
Reltool application

version 0.2

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 Reltool Users Guide 1

1.1 Introduction . 1

1.1.1 Scope and Purpose . 1

1.1.2 Prerequisites . 1

1.1.3 About This Manual . 1

1.1.4 Where to Find More Information . 2

1.2 Usage . 2

1.2.1 Overview . 2

1.2.2 System window . 2

1.2.3 Application window . 4

1.2.4 Module window . 5

1.3 Examples . 6

1.3.1 Start and stop windows and servers . 6

1.3.2 Generate release and script files . 6

1.3.3 Create a target system . 7

2 Reltool Reference Manual 9

2.1 reltool . 10

iiiReltool application

iv Reltool application

Chapter 1

Reltool Users Guide

Reltool is a release management tool. It analyses a given Erlang/OTP installation and determines
various dependencies between applications. The graphical frontend depicts the dependencies and
enables interactive customization of a target system. The backend provides a batch interface for
generation of customized target systems.

1.1 Introduction

Reltool is a release management tool. It analyses a given Erlang/OTP installation and determines
various dependencies between applications. The graphical frontend depicts the dependencies and
enables interactive customization of a target system. The backend provides a batch interface for
generation of customized target systems.

1.1.1 Scope and Purpose

This manual describes the Reltool application, as a component of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Development
Environment, which is described in a separate User’s Guide.

1.1.2 Prerequisites

The following prerequisites is required for understanding the material in the Reltool User’s Guide:

� familiarity with Erlang/OTP system principles and Erlang/OTP design principles

The application requires Erlang/OTP release R13A or later.

1.1.3 About This Manual

In addition to this introductory chapter, the Reltool User’s Guide contains the following chapters:

� Chapter 2: “Usage” describes the architecture and typical usage of the application.

� Chapter 3: “Examples” gives some usage examples

1Reltool application

Chapter 1: Reltool Users Guide

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Reltool and about the Erlang/OTP
development system:

� the Reference Manual of Reltool

� the Erlang/OTP System Principles

� the Erlang/OTP Design Principles

� Programming Erlang: Software for a Concurrent World (2007), Pragmatic Bookshelf, ISBN13:
9781934356005.

1.2 Usage

1.2.1 Overview

This document focuses on the graphical parts of the tool. The concepts are explained in the reference
manual for the module reltool.

1.2.2 System window

The system window is started with the function reltool:start/1. At startup the tool will process the
all beam files and app files in order to find out dependencies between applications and their modules.
Once all this information has been derived, it will be possible to explore the tool.

The system window consists of four main pages (tabs):

� Libraries

� System settings

� Applications

� Releases

Click on a name tag to display its page.

Libraries

On the library page it is possible to control which sources that the tool will use. The page is organized
as a tree which can be expanded and collapsed by clicking on the little symbol in the beginning of the
expandable/collapsable lines.

The Root directory can be edited by selecting the line where the path of the root directory is
displayed and clicking with the right mouse button. Choose edit in the menu that pops up.

Library directories can be added, edited or deleted. This is done by selecting the line where the path to
a library directory is displayed and clicking with the right mouse button. Choose add, edit or delete in
the menu that pops up. New library directories can also be added by selecting the line Library
directories and clicking with the right mouse button. Choose add in the menu that pops up.

Escript files can be added, edited or deleted. This is done by selecting the line where the path to an
escript file is displayed and clicking with the right mouse button. Choose add, edit or delete in the
menu that pops up. New escripts can also be added by selecting the line Escript files and clicking
with the right mouse button. Choose add in the menu that pops up.

2 Reltool application

1.2: Usage

When libraries and escripts are expanded, the names of their contained applications will be displayed.
Double click on an application name to launch an application window.

System settings

On the system settings page it is possible to control some global settings that are used as defaults for all
applications. Set the Application inclusion policy to include to include all applications that not
are explicitly excluded. See incl cond (application inclusion) and mod cond (module inclusion) in the
reference manual for the module reltool for more info.

The system settings page is rather incomplete.

