
Kernel
Copyright © 1997-2015 Ericsson AB. All Rights Reserved.

Kernel 4.1.1
December 15, 2015

Copyright © 1997-2015 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 15, 2015

Ericsson AB. All Rights Reserved.: Kernel | 1

2 | Ericsson AB. All Rights Reserved.: Kernel

1 Reference Manual

The Kernel application has all the code necessary to run the Erlang runtime system itself: file servers and code servers
and so on.

kernel

Ericsson AB. All Rights Reserved.: Kernel | 3

kernel
Application

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. The Kernel application contains the following services:

• application controller, see application(3)

• code

• disk_log

• dist_ac, distributed application controller

• erl_boot_server

• erl_ddll

• error_logger

• error_logger_format_depth

• file

• global

• global_group

• heart

• inet

• net_kernel

• os

• pg2

• rpc

• seq_trace

• user

Error Logger Event Handlers
Two standard error logger event handlers are defined in the Kernel application. These are described in error_logger(3).

Configuration
The following configuration parameters are defined for the Kernel application. See app(4) for more information about
configuration parameters.

browser_cmd = string() | {M,F,A}

When pressing the Help button in a tool such as Debugger or TV, the help text (an HTML file File) is by default
displayed in a Netscape browser which is required to be up and running. This parameter can be used to change
the command for how to display the help text if another browser than Netscape is preferred, or another platform
than Unix or Windows is used.

If set to a string Command, the command "Command File" will be evaluated using os:cmd/1.

If set to a module-function-args tuple {M,F,A}, the call apply(M,F,[File|A]) will be evaluated.

distributed = [Distrib]

Specifies which applications are distributed and on which nodes they may execute. In this parameter:

• Distrib = {App,Nodes} | {App,Time,Nodes}

kernel

4 | Ericsson AB. All Rights Reserved.: Kernel

• App = atom()

• Time = integer()>0

• Nodes = [node() | {node(),...,node()}]

The parameter is described in application(3), function load/2.

dist_auto_connect = Value

Specifies when nodes will be automatically connected. If this parameter is not specified, a node is always
automatically connected, e.g when a message is to be sent to that node. Value is one of:

never
Connections are never automatically established, they must be explicitly connected. See net_kernel(3).

once
Connections will be established automatically, but only once per node. If a node goes down, it must
thereafter be explicitly connected. See net_kernel(3).

permissions = [Perm]

Specifies the default permission for applications when they are started. In this parameter:

• Perm = {ApplName,Bool}

• ApplName = atom()

• Bool = boolean()

Permissions are described in application(3), function permit/2.

error_logger = Value

Value is one of:

tty
Installs the standard event handler which prints error reports to stdio. This is the default option.

{file, FileName}
Installs the standard event handler which prints error reports to the file FileName, where FileName is
a string.

false

No standard event handler is installed, but the initial, primitive event handler is kept, printing raw event
messages to tty.

silent

Error logging is turned off.

error_logger_format_depth = Depth

This parameter can be used to limit the size of the formatted output from the error logger event handlers.

Note:
This configuration parameter was introduced in OTP 18.1. It is currently experimental. Based on user
feedback it may be changed or improved in future releases, for example to gain better control over how to
limit the size of the formatted output. We have no plans to entirely remove this new feature, unless it turns
out to be completely useless. In OTP 19, the default may be changed to limit the formatted output.

Depth is a positive integer that is the maximum depth to which terms are printed by the error logger event
handlers included in OTP. Specifically, the two event handlers defined by the Kernel application and the two

kernel

Ericsson AB. All Rights Reserved.: Kernel | 5

event handlers in the SASL application will use this configuration parameter. (If you have implemented you own
error handlers, this configuration parameter will have no effect on them.)

The way Depth is used, is that format strings string passed to the event handlers will be rewritten. The "~p" and
"~w" format controls will be replaced with "~P" and "~W", respectively, and Depth will be used as the depth
parameter. See io:format/2.

Note:
A reasonable starting value for Depth is 30. You should test crashing various processes in your application
and examine the logs from the crashes, and then either increase or decrease the value.

global_groups = [GroupTuple]

Defines global groups, see global_group(3).

• GroupTuple = {GroupName, [Node]} | {GroupName, PublishType, [Node]}

• GroupName = atom()

• PublishType = normal | hidden

• Node = node()

inet_default_connect_options = [{Opt, Val}]

Specifies default options for connect sockets, see inet(3).

inet_default_listen_options = [{Opt, Val}]

Specifies default options for listen (and accept) sockets, see inet(3).

{inet_dist_use_interface, ip_address()}

If the host of an Erlang node has several network interfaces, this parameter specifies which one to listen on. See
inet(3) for the type definition of ip_address().

{inet_dist_listen_min, First}

See below.

{inet_dist_listen_max, Last}

Define the First..Last port range for the listener socket of a distributed Erlang node.

{inet_dist_listen_options, Opts}

Define a list of extra socket options to be used when opening the listening socket for a distributed Erlang node.
See gen_tcp:listen/2

{inet_dist_connect_options, Opts}

Define a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_tcp:connect/4

inet_parse_error_log = silent

If this configuration parameter is set, no error_logger messages are generated when erroneous lines are
found and skipped in the various Inet configuration files.

inetrc = Filename

The name (string) of an Inet user configuration file. See ERTS User's Guide, Inet configuration.

kernel

6 | Ericsson AB. All Rights Reserved.: Kernel

net_setuptime = SetupTime

SetupTime must be a positive integer or floating point number, and will be interpreted as the maximally allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is 120; if higher values are given, 120 will be used. The default value if the variable is not given, or if the value
is incorrect (e.g. not a number), is 7 seconds.

Note that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net_ticktime = TickTime

Specifies the net_kernel tick time. TickTime is given in seconds. Once every TickTime/4 second, all
connected nodes are ticked (if anything else has been written to a node) and if nothing has been received from
another node within the last four (4) tick times that node is considered to be down. This ensures that nodes which
are not responding, for reasons such as hardware errors, are considered to be down.

The time T, in which a node that is not responding is detected, is calculated as: MinT < T < MaxT where:

MinT = TickTime - TickTime / 4
MaxT = TickTime + TickTime / 4

TickTime is by default 60 (seconds). Thus, 45 < T < 75 seconds.

Note: All communicating nodes should have the same TickTime value specified.

Note: Normally, a terminating node is detected immediately.

shutdown_timeout = integer() | infinity

Specifies the time application_controller will wait for an application to terminate during node
shutdown. If the timer expires, application_controller will brutally kill application_master of
the hanging application. If this parameter is undefined, it defaults to infinity.

sync_nodes_mandatory = [NodeName]

Specifies which other nodes must be alive in order for this node to start properly. If some node in the list does
not start within the specified time, this node will not start either. If this parameter is undefined, it defaults to [].

sync_nodes_optional = [NodeName]

Specifies which other nodes can be alive in order for this node to start properly. If some node in this list does not
start within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

sync_nodes_timeout = integer() | infinity

Specifies the amount of time (in milliseconds) this node will wait for the mandatory and optional nodes to start.
If this parameter is undefined, no node synchronization is performed. This option also makes sure that global
is synchronized.

start_dist_ac = true | false

Starts the dist_ac server if the parameter is true. This parameter should be set to true for systems that use
distributed applications.

The default value is false. If this parameter is undefined, the server is started if the parameter distributed
is set.

start_boot_server = true | false

Starts the boot_server if the parameter is true (see erl_boot_server(3)). This parameter should be set to
true in an embedded system which uses this service.

kernel

Ericsson AB. All Rights Reserved.: Kernel | 7

The default value is false.

boot_server_slaves = [SlaveIP]

If the start_boot_server configuration parameter is true, this parameter can be used to initialize
boot_server with a list of slave IP addresses. SlaveIP = string() | atom |
{integer(),integer(),integer(),integer()}

where 0 <= integer() <=255.

Examples of SlaveIP in atom, string and tuple form are:
'150.236.16.70', "150,236,16,70", {150,236,16,70}.

