
Event Tracer (ET)

version 1.3

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 Event Tracer (ET) Users Guide 1

1.1 Introduction . 1

1.1.1 Scope and Purpose . 1

1.1.2 Prerequisites . 1

1.1.3 About This Manual . 1

1.1.4 Where to Find More Information . 2

1.2 Usage . 2

1.2.1 Overview . 2

1.2.2 Filters and dictionary . 5

1.2.3 Trace clients . 9

1.2.4 Global tracing and phone home . 9

1.2.5 Viewer window . 10

1.2.6 Configuration . 11

1.2.7 Contents viewer window . 11

1.3 Examples . 12

1.3.1 A simulated Mnesia transaction . 12

1.3.2 Some convenient functions used in the Mnesia transaction example 14

1.3.3 Erlang trace of a Mnesia transaction . 16

1.3.4 Erlang trace of Megaco startup . 18

2 Event Tracer (ET) Reference Manual 25

2.1 et . 28

2.2 et collector . 29

2.3 et selector . 35

2.4 et viewer . 37

List of Figures 41

iiiEvent Tracer (ET)

iv Event Tracer (ET)

Chapter 1

Event Tracer (ET) Users Guide

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and
graphical viewing of trace data.

1.1 Introduction

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and
graphical viewing of trace data.

The viewed trace data is normally collected from Erlang trace ports or files.

1.1.1 Scope and Purpose

This manual describes the Event Tracer (ET) appliacation, as a component of the Erlang/Open Telecom
Platform development environment. It is assumed that the reader is familiar with the Erlang
Development Environment, which is described in a separate User’s Guide.

1.1.2 Prerequisites

The following prerequisites is required for understanding the material in the Event Tracer (ET) User’s
Guide:

� familiarity with the Erlang system and Erlang programming in general and the especially the art of
Erlang tracing.

The application requires Erlang/OTP release R7B or later.

1.1.3 About This Manual

In addition to this introductory chapter, the Megaco User’s Guide contains the following chapters:

� Chapter 2: “Usage” describes the architecture and typical usage of the application.

� Chapter 3: “Examples” gives some usage examples

1Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Event Tracer (ET) and about the
Erlang/OTP development system:

� the Reference Manual of the Event Tracer (ET)/p>

� documentation of basic tracing in erlang:trace/4 and erlang:trace pattern/3 and then the
utilities derived from these: dbg, observer and et.

� Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Usage

1.2.1 Overview

The two major components of the Event Tracer (ET) tool is a graphical sequence chart viewer
(et viewer) and its backing storage (et collector). One collector may be used as backing storage for
several simultaneous viewers where each one may display a different view of the same trace data.

The interface between the collector and its viewers is public in order to enable other types of viewers.
However in the following text we will focus on usage of the et viewer.

The main start function is et viewer:start/1. It will by default start both an et collector and an
et viewer:

% erl -pa et/examples
Erlang (BEAM) emulator version 2002.10.08 [source]

Eshell V2002.10.08 (abort with ^G)
1> {ok, Viewer} = et_viewer:start([]).
{ok,<0.31.0>}

A viewer gets trace events from its collector by polling it regularly for more events to display. Trace
events are for example reported to the collector with et collector:report event/6:

2> Collector = et_viewer:get_collector_pid(Viewer).
<0.30.0>
3> et_collector:report_event(Collector, 60, my_shell, mnesia_tm, start_outer,

"Start outer transaction"),
3> et_collector:report_event(Collector, 40, mnesia_tm, my_shell, new_tid,

"New transaction id is 4711"),
3> et_collector:report_event(Collector, 20, my_shell, mnesia_locker, try_write_lock,

"Acquire write lock for {my_tab, key}"),
3> et_collector:report_event(Collector, 10, mnesia_locker, my_shell, granted,

"You got the write lock for {my_tab, key}"),
3> et_collector:report_event(Collector, 60, my_shell, do_commit,

"Perform transaction commit"),
3> et_collector:report_event(Collector, 40, my_shell, mnesia_locker, release_tid,

"Release all locks for transaction 4711"),
3> et_collector:report_event(Collector, 60, my_shell, mnesia_tm, delete_transaction,

"End of outer transaction"),
3> et_collector:report_event(Collector, 20, my_shell, end_outer,

"Transaction returned {atomic, ok}").

2 Event Tracer (ET)

1.2: Usage

{ok,{table_handle,<0.30.0>,11,trace_ts,#Fun<et_collector.0.83904657>}}
4>

This is a simulation of the process events caused by a Mnesia transaction that writes a record in a local
table:

mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).

At this stage when we have a couple of events, it is time to show how it looks like in the graphical
interface of et viewer:

Figure 1.1: A simulated Mnesia transaction which writes one record

3Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

In the sequence chart, the actors (which symbolically has performed the traced event) are shown as
named vertical bars. The order of the actors may be altered by dragging (hold mouse button 1 pressed
during the operation) the name tag of an actor and drop it elsewhere:

Figure 1.2: Two actors has switched places

An event may be an action performed by one single actor (blue text label) or it may involve two actors
and is then depicted as an arrow directed from one actor to another (red text label). Details of an event
can be shown by clicking (press and release the mouse button 1) on the event label text or on the arrow:

4 Event Tracer (ET)

1.2: Usage

Figure 1.3: Details of a write lock message

1.2.2 Filters and dictionary

The Event Tracer (ET) uses named filters in various contexts. An Event Trace filter is an Erlang fun
that takes some trace data as input and returns a possibly modified version of it:

filter(TraceData) -> true | {true, NewEvent} | false

TraceData = NewEvent | term()
NewEvent = record(event)

The interface of the filter function is the same as the the filter functions for the good old lists:zf/2. If
the filter returns false it means that the TraceData should be dropped. ftrue, NewEventg means that
the TraceData should be replaced with NewEvent. And true means that the TraceData data already is
an event record and that it should be kept as it is.

The first filter that the trace data is exposed for is the collector filter. When a trace event is reported
with et collector:report/2 (or et collector:report event/5,6) the first thing that happens, is
that a message is sent to the collector process to fetch a handle that contains some useful stuff, such as
the collector filter fun and an ets table identifier. Then the collector filter fun is applied and if it returns
true (or ftrue, NewEventg), the event will be stored in an ets table. As an optimization, subsequent
calls to et collector:report-functions can use the handle directly instead of the collector pid.

The collector filter (that is the filter named collector) is a little bit special, as its input may be any
Erlang term and is not limited to take an event record as the other filter functions.

The collector manages a key/value based dictionary, where the filters are stored. Updates of the
dictionary is propagated to all subscribing processes. When a viewer is started it is registered as a
subscriber of dictionary updates.