Applications

There are four categories of applications on the applications page. Included contains applications that
are explicitly included. Excluded contains applications that are explicitly excluded. Derived contains
applications that either are used directly by excplicitly included applications or by other derived
applications. Available contains the remaining applications.

Select one or more applications and click on a button directly below the application column to change
application category. For example, select an available application and click on its tick button to move
the application to the included category. Clicking on the tick symbol for included applications will
move the application back to the available category. The tick is undone.

The symbols in front of the application names are intended to describe the status of the application.
There are error symbols and warning symbols that means that there are something that needs attention.
The tick symbol means that the application is included or derived and no problem has been detected.
The cross symbol means that the application is excluded or available and no problem has been detected.
Applications with error symbols are listed first in each category, then comes the warnings and the
normal ones (ticks and crosses) are found at the end.

Double click on an application to launch its application window.

Releases

The releases page is incomplete and very experimental.

File menu

� Display application dependency graph - Launches an application force graph window. All
included and derived applications and their dependencies will be shown in a graph.

� Display module dependency graph - Launch a module force graph window. All included and
derived modules and their dependencies will be shown in a graph.

� Reset configuration to default

� Undo configuration (toggle)

� Load configuration - Loads a new configuration from file.

� Save configuration - Saves the current configuration to file. Only configuration parameters
with values that differs from their defaults are saved.

� Generate rel, script and boot files

� Generate target system

� Close - Close the system window and all its subwindows.

3Reltool application

Chapter 1: Reltool Users Guide

Dependencies between applications or modules displayed as a graph

The dependency graph windows are launched from the file menu in the system window. The graph
depicts all included and derived applications/modules and their dependencies.

It is possible to perform some limited manipulations of the graph. Nodes can be moved, selected,
locked or deleted. Move a single node or the entire graph by moving the mouse while the left mouse
button is pressed. A node is can be locked into a fix position by holding down the shift button when the
left mouse button is released. Select several nodes by moving the mouse while the control key and the
left mouse button i pressed. Selected nodes can be locked, unlocked or deleted by klicking on a suitable
button.

The algorithm that is used to draw a graph with as few crossed links as possible is called force graph. A
force graph consists of nodes and directed link between nodes. Each node is associated with a repulsive
force that pushes nodes away from each other. This force can be adjusted with the left slider or with the
mouse wheel. Each link is associated with an attractive force that pulls the nodes nearer each other.
This force can be adjusted with the right slider. If this force becomes to strong, the graph will be
unstable. The third parameter that can be adjusted is the length of the links. It is adjusted with the
middle slider.

The Freeze button starts/stops the redrawing of the graph. Reset moves the graph to the middle of the
window and resets all graph settings to default, with the exception of deleted nodes.

1.2.3 Application window

The application window is started by double clicking on an application name. The application window
consists of four pages (tabs):

� Application settings

� Modules

� Application dependencies

� Module dependencies

Click on a name tag to display its page.

Application settings

Select version of the application in the Source selection policy part of the page. By default the
latest version of the application is selected, but it is possible to override this by explicitly select another
version.

By default the Application inclusion policy on system level is used for all applications. Set the
value to include if you want to excplicitly include one particular application. Set it to exclude if you
want to exclude the application despite that it is used by another (explicitly or implicitly) included
application. derived means that the application automatically will be included if some other (explicitly
or implicitly) included application uses it.

By default the Module inclusion policy on system level is used for all applications. Set it to derived
if you only want actually used modules to be included. Set it to app if you, besides derived modules,
also want the modules listed in the app file to be included. Set it to ebin if you, besides derived
modules, also want the modules that exists as beam files on the ebin directory to be included. Set it to
all if you want all modules to be included, that is the union of modules found on the ebin directory
and listed in the app file.

The application settings page is rather incomplete.

4 Reltool application

1.2: Usage

Modules

There are four categories of modules on the modules page. Included contains modules that are
explicitly included. Excluded contains modules that are explicitly excluded. Derived contains modules
that either are used directly by excplicitly included modules or by other derived modules. Available
contains the remaining modules.

Select one or more modules and click on a button directly below the module column to change module
category. For example, select an available module and click on its tick button to move the module to
the included category. Clicking on the tick symbol for included modules will move the module back to
the available category. The tick is undone.