The default value is [].

start_disk_log = true | false

Starts the disk_log_server if the parameter is true (see disk_log(3)). This parameter should be set to true
in an embedded system which uses this service.

The default value is false.

start_pg2 = true | false

Starts the pg2 server (see pg2(3)) if the parameter is true. This parameter should be set to true in an embedded
system which uses this service.

The default value is false.

start_timer = true | false

Starts the timer_server if the parameter is true (see timer(3)). This parameter should be set to true in
an embedded system which uses this service.

The default value is false.

shutdown_func = {Mod, Func}

Where:

• Mod = atom()

• Func = atom()

Sets a function that application_controller calls when it starts to terminate. The function is called as:
Mod:Func(Reason), where Reason is the terminate reason for application_controller, and it must
return as soon as possible for application_controller to terminate properly.

See Also
app(4), application(3), code(3), disk_log(3), erl_boot_server(3), erl_ddll(3), error_logger(3), file(3), global(3),
global_group(3), heart(3), inet(3), net_kernel(3), os(3), pg2(3), rpc(3), seq_trace(3), timer(3), user(3)

application

8 | Ericsson AB. All Rights Reserved.: Kernel

application
Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped as
a unit, and which can be re-used in other systems as well. This module interfaces the application controller, a process
started at every Erlang runtime system, and contains functions for controlling applications (for example starting and
stopping applications), and functions to access information about applications (for example configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file called Application.app, where Application is the name of the application. Refer to app(4) for
more information about the application specification.

This module can also be viewed as a behaviour for an application implemented according to the OTP design principles
as a supervision tree. The definition of how to start and stop the tree should be located in an application callback
module exporting a pre-defined set of functions.

Refer to OTP Design Principles for more information about applications and behaviours.

Data Types
start_type() =
 normal |
 {takeover, Node :: node()} |
 {failover, Node :: node()}
restart_type() = permanent | transient | temporary
tuple_of(T)
A tuple where the elements are of type T.

Exports

get_all_env() -> Env
get_all_env(Application) -> Env
Types:

Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Application. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
function returns [].

get_all_key() -> [] | {ok, Keys}
get_all_key(Application) -> undefined | Keys
Types:

Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their values for Application. If the argument is omitted, it defaults
to the application of the calling process.

application

Ericsson AB. All Rights Reserved.: Kernel | 9

If the specified application is not loaded, the function returns undefined. If the process executing the call does not
belong to any application, the function returns [].

get_application() -> undefined | {ok, Application}
get_application(PidOrModule) -> undefined | {ok, Application}
Types:

PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pid or the module Module belongs. Providing no argument
is the same as calling get_application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returns undefined.

get_env(Par) -> undefined | {ok, Val}
get_env(Application, Par) -> undefined | {ok, Val}
Types:

Application = Par = atom()
Val = term()

Returns the value of the configuration parameter Par for Application. If the application argument is omitted, it
defaults to the application of the calling process.

If the specified application is not loaded, or the configuration parameter does not exist, or if the process executing the
call does not belong to any application, the function returns undefined.

get_env(Application, Par, Def) -> Val
Types:

Application = Par = atom()
Def = Val = term()

Works like get_env/2 but returns Def value when configuration parameter Par does not exist.

get_key(Key) -> undefined | {ok, Val}
get_key(Application, Key) -> undefined | {ok, Val}
Types:

Application = Key = atom()
Val = term()

Returns the value of the application specification key Key for Application. If the application argument is omitted,
it defaults to the application of the calling process.

If the specified application is not loaded, or the specification key does not exist, or if the process executing the call
does not belong to any application, the function returns undefined.

load(AppDescr) -> ok | {error, Reason}
load(AppDescr, Distributed) -> ok | {error, Reason}
Types:

application

10 | Ericsson AB. All Rights Reserved.: Kernel

AppDescr = Application | (AppSpec :: application_spec())
Application = atom()
Distributed =
 {Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of(node())]
Time = integer() >= 1
Reason = term()
application_spec() =
 {application,
 Application :: atom(),
 AppSpecKeys :: [application_opt()]}
application_opt() =
 {description, Description :: string()} |
 {vsn, Vsn :: string()} |
 {id, Id :: string()} |
 {modules, [Module :: module()]} |
 {registered, Names :: [Name :: atom()]} |
 {applications, [Application :: atom()]} |
 {included_applications, [Application :: atom()]} |
 {env, [{Par :: atom(), Val :: term()}]} |
 {start_phases,
 [{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
 {maxT, MaxT :: timeout()} |
 {maxP, MaxP :: integer() >= 1 | infinity} |
 {mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It will also load the application
specifications for any included applications. Note that the function does not load the actual Erlang object code.

The application can be given by its name Application. In this case the application controller will search the code
path for the application resource file Application.app and load the specification it contains.

The application specification can also be given directly as a tuple AppSpec. This tuple should have the format and
contents as described in app(4).

If Distributed == {Application,[Time,]Nodes}, the application will be distributed. The argument
overrides the value for the application in the Kernel configuration parameter distributed. Application must
be the name of the application (same as in the first argument). If a node crashes and Time has been specified, then the
application controller will wait for Time milliseconds before attempting to restart the application on another node. If
Time is not specified, it will default to 0 and the application will be restarted immediately.

Nodes is a list of node names where the application may run, in priority from left to right. Node names can be grouped
using tuples to indicate that they have the same priority. Example:

Nodes = [cp1@cave, {cp2@cave, cp3@cave}]

This means that the application should preferably be started at cp1@cave. If cp1@cave is down, the application
should be started at either cp2@cave or cp3@cave.

If Distributed == default, the value for the application in the Kernel configuration parameter distributed
will be used.

application

Ericsson AB. All Rights Reserved.: Kernel | 11

loaded_applications() -> [{Application, Description, Vsn}]
Types:

Application = atom()
Description = Vsn = string()

Returns a list with information about the applications which have been loaded using load/1,2, also included
applications. Application is the application name. Description and Vsn are the values of its description
and vsn application specification keys, respectively.

permit(Application, Permission) -> ok | {error, Reason}
Types:

Application = atom()
Permission = boolean()
Reason = term()

Changes the permission for Application to run at the current node. The application must have been loaded using
load/1,2 for the function to have effect.

If the permission of a loaded, but not started, application is set to false, start will return ok but the application
will not be started until the permission is set to true.

If the permission of a running application is set to false, the application will be stopped. If the permission later is
set to true, it will be restarted.

If the application is distributed, setting the permission to false means that the application will be started at, or moved
to, another node according to how its distribution is configured (see load/2 above).

The function does not return until the application is started, stopped or successfully moved to another node. However,
in some cases where permission is set to true the function may return ok even though the application itself has not
started. This is true when an application cannot start because it has dependencies to other applications which have not
yet been started. When they have been started, Application will be started as well.

By default, all applications are loaded with permission true on all nodes. The permission is configurable by using
the Kernel configuration parameter permissions.

set_env(Application, Par, Val) -> ok
set_env(Application, Par, Val, Opts) -> ok
Types:

Application = Par = atom()
Val = term()
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Sets the value of the configuration parameter Par for Application.

set_env/4 uses the standard gen_server timeout value (5000 ms). The timeout option can be provided if
another timeout value is useful, for example, in situations where the application controller is heavily loaded.

If set_env/4 is called before the application is loaded, the application environment values specified in the
Application.app file will override the ones previously set. This is also true for application reloads.

