened or truncated, the two values are equal.

Note that the chunk/2, 3, bchunk/2, 3, and chunk_step/3 functions do not affect any
value returned by info/1.

lclose(Log)
lclose(Log, Node) -> ok | {error, Reason}
Types:
e Node = node()
¢ Reason = no_such_log | {file_error, FileName, FileError}
The function 1close/1 closes a local log or an individual distributed log on the current
node. The function 1close/2 closes an individual distributed log on the specified node

if the node is not the current one. 1close(Log) is equivalent to 1close(Log,node()).
See also close/1 [page 62].

If there is no log with the given name on the specified node, no_such_log is returned.

log(Log, Term)
blog(Log, Bytes) -> ok | {error, Reason}
Types:
e Log =term()
e Term = term()
e Bytes = binary() | [Byte]
e Byte = [Byte] | 0 =< integer() =< 255
¢ Reason = no_such_log | nonode | {read_only_mode, Log} | {format_external, Log} |

{blocked_log, Log} | {full, Log} | {invalid_header, InvalidHeader} | {file_error,
FileName, FileError}

The log/2 and blog/2 functions synchronously append a term to a disk log. They
return ok or {error, Reason} when the term has been written to disk. If the log is
distributed, ok is always returned, unless all nodes are down. Terms are written by
means of the ordinary write () function of the operating system. Hence, there is no
guarantee that the term has actually been written to the disk, it might linger in the
operating system kernel for a while. To make sure the item is actually written to disk,
the sync/1 function must be called.

The log/2 function is used for internally formatted logs, and blog/2 for externally
formatted logs. blog/2 can be used for internally formatted logs as well provided the
binary was constructed with a call to term to_binary/1.

The owners that subscribe to notifications will be notified of an error with an
error_status message if the error reason tag is invalid header or file error.

log terms(Log, TermList)

64 Kernel Application (KERNEL)

Kernel Reference Manual disk_log

blog terms(Log, BytesList) -> ok | {error, Reason}
Types:
e Log =term()
e TermList = [term()]
e BytesList = [Bytes]
e Bytes = binary() | [Byte]
e Byte = [Byte] | 0 =< integer() =< 255
e Reason = no_such_log | nonode | {read_-only_mode, Log} | {format_external, Log} |

{blocked_log, Log} | {full, Log} | {invalid_header, InvalidHeader} | {file_error,
FileName, FileError}

The log_terms/2 and blog_terms/2 functions synchronously append a list of items to
the log. The benefit of using these functions rather than the 1og/2 and blog/2
functions is that of efficiency: the given list is split into as large sublists as possible
(limited by the size of wrap log files), and each sublist is logged as one single item,
which reduces the overhead.

The log_terms/2 function is used for internally formatted logs, and blog_-terms/2 for
externally formatted logs. blog terms/2 can be used for internally formatted logs as
well provided the binaries were constructed with calls to term_to_binary/1.

The owners that subscribe to notifications will be notified of an error with an
error_status message if the error reason tag is invalid_header or file_error.

open(ArglL) -> OpenRet | DistOpenRet

Types:

e ArgL = [Opt]

e Opt = {name, term()} | {file, FileName}, {linkto, LinkTo} | {repair, Repair} | {type,
Type} | {format, Format} | {size, Size} | {distributed, [Node]} | {notify, bool()} |
{head, Head} | {head_func, {M,F,A}} | {mode, Mode}

e FileName = string() | atom()

e LinkTo = pid() | none

¢ Repair = true | false | truncate

e Type = halt | wrap

e Format = internal | external

e Size = integer() > 0 | infinity | {MaxNoBytes, MaxNoFiles}

e MaxNoBytes = integer() > 0

e MaxNoFiles = 0 < integer() < 65000

e Rec = integer()

e Bad = integer()

e Head =none | term() | binary() | [Byte]

e Byte = [Byte] | 0 =< integer() =< 255

e Mode = read_write | read_only

e OpenRet = Ret | {error, Reason}

¢ DistOpenRet = {[{Node, Ret}], [{BadNode, {error, DistReason}}]}

e Node = BadNode = atom()

e Ret = {ok, Log} | {repaired, Log, {recovered, Rec}, {badbytes, Bad}}

¢ DistReason = nodedown | Reason

Kernel Application (KERNEL) 65

disk_log

Kernel Reference Manual

66

e Reason = no_such_log | {badarg, Arg} | {size_mismatch, CurrentSize, NewSize} |
{arg-mismatch, OptionName, CurrentValue, Value} | {name_already_open, Log} |
{open_read_write, Log} | {open_read_only, Log} | {need_repair, Log} |
{not_a_logfile, FileName} | {invalid_index_file, FileName} | {invalid_header,
InvalidHeader} | {file_error, FileName, FileError} | {node_already_open, Log}

The ArgL parameter is a list of options which have the following meanings:

e {name, Log} specifies the name of the log. This is the name which must be passed

on as a parameter in all subsequent logging operations. A hame must always be
supplied.

{file, FileName} specifies the name of the file which will be used for logged
terms. If this value is omitted and the name of the log is either an atom or a string,
the file name will default to 1ists:concat ([Log, ".L0G"]) for halt logs. For
wrap logs, this will be the base name of the files. Each file in a wrap log will be
called <base name>.N, where N is an integer. Each wrap log will also have two
files called <base name>.idx and <base_name>.siz.

{linkto, LinkTo}. If LinkTo is a pid, that pid becomes an owner of the log. If
LinkTo is none the log records that it is used anonymously by some process by
incrementing the users counter. By default, the process which calls open/1 owns
the log.

{repair, Repair}. If Repair is true, the current log file will be repaired, if
needed. As the restoration is initiated, a message is output on the error log. If
false is given, no automatic repair will be attempted. Instead, the tuple {error,
{need_repair, Log}} is returned if an attempt is made to open a corrupt log file.
If truncate is given, the log file will be truncated, creating an empty log. Default
is true, which has no effect on logs opened in read-only mode.

{type, Type} is the type of the log. Default is halt.
{format, Format} specifies the format of the disk log. Default is internal.