In a viewer there is only one filter that is active and all trace events that the viewer gets from the
collector will pass thru that filter. By writing clever filters it is possible to customize how the events
looks like in the viewer. The following filter replaces the actor names mnesia tm and mnesia locker
and leaves everything else in the record as it was:

5Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

mgr_actors(E) when record(E, event) ->
Actor = fun(A) ->

case A of
mnesia_tm -> trans_mgr;
mnesia_locker -> lock_mgr;
_ -> A

end
end,

{true, E#event{from = Actor(E#event.from),
to = Actor(E#event.to),
contents = [{orig_from, E#event.from},

{orig_to, E#event.to},
{orig_contents, E#event.contents}]}}.

If we now add the filter to the running collector:

4> Fun = fun(E) -> et_demo:mgr_actors(E) end.
#Fun<erl_eval.5.123085357>
5> et_collector:dict_insert(Collector, {filter, mgr_actors}, Fun).
ok
6>

you will see that the Filter menu in all viewers have got a new entry called mgr actors. Select it, and
a new viewer window will pop up:

6 Event Tracer (ET)

1.2: Usage

Figure 1.4: The same trace data in a different view

In order to see the nitty gritty details of an event you may click on the event in order to start a contents
viewer for that event. In the contents viewer there is also a filter menu in order to enable inspection of
the event from other views than the one selected in the viewer. A click on the new tid event will cause
a contents viewer window to pop up, showing the event in the mgr actors view:

7Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

Figure 1.5: The trace event in the mgr actors view

Select the collector entry in the Filters menu and a new contents viewer window will pop up
showing the same trace event in the collectors view:

Figure 1.6: The same trace event in the collectors view

8 Event Tracer (ET)

1.2: Usage

1.2.3 Trace clients

As you have seen it is possible to use the et collector:report-functions explicitly. By using those
functions you can write your own trace client that reads trace data from any source stored in any format
and just feed the collector with it. You may replace the default collector filter with a filter that converts
new exciting trace data formats to event-records or you may convert it to an event-record before you
invoke et collector:report/2 and then rely on the default collector filter to handle the new format.

There are also existing functions in the API that reads from various sources and calls
et collector:report/2:

� The trace events that are hosted by the collector may be stored to file and later be loaded by
selecting save and load entries in the viewers File-menu or via the et collector API.

� It is also possible to perform live tracing of a running system by making use of the built-in trace
support in the Erlang emulator. These Erlang traces can be directed to files or to ports. See the
reference manual for erlang:trace/4, erlang:trace pattern/3, dbg and ttb for more info.
There are also corresponding trace client types that can read the Erlang trace data format from
such files or ports. The et collector:start trace client/3 function makes use of these Erlang
trace clients and redirects the trace data to the collector.
The default collector filter converts the Erlang trace data format into event-records.If you want to
perform this differently you can of course write your own collector filter from scratch. But it may
probably save you some efforts if you first apply the default filter in et selector:parse event/2
before you apply your own conversions of its output.

1.2.4 Global tracing and phone home

Setting up an Erlang tracer on a set of nodes and connecting trace clients to the ports of these tracers is
not intuitive. In order to make this it easier the Event Tracer as a notion of global tracing. When used,
the et collector process will monitor Erlang nodes and when one connects, an Erlang tracer will
automatically be started on the other node. A corresponding trace client will also be started on the
collector node in order to automatically forward the trace events to the collector. Set the boolean
parameter trace global to true for either the et collector or et viewer in order to activate the
global tracing. There is no restriction on how many concurrent (anonymous) collectors you can have,
but you can only have one global collector as its name is registered in global.

In order to further simplify the tracing you can make use of the et:report event/4,5 (or its
equivalents et:phone home/4,5 :-). These functions are intended to be invoked from other applications
when there are interesting events, in your application that needs to be highlighted. The functions are
extremely light weight as they do nothing besides returning an atom. These functions are specifically
designed to be traced for. As the caller explicitly provides the values for the event-record fields, the
default collector filter is able to automatically provide a customized event-record without any user
defined filter functions.

In normal operation the et:report event/4,5 calls are almost for free. When tracing is needed you
can either activate tracing on these functions explicitly. Or you can combine the usage of trace global
with the usage of trace pattern. When set, the trace pattern will automatically be activated on all
connected nodes.

One nice thing with the trace pattern is that it provides a very simple way of minimizing the amount
of generated trace data by allowing you to explicitly control the detail level of the tracing. As you may
have seen the et viewer have a slider called "Detail Level" that allows you to control the detail level
of the trace events displayed in the viewer. On the other hand if you set a low detail level in the
trace pattern, lots of the trace data will never be generated and thus not sent over the socket to the
trace client and stored in the collector.

9Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

1.2.5 Viewer window

Almost all functionality available in the et viewer is also available via shortcuts. Which key that has
the same effect as selecting a menu entry is shown enclosed in parentheses. For example pressing the
key r is equivivalent to selecting the menu entry Viewer->Refresh.

File menu:

� Close Collector and all Viewers - Close the collector and all viewers connected to that collector.

� Close other Viewers, but keep Collector - Keep this viewer and its collector, but close all other
viewers connected to this collector.

� Close this Viewer, but keep Collector - Close this viewer, but all other viewers and the collector.

� Save Collector to file - Save all events stored in the collector to file.

� Load Collector from file - Load the collector with events from a file.

Viewer menu:

� First - Scroll this viewer to the first collector event.

� Prev - Scroll this viewer one “page” backwards. Normally this means that the first event
displayed in the viewer will be the last one and the previous max events events will be read from
the collector.

� Next - Scroll this viewer one “page” forward. Normally this means that the last event displayed
in the viewer will be the first one and max events more events will be read from the collector.

� Last - Scroll this viewer to the last collector event.

� Refresh - Clear this viewer and re-read its events from the collector.

� Up 5 - Scroll 5 events backwards.

� Down 5 - Scroll 5 events forward.

� Abort search. Display all. - Switch the display mode to show all events regardless of any ongoing
searches. Abort the searches.

Collector menu:

� First - Scroll all viewers to the first collector event.

� Prev - Scroll all viewers one “page” backwards. Normally this means that the first event displayed
in the viewer will be the last one and the previous max events events will be read from the
collector.

� Next - Scroll all viewers one “page” forward. Normally this means that the last event displayed
in the viewer will be the first one and max events more events will be read from the collector.

� Last - Scroll all viewers to the last collector event.

� Refresh - Clear all viewers and re-read their events from the collector.

Filters menu:

� ActiveFilter (=) - Start a new viewer window with the same active filter and scale as the current
one.

� ActiveFilter (+) - Start a new viewer window with the same active filter but a larger scale than the
current one.

� ActiveFilter (-) - Start a new viewer window with the same active filter but a smaller scale than
the current one.

� collector (0) - Start a new viewer with the collector filter as active filter.

10 Event Tracer (ET)

1.2: Usage

� AnotherFilter (2) - If more filters are inserted into the dictionary, these will turn up here as entries
in the Filters menu. The second filter will be number 2, the next one number 3 etc. The names
are sorted.