The persistent option can be set to true when there is a need to guarantee parameters set with set_env/4
will not be overridden by the ones defined in the application resource file on load. This means persistent values will
stick after the application is loaded and also on application reload.

application

12 | Ericsson AB. All Rights Reserved.: Kernel

Warning:
Use this function only if you know what you are doing, that is, on your own applications. It is very application
and configuration parameter dependent when and how often the value is read by the application, and careless use
of this function may put the application in a weird, inconsistent, and malfunctioning state.

ensure_started(Application) -> ok | {error, Reason}
ensure_started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Reason = term()

Equivalent to application:start/1,2 except it returns ok for already started applications.

ensure_all_started(Application) -> {ok, Started} | {error, Reason}
ensure_all_started(Application, Type) ->
 {ok, Started} | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Started = [atom()]
Reason = term()

Equivalent to calling application:start/1,2 repeatedly on all dependencies that have not yet been started
for an application. The function returns {ok, AppNames} for a successful start or for an already started
application (which are however omitted from the AppNames list), and reports {error, {AppName,Reason}}
for errors, where Reason is any possible reason returned by application:start/1,2 when starting a specific
dependency. In case of an error, the applications that were started by the function are stopped to bring the set of running
applications back to its initial state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Reason = term()

Starts Application. If it is not loaded, the application controller will first load it using load/1. It will make
sure any included applications are loaded, but will not start them. That is assumed to be taken care of in the code
for Application.

The application controller checks the value of the application specification key applications, to ensure that all
applications that should be started before this application are running. If not, {error,{not_started,App}} is
returned, where App is the name of the missing application.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function Module:start/2 as defined by the application specification key mod.

application

Ericsson AB. All Rights Reserved.: Kernel | 13

The Type argument specifies the type of the application. If omitted, it defaults to temporary.

• If a permanent application terminates, all other applications and the entire Erlang node are also terminated.

• If a transient application terminates with Reason == normal, this is reported but no other applications are
terminated. If a transient application terminates abnormally, all other applications and the entire Erlang node are
also terminated.

• If a temporary application terminates, this is reported but no other applications are terminated.

Note that it is always possible to stop an application explicitly by calling stop/1. Regardless of the type of the
application, no other applications will be affected.

Note also that the transient type is of little practical use, since when a supervision tree terminates, the reason is set
to shutdown, not normal.

start_type() -> StartType | undefined | local
Types:

StartType = start_type()
This function is intended to be called by a process belonging to an application, when the application is being started,
to determine the start type which is either StartType or local.

See Module:start/2 for a description of StartType.

local is returned if only parts of the application is being restarted (by a supervisor), or if the function is called
outside a startup.

If the process executing the call does not belong to any application, the function returns undefined.

stop(Application) -> ok | {error, Reason}
Types:

Application = atom()
Reason = term()

Stops Application. The application master calls Module:prep_stop/1, if such a function is defined, and then
tells the top supervisor of the application to shutdown (see supervisor(3)). This means that the entire supervision
tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calls Module:stop/1. Module is the callback module as defined by the application specification key mod.

Last, the application master itself terminates. Note that all processes with the application master as group leader, i.e.
processes spawned from a process belonging to the application, thus are terminated as well.

When stopped, the application is still loaded.

In order to stop a distributed application, stop/1 has to be called on all nodes where it can execute (that is, on all
nodes where it has been started). The call to stop/1 on the node where the application currently executes will stop
its execution. The application will not be moved between nodes due to stop/1 being called on the node where the
application currently executes before stop/1 is called on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Reason = term()

Performs a takeover of the distributed application Application, which executes at another node Node. At
the current node, the application is restarted by calling Module:start({takeover,Node},StartArgs).

application

14 | Ericsson AB. All Rights Reserved.: Kernel

Module and StartArgs are retrieved from the loaded application specification. The application at the
other node is not stopped until the startup is completed, i.e. when Module:start/2 and any calls to
Module:start_phase/3 have returned.

Thus two instances of the application will run simultaneously during the takeover, which makes it possible to transfer
data from the old to the new instance. If this is not acceptable behavior, parts of the old instance may be shut down when
the new instance is started. Note that the application may not be stopped entirely however, at least the top supervisor
must remain alive.

See start/1,2 for a description of Type.

unload(Application) -> ok | {error, Reason}
Types:

Application = atom()
Reason = term()

Unloads the application specification for Application from the application controller. It will also unload the
application specifications for any included applications. Note that the function does not purge the actual Erlang object
code.

unset_env(Application, Par) -> ok
unset_env(Application, Par, Opts) -> ok
Types:

Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Removes the configuration parameter Par and its value for Application.

unset_env/2 uses the standard gen_server timeout value (5000 ms). The timeout option can be provided if
another timeout value is useful, for example, in situations where the application controller is heavily loaded.

unset_env/3 also allows the persistent option to be passed (see set_env/4 above).

Warning:
Use this function only if you know what you are doing, that is, on your own applications. It is very application
and configuration parameter dependent when and how often the value is read by the application, and careless use
of this function may put the application in a weird, inconsistent, and malfunctioning state.

which_applications() -> [{Application, Description, Vsn}]
which_applications(Timeout) -> [{Application, Description, Vsn}]
Types:

Timeout = timeout()
Application = atom()
Description = Vsn = string()

Returns a list with information about the applications which are currently running. Application is the application
name. Description and Vsn are the values of its description and vsn application specification keys,
respectively.

application

Ericsson AB. All Rights Reserved.: Kernel | 15

which_applications/0 uses the standard gen_server timeout value (5000 ms). A Timeout argument can
be provided if another timeout value is useful, for example, in situations where the application controller is heavily
loaded.

CALLBACK MODULE
The following functions should be exported from an application callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}
Types:

StartType = start_type()

StartArgs = term()

Pid = pid()

State = term()

This function is called whenever an application is started using application:start/1,2, and should start the
processes of the application. If the application is structured according to the OTP design principles as a supervision
tree, this means starting the top supervisor of the tree.

StartType defines the type of start:

• normal if it's a normal startup.

• normal also if the application is distributed and started at the current node due to a failover from another node,
and the application specification key start_phases == undefined.

• {takeover,Node} if the application is distributed and started at the current node due to a takeover from
Node, either because application:takeover/2 has been called or because the current node has higher
priority than Node.

• {failover,Node} if the application is distributed and started at the current node due to a failover from
Node, and the application specification key start_phases /= undefined.

StartArgs is the StartArgs argument defined by the application specification key mod.

The function should return {ok,Pid} or {ok,Pid,State} where Pid is the pid of the top supervisor and
State is any term. If omitted, State defaults to []. If later the application is stopped, State is passed to
Module:prep_stop/1.

Module:start_phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types:

Phase = atom()

StartType = start_type()

PhaseArgs = term()

Pid = pid()

State = state()

This function is used to start an application with included applications, when there is a need for synchronization
between processes in the different applications during startup.

The start phases is defined by the application specification key start_phases == [{Phase,PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

application

16 | Ericsson AB. All Rights Reserved.: Kernel

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

See Module:start/2 for a description of StartType.

Module:prep_stop(State) -> NewState
Types:

State = NewState = term()

This function is called when an application is about to be stopped, before shutting down the processes of the application.

State is the state returned from Module:start/2, or [] if no state was returned. NewState is any term and
will be passed to Module:stop/1.

The function is optional. If it is not defined, the processes will be terminated and then Module:stop(State) is
called.

Module:stop(State)
Types:

State = term()

This function is called whenever an application has stopped. It is intended to be the opposite of Module:start/2
and should do any necessary cleaning up. The return value is ignored.

State is the return value of Module:prep_stop/1, if such a function exists. Otherwise State is taken from
the return value of Module:start/2.

Module:config_change(Changed, New, Removed) -> ok
Types:

Changed = [{Par,Val}]

New = [{Par,Val}]

Removed = [Par]

 Par = atom()

 Val = term()

This function is called by an application after a code replacement, if there are any changes to the configuration
parameters.

Changed is a list of parameter-value tuples with all configuration parameters with changed values, New is a list of
parameter-value tuples with all configuration parameters that have been added, and Removed is a list of all parameters
that have been removed.

SEE ALSO
OTP Design Principles, kernel(6), app(4)

auth

Ericsson AB. All Rights Reserved.: Kernel | 17

auth
Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types
cookie() = atom()

Exports

is_auth(Node) -> yes | no
Types:

Node = node()
Returns yes if communication with Node is authorized. Note that a connection to Node will be established in this
case. Returns no if Node does not exist or communication is not authorized (it has another cookie than auth thinks
it has).