{size, Size} specifies the size of the log. When a halt log has reached its
maximum size, all attempts to log more items are rejected. The default size is
infinity, which for halt implies that there is no maximum size. For wrap logs, the
Size parameter may be either a pair {MaxNoBytes, MaxNoFiles} or infinity. In
the latter case, if the files of an already existing wrap log with the same name can
be found, the size is read from the existing wrap log, otherwise an error is
returned. Wrap logs write at most MaxNoBytes bytes on each file and use
MaxNoFiles files before starting all over with the first wrap log file. Regardless of
MaxNoBytes, at least the header (if there is one) and one item is written on each
wrap log file before wrapping to the next file. When opening an existing wrap log,
it is not necessary to supply a value for the option Size, but any supplied value
must equal the current size of the log, otherwise the tuple {error,
{sizemismatch, CurrentSize, NewSize}} is returned.

{distributed, Nodes}. This option can be used for adding members to a
distributed disk log. The default value is [1, which means that the log is local on
the current node.

{notify, bool()}. If true, the owners of the log are notified when certain events
occur in the log. Default is false. The owners are sent one of the following
messages when an event occurs:

— {disk_log, Node, Log, {wrap, NoLostItems}} issent when a wrap log has
filled up one of its files and a new file is opened. NoLostItems is the number
of previously logged items that have been lost when truncating existing files.

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

— {disk_log, Node, Log, {truncated, NoLostItems}} is sent when a log has
been truncated or reopened. For halt logs NoLostItems is the number of items
written on the log since the disk log process was created. For wrap logs
NoLostItems is the number of items on all wrap log files.

— {disk_log, Node, Log, {read_only, Items}} issentwhen an
asynchronous log attempt is made to a log file opened in read-only mode.
Items is the items from the log attempt.

— {disk_log, Node, Log, {blocked log, Items}} issent when an
asynchronous log attempt is made to a blocked log that does not queue log
attempts. Items is the items from the log attempt.

— {disk_log, Node, Log, {format_external, Items}} issent when alog/2
or alog_terms/2 is used for internally formatted logs. Items is the items from
the log attempt.

— {disk_log, Node, Log, full} issent when an attempt to log items to a
wrap log would write more bytes than the limit set by the size option.

— {disk_log, Node, Log, {error_status, Status}} is sent when the error
status changes. The error status is defined by the outcome of the last attempt
to log items to a the log or to truncate the log or the last use of sync/1,
inc_wrap_file/1 or change size/2. Status is one of ok and {error,
Error}, the former being the initial value.

o {head, Head} specifies a header to be written first on the log file. If the log is a
wrap log, the item Head is written first in each new file. Head should be a term if
the format is internal, and a deep list of bytes (or a binary) otherwise. Default is
none, Which means that no header is written first on the file.

e {head func, {M,F,A}} specifies a function to be called each time a new log file is
opened. The call M:F(4) is assumed to return {ok, Head}. The item Head is
written first in each file. Head should be a term if the format is internal, and a
deep list of bytes (or a binary) otherwise.

e {mode, Mode} specifies if the log is to be opened in read-only or read-write mode.
It defaults to read_write.

The open/1 function returns {ok, Log} if the log file was successfully opened. If the
file was successfully repaired, the tuple {repaired, Log, {recovered, Rec},
{badbytes, Bad}} is returned, where Rec is the number of whole Erlang terms found
in the file and Bad is the number of bytes in the file which were non-Erlang terms. If the
distributed parameter was given, open/1 returns a list of successful replies and a list
of erroneous replies. Each reply is tagged with the node name.

When a disk log is opened in read-write mode, any existing log file is checked for. If
there is none a new empty log is created, otherwise the existing file is opened at the
position after the last logged item, and the logging of items will commence from there.
If the format is internal and the existing file is not recognized as an internally
formatted log, a tuple {error, {not_a_log file, FileName}} is returned.

The open/1 function cannot be used for changing the values of options of an already
open log; when there are prior owners or users of a log, all option values except name,
linkto and notify are just checked against the values that have been supplied before
as option values to open/1, change header/2, change notify/3 Or change size/2. AS
a consequence, none of the options except name is mandatory. If some given value
differs from the current value, a tuple {error, {argmismatch, OptionName,
CurrentValue, Value}} is returned. Caution: an owner’s attempt to open a log as
owner once again is acknowledged with the return value {ok, Log}, but the state of the
disk log is not affected in any way.

Kernel Application (KERNEL) 67

disk_log

Kernel Reference Manual

If a log with a given name is local on some node, and one tries to open the log
distributed on the same node, then the tuple {error, {node_already_open, Name}} is
returned. The same tuple is returned if the log is distributed on some node, and one
tries to open the log locally on the same node. Opening individual distributed disk logs
for the first time adds those logs to a (possibly empty) distributed disk log. The option
values supplied are used on all nodes mentioned by the distributed option. Individual
distributed logs know nothing about each other’s option values, so each node can be
given unique option values by creating a distributed log with several calls to open/1.

It is possible to open a log file more than once by giving different values to the option
name Or by using the same file when distributing a log on different nodes. It is up to the
user of the disk_log module to ensure that no more than one disk log process has write
access to any file, or the the file may be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates
with the EXIT message {{failed,Reason}, [{disk log,open,1}]}. The function
returns {error, Reason} for all other errors.

pid2name (Pid) -> {ok, Log} | undefined

Types:
e Log =term()
e Pid = pid()

The pid2name/1 function returns the name of the log given the pid of a disk log process
on the current node, or undef ined if the given pid is not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File)

reopen(Log, File, Head)

breopen(Log, File, BHead) -> ok | {error, Reason}

68

Types:

e Log =term()

e File = string()

e Head =term()

e BHead = binary() | [Byte]

e Byte = [Byte] | 0 =< integer() =< 255

e Reason = no_such_log | nonode | {read-only_mode, Log} | {blocked_log, Log} |

{same_file_-name, Log} | {invalid_index_file, FileName} | {invalid_header,
InvalidHeader} | {file_error, FileName, FileError}

The reopen functions first rename the log file to File and then re-create a new log file.
In case of a wrap log, File is used as the base name of the renamed files. By default the
header given to open/1 is written first in the newly opened log file, but if the Head or
the BHead argument is given, this item is used instead. The header argument is used
once only; next time a wrap log file is opened, the header given to open/1 is used.

The reopen/2,3 functions are used for internally formatted logs, and breopen/3 for
externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message
{{failed,Error}, [{disklog,Fun,Arity}]}, and other processes that have requests
queued receive the message {disk_log, Node, {error, disk_log_stopped}}.