The symbola in front of the module names are intended to describe the status of the module. There are
error symbols and warning symbols that means that there are something that needs attention. The tick
symbol means that the module is included or derived and no problem has been detected. The cross
symbol means that the module is excluded or available and no problem has been detected. Modules
with error symbols are listed first in each category, then comes the warnings and the normal ones (ticks
and crosses) are found at the end.

Double click on an module to launch its module window.

Application dependencies

There are four categories of applications on the Application dependencies page. If the application is
used by other applications, these are listed under Used by. If the application requires other applications
be started before it can be started, these are listed under Required. These applications are listed in the
applications part of the app file. If the application includes other applications, these are listed under
Included. These applications are listed in the included applications part of the app file. If the
application uses modules other applications, these are listed under Uses.

Double click on an application name to launch an application window.

Module dependencies

There are two categories of modules on the Module dependencies page. If the module is used by other
modules, these are listed under Modules used by others. If the module uses modules other modules,
these are listed under Used modules.

Double click on an module name to launch a module window.

1.2.4 Module window

The module window is started by double clicking on an module name. The module window consists
initially of two pages (tabs):

� Dependencies

� Code

Click on a name tag to display its page.

5Reltool application

Chapter 1: Reltool Users Guide

Dependencies

There are two categories of modules on the Dependencies page. If the module is used by other
modules, these are listed under Modules used by others. If the module uses modules other modules,
these are listed under Used modules.

Double click on an module name to launch a module window.

Code

On the Code page the Erlang source code is displayed. It is possible to search forwards and backwards
for text in the module. Enter a regular expression in the Find field and press enter. It is also possible to
goto a certain line on the module. The Back button can be used to go back to the previous position.

Put the marker on a function name and double click to go to the definition of the function. If the
function is defined in another module, that module will be loaded and added to the page list.

1.3 Examples

1.3.1 Start and stop windows and servers

Erlang R13A (erts-5.7) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7 (abort with ^G)
1> reltool:start server([]).
fok,<0.35.0>g
2> reltool:get config server(Server).
fok,fsys,[]gg
3> reltool:stop(Server).
ok

1.3.2 Generate release and script files

5> fok, Serverg = reltool:start server([fconfig, fsys, [fboot rel, "NAME"g, frel, "NAME", "VSN", [kernel
fok,<0.1288.0>g
6> reltool:get config(Server).
fok,fsys,[fboot rel,"NAME"g,

frel,"NAME","VSN",[kernel,stdlib,sasl]g]gg
7> reltool:get rel(Server, "NAME").
fok,frelease,f"NAME","VSN"g,

ferts,"5.7"g,
[fkernel,"2.13"g,fstdlib,"1.16"g,fsasl,"2.1.6"g]gg

8> reltool:get script(Server, "NAME").
fok,fscript,f"NAME","VSN"g,

[fpreLoaded,[erl prim loader,erlang,init,otp ring0,
prim file,prim inet,prim zip,zlib]g,

fprogress,preloadedg,
fpath,["$ROOT/lib/kernel-2.13/ebin",

"$ROOT/lib/stdlib-1.16/ebin"]g,
fprimLoad,[error handler]g,
fkernel load completedg,

6 Reltool application

1.3: Examples

fprogress,kernel load completedg,
fpath,["$ROOT/lib/kernel-2.13/ebin"]g,
fprimLoad,[application,application controller,

application master,application starter,auth,code,
code server,disk log,disk log 1,disk log server,
disk log sup,dist ac,dist util,erl boot server|...]g,

fpath,["$ROOT/lib/stdlib-1.16/ebin"]g,
fprimLoad,[array,base64,beam lib,c,calendar,dets,

dets server,dets sup,dets utils,dets v8,dets v9,dict|...]g,
fpath,["$ROOT/lib/sasl-2.1.6/ebin"]g,
fprimLoad,[alarm handler,erlsrv,format lib supp,misc supp,

overload,rb,rb format supp,release handler,
release handler 1,sasl|...]g,

fprogress,modules loadedg,
fpath,["$ROOT/lib/kernel-2.13/ebin",

"$ROOT/lib/stdlib-1.16/ebin","$ROOT/lib/sasl-2.1.6/ebin"]g,
fkernelProcess,heart,fheart,start,[]gg,
fkernelProcess,error logger,ferror logger,start link,[]gg,
fkernelProcess,application controller,

fapplication controller,start,[f...g]gg,
fprogress,init kernel startedg,
fapply,fapplication,load,[...]gg,
fapply,fapplication,load,...gg,
fprogress,applications loadedg,
fapply,f...gg,
fapply,...g,
f...g|...]gg