Use net_adm:ping(Node) instead.

cookie() -> Cookie
Types:

Cookie = cookie()
Use erlang:get_cookie() instead.

cookie(TheCookie) -> true
Types:

TheCookie = Cookie | [Cookie]
The cookie may also be given as a list with a single atom element.

Cookie = cookie()
Use erlang:set_cookie(node(), Cookie) instead.

node_cookie([Node, Cookie]) -> yes | no
Types:

Node = node()

Cookie = cookie()

Equivalent to node_cookie(Node, Cookie).

node_cookie(Node, Cookie) -> yes | no
Types:

auth

18 | Ericsson AB. All Rights Reserved.: Kernel

Node = node()
Cookie = cookie()

Sets the magic cookie of Node to Cookie, and verifies the status of the authorization. Equivalent to calling
erlang:set_cookie(Node, Cookie), followed by auth:is_auth(Node).

code

Ericsson AB. All Rights Reserved.: Kernel | 19

code
Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command
line flag -mode.

% erl -mode interactive

Default mode is interactive.

• In embedded mode, all code is loaded during system start-up according to the boot script. (Code can also be loaded
later by explicitly ordering the code server to do so).

• In interactive mode, only some code is loaded during system startup-up, basically the modules needed by the
runtime system itself. Other code is dynamically loaded when first referenced. When a call to a function in a
certain module is made, and the module is not loaded, the code server searches for and tries to load the module.

To prevent accidentally reloading modules affecting the Erlang runtime system itself, the kernel, stdlib and
compiler directories are considered sticky. This means that the system issues a warning and rejects the request if
a user tries to reload a module residing in any of them. The feature can be disabled by using the command line flag
-nostick.

Code Path
In interactive mode, the code server maintains a search path -- usually called the code path -- consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under the library
directory $OTPROOT/lib, where $OTPROOT is the installation directory of Erlang/OTP, code:root_dir().
Directories can be named Name[-Vsn] and the code server, by default, chooses the directory with the highest version
number among those which have the same Name. The -Vsn suffix is optional. If an ebin directory exists under
Name[-Vsn], it is this directory which is added to the code path.

The environment variable ERL_LIBS (defined in the operating system) can be used to define additional library
directories that will be handled in the same way as the standard OTP library directory described above, except that
directories that do not have an ebin directory will be ignored.

All application directories found in the additional directories will appear before the standard OTP applications, except
for the Kernel and STDLIB applications, which will be placed before any additional applications. In other words,
modules found in any of the additional library directories will override modules with the same name in OTP, except
for modules in Kernel and STDLIB.

The environment variable ERL_LIBS (if defined) should contain a colon-separated (for Unix-like systems) or
semicolon-separated (for Windows) list of additional libraries.

Example: On an Unix-like system, ERL_LIBS could be set to /usr/local/jungerl:/home/some_user/
my_erlang_lib. (On Windows, use semi-colon as separator.)

Code Path Cache
The code server incorporates a code path cache. The cache functionality is disabled by default. To activate it, start the
emulator with the command line flag -code_path_cache or call code:rehash(). When the cache is created

code

20 | Ericsson AB. All Rights Reserved.: Kernel

(or updated), the code server searches for modules in the code path directories. This may take some time if the the
code path is long. After the cache creation, the time for loading modules in a large system (one with a large directory
structure) is significantly reduced compared to having the cache disabled. The code server is able to look up the location
of a module from the cache in constant time instead of having to search through the code path directories.

Application resource files (.app files) are also stored in the code path cache. This feature is used by the application
controller (see application(3)) to load applications efficiently in large systems.

Note that when the code path cache is created (or updated), any relative directory names in the code path are converted
to absolute.

Loading of Code From Archive Files

Warning:
The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is
ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.
The function lib_dir/2 and the flag -code_path_choice are also experimental.

In the current implementation, Erlang archives are ZIP files with .ez extension. Erlang archives may also be enclosed
in escript files whose file extension is arbitrary.

Erlang archive files may contain entire Erlang applications or parts of applications. The structure in an archive file is the
same as the directory structure for an application. If you for example would create an archive of mnesia-4.4.7, the
archive file must be named mnesia-4.4.7.ez and it must contain a top directory with the name mnesia-4.4.7.
If the version part of the name is omitted, it must also be omitted in the archive. That is, a mnesia.ez archive must
contain a mnesia top directory.

An archive file for an application may for example be created like this:

 zip:create("mnesia-4.4.7.ez",
 ["mnesia-4.4.7"],
 [{cwd, code:lib_dir()},
 {compress, all},
 {uncompress,[".beam",".app"]}]).

Any file in the archive may be compressed, but in order to speed up the access of frequently read files, it may be a
good idea to store beam and app files uncompressed in the archive.

Normally the top directory of an application is located either in the library directory $OTPROOT/lib or in a directory
referred to by the environment variable ERL_LIBS. At startup when the initial code path is computed, the code server
will also look for archive files in these directories and possibly add ebin directories in archives to the code path. The
code path will then contain paths to directories that looks like $OTPROOT/lib/mnesia.ez/mnesia/ebin or
$OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin.

The code server uses the module erl_prim_loader (possibly via the erl_boot_server) to read code
files from archives. But the functions in erl_prim_loader may also be used by other applications to
read files from archives. For example, the call erl_prim_loader:list_dir("/otp/root/lib/
mnesia-4.4.7.ez/mnesia-4.4.7/examples/bench)" would list the contents of a directory inside an
archive. See erl_prim_loader(3).

An application archive file and a regular application directory may coexist. This may be useful when there is a need
of having parts of the application as regular files. A typical case is the priv directory which must reside as a regular
directory in order to be able to dynamically link in drivers and start port programs. For other applications that do not

code

Ericsson AB. All Rights Reserved.: Kernel | 21

have this need, the priv directory may reside in the archive and the files under the priv directory may be read via
the erl_prim_loader.

At the time point when a directory is added to the code path as well as when the entire code path is (re)set,
the code server will decide which subdirectories in an application that shall be read from the archive and which
that shall be read as regular files. If directories are added or removed afterwards, the file access may fail if
the code path is not updated (possibly to the same path as before in order to trigger the directory resolution
update). For each directory on the second level (ebin, priv, src etc.) in the application archive, the code server will
firstly choose the regular directory if it exists and secondly from the archive. The function code:lib_dir/2
returns the path to the subdirectory. For example code:lib_dir(megaco,ebin) may return /otp/root/
lib/megaco-3.9.1.1.ez/megaco-3.9.1.1/ebin while code:lib_dir(megaco,priv) may return
/otp/root/lib/megaco-3.9.1.1/priv.

When an escript file contains an archive, there are neither restrictions on the name of the escript nor on how
many applications that may be stored in the embedded archive. Single beam files may also reside on the top level in
the archive. At startup, both the top directory in the embedded archive as well as all (second level) ebin directories
in the embedded archive are added to the code path. See escript(1)

When the choice of directories in the code path is strict, the directory that ends up in the code path will be
exactly the stated one. This means that if for example the directory $OTPROOT/lib/mnesia-4.4.7/ebin is
explicitly added to the code path, the code server will not load files from $OTPROOT/lib/mnesia-4.4.7.ez/
mnesia-4.4.7/ebin and vice versa.

This behavior can be controlled via the command line flag -code_path_choice Choice. If the flag is set to
relaxed, the code server will instead choose a suitable directory depending on the actual file structure. If there exists
a regular application ebin directory, it will be chosen. But if it does not exist, the ebin directory in the archive is chosen
if it exists. If neither of them exists the original directory will be chosen.

The command line flag -code_path_choice Choice does also affect how init interprets the boot script.
The interpretation of the explicit code paths in the boot script may be strict or relaxed. It is particular
useful to set the flag to relaxed when you want to elaborate with code loading from archives without editing the
boot script. The default is relaxed. See init(3)

Current and Old Code
The code of a module can exists in two variants in a system: current code and old code. When a module is loaded
into the system for the first time, the code of the module becomes 'current' and the global export table is updated with
references to all functions exported from the module.