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

sync(Log) -> ok | {error, Reason}

truncate(Log)

Types:
e Log =term()

¢ Reason = no_such_log | nonode | {read_only_mode, Log} | {blocked_log, Log} |
{file_error, FileName, FileError}

The sync/1 function ensures that the contents of the log are actually written to the
disk. This is usually a rather expensive operation.

truncate(Log, Head)

btruncate(Log, BHead) -> ok | {error, Reason}

unblock(Log)

Types:

Log = term()

Head = term()

BHead = binary() | [Byte]

Byte = [Byte] | 0 =< integer() =< 255

Reason = no_such_log | nonode | {read_only_mode, Log} | {blocked_log, Log} |
{invalid_header, InvalidHeader} | {file_error, FileName, FileError}

The truncate functions remove all items from a disk log. If the Head or the BHead
argument is given, this item is written first in the newly truncated log, otherwise the
header given to open/1 is used. The header argument is only used once; next time a
wrap log file is opened, the header given to open/1 is used.

The truncate/1,2 functions are used for internally formatted logs, and btruncate/2
for externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

If the attempt to truncate the log fails, the disk log process terminates with the EXIT
message {{failed,Reason}, [{disk log,Fun,Arity}]}, and other processes that have
requests queued receive the message {disk_log, Node, {error,
disk_ log stopped}}.

-> ok | {error, Reason}
Types:

e Log =term()
¢ Reason = no_such_log | nonode | {not_blocked, Log} | {not_blocked_by_pid, Log}

The unblock/1 function unblocks a log. A log can only be unblocked by the blocking
process.

See Also

file(3) [page 173], pg2(3) [page 259], wrap_log_reader(3) [page 277]

Kernel Application (KERNEL) 69

erl_boot_server Kernel Reference Manual

erl_boot_server

Erlang Module

This server is used to assist diskless Erlang nodes which fetch all Erlang code from
another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime
system is started with the -loader inet command line flag. All hosts specified with the
-hosts Host command line flag must have one instance of this server running.

This server can be started with the kernel configuration parameter start _boot_server.
Exports

start(Slaves) -> {ok, Pid} | {error, What}
Types:

e Slaves = [Host]
e Host = atom()

e Pid = pid()

e What = term()

Starts the boot server. Slaves is a list of IP addresses for hosts which are allowed to use
this server as a boot server.

start_link(Slaves) -> {ok, Pid} | {error, What}
Types:

e Slaves = [Host]
e Host = atom()

e Pid = pid()

e What =term()()

Starts the boot server and links to the caller. This function is used to start the server if it
is included in a supervision tree.

add_slave(Slave) -> ok | {error, What}
Types:

e Slave = Host
e Host = atom()
e What = term()

Adds a Slave node to the list of allowed slave hosts.

delete_slave(Slave) -> ok | {error, What}

70 Kernel Application (KERNEL)

Kernel Reference Manual erl_boot_server

Types:

¢ Slave = Host
e Host = atom()
e What = void()

Deletes a S1lave node from the list of allowed slave hosts.

which_slaves() -> Slaves

Types:

e Slaves = [Host]
e Host = atom()

Returns the current list of allowed slave hosts.

SEE ALSO

init(3) [page 241], erl_prim_loader(3) [page 87]

Kernel Application (KERNEL) 71

erl_ddll

Kernel Reference Manual

72

erl_ddll

Erlang Module

The er1_dd11 module provides an interface for loading and unloading erlang linked in
drivers in runtime.

Note:

This is a large reference document. For casual use of the module, as well as for most
real world applications, the descriptions of the functions load/2 [page 75] and
unload/1 [page 85] are enough to get going.

The driver should be provided as a dynamically linked library in a object code format
specific for the platform in use, i. e. . so files on most Unix systems and .dd1 files on
windows. An erlang linked in driver has to provide specific interfaces to the emulator, so
this module is not designed for loading arbitrary dynamic libraries. For further
information about erlang drivers, refer to the ERTS reference manual section
[erl_driver].

When describing a set of functions, (i.e. a module, a part of a module or an application)
executing in a process and wanting to use a ddll-driver, we use the term user. There can
be several users in one process (different modules needing the same driver) and several
processes running the same code, making up several users of a driver. In the basic
scenario, each user loads the driver before starting to use it and unloads the driver when
done. The reference counting keeps track of processes as well as the number of loads by
each process, so that the driver will only be unloaded when no one wants it (it has no
user). The driver also keeps track of ports that are opened towards it, so that one can
delay unloading until all ports are closed or kill all ports using the driver when it is
unloaded.

The interface supports two basic scenarios of loading and unloading. Each scenario can
also have the option of either killing ports when the driver is unloading, or waiting for
the ports to close themselves. The scenarios are:

Load and unload on a “when needed basis” This (most common) scenario simply
supports that each user [page 72] of the driver loads it when it is needed and
unloads it when the user [page 72] no longer have any use for it. The driver is
always reference counted and as long as a process keeping the driver loaded is still
alive, the driver is present in the system.

Each user [page 72] of the driver use literally the same pathname for the driver
when demanding load, but the users [page 72] are not really concerned with if the
driver is already loaded from the filesystem or if the object code has to be loaded
from filesystem.

Two pairs of functions support this scenario:

Kernel Application (KERNEL)

Kernel Reference Manual erl_ddll

load/2 and unload/1 When using the 1oad/unload interfaces, the driver will not
actually get unloaded until the last port using the driver is closed. The function
unload/1 can return immediately, as the users [page 72] are not really
concerned with when the actual unloading occurs. The driver will actually get
unloaded when no one needs it any longer.
If a process having the driver loaded dies, it will have the same effect as if
unloading was done.
When loading, the function 1oad/2 returns ok as soon as there is any instance
of the driver present, so that if a driver is waiting to get unloaded (due to open
ports), it will simply change state to no longer need unloading.

load_driver/2 and unload_driver/1 These interfaces is intended to be used when
it is considered an error that ports are open towards a driver that no user [page
72] has loaded. The ports still open when the last user [page 72] calls
unload driver/1 or when the last process having the driver loaded dies, will
get killed with reason driver_unloaded.
The function names load driver and unload driver are kept for backward
compatibility.

Loading and reloading for code replacement This scenario occurs when the driver
code might need replacement during operation of the Erlang emulator.
Implementing driver code replacement is somewhat more tedious than beam code
replacement, as one driver cannot be loaded as both “old” and “new” code. All
users [page 72] of a driver must have it closed (no open ports) before the old code
can be unloaded and the new code can be loaded.

The actual unloading/loading is done as one atomic operation, blocking all
processes in the system from using the driver concerned while in progress.