9> reltool:stop(Server).
ok

1.3.3 Create a target system

11> file:list dir("TARGET DIR").
ferror,enoentg
12> reltool:create target([fconfig, fsys, [fapp, sasl, [fincl cond, includeg]g,

fboot rel, "NAME"g,
frel, "NAME", "VSN", [kernel, stdlib, sasl]g]gg],

"TARGET DIR").
ok
13> file:list dir("TARGET DIR").
fok,["bin","erts-5.7","lib","releases"]g
14> file:list dir("TARGET DIR/lib").
fok,["erts-5.7","tools-2.6.3","syntax tools-1.6",

"stdlib-1.16","sasl-2.1.6","kernel-2.13","hipe-3.7",
"compiler-4.6"]g

15> file:list dir("TARGET DIR/erts-5.7").
fok,["bin"]g
16> file:list dir("TARGET DIR/releases").
fok,["VSN","start erl.data"]g

7Reltool application

Chapter 1: Reltool Users Guide

8 Reltool application

Reltool Reference Manual

Short Summaries

� Erlang Module reltool [page 10] – Main API of the Reltool application

reltool

The following functions are exported:

� create target(Server, TargetDir) -> ok | ferror, Reasong
[page 13] Create a target system

� get config(Server) -> fok, Configg | ferror, Reasong
[page 14] Get reltool configuration

� get rel(Server, Relname) -> fok, RelFileg | ferror, Reasong
[page 14] Get contents of a release file

� get script(Server, Relname) -> fok, ScriptFile | ferror, Reasong
[page 14] Get contents of a boot script file

� install(Server, TargetDir) -> ok | ferror, Reasong
[page 14] Install a target system

� start(Options) -> fok, WindowPidg | ferror, Reasong
[page 14] Start main window process with options

� start server(Options) -> fok, ServerPidg | ferror, Reasong
[page 14] Start server process with options

� stop(Pid) -> ok | ferror, Reasong
[page 15] Stop a server or window process

9Reltool application

reltool Reltool Reference Manual

reltool
Erlang Module

This is an interface module for the Reltool application

Reltool is a release management tool. It analyses a given Erlang/OTP installation and
determines various dependencies between applications. The graphical frontend
depicts the dependencies and enables interactive customization of a target system. The
backend provides a batch interface for generation of customized target systems.

The tool uses an installed Erlang/OTP system as input. root dir is the root directory of
the analysed system and it defaults to the system executing reltool. Applications may
also be located outside root dir. lib dirs defines additional library directories where
applications additional may reside and it defaults to the the directories listed by the
operating system environment variable ERL LIBS. See the module code for more info.
Finally single modules and entire applications may be read from Escripts. The names of
the Escripts are given in the configuration parameter escripts. By default, no Escripts
are included.

Some configuration parameters control the behavior of Reltool on system (sys) level.
Others provide control on application (app) level and yet others are on module (mod)
level. Module level parameters overrides application level parameters and application
level parameters overrides system level parameters.

The following top level options are supported:

config This is the main option and it controls the configuration of reltool. It can
either be a sys tuple or a name of a file containing a sys tuple.

trap exit This option controls the error handling behavior of reltool. By default the
window processes traps exit, but this behavior can altered by setting trap exit to
false.

wx debug This option controls the debug level of wx. As its name indicates it is only
useful for debugging. See wx:debug/1 for more info.

Besides the already mentioned source parameters root dir, lib dirs and escripts,
the following system (sys) level options are supported:

erts Erts specific configuration. See application level options below.

app Application specific configuration. An application has a mandatory name and
application level options that are described below.