Slider and radio buttons:

� Freeze - When true, this means that the viewer will not read more events from the collector until
set to false.

� Hide From=To - When true, this means that the viewer will hide all events where the from-actor
equals to its to-actor.

� Hide Unknown - When true, this means that the viewer will hide all events where either of the
from-actor or to-actor is UNKNOWN.

� Detail level - This slider controls the resolution of the viewer. Only events with a detail level
smaller than the selected one (default=100=max) are displayed.

Other features:

� Display details of an event - Click on the event name and a new window will pop up, displaying
the contents of an event.

� Toggle actor search - Normally the viewer will be in a display mode where all events are shown.
By clicking on an actor name the tool will switch display mode to only show events with selected
actors.
Click on an actor and only events with that actor will be displayed. Click on another actor to
include that actor to the selected ones. Clicking on an already selected actor will remove it from
the collections of selected actors. When the collection of selected actors becomes empty the
normal mode where all actors are shown will be entered again.
Abort actor search with the a key or with the Viewer->Abort search menu choice.

� Move actor - Drag and drop an actor by first clicking on the actor name, keeping the button
pressed while moving the cursor to a new location and release the button where the actor should
be moved to.

1.2.6 Configuration

The event-records in the ets-table are ordered by their timestamp. Which timestamp that should be
used is controlled via the event order parameter. Default is trace ts which means the time when the
trace data was generated. event ts means the time when the trace data was parsed (transformed into
an event-record).

1.2.7 Contents viewer window

File menu:

� Close - Close this window.

� Save - Save the contents of this window to file.

Filters menu:

� ActiveFilter - Start a new contents viewer window with the same active filter.

� AnotherFilter (2) - If more filters are inserted into the dictionary, these will turn up here as entries
in the Filters menu. The second filter will be number 2, the next one number 3 etc. The names
are sorted.

11Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

Hide menu:

� Hide actor in viewer - Known actors are shown as a named vertical bars in the viewer window. By
hiding the actor, its vertical bar will be removed and the viewer will be refreshed.
Hiding the actor is only useful if the max actors threshold has been reached, as it then will imply
that the “hidden” actor will be displayed as if it were "UNKNOWN". If the max actors threshold not
have been reached, the actor will re-appear as a vertical bar in the viewer.

� Show actor in viewer - This implies that the actor will be added as a known actor in the viewer
with its own vertical bar.

Search menu:

� Forward from this event - Set this event to be the first event in the viewer and change its display
mode to be enter forward search mode. The actor of this event (from, to or both) will be added to
the list of selected actors.

� Reverse from this event - Set this event to be the first event in the viewer and change its display
mode to be enter reverse search mode. The actor of this event (from, to or both) will be added to
the list of selected actors. Observe, that the events will be shown in reverse order.

� Abort search. Display all - Switch the display mode of the viewer to show all events regardless of
any ongoing searches. Abort the searches.

1.3 Examples

1.3.1 A simulated Mnesia transaction

The Erlang code for running the simulated Mnesia transaction example in the previous chapter is
included in the et/examples/et demo.erl file:

sim_trans() ->
Options = [{dict_insert, {filter, mgr_actors}, fun mgr_actors/1}],
{ok, Viewer} = et_viewer:start_link(Options),
Collector = et_viewer:get_collector_pid(Viewer),
et_collector:report_event(Collector, 60, my_shell, mnesia_tm, start_outer,

"Start outer transaction"),
et_collector:report_event(Collector, 40, mnesia_tm, my_shell, new_tid,

"New transaction id is 4711"),
et_collector:report_event(Collector, 20, my_shell, mnesia_locker, try_write_lock,

"Acquire write lock for {my_tab, key}"),
et_collector:report_event(Collector, 10, mnesia_locker, my_shell, granted,

"You got the write lock for {my_tab, key}"),
et_collector:report_event(Collector, 60, my_shell, do_commit,

"Perform transaction commit"),
et_collector:report_event(Collector, 40, my_shell, mnesia_locker, release_tid,

"Release all locks for transaction 4711"),
et_collector:report_event(Collector, 60, my_shell, mnesia_tm, delete_transaction,

"End of outer transaction"),
et_collector:report_event(Collector, 20, my_shell, end_outer,

"Transaction returned {atomic, ok}").

12 Event Tracer (ET)

1.3: Examples

mgr_actors(E) when record(E, event) ->
Actor = fun(A) ->

case A of
mnesia_tm -> trans_mgr;
mnesia_locker -> lock_mgr;
_ -> A

end
end,

{true, E#event{from = Actor(E#event.from),
to = Actor(E#event.to),
contents = [{orig_from, E#event.from},

{orig_to, E#event.to},
{orig_contents, E#event.contents}]}}.

If you invoke the et demo:sim trans() function a viewer window will pop up and the sequence trace
will be almost the same as if the following Mnesia transaction would have been run:

mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).

And the viewer window will look like:

$ erl -pa ../examples
Erlang (BEAM) emulator version 2002.10.08 [source]

Eshell V2002.10.08 (abort with ^G)
1> et_demo:sim_trans().
{ok,{table_handle,<0.30.0>,11,trace_ts,#Fun<et_collector.0.83904657>}}
2>

13Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

Figure 1.7: A simulated Mnesia transaction which writes one record

1.3.2 Some convenient functions used in the Mnesia transaction example

The module as actor filter converts the event-records so the module names becomes actors and the
invoked functions becomes labels. If the information about who the caller was it will be displayed as an
arrow directed from the caller to the callee. The [fmessage, fcallergg, freturn traceg] options to
dbg:tpl/2 function will imply the neccessary information in the Erlang traces. Here follows the
module as actor filter:

module_as_actor(E) when record(E, event) ->
case lists:keysearch(mfa, 1, E#event.contents) of

{value, {mfa, {M, F, _A}}} ->

14 Event Tracer (ET)

1.3: Examples

case lists:keysearch(pam_result, 1, E#event.contents) of
{value, {pam_result, {M2, _F2, _A2}}} ->

{true, E#event{label = F, from = M2, to = M}};
_ ->

{true, E#event{label = F, from = M, to = M}}
end;

_ ->
false

end.

The plain process info filter does not alter the event-records. It merely ensures that the event not
related to processes are skipped:

plain_process_info(E) when record(E, event) ->
case E#event.label of

send -> true;
send_to_non_existing_process -> true;
’receive’ -> true;
spawn -> true;
exit -> true;
link -> true;
unlink -> true;
getting_linked -> true;
{seq_send, _Label} -> true;
{seq_receive, _Label} -> true;
{seq_print, _Label} -> true;
{drop, _N} -> true;
_ -> false

end.