The preferred way to do driver code replacement is to let one single process keep
track of the driver. When the process start, the driver is loaded. When
replacement is required, the driver is reloaded. Unload is probably never done, or
done when the process exits. If more than one user [page 72] has a driver loaded
when code replacement is demanded, the replacement cannot occur until the last
“other” user [page 72] has unloaded the driver.

Demanding reload when a reload is already in progress is always an error. Using the
high level functions, it is also an error to demand reloading when more than one
user [page 72] has the driver loaded. To simplify driver replacement, avoid
designing your system so that more than than one user [page 72] has the driver
loaded.

The two functions for reloading drivers should be used together with
corresponding load functions, to support the two different behaviors concerning
open ports:

load/2 and reload/2 This pair of functions is used when reloading should be done
after the last open port towards the driver is closed.
As reload/2 actually waits for the reloading to occur, a misbehaving process
keeping open ports towards the driver (or keeping the driver loaded) might
cause infinite waiting for reload. Timeouts has to be provided outside of the
process demanding the reload or by using the low-level interface try_load/3
[page 80] in combination with driver monitors (see below).

load_driver/2 and reload_driver/2 This pair of functions are used when open
ports towards the driver should be killed with reason driver_unloaded to
allow for new driver code to get loaded.
If, however, another process has the driver loaded, calling reload driver
returns the error code pending process. As stated earlier, the recommended

Kernel Application (KERNEL) 73

erl_ddll

Kernel Reference Manual

design is to not allow other users [page 72] than the “driver reloader” to
actually demand loading of the concerned driver.

Exports

demonitor (MonitorRef) -> ok

Types:
e MonitorRef = ref()

Removes a driver monitor in much the same way as erlang:demonitor/1 [page 94] does
with process monitors. See monitor/2 [page 77], try_load/3 [page 80] and try_unload/2
[page 83] for details about how to create driver monitors.

The function throws a badarg exception if the parameter is not a ref().

info() -> AllInfolist

Types:

e AllIinfoList = [Driverinfo]

¢ DriverInfo = {DriverName, InfoL.ist}

e DriverName = string()

e InfoList = [Infoltem]

¢ Infoltem = {Tag, Value}

e Tag = atom()

e Value = term()

Returns a list of tuples {DriverName, Infolist}, where InfoList is the result of
calling info/1 [page 74] for that DriverName. Only dynamically linked in drivers are
included in the list.

info(Name) -> Infolist

74

Types:

e Name = string() | atom()
e InfoList = [Infoltem]

e Infoltem = {Tag, Value}
e Tag = atom()

e Value = term()

Returns a list of tuples {Tag, Value}, where Tag is the information item and Value is
the result of calling info/2 [page 75] with this driver name and this tag. The result being
a tuple list containing all information available about a driver.

The different tags that will appear in the list are:

processes

driver_options

port_count
linked_in_driver

permanent

Kernel Application (KERNEL)

Kernel Reference Manual erl_ddll

e awaiting_load
e awaiting_unload

For a detailed description of each value, please read the description of info/2 [page 75]
below.

The function throws a badarg exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:
e Name = string() | atom()

e Tag = processes | driver_options | port_count | linked_in_driver | permanent |
awaiting_load | awaiting_unload

e Value = term()
This function returns specific information about one aspect of a driver. The Tag

parameter specifies which aspect to get information about. The Value return differs
between different tags:

processes Return all processes containing users [page 72] of the specific drivers as a list
of tuples {pid(),int () }, where the int () denotes the number of users in the
process pid ().

driver_options Return a list of the driver options provided when loading, as well as any
options set by the driver itself during initialization. The currently only valid option
being kill ports.

port_count Return the number of ports (an int ()) using the driver.

linked_in_driver Return a bool(), being true if the driver is a statically linked in one
and false otherwise.

permanent Return a bool(), being true if the driver has made itself permanent (and is
not a statically linked in driver). false otherwise.

awaiting_load Return a list of all processes having monitors for 1oading active, each
process returned as {pid () ,int () }, where the int () is the number of monitors
held by the process pid ().

awaiting_unload Return a list of all processes having monitors for unloading active,
each process returned as {pid () ,int () }, where the int () is the number of
monitors held by the process pid ().

If the options linked in driver Or permanent return true, all other options will return
the value 1linked_ in driver Or permanent respectively.

The function throws a badarg exception if the driver is not present in the system or the
tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}

Types:
e Path = Name = string() | atom()
e ErrorDesc = term()

Kernel Application (KERNEL) 75

erl_ddll

Kernel Reference Manual

Loads and links the dynamic driver Name. Path is a file path to the directory containing
the driver. Name must be a sharable object/dynamic library. Two drivers with different
Path parameters cannot be loaded under the same name. The Name is a string or atom
containing at least one character.

The Name given should correspond to the filename of the actual dynamically loadable
object file residing in the directory given as Path, but without the extension (i.e. .so).
The driver name provided in the driver initialization routine must correspond with the
filename, in much the same way as erlang module names correspond to the names of
the .bean files.

If the driver has been previously unloaded, but is still present due to open ports against
it, a call to load/2 will stop the unloading and keep the driver (as long as the Path is
the same) and ok is returned. If one actually wants the object code to be reloaded, one
uses reload/2 [page 78] or the low-level interface try_load/3 [page 80] instead. Please
refer to the description of different scenarios [page 72] for loading/unloading in the
introduction.

If more than one process tries to load an already loaded driver withe the same Path, or
if the same process tries to load it several times, the function will return ok. The
emulator will keep track of the 1oad/2 calls, so that a corresponding number of
unload/2 calls will have to be done from the same process before the driver will
actually get unloaded. It is therefore safe for an application to load a driver that is
shared between processes or applications when needed. It can safely be unloaded
without causing trouble for other parts of the system.

It is not allowed to load several drivers with the same name but with different Path
parameters.

Note:

Note especially that the Path is interpreted literally, so that all loaders of the same
driver needs to give the same literalPath string, even though different paths might
point out the same directory in the filesystem (due to use of relative paths and links).

On success, the function returns ok. On failure, the return value is {error,ErrorDesc},
where ErrorDesc is an opaque term to be translated into human readable form by the
format_error/1 [page 86] function.

For more control over the error handling, again use the try_load/3 [page 80] interface
instead.

The function throws a badarg exception if the parameters are not given as described
above.

load driver(Path, Name) -> ok | {error, ErrorDesc}

76

Types:
e Path = Name = string() | atom()
e ErrorDesc = term()

Kernel Application (KERNEL)

Kernel Reference Manual erl_ddll

monitor(Tag,

Works essentially as 1oad/2, but will load the driver with options other options. All
ports that are using the driver will get killed with the reason driver_unloaded when
the driver is to be unloaded.