If then a new instance of the module is loaded (perhaps because of the correction of an error), then the code of the
previous instance becomes 'old', and all export entries referring to the previous instance are removed. After that the
new instance is loaded as if it was loaded for the first time, as described above, and becomes 'current'.

Both old and current code for a module are valid, and may even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence there is no way to make a global call to an exported function in
old code, but old code may still be evaluated because of processes lingering in it.

If a third instance of the module is loaded, the code server will remove (purge) the old code and any processes lingering
in it will be terminated. Then the third instance becomes 'current' and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, refer
to Erlang Reference Manual.

Argument Types and Invalid Arguments
Generally, module and application names are atoms, while file and directory names are strings. For backward
compatibility reasons, some functions accept both strings and atoms, but a future release will probably only allow the
arguments that are documented.

code

22 | Ericsson AB. All Rights Reserved.: Kernel

From the R12B release, functions in this module will generally fail with an exception if they are passed an incorrect
type (for instance, an integer or a tuple where an atom was expected). An error tuple will be returned if the type
of the argument was correct, but there was some other error (for instance, a non-existing directory was given to
set_path/1).

Data Types
load_ret() =
 {error, What :: load_error_rsn()} |
 {module, Module :: module()}
load_error_rsn() =
 badfile |
 native_code |
 nofile |
 not_purged |
 on_load |
 sticky_directory

Exports

set_path(Path) -> true | {error, What}
Types:

Path = [Dir :: file:filename()]
What = bad_directory | bad_path

Sets the code path to the list of directories Path.

Returns true if successful, or {error, bad_directory} if any Dir is not the name of a directory, or {error,
bad_path} if the argument is invalid.

get_path() -> Path
Types:

Path = [Dir :: file:filename()]
Returns the code path

add_path(Dir) -> add_path_ret()
add_pathz(Dir) -> add_path_ret()
Types:

Dir = file:filename()
add_path_ret() = true | {error, bad_directory}

Adds Dir to the code path. The directory is added as the last directory in the new path. If Dir already exists in the
path, it is not added.

Returns true if successful, or {error, bad_directory} if Dir is not the name of a directory.

add_patha(Dir) -> add_path_ret()
Types:

code

Ericsson AB. All Rights Reserved.: Kernel | 23

Dir = file:filename()
add_path_ret() = true | {error, bad_directory}

Adds Dir to the beginning of the code path. If Dir already exists, it is removed from the old position in the code path.

Returns true if successful, or {error, bad_directory} if Dir is not the name of a directory.

add_paths(Dirs) -> ok
add_pathsz(Dirs) -> ok
Types:

Dirs = [Dir :: file:filename()]
Adds the directories in Dirs to the end of the code path. If a Dir already exists, it is not added. This function always
returns ok, regardless of the validity of each individual Dir.

add_pathsa(Dirs) -> ok
Types:

Dirs = [Dir :: file:filename()]
Adds the directories in Dirs to the beginning of the code path. If a Dir already exists, it is removed from the old
position in the code path. This function always returns ok, regardless of the validity of each individual Dir.

del_path(NameOrDir) -> boolean() | {error, What}
Types:

NameOrDir = Name | Dir
Name = atom()
Dir = file:filename()
What = bad_name

Deletes a directory from the code path. The argument can be an atom Name, in which case the directory with the
name .../Name[-Vsn][/ebin] is deleted from the code path. It is also possible to give the complete directory
name Dir as argument.

Returns true if successful, or false if the directory is not found, or {error, bad_name} if the argument is
invalid.

replace_path(Name, Dir) -> true | {error, What}
Types:

Name = atom()
Dir = file:filename()
What = bad_directory | bad_name | {badarg, term()}

This function replaces an old occurrence of a directory named .../Name[-Vsn][/ebin], in the code path, with
Dir. If Name does not exist, it adds the new directory Dir last in the code path. The new directory must also be named
.../Name[-Vsn][/ebin]. This function should be used if a new version of the directory (library) is added to
a running system.

Returns true if successful, or {error, bad_name} if Name is not found, or {error, bad_directory} if
Dir does not exist, or {error, {badarg, [Name, Dir]}} if Name or Dir is invalid.

load_file(Module) -> load_ret()
Types:

code

24 | Ericsson AB. All Rights Reserved.: Kernel

Module = module()
load_ret() =
 {error, What :: load_error_rsn()} |
 {module, Module :: module()}

Tries to load the Erlang module Module, using the code path. It looks for the object code file with an extension that
corresponds to the Erlang machine used, for example Module.beam. The loading fails if the module name found in
the object code differs from the name Module. load_binary/3 must be used to load object code with a module name
that is different from the file name.

Returns {module, Module} if successful, or {error, nofile} if no object code is found, or {error,
sticky_directory} if the object code resides in a sticky directory. Also if the loading fails, an error tuple is
returned. See erlang:load_module/2 for possible values of What.

load_abs(Filename) -> load_ret()
Types:

Filename = file:filename()
load_ret() =
 {error, What :: load_error_rsn()} |
 {module, Module :: module()}
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
loaded_ret_atoms() = cover_compiled | preloaded

Does the same as load_file(Module), but Filename is either an absolute file name, or a relative file name.
The code path is not searched. It returns a value in the same way as load_file/1. Note that Filename should not
contain the extension (for example ".beam"); load_abs/1 adds the correct extension itself.

ensure_loaded(Module) -> {module, Module} | {error, What}
Types:

Module = module()
What = embedded | badfile | native_code | nofile | on_load

Tries to to load a module in the same way as load_file/1, unless the module is already loaded. In embedded mode,
however, it does not load a module which is not already loaded, but returns {error, embedded} instead.

load_binary(Module, Filename, Binary) ->
 {module, Module} | {error, What}
Types:

Module = module()
Filename = loaded_filename()
Binary = binary()
What = badarg | load_error_rsn()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
loaded_ret_atoms() = cover_compiled | preloaded

This function can be used to load object code on remote Erlang nodes. The argument Binary must contain object
code for Module. Filename is only used by the code server to keep a record of from which file the object code for
Module comes. Accordingly, Filename is not opened and read by the code server.

code

Ericsson AB. All Rights Reserved.: Kernel | 25

Returns {module, Module} if successful, or {error, sticky_directory} if the object code resides in a
sticky directory, or {error, badarg} if any argument is invalid. Also if the loading fails, an error tuple is returned.
See erlang:load_module/2 for possible values of What.

delete(Module) -> boolean()
Types:

Module = module()
Removes the current code for Module, that is, the current code for Module is made old. This means that processes
can continue to execute the code in the module, but that no external function calls can be made to it.

Returns true if successful, or false if there is old code for Module which must be purged first, or if Module
is not a (loaded) module.

purge(Module) -> boolean()
Types:

Module = module()
Purges the code for Module, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Returns true if successful and any process needed to be killed, otherwise false.

soft_purge(Module) -> boolean()
Types:

Module = module()
Purges the code for Module, that is, removes code marked as old, but only if no processes linger in it.

Returns false if the module could not be purged due to processes lingering in old code, otherwise true.

is_loaded(Module) -> {file, Loaded} | false
Types:

Module = module()
Loaded = loaded_filename()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
Filename is an absolute filename

loaded_ret_atoms() = cover_compiled | preloaded
Checks if Module is loaded. If it is, {file, Loaded} is returned, otherwise false.