10 Reltool application

Reltool Reference Manual reltool

mod cond This parameter controls the module inclusion policy. It defaults to all which
means that if an application is included (either explicitly or implicitly) all modules
in that application will be included. This implies that both modules that exists on
the ebin directory of the application, as well as modules that are named in the app
file will be included. If the parameter is set to ebin, both modules on the ebin
directory and derived modules are included. If the parameter is set to app, both
modules in the app file and derived modules are included. derived means that
only modules that are used by other included modules are included. The mod cond
setting on system level is used as default for all applications.

incl cond This parameter controls the application inclusion policy. It defaults to
derived which means that the applications that not have any explicit incl cond
setting, will only be included if any other (explicitly or implicitly included)
application uses it. The value include implies that all applications that that not
have any explicit incl cond setting will be included. exclude implies that all
applications that that not have any explicit incl cond setting will be excluded.

boot rel A target system may have several releases but the one given as boot rel will
be used as default when the system is booting up.

rel Release specific configuration. Each release maps to a rel, script and boot file.
See the module systools for more info about the details. Each release has a name,
a version and a set of applications with a few release specific parameters such as
type and included applications.

app file This parameter controls the default handling of the app files when a target
system is generated. It defaults to keep which means that app files are copied to
the target system and their contents are kept as they are. strip means that a new
app file is generated from the contents of the original app file where the non
included modules are removed from the file. all does also imply that a new app
file is generated from the contents of the original app file, with the difference that
all included modules are added to the file. If the application does not have any app
file a file will be created for all but not for keep and strip.

debug info The debug info parameter controls whether the debug information in the
beam file should be kept (keep) or stripped strip when the file is copied to the
target system.

incl erts dirs By default only the bin directory is copied to the target system for
erts. This parameter controls if other directories should be copied. erts may
optionally have an application directory containing erl and beam files for
preloaded code. Which application directories that shall be copied are controlled
with incl app dirs and excl app dirs.

excl erts dirs This parameter controls which erts directories that not should be
copied to the target system. In order to be copied, a directory must be included in
incl erts dirs and NOT be included in excl erts dirs.

incl app dirs By default only the application directories ebin and priv are copied to
the target system. This parameter controls if other directories should be copied.

excl app dirs This parameter controls which applications directories that not should
be copied to the target system. In order to be copied, a directory must be included
in incl app dirs and NOT be included in excl app dirs.

On application (app) level,the following options are supported:

vsn The version of the application. In an installed system there may exist several
versions of an application. The vsn parameter controls which version of the
application that will be choosen. If it is omitted, the latest version will be choosen.

11Reltool application

reltool Reltool Reference Manual

mod Module specific configuration. A module has a mandatory name and module level
options that are described below.

mod cond The value of this parameter overrides the parameter with the same name on
system level.

incl cond The value of this parameter overrides the parameter with the same name on
system level.

app file The value of this parameter overrides the parameter with the same name on
system level.

debug info The value of this parameter overrides the parameter with the same name
on system level.

incl app dirs The value of this parameter overrides the parameter with the same
name on system level.

excl app dirs The value of this parameter overrides the parameter with the same
name on system level.

On module (mod) level,the following options are supported:

incl cond This parameter controls whether the module is included or not. By default
the mod incl parameter on application and system level will be used to control
whether the module is included or not. The value of incl cond overrides the
module inclusion policy. include implies that the module is included, while
exclude implies that the module not is included. derived implies that the is
included if any included uses the module.

debug info The value of this parameter overrides the parameter with the same name
on application level.