The number of loads and unloads by different users [page 72] influence the actual
loading and unloading of a driver file. The port killing will therefore only happen when
the lastuser [page 72] unloads the driver, or the last process having loaded the driver
exits.

This interface (or at least the name of the functions) is kept for backward compatibility.
Using try_load/3 [page 80] with {driver_options, [kill ports]} in the option list
will give the same effect regarding the port killing.

The function throws a badarg exception if the parameters are not given as described
above.

Item) -> MonitorRef

Types:

e Tag = driver

e Item = {Name, When}

e Name = atom() | string()

e When = loaded | unloaded | unloaded_only
e MonitorRef = ref()

This function creates a driver monitor and works in many ways as the function
erlang:monitor/2 [page 116], does for processes. When a driver changes state, the
monitor results in a monitor-message being sent to the calling process. The MonitorRef
returned by this function is included in the message sent.

As with process monitors, each driver monitor set will only generate one single message.
The monitor is “destroyed” after the message is sent and there is then no need to call
demonitor/1 [page 74].

The MonitorRef can also be used in subsequent calls to demonitor/1 [page 74] to
remove a monitor.

The function accepts the following parameters:

Tag The monitor tag is always driver as this function can only be used to create driver
monitors. In the future, driver monitors will be integrated with process monitors,
why this parameter has to be given for consistence.

Item The Item parameter specifies which driver one wants to monitor (the name of the
driver) as well as which state change one wants to monitor. The parameter is a
tuple of arity two who'’s first element is the driver name and second element is
either of:

loaded Notify me when the driver is reloaded (or loaded if loading is underway).
It only makes sense to monitor drivers that are in the process of being loaded
or reloaded. One cannot monitor a future-to-be driver name for loading, that
will only result in a *DOWN’ message being immediately sent. Monitoring for
loading is therefore most useful when triggered by the try_load/3 [page 80]
function, where the monitor is created because the driver is in such a pending
state.
Setting a driver monitor for loading will eventually lead to one of the
following messages being sent:

Kernel Application (KERNEL) 77

erl_ddll Kernel Reference Manual

{’"UP’, ref(), driver, Name, loaded} This message is sent, either immediately
if the driver is already loaded and no reloading is pending, or when
reloading is executed if reloading is pending.

The user [page 72] is expected to know if reloading is demanded prior to
creating a monitor for loading.

{’"UP’, ref(), driver, Name, permanent} This message will be sent if reloading
was expected, but the (old) driver made itself permanent prior to
reloading. It will also be sent if the driver was permanent or statically
linked in when trying to create the monitor.

{'DOWN’, ref(), driver, Name, load_cancelled} This message will arrive if
reloading was underway, but the user [page 72] having requested reload
cancelled it by either dying or calling try_unload/2 [page 83] (or
unload/1/unload driver/1) again before it was reloaded.

{'DOWN’, ref(), driver, Name, {load_failure, Failure}} This message will
arrive if reloading was underway but the loading for some reason failed.
The Failure term is one of the errors that can be returned from
try_load/3 [page 80]. The error term can be passed to format_error/1
[page 86] for translation into human readable form. Note that the
translation has to be done in the same running erlang virtual machine as
the error was detected in.

unloaded Monitor when a driver gets unloaded. If one monitors a driver that is
not present in the system, one will immediately get notified that the driver got
unloaded. There is no guarantee that the driver was actually ever loaded.
A driver monitor for unload will eventually result in one of the following
messages being sent:

{'DOWN’, ref(), driver, Name, unloaded} The driver instance monitored is
now unloaded. As the unload might have been due to a reload/2 request,
the driver might once again have been loaded when this message arrives.

{’"UP’, ref(), driver, Name, unload_cancelled} This message will be sent if
unloading was expected, but while the driver was waiting for all ports to
get closed, a new user [page 72] of the driver appeared and the unloading
was cancelled.

This message appears when an {ok, pending driver})was returned from
try_unload/2 [page 83]) for the last user [page 72] of the driver and then a
{ok, already_loaded} is returned from a call to try_load/3 [page 80].

If one wants to really monitor when the driver gets unloaded, this message
will distort the picture, no unloading was really done. The unloaded only
option creates a monitor similar to an unloaded monitor, but does never
result in this message.

{’"UP’, ref(), driver, Name, permanent} This message will be sent if unloading
was expected, but the driver made itself permanent prior to unloading. It
will also be sent if trying to monitor a permanent or statically linked in
driver.

unloaded_only A monitor created as unloaded-only behaves exactly as one
created as unloaded with the exception that the {°UP’, ref(), driver,
Name, unload_cancelled} message will never be sent, but the monitor
instead persists until the driver really gets unloaded.

The function throws a badarg exception if the parameters are not given as described
above.

reload(Path, Name) -> ok | {error, ErrorDesc}

78 Kernel Application (KERNEL)

Kernel Reference Manual erl_ddll

Types:

e Path = Name = string() | atom()

e ErrorDesc = pending_process | OpaqueError
e OpaqueError = term()

Reloads the driver named Name from a possibly different Path than was previously used.
This function is used in the code change scenario [page 72] described in the
introduction.

If there are other users [page 72] of this driver, the function will return {error,
pending process}, but if there are no more users, the function call will hang until all
open ports are closed.

Note:
Avoid mixing several users [page 72] with driver reload requests.

If one wants to avoid hanging on open ports, one should use the try_load/3 [page 80]
function instead.

The Name and Path parameters have exactly the same meaning as when calling the plain
load/2 [page 75] function.

Note:
Avoid mixing several users [page 72] with driver reload requests.

On success, the function returns ok. On failure, the function returns an opaque error,
with the exception of the pending process error described above. The opaque errors
are to be translated into human readable form by the format_error/1 [page 86] function.

For more control over the error handling, again use the try_load/3 [page 80] interface
instead.

The function throws a badarg exception if the parameters are not given as described
above.

reload driver (Path, Name) -> ok | {error, ErrorDesc}

Types:

e Path = Name = string() | atom()

e ErrorDesc = pending_process | OpaqueError
e OpaqueError = term()

Kernel Application (KERNEL) 79

erl_ddll

Kernel Reference Manual

Works exactly as reload/2 [page 78], but for drivers loaded with the load_driver/2 [page
76] interface.