The plain process info nolink filter does not alter the event-records. It do makes use of the
plain process info , but do also ensure that the process info related to linking and unlinking is
skipped:

plain_process_info_nolink(E) when record(E, event) ->
(E#event.label /= link) and
(E#event.label /= unlink) and
(E#event.label /= getting_linked) and
plain_process_info(E).

In order to simplify the startup of an et viewer process with the filters mentioned above, plus some
others (that also are found in et/examples/et demo.erl src/et collector.erl the et demo:start/0,1
functions can be used:

start() ->
start([]).

start(ExtraOptions) ->
Options = [{trace_global, true},

{parent_pid, undefined},
{max_actors, infinity},
{max_events, 1000},
{active_filter, module_as_actor}],

et_viewer:start_link(filters() ++ Options ++ ExtraOptions).

15Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

A simple one-liner starts the tool:

erl -pa ../examples -s et_demo

The filters are included by the following parameters:

filters() ->
[{dict_insert, {filter, module_as_actor},

fun module_as_actor/1},
{dict_insert, {filter, plain_process_info},

fun plain_process_info/1},
{dict_insert, {filter, plain_process_info_nolink},

fun plain_process_info_nolink/1},
{dict_insert, {filter, named_process_info},

fun named_process_info/1},
{dict_insert, {filter, named_process_info_nolink},

fun named_process_info_nolink/1},
{dict_insert, {filter, node_process_info},

fun node_process_info/1},
{dict_insert, {filter, node_process_info_nolink},

fun node_process_info_nolink/1},
{dict_insert, {filter, application_as_actor},

fun application_as_actor/1}
].

1.3.3 Erlang trace of a Mnesia transaction

The following piece of code et demo:trace mnesia/0 activates call tracing of both local and external
function calls for all modules in the Mnesia application. The call traces are configured cover all
processes (both existing and those that are spawned in the future) and include timestamps for trace
data. It do also activate tracing of process related events for Mnesia’s static processes plus the calling
process (that is your shell). Please, observe that the whereis/1 call in the following code requires that
both the traced Mnesia application and the et vieweris running on the same node:

trace_mnesia() ->
Modules = mnesia:ms(),
Spec = [{message, {caller}}, {return_trace}],
Flags = [send, ’receive’, procs, timestamp],
dbg:p(all, [call, timestamp]),
[dbg:tpl(M, [{’_’, [], Spec}]) || M <- Modules],
LocallyRunningServers = [M || M <- Modules, whereis(M) /= undefined],
[dbg:p(whereis(RS), Flags) || RS <- LocallyRunningServers],
dbg:p(self(), Flags),
LocallyRunningServers.

The et demo:live trans/0 function starts the a global controller, starts a viewer, starts Mnesia, creates
a local table, activates tracing (as described above) and registeres the shell process is as ’my shell’ for
clarity. Finally the a simple Mnesia transaction that writes a single record is run:

16 Event Tracer (ET)

1.3: Examples

live_trans() ->
et_demo:start([{title, "Mnesia tracer"},

{hide_actions, true},
{active_filter, named_process_info_nolink}]),

mnesia:start(),
mnesia:create_table(my_tab, [{ram_copies, [node()]}]),
et_demo:trace_mnesia(),
register(my_shell, self()),

mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).

Now we run the et demo:live trans/0 function:

erl -pa ../examples -s et_demo live_trans
Erlang (BEAM) emulator version 2002.10.08 [source]

Eshell V2002.10.08 (abort with ^G)
1>

Please, explore the different filters in order to see how the traced transaction can be seen from different
point of views:

Figure 1.8: A real Mnesia transaction which writes one record

17Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

1.3.4 Erlang trace of Megaco startup

The Event Tracer (ET) tool was initially written in order to demonstrate how messages where sent over
the Megaco protocol. This were back in the old days before the standard bodies of IETF and ITU had
approved Megaco (also called H.248) as an international standard.

In the Megaco application of Erlang/OTP, the code is carefully instrumented with calls to
et:report event/5. For call a detail level is set in order to dynamically control the trace level in a
simple manner.

The megaco filter module implements a customized filter for Megaco messages. It does also make use
of trace global combined with usage of the trace pattern:

-module(megaco_filter).
-export([start/0]).

start() ->
Options =

[{event_order, event_ts},
{scale, 3},
{max_actors, infinity},
{trace_pattern, {megaco, max}},
{trace_global, true},
{dict_insert, {filter, megaco_filter}, fun filter/1},
{active_filter, megaco_filter},
{title, "Megaco tracer - Erlang/OTP"}],

et_viewer:start(Options).

First we start an Erlang node with the a global collecor and its viewer. The et viewer: search for:
[] ++ ["gateway tt"] printout is caused by a click on the “gateway tt” actor name in the viewer. It
means that only events with that actor will be displayed in the viewer.

erl -sname observer -s megaco_filter
Erlang (BEAM) emulator version 2002.10.08 [source]

Eshell V2002.10.08 (abort with ^G)
(observer@amrod)1> et_viewer: search for: [] ++ ["gateway_tt"]

Secondly we start another Erlang node which we connect the observer node, before we start the
application that we want to trace. In this case we start a Media Gateway Controller that listens for both
TCP and UDP on the text and binary ports for Megaco:

erl -sname mgc -pa ../../megaco/examples/simple
Erlang (BEAM) emulator version 2002.10.08 [source]

Eshell V2002.10.08 (abort with ^G)
(mgc@amrod)1> net:ping(observer@amrod).
pong
(mgc@amrod)2> megaco:start().
ok
(mgc@amrod)3> megaco_simple_mgc:start().
{ok,[{ok,2944,

{megaco_receive_handle,{deviceName,"controller"},
megaco_pretty_text_encoder,

18 Event Tracer (ET)

1.3: Examples

[],
megaco_tcp}},

{ok,2944,
{megaco_receive_handle,{deviceName,"controller"},

megaco_pretty_text_encoder,
[],
megaco_udp}},

{ok,2945,
{megaco_receive_handle,{deviceName,"controller"},

megaco_binary_encoder,
[],
megaco_tcp}},

{ok,2945,
{megaco_receive_handle,{deviceName,"controller"},

megaco_binary_encoder,
[],
megaco_udp}}]}

(mgc@amrod)4>

And finally we start an Erlang node for the Media Gateways and connect to the observer node. Each
Media Gateway connects to the controller and sends an inital Service Change message. The controller
accepts the gateways and sends a reply to each one using the same transport mechanism and message
encoding according to the preference of each gateway. That is all combinations of TCP/IP transport,
UDP/IP transport, text encoding and ASN.1 BER encoding:

erl -sname mg -pa ../../megaco/examples/simple
Erlang (BEAM) emulator version 2002.10.08 [source]