Normally, Loaded is the absolute file name Filename from which the code was obtained. If the
module is preloaded (see script(4)), Loaded==preloaded. If the module is Cover compiled (see cover(3)),
Loaded==cover_compiled.

all_loaded() -> [{Module, Loaded}]
Types:

Module = module()
Loaded = loaded_filename()
loaded_filename() =

code

26 | Ericsson AB. All Rights Reserved.: Kernel

 (Filename :: file:filename()) | loaded_ret_atoms()
Filename is an absolute filename

loaded_ret_atoms() = cover_compiled | preloaded
Returns a list of tuples {Module, Loaded} for all loaded modules. Loaded is normally the absolute file name,
as described for is_loaded/1.

which(Module) -> Which
Types:

Module = module()
Which = file:filename() | loaded_ret_atoms() | non_existing
loaded_ret_atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file which contains object code for
Module and returns the absolute file name. If the module is loaded, it returns the name of the file which contained
the loaded object code. If the module is pre-loaded, preloaded is returned. If the module is Cover compiled,
cover_compiled is returned. non_existing is returned if the module cannot be found.

get_object_code(Module) -> {Module, Binary, Filename} | error
Types:

Module = module()
Binary = binary()
Filename = file:filename()

Searches the code path for the object code of the module Module. It returns {Module, Binary, Filename}
if successful, and error if not. Binary is a binary data object which contains the object code for the module. This
can be useful if code is to be loaded on a remote node in a distributed system. For example, loading module Module
on a node Node is done as follows:

...
{_Module, Binary, Filename} = code:get_object_code(Module),
rpc:call(Node, code, load_binary, [Module, Filename, Binary]),
...

root_dir() -> file:filename()
Returns the root directory of Erlang/OTP, which is the directory where it is installed.

> code:root_dir().
"/usr/local/otp"

lib_dir() -> file:filename()
Returns the library directory, $OTPROOT/lib, where $OTPROOT is the root directory of Erlang/OTP.

> code:lib_dir().
"/usr/local/otp/lib"

code

Ericsson AB. All Rights Reserved.: Kernel | 27

lib_dir(Name) -> file:filename() | {error, bad_name}
Types:

Name = atom()
This function is mainly intended for finding out the path for the "library directory", the top directory, for an application
Name located under $OTPROOT/lib or on a directory referred to via the ERL_LIBS environment variable.

If there is a regular directory called Name or Name-Vsn in the code path with an ebin subdirectory,
the path to this directory is returned (not the ebin directory). If the directory refers to a directory in an
archive, the archive name is stripped away before the path is returned. For example, if the directory /usr/
local/otp/lib/mnesia-4.2.2.ez/mnesia-4.2.2/ebin is in the path, /usr/local/otp/lib/
mnesia-4.2.2/ebin will be returned. This means that the library directory for an application is the same,
regardless of whether the application resides in an archive or not.

> code:lib_dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns {error, bad_name} if Name is not the name of an application under $OTPROOT/lib or on a directory
referred to via the ERL_LIBS environment variable. Fails with an exception if Name has the wrong type.

Warning:
For backward compatibility, Name is also allowed to be a string. That will probably change in a future release.

lib_dir(Name, SubDir) -> file:filename() | {error, bad_name}
Types:

Name = SubDir = atom()

Returns the path to a subdirectory directly under the top directory of an application. Normally the subdirectories resides
under the top directory for the application, but when applications at least partly resides in an archive the situation is
different. Some of the subdirectories may reside as regular directories while other resides in an archive file. It is not
checked if this directory really exists.

> code:lib_dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Name or SubDir has the wrong type.

compiler_dir() -> file:filename()
Returns the compiler library directory. Equivalent to code:lib_dir(compiler).

priv_dir(Name) -> file:filename() | {error, bad_name}
Types:

Name = atom()
Returns the path to the priv directory in an application. Equivalent to code:lib_dir(Name, priv)..

code

28 | Ericsson AB. All Rights Reserved.: Kernel

Warning:
For backward compatibility, Name is also allowed to be a string. That will probably change in a future release.

objfile_extension() -> nonempty_string()
Returns the object code file extension that corresponds to the Erlang machine used, namely ".beam".

stick_dir(Dir) -> ok | error
Types:

Dir = file:filename()
This function marks Dir as sticky.

Returns ok if successful or error if not.

unstick_dir(Dir) -> ok | error
Types:

Dir = file:filename()
This function unsticks a directory which has been marked as sticky.

Returns ok if successful or error if not.

is_sticky(Module) -> boolean()
Types:

Module = module()
This function returns true if Module is the name of a module that has been loaded from a sticky directory (or in
other words: an attempt to reload the module will fail), or false if Module is not a loaded module or is not sticky.

rehash() -> ok
This function creates or rehashes the code path cache.

where_is_file(Filename) -> non_existing | Absname
Types:

Filename = Absname = file:filename()

Searches the code path for Filename, a file of arbitrary type. If found, the full name is returned. non_existing is
returned if the file cannot be found. The function can be useful, for example, to locate application resource files. If the
code path cache is used, the code server will efficiently read the full name from the cache, provided that Filename
is an object code file or an .app file.

clash() -> ok
Searches the entire code space for module names with identical names and writes a report to stdout.

is_module_native(Module) -> true | false | undefined
Types:

code

Ericsson AB. All Rights Reserved.: Kernel | 29

Module = module()
This function returns true if Module is name of a loaded module that has native code loaded, and false if Module
is loaded but does not have native. If Module is not loaded, this function returns undefined.

get_mode() -> embedded | interactive
This function returns an atom describing the code_server's mode: interactive or embedded.

This information is useful when an external entity (for example, an IDE) provides additional code for a running node.
If in interactive mode, it only needs to add to the code path. If in embedded mode, the code has to be loaded with
load_binary/3

disk_log

30 | Ericsson AB. All Rights Reserved.: Kernel

disk_log
Erlang module

disk_log is a disk based term logger which makes it possible to efficiently log items on files. Two types of logs
are supported, halt logs and wrap logs. A halt log appends items to a single file, the size of which may or may not be
limited by the disk log module, whereas a wrap log utilizes a sequence of wrap log files of limited size. As a wrap log
file has been filled up, further items are logged onto to the next file in the sequence, starting all over with the first file
when the last file has been filled up. For the sake of efficiency, items are always written to files as binaries.

Two formats of the log files are supported, the internal format and the external format. The internal format supports
automatic repair of log files that have not been properly closed, and makes it possible to efficiently read logged items
in chunks using a set of functions defined in this module. In fact, this is the only way to read internally formatted
logs. The external format leaves it up to the user to read the logged deep byte lists. The disk log module cannot repair
externally formatted logs. An item logged to an internally formatted log must not occupy more than 4 GB of disk
space (the size must fit in 4 bytes).

For each open disk log there is one process that handles requests made to the disk log; the disk log process is created
when open/1 is called, provided there exists no process handling the disk log. A process that opens a disk log can
either be an owner or an anonymous user of the disk log. Each owner is linked to the disk log process, and the disk
log is closed by the owner should the owner terminate. Owners can subscribe to notifications, messages of the form
{disk_log, Node, Log, Info} that are sent from the disk log process when certain events occur, see the
commands below and in particular the open/1 option notify. There can be several owners of a log, but a process
cannot own a log more than once. One and the same process may, however, open the log as a user more than once.
For a disk log process to properly close its file and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously; the users are counted, and there must not be any users
left when the disk log process terminates.

Items can be logged synchronously by using the functions log/2, blog/2, log_terms/2 and blog_terms/2.
For each of these functions, the caller is put on hold until the items have been logged (but not necessarily written,
use sync/1 to ensure that). By adding an a to each of the mentioned function names we get functions that log items
asynchronously. Asynchronous functions do not wait for the disk log process to actually write the items to the file,
but return the control to the caller more or less immediately.

When using the internal format for logs, the functions log/2, log_terms/2, alog/2, and alog_terms/2
should be used. These functions log one or more Erlang terms. By prefixing each of the functions with a b (for "binary")
we get the corresponding blog functions for the external format. These functions log one or more deep lists of bytes
or, alternatively, binaries of deep lists of bytes. For example, to log the string "hello" in ASCII format, we can
use disk_log:blog(Log, "hello"), or disk_log:blog(Log, list_to_binary("hello")). The
two alternatives are equally efficient. The blog functions can be used for internally formatted logs as well, but in this
case they must be called with binaries constructed with calls to term_to_binary/1. There is no check to ensure
this, it is entirely the responsibility of the caller. If these functions are called with binaries that do not correspond to
Erlang terms, the chunk/2,3 and automatic repair functions will fail. The corresponding terms (not the binaries)
will be returned when chunk/2,3 is called.