As this interface implies that ports are being killed when the last user disappears, the
function wont hang waiting for ports to get closed.

For further details, see the scenarios [page 72] in the module description and refer to
the reload/2 [page 78] function description.

The function throws a badarg exception if the parameters are not given as described
above.

try_load(Path, Name, OptionList) -> {ok,Status} | {ok, PendingStatus, Ref} | {error,

80

ErrorDesc}

Types:

e Path = Name = string() | atom()

e OptionList = [Option]

e Option = {driver_options, DriverOptionList} | {monitor, MonitorOption} | {reload,
ReloadOption}

e DriverOptionList = [DriverOption]

e DriverOption = kill_ports

¢ MonitorOption = pending_driver | pending

e ReloadOption = pending_driver | pending

e Status = loaded | already_loaded | PendingStatus

e PendingStatus = pending_driver | pending_process

e Ref =ref()

e ErrorDesc = ErrorAtom | OpaqueError

e ErrorAtom = linked_in_driver | inconsistent | permanent |
not_loaded_by_this_process | not_loaded | pending_reload | pending_process

This function provides more control than the 1oad/2/reload/2 and
load_driver/2/reload driver/2 interfaces. It will never wait for completion of other
operations related to the driver, but immediately return the status of the driver as either:

{ok, loaded} The driver was actually loaded and is immediately usable.

{ok, already_loaded} The driver was already loaded by another process and/or is in use
by a living port. The load by you is registered and a corresponding try_unload is
expected sometime in the future.

{ok, pending_driver}or {ok, pending_driver, ref()} The load request is registered, but
the loading is delayed due to the fact that an earlier instance of the driver is still
waiting to get unloaded (there are open ports using it). Still, unload is expected
when you are done with the driver. This return value will mostly happen when the
{reload,pending driver} or {reload,pending} options are used, but can
happen when another user [page 72] is unloading a driver in parallel and the
kill_ports driver option is set. In other words, this return value will always need

to be handled!

pending_process}or {ok, pending_process, ref()} The load request is registered,
but the loading is delayed due to the fact that an earlier instance of the driver is
still waiting to get unloaded by another user [page 72] (not only by a port, in
which case {ok,pending driver} would have been returned). Still, unload is
expected when you are done with the driver. This return value will only happen
when the {reload,pending} option is used.

{ok

Kernel Application (KERNEL)

Kernel Reference Manual erl_ddll

When the function returns {ok, pending.driver} or {ok, pending process}, one
might want to get information about when the driver is actually loaded. This can be
achieved by using the {monitor, PendingOption} option.

When monitoring is requested, and a corresponding {ok, pending driver} or {ok,
pending process} would be returned, the function will instead return a tuple {ok,
PendingStatus, ref ()} and the process will, at a later time when the driver actually
gets loaded, get a monitor message. The monitor message one can expect is described in
the monitor/2 [page 77] function description.

Note:

Note that in case of loading, monitoring can not only get triggered by using the
{reload, ReloadOption} option, but also in special cases where the load-error is
transient, why {monitor, pending driver} should be used under basically all real
world circumstances!

The function accepts the following parameters:

Path The filesystem path to the directory where the driver object file is situated. The
filename of the object file (minus extension) must correspond to the driver name
(used in the name parameter) and the driver must identify itself with the very
same name. The Path might be provided as an io_list, meaning it can be a list of
other io_lists, characters (eight bit integers) or binaries, all to be flattened into a
sequence of characters.

The (possibly flattened) Path parameter must be consistent throughout the
system, a driver should, by all users [page 72], be loaded using the same
literalPath. The exception is when reloading is requested, in which case the Path
may be specified differently. Note that all users [page 72] trying to load the driver
at a later time will need to use the newPath if the Path is changed using a reload
option. This is yet another reason to have only one loader of a driver one wants to
upgrade in a running system!

Name The name parameter is the name of the driver to be used in subsequent calls to
open_port [page 119]. The name can be specified either as an io_1ist () oras an
atom(). The name given when loading is used to find the actual object file (with
the help of the Path and the system implied extension suffix, i.e. .so). The name
by which the driver identifies itself must also be consistent with this Name
parameter, much as a beam-file’s module name much correspond to it’s filename.

OptionList A number of options can be specified to control the loading operation. The
options are given as a list of two-tuples, the tuples having the following values and
meanings:

{driver_options, DriverOptionsList} This option is to provide options that will
change it’s general behavior and will “stick” to the driver throughout it’s
lifespan.

The driver options for a given driver name need always to be consistent, even
when the driver is reloaded, meaning that they are as much a part of the driver
as the actual name.

Currently the only allowed driver option is kill_ports, which means that all
ports opened towards the driver are killed with the exit-reason
driver_unloaded when no process any longer has the driver loaded. This
situation arises either when the last user [page 72] calls try_unload/2 [page
83], or the last process having loaded the driver exits.

Kernel Application (KERNEL) 81

erl_ddll Kernel Reference Manual

{monitor, MonitorOption} A MonitorOption tells try_load/3 to trigger a driver
monitor under certain conditions. When the monitor is triggered, the function
will return a three-tuple {ok, PendingStatus, ref()}, where the ref () is
the monitor ref for the driver monitor.

Only one MonitorOption can be specified and it is either the atom pending,
which means that a monitor should be created whenever a load operation is
delayed, and the atom pending_driver, in which a monitor is created
whenever the operation is delayed due to open ports towards an otherwise
unused driver. The pending driver option is of little use, but is present for
completeness, it is very well defined which reload-options might give rise to
which delays. It might, however, be a good idea to use the same
MonitorOption as the RelaodOption if present.

If reloading is not requested, it might still be useful to specify the monitor
option, as forced unloads (kill_ports driver option or the kill_ports option
to try_unload/2 [page 83]) will trigger a transient state where driver loading
cannot be performed until all closing ports are actually closed. So, as
try_unload can, in almost all situations, return {ok, pending driver}, one
should always specify at least {monitor, pending driver} in production
code (see the monitor discussion above).

{reload,RealoadOption} This option is used when one wants to reload a driver
from disk, most often in a code upgrade scenario. Having a reload option also
implies that the Path parameter need not be consistent with earlier loads of
the driver.

To reload a driver, the process needs to have previously loaded the driver, i.e
there has to be an active user [page 72] of the driver in the process.