Eshell V2002.10.08 (abort with ^G)
(mg@amrod)1> net:ping(observer@amrod).
pong
(mg@amrod)2> megaco_simple_mg:start().
[{{deviceName,"gateway_tt"},{error,{start_user,megaco_not_started}}},
{{deviceName,"gateway_tb"},{error,{start_user,megaco_not_started}}},
{{deviceName,"gateway_ut"},{error,{start_user,megaco_not_started}}},
{{deviceName,"gateway_ub"},{error,{start_user,megaco_not_started}}}]
(mg@amrod)3> megaco:start().
ok
(mg@amrod)4> megaco_simple_mg:start().
[{{deviceName,"gateway_tt"},
{1,
{ok,[{’ActionReply’,0,

asn1_NOVALUE,
asn1_NOVALUE,
[{serviceChangeReply,

{’ServiceChangeReply’,
[{megaco_term_id,false,["root"]}],
{serviceChangeResParms,

{’ServiceChangeResParm’,
{deviceName|...},
asn1_NOVALUE|...}}}}]}]}}},

{{deviceName,"gateway_tb"},
{1,

19Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

{ok,[{’ActionReply’,0,
asn1_NOVALUE,
asn1_NOVALUE,
[{serviceChangeReply,

{’ServiceChangeReply’,
[{megaco_term_id,false,["root"]}],
{serviceChangeResParms,

{’ServiceChangeResParm’,
{...}|...}}}}]}]}}},

{{deviceName,"gateway_ut"},
{1,
{ok,[{’ActionReply’,0,

asn1_NOVALUE,
asn1_NOVALUE,
[{serviceChangeReply,

{’ServiceChangeReply’,
[{megaco_term_id,false,["root"]}],
{serviceChangeResParms,

{’ServiceChangeResParm’,{...}|...}}}}]}]}}},
{{deviceName,"gateway_ub"},
{1,
{ok,[{’ActionReply’,0,

asn1_NOVALUE,
asn1_NOVALUE,
[{serviceChangeReply,

{’ServiceChangeReply’,
[{megaco_term_id,false,["root"]}],
{serviceChangeResParms,

{’ServiceChangeResParm’|...}}}}]}]}}}]
(mg@amrod)5>

The Megaco adopted viewer looks like this, when we have clicked on the “gateway tt” actor name in
order to only display the events regarding that actor:

20 Event Tracer (ET)

1.3: Examples

Figure 1.9: The viewer adopted for Megaco

A pretty printed Megaco message looks like this:

21Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

Figure 1.10: A textual Megaco message

And the corresponding internal form for the same Megaco message looks like this:

22 Event Tracer (ET)

1.3: Examples

Figure 1.11: The internal form of a Megaco message

23Event Tracer (ET)

Chapter 1: Event Tracer (ET) Users Guide

24 Event Tracer (ET)

Event Tracer (ET) Reference
Manual

Short Summaries

� Erlang Module et [page 28] – Main API of the Event Trace (ET) application

� Erlang Module et collector [page 29] – Collect trace events and provide a backing
storage appropriate for iteration

� Erlang Module et selector [page 35] – Define event transforms and trace patterns

� Erlang Module et viewer [page 37] – Displays a sequence chart for trace events
(messages/actions)

et

The following functions are exported:

� report event(DetailLevel, FromTo, Label, Contents) ->
hopefully traced
[page 28] Reports an event, such as a message

� report event(DetailLevel, From, To, Label, Contents) ->
hopefully traced
[page 28] Reports an event, such as a message

� phone home(DetailLevel, FromTo, Label, Contents) -> hopefully traced
[page 28] Reports an event, such as a message

� phone home(DetailLevel, From, To, Label, Contents) ->
hopefully traced
[page 28] Reports an event, such as a message

et collector

The following functions are exported:

� start link(Options) -> fok, CollectorPidg | ferror, Reasong
[page 29] Start a collector process

� stop(CollectorPid) -> ok
[page 30] Stop a collector process

25Event Tracer (ET)

Event Tracer (ET) Reference Manual

� save event file(CollectorPid, FileName, Options) -> ok | ferror,
Reasong
[page 30] Save the events to a file

� load event file(CollectorPid, FileName) -> fok, BadBytesg |
exit(Reason)
[page 31] Load the event table from a file

� report(Handle, TraceOrEvent) -> fok, Continuationg | exit(Reason)
[page 31] Report an event to the collector

� report event(Handle, DetailLevel, FromTo, Label, Contents) -> fok,
Continuationg | exit(Reason)
[page 31] Report an event to the collector

� report event(Handle, DetailLevel, From, To, Label, Contents) -> fok,
Continuationg | exit(Reason)
[page 31] Report an event to the collector

� make key(Type, Stuff) -> Key
[page 31] Make a key out of an event record or an old key

� get table handle(CollectorPid) -> Handle
[page 32] Return a table handle

� get global pid() -> CollectorPid | exit(Reason)
[page 32] Return a the identity of the globally registered collector if there is any

� change pattern(CollectorPid, RawPattern) -> fold pattern,
TracePatterng
[page 32] Change active trace pattern globally on all trace nodes

� dict insert(CollectorPid, ffilter, collectorg, FilterFun) -> ok
[page 32] Insert a dictionary entry and send a fet, fdict insert, Key, Valgg tuple to
all registered subscribers.

� dict insert(CollectorPid, fsubscriber, SubscriberPidg, Void) -> ok
[page 32] Insert a dictionary entry and send a fet, fdict insert, Key, Valgg tuple to
all registered subscribers.

� dict insert(CollectorPid, Key, Val) -> ok
[page 32] Insert a dictionary entry and send a fet, fdict insert, Key, Valgg tuple to
all registered subscribers.

� dict lookup(CollectorPid, Key) -> [Val]
[page 32] Lookup a dictionary entry and return zero or one value

� dict delete(CollectorPid, Key) -> ok
[page 33] Delete a dictionary entry and send a fet, fdict delete, Keygg tuple to all
registered subscribers.

� dict match(CollectorPid, Pattern) -> [Match]
[page 33] Match some dictionary entries

� multicast(CollectorPid, Msg) -> ok
[page 33] Sends a message to all registered subscribers

� start trace client(CollectorPid, Type, Parameters) -> file loaded |
ftrace client pid, pid()g | exit(Reason)
[page 33] Load raw Erlang trace from a file, port or process.

� iterate(Handle, Prev, Limit) -> NewAcc
[page 34] Iterates over the currently stored events

� iterate(Handle, Prev, Limit, Fun, Acc) -> NewAcc
[page 34] Iterate over the currently stored events

26 Event Tracer (ET)

Event Tracer (ET) Reference Manual

� clear table(Handle) -> ok
[page 34] Clear the event table

et selector

The following functions are exported:

� make pattern(RawPattern) -> TracePattern
[page 35] Makes a trace pattern suitable to feed change pattern/1

� change pattern(Pattern) -> ok
[page 35] Activates/deactivates tracing by changing the current trace pattern

� parse event(Mod, ValidTraceData) -> false | true | ftrue, Eventg
[page 35] Transforms trace data and makes an event record out of it

et viewer

The following functions are exported:

� file(FileName) -> fok, ViewerPidg | ferror, Reasong
[page 37] Start a new event viewer and a corresponding collector and load them
with trace events from a trace file.