DATA TYPES

options() = [option()]
option() = {config, config() | file()}

| {trap_exit, bool()}
| {wx_debug, term()}

config() = {sys, [sys()]}
sys() = {root_dir, root_dir()}

| {lib_dirs, [lib_dir()]}
| {escripts, [escript()]}
| {erts, app()}
| {app, app_name(), [app()]}
| {mod_cond, mod_cond()}
| {incl_cond, incl_cond()}
| {boot_rel, boot_rel()}
| {rel, rel_name(), rel_vsn(), [rel_app()]}
| {app_file, app_file()}
| {debug_info, debug_info()}
| {incl_erts_dirs, [incl_erts_dir()]}
| {excl_erts_dirs, [excl_erts_dir()]}
| {incl_app_dirs, [incl_app_dir()]}
| {excl_app_dirs, [excl_app_dir()]}

app() = {vsn, app_vsn()}
| {mod, mod_name(), mod()}

12 Reltool application

Reltool Reference Manual reltool

| {mod_cond, mod_cond()}
| {incl_cond, incl_cond()}
| {debug_info, debug_info()}
| {app_file, app_file()}
| {incl_app_dirs, [incl_app_dir()]}
| {excl_app_dirs, [excl_app_dir()]}

mod() = {vsn, app_vsn()}
| {incl_cond, incl_cond()}
| {debug_info, debug_info()}

rel_app() = app_name()
| {app_name(), app_type()}
| {app_name(), [incl_app()]}
| {app_name(), app_type(), [incl_app()]}

app_name() = atom()
app_type() = permanent | transient | temporary | load | none
app_vsn() = string()
boot_rel() = rel_name()
app_file() = keep | strip | all
debug_info() = keep | strip
dir() = string()
escript() = file()
escript_arg() = string()
excl_app_dir() = dir()
excl_erts_dir() = dir()
file() = string()
incl_app() = app_name()
incl_app_dir() = dir()
incl_cond() = include | exclude | derived
incl_erts_dir() = dir()
lib_dir() = dir()
mod_cond() = all | app | ebin | derived | none
mod_name() = atom()
reason() = string()
rel_file() = term()
rel_name() = string()
rel_vsn() = string()
root_dir() = dir()
script_file() = term()
server() = server_pid() | options()
server_pid() = pid()
window_pid() = pid()

Exports

create target(Server, TargetDir) -> ok | ferror, Reasong

Types:

� Server = server()
� TargetDir = dir()
� Reason = reason()

13Reltool application

reltool Reltool Reference Manual

Create a target system. In order to be able to run the target system, it must be installed
first.

get config(Server) -> fok, Configg | ferror, Reasong

Types:

� Server = server()
� Config = config()
� Reason = reason()

Get reltool configuration. Only configuration parameters with values that differs from
their defaults are returned.

get rel(Server, Relname) -> fok, RelFileg | ferror, Reasong

Types:

� Server = server()
� RelName = rel name()
� RelFile = rel file()
� Reason = reason()

Get contents of a release file. See rel(4) for more details.

get script(Server, Relname) -> fok, ScriptFile | ferror, Reasong

Types:

� Server = server()
� RelName = rel name()
� ScriptFile = script file()
� Reason = reason()

Get contents of a boot script file. See script(4) for more details.

install(Server, TargetDir) -> ok | ferror, Reasong

Types:

� Server = server()
� TargetDir = dir()
� Reason = reason()

Install a created target system

start(Options) -> fok, WindowPidg | ferror, Reasong

Types:

� Options = options()
� WindowPid = window pid()
� Reason = reason()

Start a main window process with options

start server(Options) -> fok, ServerPidg | ferror, Reasong

Types:

14 Reltool application

Reltool Reference Manual reltool

� Options = options()
� ServerPid = server pid()
� Reason = reason()

Start a server process with options. The server process identity can be given as argument
to several other functions in the API.

stop(Pid) -> ok | ferror, Reasong

Types:

� Pid = server pid() | window pid()()
� Reason = reason()

Stop a server or window process

15Reltool application

reltool Reltool Reference Manual

16 Reltool application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

create_target/2
reltool , 13

get_config/1
reltool , 14

get_rel/2
reltool , 14

get_script/2
reltool , 14

install/2
reltool , 14

reltool
create_target/2, 13
get_config/1, 14
get_rel/2, 14
get_script/2, 14
install/2, 14
start/1, 14
start_server/1, 14
stop/1, 15

start/1
reltool , 14

start_server/1
reltool , 14

stop/1
reltool , 15

17Reltool application

18 Reltool application