The reload option can be either the atom pending, in which reloading is
requested for any driver and will be effectuated when all ports opened against
the driver are closed. The replacement of the driver will in this case take place
regardless of if there are still pending users [page 72] having the driver loaded!
The option also triggers port-killing (if the ki1l ports driver option is used)
even though there are pending users, making it usable for forced driver
replacement, but laying a lot of responsibility on the driver users [page 72].
The pending option is seldom used as one does not want other users [page 72]
to have loaded the driver when code change is underway.

The more useful option is pending driver, which means that reloading will
be queued if the driver is not loaded by any other users [page 72], but the
driver has opened ports, in which case {ok, pending driver} will be
returned (a monitor option is of course recommended).

If the driver is unloaded (not present in the system), the error code
not_loaded will be returned. The reload option is intended for when the user
has already loaded the driver in advance.

The function might return numerous errors, of which some only can be returned given a
certain combination of options.

A number of errors are opaque and can only be interpreted by passing them to the
format_error/1 [page 86] function, but some can be interpreted directly:

{error,linked_in_driver} The driver with the specified name is an erlang statically linked
in driver, which cannot be manipulated with this API.

{error,inconsistent} The driver has already been loaded with either other
DriverOptions or a different literalPath argument.

This can happen even if a reload option is given, if the DriverOptions differ
from the current.

82 Kernel Application (KERNEL)

Kernel Reference Manual erl_ddll

{error, permanent} The driver has requested itself to be permanent, making it behave
like an erlang linked in driver and it can no longer be manipulated with this API.

{error, pending_process} The driver is loaded by other users [page 72] when the
{reload, pending driver} option was given.

{error, pending_reload} Driver reload is already requested by another user [page 72]
when the {reload, ReloadOption} option was given.

{error, not_loaded_by_this_process} Appears when the reload option is given. The
driver Name is present in the system, but there is no user [page 72] of it in this
process.

{error, not_loaded} Appears when the reload option is given. The driver Name is not
in the system. Only drivers loaded by this process can be reloaded.

All other error codes are to be translated by the format_error/1 [page 86] function.
Note that calls to format_error should be performed from the same running instance
of the erlang virtual machine as the error was detected in, due to system dependent
behavior concerning error values.

If the arguments or options are malformed, the function will throw a badarg exception.

try._unload(Name, OptionList) -> {ok,Status} | {ok, PendingStatus, Ref} | {error,
ErrorAtom}

Types:

e Name = string() | atom()

e OptionList = [Option]

e Option = {monitor, MonitorOption} | kill_ports

¢ MonitorOption = pending_driver | pending

e Status = unloaded | PendingStatus

e PendingStatus = pending_driver | pending_process

e Ref =ref()

e ErrorAtom = linked_in_driver | not_loaded | not_loaded_by_this_process | permanent

This is the low level function to unload (or decrement reference counts of) a driver. It
can be used to force port killing, in much the same way as the driver option kill _ports
implicitly does, and it can trigger a monitor either due to other users [page 72] still
having the driver loaded or that there are open ports using the driver.

Unloading can be described as the process of telling the emulator that this particular
part of the code in this particular process (i.e. this user [page 72]) no longer needs the
driver. That can, if there are no other users, trigger actual unloading of the driver, in
which case the driver name disappears from the system and (if possible) the memory
occupied by the driver executable code is reclaimed. If the driver has the kill ports
option set, or if ki1l _ports was specified as an option to this function, all pending ports
using this driver will get killed when unloading is done by the last user [page 72]. If no
port-killing is involved and there are open ports, the actual unloading is delayed until
there are no more open ports using the driver. If, in this case, another user [page 72] (or
even this user) loads the driver again before the driver is actually unloaded, the
unloading will never take place.

To allow the user [page 72] that requests unloading to wait for actual unloading to take
place, monitor triggers can be specified in much the same way as when loading. As
users [page 72] of this function however seldom are interested in more than
decrementing the reference counts, monitoring is more seldom needed. If the

Kernel Application (KERNEL) 83

erl_ddll

Kernel Reference Manual

84

kill ports option is used however, monitor trigging is crucial, as the ports are not
guaranteed to have been killed until the driver is unloaded, why a monitor should be
triggered for at least the pending driver case.

The possible monitor messages that can be expected are the same as when using the
unloaded option to the monitor/2 [page 77] function.

The function will return one of the following statuses upon success:

{ok, unloaded} The driver was immediately unloaded, meaning that the driver name is
now free to use by other drivers and, if the underlying OS permits it, the memory
occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and there
are no more users [page 72] requiring it to be loaded.

{ok, pending_driver}or {ok, pending_driver, ref()} This return value indicates that this
call removed the last user [page 72] from the driver, but there are still open ports
using it. When all ports are closed and no new users [page 72] have arrived, the

driver will actually be reloaded and the name and memory reclaimed.

This return value is valid even when the option kill ports was used, as killing
ports may not be a process that completes immediately. The condition is, in that
case, however transient. Monitors are as always useful to detect when the driver is
really unloaded.

pending_process}or {ok, pending_process, ref()} The unload request is registered,
but there are still other users [page 72] holding the driver. Note that the term
pending_process might refer to the running process, there might be more than
one user [page 72] in the same process.

This is a normal, healthy return value if the call was just placed to inform the
emulator that you have no further use of the driver. It is actually the most common
return value in the most common scenario [page 72] described in the introduction.

{ok

The function accepts the following parameters:

Name The name parameter is the name of the driver to be unloaded. The name can be
specified either as an io_1ist () or as an atom().

OptionList The OptionList argument can be used to specify certain behavior
regarding ports as well as triggering monitors under certain conditions:

kill_ports Force killing of all ports opened using this driver, with the exit reason
driver_unloaded, if you are the lastuser [page 72] of the driver.
If there are other users [page 72] having the driver loaded, this option will
have no effect.
If one wants the consistent behavior of killing ports when the last user [page
72] unloads, one should use the driver option kill ports when loading the
driver instead.

{monitor, MonitorOption} This option creates a driver monitor if the condition
given in MonitorOptions is true. The valid options are:

pending_driver Create a driver monitor if the return value is to be {ok,
pending driver}.

pending Create a monitor if the return value will be either {ok,
pending driver} or {ok, pending process}.

Kernel Application (KERNEL)

Kernel Reference Manual erl_ddll

unload (Name)

The pending_driverMonitorOption is by far the most useful and it has to be
used to ensure that the driver has really been unloaded and the ports closed
whenever the kill_ports option is used or the driver may have been loaded
with the kill ports driver option.