� start() -> ok
[page 37] Simplified start of a sequence chart viewer with global tracing activated.

� start(Options) -> ok
[page 37] Start of a sequence chart viewer without linking to the parent process.

� start link(Options) -> fok, ViewerPidg | ferror, Reasong
[page 37] Start a sequence chart viewer for trace events (messages/actions)

� get collector pid(ViewerPid) -> CollectorPid
[page 38] Returns the identifier of the collector process

� stop(ViewerPid) -> ok
[page 39] Stops a viewer

27Event Tracer (ET)

et Event Tracer (ET) Reference Manual

et
Erlang Module

Interface module for the Event Trace (ET) application

Exports

report event(DetailLevel, FromTo, Label, Contents) -> hopefully traced

report event(DetailLevel, From, To, Label, Contents) -> hopefully traced

phone home(DetailLevel, FromTo, Label, Contents) -> hopefully traced

phone home(DetailLevel, From, To, Label, Contents) -> hopefully traced

Types:

� DetailLevel = integer(X) when X =< 0, X >= 100
� From = actor()
� To = actor()
� FromTo = actor()
� Label = atom() | string() | term()
� Contents = [fKey, Valueg] | term()
� actor() = term()

Reports an event, such as a message.

These functions are intended to be invoked at strategic places in user applications in
order to enable simplified tracing. The functions are extremely light weight as they do
nothing besides returning an atom. These functions are designed for being traced. The
global tracing mechanism in et collector defaults to set its trace pattern to these
functions.

The label is intended to provide a brief summary of the event. A simple tag would do.

The contents can be any term but in order to simplify post processing of the traced
events, a plain list of fKey, Valueg tuples is preferred.

Some events, such as messages, are directed from some actor to another. Other events
(termed actions) may be undirected and only have one actor.

28 Event Tracer (ET)

Event Tracer (ET) Reference Manual et collector

et collector
Erlang Module

Interface module for the Event Trace (ET) application

Exports

start link(Options) -> fok, CollectorPidg | ferror, Reasong

Types:

� Options = [option()]
� option() = fparent pid, pid()g | fevent order, event order()g | fdict insert, ffilter,

collectorg, collector fun()g | fdict insert, ffilter, event filter name()g,
event filter fun()g | fdict insert, fsubscriber, pid()g, dict val()g | fdict insert,
dict key(), dict val()g | fdict delete, dict key()g | ftrace client, trace client()g |
ftrace global, boolean()g | ftrace pattern, trace pattern()g | ftrace port, integer()g |
ftrace max queue, integer()g

� event order() = trace ts | event ts
� trace pattern() = freport module(), extended dbg match spec()g | undefined
� report module() = atom() | undefined <v>extended dbg match spec()() =

detail level() | dbg match spec()
� detail level() = min | max | integer(X) when X =< 0, X >= 100
� trace client() = fevent file, file name()g | fdbg trace type(), dbg trace parameters()g
� file name() = string()
� collector fun() = trace filter fun() | event filter fun()
� trace filter fun() = fun(TraceData) -> false | true | ftrue, NewEventg
� event filter fun() = fun(Event) -> false | true | ftrue, NewEventg
� event filter name() = atom()
� TraceData = erlang trace data()
� Event = NewEvent = record(event)
� dict key() = term()
� dict val() = term()
� CollectorPid = pid()
� Reason = term()

Start a collector process.

The collector collects trace events and keeps them ordered by their timestamp. The
timestamp may either reflect the time when the actual trace data was generated
(trace ts) or when the trace data was transformed into an event record (event ts). If the
time stamp is missing in the trace data (missing timestamp option to erlang:trace/4) the
trace ts will be set to the event ts.

29Event Tracer (ET)

et collector Event Tracer (ET) Reference Manual

Events are reported to the collector directly with the report function or indirectly via
one or more trace clients. All reported events are first filtered thru the collector filter
before they are stored by the collector. By replacing the default collector filter with a
customized dito it is possible to allow any trace data as input. The collector filter is a
dictionary entry with the predefined key ffilter, collectorg and the value is a fun of arity
1. See et selector:make event/1 for interface details, such as which erlang:trace/1 tuples
that are accepted.

The collector has a built-in dictionary service. Any term may be stored as value in the
dictionary and bound to a unique key. When new values are inserted with an existing
key, the new values will overwrite the existing ones. Processes may subscribe on
dictionary updates by using fsubscriber, pid()g as dictionary key. All dictionary updates
will be propagated to the subscriber processes matching the pattern ffsubscriber, ’ ’g,
’ ’g where the first ’ ’ is interpreted as a pid().

In global trace mode, the collector will automatically start tracing on all connected
Erlang nodes. When a node connects, a port tracer will be started on that node and a
corresponding trace client on the collector node. By default the global trace pattern is
’max’.

Default values:

� parent pid - self().

� event order - trace ts.

� trace global - false.

� trace pattern - undefined.

� trace port - 4711.

� trace max queue - 50.

stop(CollectorPid) -> ok

Types:

� CollectorPid = pid()

Stop a collector process.

save event file(CollectorPid, FileName, Options) -> ok | ferror, Reasong

Types:

� CollectorPid = pid()
� FileName = string()
� Options = [option()]
� Reason = term()
� option() = event option() | file option() | table option()
� event option() = existing
� file option() = write | append
� table option() = keep | clear

30 Event Tracer (ET)

Event Tracer (ET) Reference Manual et collector

Save the events to a file.

By default the currently stored events (existing) are written to a brand new file (write)
and the events are kept (keep) after they have been written to the file.

Instead of keeping the events after writing them to file, it is possible to remove all stored
events after they have successfully written to file (clear).

The options defaults to existing, write and keep.

load event file(CollectorPid, FileName) -> fok, BadBytesg | exit(Reason)

Types:

� CollectorPid = pid()
� FileName = string()
� BadBytes = integer(X) where X >= 0
� Reason = term()

Load the event table from a file.

report(Handle, TraceOrEvent) -> fok, Continuationg | exit(Reason)

report event(Handle, DetailLevel, FromTo, Label, Contents) -> fok, Continuationg |
exit(Reason)

report event(Handle, DetailLevel, From, To, Label, Contents) -> fok, Continuationg |
exit(Reason)

Types:

� Handle = Initial | Continuation
� Initial = collector pid()
� collector pid() = pid()
� Continuation = record(table handle)
� TraceOrEvent = record(event) | dbg trace tuple() | end of trace
� Reason = term()
� DetailLevel = integer(X) when X =< 0, X >= 100
� From = actor()
� To = actor()
� FromTo = actor()
� Label = atom() | string() | term()
� Contents = [fKey, Valueg] | term()
� actor() = term()

Report an event to the collector.