A collection of open disk logs with the same name running on different nodes is said to be a a distributed disk log
if requests made to any one of the logs are automatically made to the other logs as well. The members of such a
collection will be called individual distributed disk logs, or just distributed disk logs if there is no risk of confusion.
There is no order between the members of such a collection. For instance, logged terms are not necessarily written
onto the node where the request was made before written onto the other nodes. One could note here that there are a
few functions that do not make requests to all members of distributed disk logs, namely info, chunk, bchunk,
chunk_step and lclose. An open disk log that is not a distributed disk log is said to be a local disk log. A local
disk log is accessible only from the node where the disk log process runs, whereas a distributed disk log is accessible
from all nodes in the Erlang system, with exception for those nodes where a local disk log with the same name as the

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 31

distributed disk log exists. All processes on nodes that have access to a local or distributed disk log can log items or
otherwise change, inspect or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items; there is no attempt made to
synchronize the contents of the files. However, as long as at least one of the involved nodes is alive at each time, all
items will be logged. When logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If all nodes are down, the disk log functions reply with a nonode error.

Note:
In some applications it may not be acceptable that replies from individual logs are ignored. An alternative in
such situations is to use several local disk logs instead of one distributed disk log, and implement the distribution
without use of the disk log module.

Errors are reported differently for asynchronous log attempts and other uses of the disk log module. When used
synchronously the disk log module replies with an error message, but when called asynchronously, the disk log
module does not know where to send the error message. Instead owners subscribing to notifications will receive an
error_status message.

The disk log module itself does not report errors to the error_logger module; it is up to the caller to decide
whether the error logger should be employed or not. The function format_error/1 can be used to produce readable
messages from error replies. Information events are however sent to the error logger in two situations, namely when
a log is repaired, or when a file is missing while reading chunks.

The error message no_such_log means that the given disk log is not currently open. Nothing is said about whether
the disk log files exist or not.

Note:
If an attempt to reopen or truncate a log fails (see reopen and truncate) the disk log process immediately
terminates. Before the process terminates links to to owners and blocking processes (see block) are removed.
The effect is that the links work in one direction only; any process using a disk log has to check for the error
message no_such_log if some other process might truncate or reopen the log simultaneously.

Data Types
log() = term()
dlog_size() =
 infinity |
 integer() >= 1 |
 {MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
dlog_format() = external | internal
dlog_head_opt() = none | term() | binary() | [dlog_byte()]
dlog_byte() = [dlog_byte()] | byte()
dlog_mode() = read_only | read_write
dlog_type() = halt | wrap
continuation()
Chunk continuation returned by chunk/2,3, bchunk/2,3, or chunk_step/3.

disk_log

32 | Ericsson AB. All Rights Reserved.: Kernel

bytes() = binary() | [byte()]
invalid_header() = term()
file_error() = term()

Exports

accessible_logs() -> {[LocalLog], [DistributedLog]}
Types:

LocalLog = DistributedLog = log()

The accessible_logs/0 function returns the names of the disk logs accessible on the current node. The first list
contains local disk logs, and the second list contains distributed disk logs.

alog(Log, Term) -> notify_ret()
balog(Log, Bytes) -> notify_ret()
Types:

Log = log()
Term = term()
Bytes = bytes()
notify_ret() = ok | {error, no_such_log}

The alog/2 and balog/2 functions asynchronously append an item to a disk log. The function alog/2 is used
for internally formatted logs, and the function balog/2 for externally formatted logs. balog/2 can be used for
internally formatted logs as well provided the binary was constructed with a call to term_to_binary/1.

The owners that subscribe to notifications will receive the message read_only, blocked_log or
format_external in case the item cannot be written on the log, and possibly one of the messages wrap, full
and error_status if an item was written on the log. The message error_status is sent if there is something
wrong with the header function or a file error occurred.

alog_terms(Log, TermList) -> notify_ret()
balog_terms(Log, ByteList) -> notify_ret()
Types:

Log = log()
TermList = [term()]
ByteList = [bytes()]
notify_ret() = ok | {error, no_such_log}

The alog_terms/2 and balog_terms/2 functions asynchronously append a list of items to a disk log. The
function alog_terms/2 is used for internally formatted logs, and the function balog_terms/2 for externally
formatted logs. balog_terms/2 can be used for internally formatted logs as well provided the binaries were
constructed with calls to term_to_binary/1.

The owners that subscribe to notifications will receive the message read_only, blocked_log or
format_external in case the items cannot be written on the log, and possibly one or more of the messages
wrap, full and error_status if items were written on the log. The message error_status is sent if there
is something wrong with the header function or a file error occurred.

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 33

block(Log) -> ok | {error, block_error_rsn()}
block(Log, QueueLogRecords) -> ok | {error, block_error_rsn()}
Types:

Log = log()
QueueLogRecords = boolean()
block_error_rsn() = no_such_log | nonode | {blocked_log, log()}

With a call to block/1,2 a process can block a log. If the blocking process is not an owner of the log, a temporary
link is created between the disk log process and the blocking process. The link is used to ensure that the disk log is
unblocked should the blocking process terminate without first closing or unblocking the log.

Any process can probe a blocked log with info/1 or close it with close/1. The blocking process can also use
the functions chunk/2,3, bchunk/2,3, chunk_step/3, and unblock/1 without being affected by the block.
Any other attempt than those hitherto mentioned to update or read a blocked log suspends the calling process until
the log is unblocked or returns an error message {blocked_log, Log}, depending on whether the value of
QueueLogRecords is true or false. The default value of QueueLogRecords is true, which is used by
block/1.

change_header(Log, Header) -> ok | {error, Reason}
Types:

Log = log()
Header =
 {head, dlog_head_opt()} |
 {head_func, MFA :: {atom(), atom(), list()}}
Reason =
 no_such_log |
 nonode |
 {read_only_mode, Log} |
 {blocked_log, Log} |
 {badarg, head}

The change_header/2 function changes the value of the head or head_func option of a disk log.

change_notify(Log, Owner, Notify) -> ok | {error, Reason}
Types:

Log = log()
Owner = pid()
Notify = boolean()
Reason =
 no_such_log |
 nonode |
 {blocked_log, Log} |
 {badarg, notify} |
 {not_owner, Owner}

The change_notify/3 function changes the value of the notify option for an owner of a disk log.

change_size(Log, Size) -> ok | {error, Reason}
Types:

disk_log

34 | Ericsson AB. All Rights Reserved.: Kernel

Log = log()
Size = dlog_size()
Reason =
 no_such_log |
 nonode |
 {read_only_mode, Log} |
 {blocked_log, Log} |
 {new_size_too_small, CurrentSize :: integer() >= 1} |
 {badarg, size} |
 {file_error, file:filename(), file_error()}

The change_size/2 function changes the size of an open log. For a halt log it is always possible to increase the
size, but it is not possible to decrease the size to something less than the current size of the file.

For a wrap log it is always possible to increase both the size and number of files, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change will not be valid until the current file is
full and the log wraps to the next file. The redundant files will be removed next time the log wraps around, i.e. starts
to log to file number 1.

As an example, assume that the old maximum number of files is 10 and that the new maximum number of files is 6. If
the current file number is not greater than the new maximum number of files, the files 7 to 10 will be removed when
file number 6 is full and the log starts to write to file number 1 again. Otherwise the files greater than the current file
will be removed when the current file is full (e.g. if the current file is 8, the files 9 and 10); the files between new
maximum number of files and the current file (i.e. files 7 and 8) will be removed next time file number 6 is full.

If the size of the files is decreased the change will immediately affect the current log. It will not of course change the
size of log files already full until next time they are used.