By using the monitor-triggers in the call to try_unload one can be sure that
the monitor is actually added before the unloading is executed, meaning that
the monitor will always get properly triggered, which would not be the case if
one called er1_dd11:monitor/2 separately.

The function may return several error conditions, of which all are well specified (no
opaque values):

{error, linked_in_driver} You were trying to unload an erlang statically linked in driver,
which cannot be manipulated with this interface (and cannot be unloaded at all).

{error, not_loaded} The driver Name is not present in the system.
{error, not_loaded_by_this_process} The driver Name is present in the system, but there
is no user [page 72] of it in this process.

As a special case, drivers can be unloaded from processes that has done no
corresponding call to try_load/3 if, and only if, there are no users of the driver at
all, which may happen if the process containing the last user dies.

{error, permanent} The driver has made itself permanent, in which case it can no
longer be manipulated by this interface (much like a statically linked in driver).

The function throws a badarg exception if the parameters are not given as described
above.

-> ok | {error, ErrorDesc}
Types:

e Name = string() | atom()
e ErrorDesc = term()

Unloads, or at least dereferences the driver named Name. If the caller is the last user
[page 72] of the driver, and there are no more open ports using the driver, the driver
will actually get unloaded. In all other cases, actual unloading will be delayed until all
ports are closed and there are no remaining users [page 72].

If there are other users [page 72] of the driver, the reference counts of the driver is
merely decreased, so that the caller is no longer considered a user of the driver. For
usage scenarios, see the description [page 72] in the beginning of this document.

The ErrorDesc returned is an opaque value to be passed further on to the
format_error/1 [page 86] function. For more control over the operation, use the
try_unload/2 [page 83] interface.

The function throws a badarg exception if the parameters are not given as described
above.

unload driver(Name) -> ok | {error, ErrorDesc}

Types:
e Name = string() | atom()
e ErrorDesc = term()

Kernel Application (KERNEL) 85

erl_ddll

Kernel Reference Manual

Unloads, or at least dereferences the driver named Name. If the caller is the last user
[page 72] of the driver, all remaining open ports using the driver will get killed with the
reason driver_unloaded and the driver will eventually get unloaded.

If there are other users [page 72] of the driver, the reference counts of the driver is
merely decreased, so that the caller is no longer considered a user [page 72]. For usage
scenarios, see the description [page 72] in the beginning of this document.

The ErrorDesc returned is an opaque value to be passed further on to the
format_error/1 [page 86] function. For more control over the operation, use the
try_unload/2 [page 83] interface.

The function throws a badarg exception if the parameters are not given as described
above.

loadeddrivers() -> {ok, Drivers}

Types:

e Drivers = [Driver()]

e Driver = string()

Returns a list of all the available drivers, both (statically) linked-in and dynamically
loaded ones.

The driver names are returned as a list of strings rather than a list of atoms for historical
reasons.

More information about drivers can be obtained using one of the info [page 74]
functions.

format_error (ErrorDesc) -> string()

86

Types:
e ErrorDesc — see below

Takes an ErrorDesc returned by load, unload or reload functions and returns a string
which describes the error or warning.

Note:

Due to peculiarities in the dynamic loading interfaces on different platform, the
returned string is only guaranteed to describe the correct error if format_error/1 is
called in the same instance of the erlang virtual machine as the error appeared in
(meaning the same operating system process)!

SEE ALSO

erl_driver(4), driver_entry(4)

Kernel Application (KERNEL)

Kernel Reference Manual erl_prim_loader

erl_prim_loader

Erlang Module

erl prim loader is used to load all Erlang modules into the system. The start script is
also fetched with this low level loader.
erl_prim_loader knows about the environment and how to fetch modules. The loader

could, for example, fetch files using the file system (with absolute file names as input),
or a database (where the binary format of a module is stored).

The -loader Loader command line flag can be used to choose the method used by the
erl prim loader. Two Loader methods are supported by the Erlang runtime system:
efile and inet. If another loader is required, then it has to be implemented by the
user. The Loader provided by the user must fulfill the protocol defined below, and it is
started with the erl_prim_loader by evaluating

open_port ({spawn,Loader}, [binaryl).

Exports

start(Id, Loader, Hosts) -> {ok, Pid} | {error, What}
Types:
e Id =term()
e Loader = atom() | string()
e Hosts = [Host]
e Host = atom()
e Pid = pid()
e What = term()
Starts the Erlang low level loader. This function is called by the init process (and
module). The init process reads the command line flags -id Id, -loader Loader, and
-hosts Hosts. These are the arguments supplied to the start/3 function.
If -1loader is not given, the default loader is efile which tells the system to read from
the file system.
If -loader is inet, the -id Id, -hosts Hosts, and -setcookie Cookie flags must also
be supplied. Hosts identifies hosts which this node can contact in order to load
modules. One Erlang runtime system with a erl_boot_server process must be started

on each of hosts given in Hosts in order to answer the requests. See
erl boot_server(3).

If -1loader is something else, the given port program is started. The port program is
supposed to follow the protocol specified below.

get_file(File) -> {ok, Bin, FullName} | error

Kernel Application (KERNEL) 87

erl_prim_loader Kernel Reference Manual

Types:

e File = string()

e Bin = binary()

e FullName = string()

This function fetches a file using the low level loader. File is either an absolute file
name or just the name of the file, for example "lists.beam". If an internal path is set
to the loader, this path is used to find the file. If a user supplied loader is used, the path
can be stripped off if it is obsolete, and the loader does not use a path. FullName is the
complete name of the fetched file. Bin is the contents of the file as a binary.

get_path() -> {ok, Path}

Types:
e Path = [Dir]
e Dir = string()

This function gets the path set in the loader. The path is set by the init process
according to information found in the start script.

set_path(Path) -> ok

88

Types:

e Path = [Dir]

e Dir = string()

This function sets the path of the loader if init interprets a path command in the start
script.

Protocol

The following protocol must be followed if a user provided loader port program is used.
The Loader port program is started with the command
open_port ({spawn,Loader}, [binary]). The protocol is as follows:

Function Send Receive

get_file [102 | FileName] [121 | BinaryFile] (on success)
[122] (failure)

stop eof terminate

Kernel Application (KERNEL)

Kernel Reference Manual erl_prim_loader

Command Line Flags

The erl_prim loader module interprets the following command line flags:

-loader Loader Specifies the name of the loader used by erl_prim loader. Loader
can be efile (use the local file system), or inet (load using the boot_server on
another Erlang node). If Loader is user defined, the de