All events are filtered thru the collector filter, which optionally may transform or
discard the event. The first call should use the pid of the collector process as report
handle, while subsequent calls should use the table handle.

make key(Type, Stuff) -> Key

Types:

� Type = record(table handle) | trace ts | event ts
� Stuff = record(event) | Key
� Key = record(event ts) | record(trace ts)

31Event Tracer (ET)

et collector Event Tracer (ET) Reference Manual

Make a key out of an event record or an old key.

get table handle(CollectorPid) -> Handle

Types:

� CollectorPid = pid()
� Handle = record(table handle)

Return a table handle.

get global pid() -> CollectorPid | exit(Reason)

Types:

� CollectorPid = pid()
� Reason = term()

Return a the identity of the globally registered collector if there is any.

change pattern(CollectorPid, RawPattern) -> fold pattern, TracePatterng

Types:

� CollectorPid = pid()
� RawPattern = freport module(), extended dbg match spec()g
� report module() = atom() | undefined
� extended dbg match spec()() = detail level() | dbg match spec()
� RawPattern = detail level()
� detail level() = min | max | integer(X) when X =< 0, X >= 100
� TracePattern = freport module(), dbg match spec match spec()g

Change active trace pattern globally on all trace nodes.

dict insert(CollectorPid, ffilter, collectorg, FilterFun) -> ok

dict insert(CollectorPid, fsubscriber, SubscriberPidg, Void) -> ok

dict insert(CollectorPid, Key, Val) -> ok

Types:

� CollectorPid = pid()
� FilterFun = filter fun()
� SubscriberPid = pid()
� Void = term()
� Key = term()
� Val = term()

Insert a dictionary entry and send a fet, fdict insert, Key, Valgg tuple to all registered
subscribers.

If the entry is a new subscriber, it will imply that the new subscriber process first will
get one message for each already stored dictionary entry, before it and all old subscribers
will get this particular entry. The collector process links to and then supervises the
subscriber process. If the subscriber process dies it will imply that it gets unregistered as
with a normal dict delete/2.

dict lookup(CollectorPid, Key) -> [Val]

32 Event Tracer (ET)

Event Tracer (ET) Reference Manual et collector

Types:

� CollectorPid = pid()
� FilterFun = filter fun()
� CollectorPid = pid()
� Key = term()
� Val = term()

Lookup a dictionary entry and return zero or one value.

dict delete(CollectorPid, Key) -> ok

Types:

� CollectorPid = pid()
� SubscriberPid = pid()
� Key = fsubscriber, SubscriberPidg | term()

Delete a dictionary entry and send a fet, fdict delete, Keygg tuple to all registered
subscribers.

If the deleted entry is a registered subscriber, it will imply that the subscriber process
gets is unregistered as subscriber as well as it gets it final message.

dict match(CollectorPid, Pattern) -> [Match]

Types:

� CollectorPid = pid()
� Pattern = ’ ’ | fkey pattern(), val pattern()g
� key pattern() = ets match object pattern()
� val pattern() = ets match object pattern()
� Match = fkey(), val()g
� key() = term()
� val() = term()

Match some dictionary entries

multicast(CollectorPid, Msg) -> ok

Types:

� CollectorPid = pid()
� CollectorPid = pid()
� Msg = term()

Sends a message to all registered subscribers.

start trace client(CollectorPid, Type, Parameters) -> file loaded | ftrace client pid,
pid()g | exit(Reason)

Types:

� Type = dbg trace client type()
� Parameters = dbg trace client parameters()
� Pid = dbg trace client pid()

Load raw Erlang trace from a file, port or process.

33Event Tracer (ET)

et collector Event Tracer (ET) Reference Manual

iterate(Handle, Prev, Limit) -> NewAcc

Short for iterate(Handle, Prev, Limit, undefined, Prev) -> NewAcc

iterate(Handle, Prev, Limit, Fun, Acc) -> NewAcc

Types:

� Handle = collector pid() | table handle()
� Prev = first | last | event key()
� Limit = done() | forward() | backward()
� collector pid() = pid()
� table handle() = record(table handle)
� event key() = record(event) | record(event ts) | record(trace ts)
� done() = 0
� forward() = infinity | integer(X) where X > 0
� backward() = ’-infinity’ | integer(X) where X < 0
� Fun = fun(Event, Acc) -> NewAcc <v>Acc = NewAcc = term()

Iterate over the currently stored events.

Iterates over the currently stored eventsand applies a function for each event. The
iteration may be performed forwards or backwards and may be limited to a maximum
number of events (abs(Limit)).

clear table(Handle) -> ok

Types:

� Handle = collector pid() | table handle()
� collector pid() = pid()
� table handle() = record(table handle)

Clear the event table.

34 Event Tracer (ET)

Event Tracer (ET) Reference Manual et selector

et selector
Erlang Module

Exports

make pattern(RawPattern) -> TracePattern

Types:

� RawPattern = detail level()
� TracePattern = erlang trace pattern match spec()
� detail level() = min | max | integer(X) when X =< 0, X >= 100

Makes a trace pattern suitable to feed change pattern/1

Min detail level deactivates tracing of calls to phone home/4,5

Max detail level activates tracing of all calls to phone home/4,5

integer(X) detail level activates tracing of all calls to phone home/4,5 whose detail level
argument is lesser than X.

See also erlang:trace pattern/2 for more info about its match spec()

change pattern(Pattern) -> ok

Types:

� Pattern = detail level() | empty match spec() | erlang trace pattern match spec()
� detail level() = min | max | integer(X) when X =<0, X >= 100
� empty match spec() = []

Activates/deactivates tracing by changing the current trace pattern.

Min detail level deactivates tracing of calls to phone home/4,5

Max detail level activates tracing of all calls to phone home/4,5

integer(X) detail level activates tracing of all calls to phone home/4,5 whose detail level
argument is lesser than X.

An empty match spec deactivates tracing of calls to phone home/4,5

Other match specs activates tracing of calls to phone home/4,5 accordlingly with
erlang:trace pattern/2.

parse event(Mod, ValidTraceData) -> false | true | ftrue, Eventg

Types:

� Mod = module name() | undefined <v>module name() = atom()
<v>ValidTraceData = erlang trace data() | record(event)

35Event Tracer (ET)

et selector Event Tracer (ET) Reference Manual

� erlang trace data() = ftrace, Pid, Label, Infog | ftrace, Pid, Label, Info, Extrag |
ftrace ts, Pid, Label, Info, ReportedTSg | ftrace ts, Pid, Label, Info, Extra,
ReportedTSg | fseq trace, Label, Infog | fseq trace, Label, Info, ReportedTSg |
fdrop, NumberOfDroppedItemsg

Transforms trace data and makes an event record out of it.

See erlang:trace/3 for more info about the semantics of the trace data.

An event record consists of the following fields: detail level - Noise has a high level as
opposed to essentials. trace ts - Time when the trace was generated. Same as event ts if
omitted in trace data. event ts - Time when the event record was created. from - From
actor, such as sender of a message. to - To actor, such as receiver of message. label -
Label intended to provide a brief event summary. contents - All nitty gritty details of
the event.

See et:phone home/4 and et:phone home/5 for details.

Returns: ftrue, Eventg - where Event is an #eventfg record representing the trace data
true - means that the trace data already is an event record and that it is valid as it is. No
transformation is needed. false - means that the trace data is uninteresting and should
be dropped

36 Event Tracer (ET)

Event Tracer (ET) Reference Manual et viewer

et viewer
Erlang Module

Exports

file(FileName) -> fok, ViewerPidg | ferror, Reasong

Types:

� FileName() = string()
� ViewerPid = pid()
� Reason = term()

Start a new event viewer and a corresponding collector and load them with trace events
from a trace file.

start() -> ok

Simplified start of a sequence chart viewer with global tracing activated.

Convenient to be used from the command line (erl -s et viewer).

start(Options) -> ok

Start of a sequence chart viewer without linking to the parent process.

start link(Options) -> fok, ViewerPidg | ferror, Reasong

Types:

� Options = [option() | collector option()]
� option() = fparent pid, extended pid()g | ftitle, term()g | fdetail level,

detail level()g | fis suspended, boolean()g | fscale, integer()g | fwidth, integer()g |
fheight, integer()g | fcollector pid, extended pid()g | fevent order, event order()g |
factive filter, atom()g | fmax events, extended integer()g | fmax actors,
extended integer()g | ftrace pattern, et collector trace pattern()g | ftrace port,
et collector trace port()g | ftrace global, et collector trace global()g | ftrace client,
et collector trace client()g | fdict insert, ffilter, filter name()g, event filter fun()g |
fdict insert, et collector dict key(), et collector dict val()g | fdict delete, ffilter,
filter name()gg | fdict delete, et collector dict key()g | factors, actors()g |
ffirst event, first key()g | fhide unknown, boolean()g | fhide actions, boolean()g |
fdisplay mode, display mode()g

� extended pid() = pid() | undefined
� detail level() = min | max | integer(X) when X >=0, X =< 100
� event order() = trace ts | event ts
� extended integer() = integer() | infinity

37Event Tracer (ET)

et viewer Event Tracer (ET) Reference Manual

� display mode() = all | fsearch actors, direction(), first key(), actors()g
� direction() = forward | reverse
� first key() = event key()
� actors() = [term()]
�

� filter name() = atom()
� filter fun() = fun(Event) -> false | true | ftrue, NewEventg
� Event = NewEvent = record(event)
� ViewerPid = pid()
� Reason = term()

Start a sequence chart viewer for trace events (messages/actions)

A filter fun() takes an event record as sole argument and returns false | true | ftrue,
NewEventg.

If the collector pid is undefined a new et collecor will be started with the
following parameter settings: parent pid, event order, trace global,
trace pattern, trace port, trace max queue, trace client, dict insert and
dict delete. The new et viewer will register itself as an et collecor subscriber.

Default values:

� parent pid - self().

� title - “et viewer”.

� detail level - max.

� is suspended - false.

� scale - 2.

� width - 800.

� height - 600.

� collector pid - undefined.

� event order - trace ts.

� active filter - collector.

� max events - 100.

� max actors - 5.

� actors - [“UNKNOWN”].

� first event - first.

� hide unknown - false.

� hide actions - false.

� display mode - all.

get collector pid(ViewerPid) -> CollectorPid

Types:

� ViewerPid = pid()
� CollectorPid = pid()

Returns the identifier of the collector process.

38 Event Tracer (ET)

Event Tracer (ET) Reference Manual et viewer

stop(ViewerPid) -> ok

Types:

� ViewerPid = pid()

Stops a viewer process.

39Event Tracer (ET)

et viewer Event Tracer (ET) Reference Manual

40 Event Tracer (ET)

List of Figures

1.1 A simulated Mnesia transaction which writes one record 3

1.2 Two actors has switched places . 4

1.3 Details of a write lock message . 5

1.4 The same trace data in a different view . 7

1.5 The trace event in the mgr actors view . 8

1.6 The same trace event in the collectors view . 8

1.7 A simulated Mnesia transaction which writes one record 14

1.8 A real Mnesia transaction which writes one record . 17

1.9 The viewer adopted for Megaco . 21

1.10 A textual Megaco message . 22

1.11 The internal form of a Megaco message . 23

41Event Tracer (ET)

List of Figures

42 Event Tracer (ET)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

change_pattern/1
et selector , 35

change_pattern/2
et collector , 32

clear_table/1
et collector , 34

dict_delete/2
et collector , 33

dict_insert/3
et collector , 32

dict_insert/4
et collector , 32

dict_lookup/2
et collector , 32

dict_match/2
et collector , 33

et
phone_home/4, 28
phone_home/5, 28
report_event/4, 28
report_event/5, 28

et collector
change_pattern/2, 32
clear_table/1, 34
dict_delete/2, 33
dict_insert/3, 32
dict_insert/4, 32
dict_lookup/2, 32
dict_match/2, 33
get_global_pid/0, 32
get_table_handle/1, 32
iterate/3, 34
iterate/5, 34
load_event_file/2, 31
make_key/2, 31

multicast/2, 33
report/2, 31
report_event/5, 31
report_event/6, 31
save_event_file/3, 30
start_link/1, 29
start_trace_client/3, 33
stop/1, 30

et selector
change_pattern/1, 35
make_pattern/1, 35
parse_event/2, 35

et viewer
file/1, 37
get_collector_pid/1, 38
start/0, 37
start/1, 37
start_link/1, 37
stop/1, 39

file/1
et viewer , 37

get_collector_pid/1
et viewer , 38

get_global_pid/0
et collector , 32

get_table_handle/1
et collector , 32

iterate/3
et collector , 34

iterate/5
et collector , 34

load_event_file/2
et collector , 31

43Event Tracer (ET)

Index of Modules and Functions

make_key/2
et collector , 31

make_pattern/1
et selector , 35

multicast/2
et collector , 33

parse_event/2
et selector , 35

phone_home/4
et , 28

phone_home/5
et , 28

report/2
et collector , 31

report_event/4
et , 28

report_event/5
et , 28
et collector , 31

report_event/6
et collector , 31

save_event_file/3
et collector , 30

start/0
et viewer , 37

start/1
et viewer , 37

start_link/1
et collector , 29
et viewer , 37

start_trace_client/3
et collector , 33

stop/1
et collector , 30
et viewer , 39

44 Event Tracer (ET)