If the log size is decreased for instance to save space, the function inc_wrap_file/1 can be used to force the
log to wrap.

chunk(Log, Continuation) -> chunk_ret()
chunk(Log, Continuation, N) -> chunk_ret()
bchunk(Log, Continuation) -> bchunk_ret()
bchunk(Log, Continuation, N) -> bchunk_ret()
Types:

Log = log()
Continuation = start | continuation()
N = integer() >= 1 | infinity
chunk_ret() =
 {Continuation2 :: continuation(), Terms :: [term()]} |
 {Continuation2 :: continuation(),
 Terms :: [term()],
 Badbytes :: integer() >= 0} |
 eof |
 {error, Reason :: chunk_error_rsn()}
bchunk_ret() =
 {Continuation2 :: continuation(), Binaries :: [binary()]} |
 {Continuation2 :: continuation(),
 Binaries :: [binary()],
 Badbytes :: integer() >= 0} |
 eof |

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 35

 {error, Reason :: chunk_error_rsn()}
chunk_error_rsn() =
 no_such_log |
 {format_external, log()} |
 {blocked_log, log()} |
 {badarg, continuation} |
 {not_internal_wrap, log()} |
 {corrupt_log_file, FileName :: file:filename()} |
 {file_error, file:filename(), file_error()}

The chunk/2,3 and bchunk/2,3 functions make it possible to efficiently read the terms which have been
appended to an internally formatted log. It minimizes disk I/O by reading 64 kilobyte chunks from the file. The
bchunk/2,3 functions return the binaries read from the file; they do not call binary_to_term. Otherwise the
work just like chunk/2,3.

The first time chunk (or bchunk) is called, an initial continuation, the atom start, must be provided. If there is
a disk log process running on the current node, terms are read from that log, otherwise an individual distributed log
on some other node is chosen, if such a log exists.

When chunk/3 is called, N controls the maximum number of terms that are read from the log in each chunk. Default
is infinity, which means that all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of the file has been reached.

The chunk function returns a tuple {Continuation2, Terms}, where Terms is a list of terms found in the
log. Continuation2 is yet another continuation which must be passed on to any subsequent calls to chunk. With
a series of calls to chunk it is possible to extract all terms from a log.

The chunk function returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read-only
mode and the read chunk is corrupt. Badbytes is the number of bytes in the file which were found not to be Erlang
terms in the chunk. Note also that the log is not repaired. When trying to read chunks from a log opened in read-write
mode, the tuple {corrupt_log_file, FileName} is returned if the read chunk is corrupt.

chunk returns eof when the end of the log is reached, or {error, Reason} if an error occurs. Should a wrap
log file be missing, a message is output on the error log.

When chunk/2,3 is used with wrap logs, the returned continuation may or may not be valid in the next call to
chunk. This is because the log may wrap and delete the file into which the continuation points. To make sure this
does not happen, the log can be blocked during the search.

chunk_info(Continuation) -> InfoList | {error, Reason}
Types:

Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]
Reason = {no_continuation, Continuation}

The chunk_info/1 function returns the following pair describing the chunk continuation returned by chunk/2,3,
bchunk/2,3, or chunk_step/3:

• {node, Node}. Terms are read from the disk log running on Node.

chunk_step(Log, Continuation, Step) ->
 {ok, any()} | {error, Reason}
Types:

disk_log

36 | Ericsson AB. All Rights Reserved.: Kernel

Log = log()
Continuation = start | continuation()
Step = integer()
Reason =
 no_such_log |
 end_of_log |
 {format_external, Log} |
 {blocked_log, Log} |
 {badarg, continuation} |
 {file_error, file:filename(), file_error()}

The function chunk_step can be used in conjunction with chunk/2,3 and bchunk/2,3 to search through an
internally formatted wrap log. It takes as argument a continuation as returned by chunk/2,3, bchunk/2,3, or
chunk_step/3, and steps forward (or backward) Step files in the wrap log. The continuation returned points to
the first log item in the new current file.

If the atom start is given as continuation, a disk log to read terms from is chosen. A local or distributed disk log on
the current node is preferred to an individual distributed log on some other node.

If the wrap log is not full because all files have not been used yet, {error, end_of_log} is returned if trying
to step outside the log.

close(Log) -> ok | {error, close_error_rsn()}
Types:

Log = log()
close_error_rsn() =
 no_such_log |
 nonode |
 {file_error, file:filename(), file_error()}

The function close/1 closes a local or distributed disk log properly. An internally formatted log must be closed
before the Erlang system is stopped, otherwise the log is regarded as unclosed and the automatic repair procedure will
be activated next time the log is opened.

The disk log process in not terminated as long as there are owners or users of the log. It should be stressed that each
and every owner must close the log, possibly by terminating, and that any other process - not only the processes that
have opened the log anonymously - can decrement the users counter by closing the log. Attempts to close a log by
a process that is not an owner are simply ignored if there are no users.

If the log is blocked by the closing process, the log is also unblocked.

format_error(Error) -> io_lib:chars()
Types:

Error = term()
Given the error returned by any function in this module, the function format_error returns a descriptive string of
the error in English. For file errors, the function format_error/1 in the file module is called.

inc_wrap_file(Log) -> ok | {error, inc_wrap_error_rsn()}
Types:

Log = log()
inc_wrap_error_rsn() =
 no_such_log |

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 37

 nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {halt_log, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}
invalid_header() = term()

The inc_wrap_file/1 function forces the internally formatted disk log to start logging to the next log file. It can be
used, for instance, in conjunction with change_size/2 to reduce the amount of disk space allocated by the disk log.

The owners that subscribe to notifications will normally receive a wrap message, but in case of an error with a reason
tag of invalid_header or file_error an error_status message will be sent.

info(Log) -> InfoList | {error, no_such_log}
Types:

Log = log()
InfoList = [dlog_info()]
dlog_info() =
 {name, Log :: log()} |
 {file, File :: file:filename()} |
 {type, Type :: dlog_type()} |
 {format, Format :: dlog_format()} |
 {size, Size :: dlog_size()} |
 {mode, Mode :: dlog_mode()} |
 {owners, [{pid(), Notify :: boolean()}]} |
 {users, Users :: integer() >= 0} |
 {status,
 Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
 {node, Node :: node()} |
 {distributed, Dist :: local | [node()]} |
 {head,
 Head ::
 none | {head, term()} | (MFA :: {atom(), atom(), list()})} |
 {no_written_items, NoWrittenItems :: integer() >= 0} |
 {full, Full :: boolean} |
 {no_current_bytes, integer() >= 0} |
 {no_current_items, integer() >= 0} |
 {no_items, integer() >= 0} |
 {current_file, integer() >= 1} |
 {no_overflows,
 {SinceLogWasOpened :: integer() >= 0,
 SinceLastInfo :: integer() >= 0}}

The info/1 function returns a list of {Tag, Value} pairs describing the log. If there is a disk log process running
on the current node, that log is used as source of information, otherwise an individual distributed log on some other
node is chosen, if such a log exists.

The following pairs are returned for all logs:

• {name, Log}, where Log is the name of the log as given by the open/1 option name.

• {file, File}. For halt logs File is the filename, and for wrap logs File is the base name.

• {type, Type}, where Type is the type of the log as given by the open/1 option type.

disk_log

38 | Ericsson AB. All Rights Reserved.: Kernel

• {format, Format}, where Format is the format of the log as given by the open/1 option format.

• {size, Size}, where Size is the size of the log as given by the open/1 option size, or the size set by
change_size/2. The value set by change_size/2 is reflected immediately.

• {mode, Mode}, where Mode is the mode of the log as given by the open/1 option mode.

• {owners, [{pid(), Notify}]} where Notify is the value set by the open/1 option notify or the
function change_notify/3 for the owners of the log.

• {users, Users} where Users is the number of anonymous users of the log, see the open/1 option linkto.

• {status, Status}, where Status is ok or {blocked, QueueLogRecords} as set by the functions
block/1,2 and unblock/1.

• {node, Node}. The information returned by the current invocation of the info/1 function has been gathered
from the disk log process running on Node.

• {distributed, Dist}. If the log is local on the current node, then Dist has the value local, otherwise
all nodes where the log is distributed are returned as a list.

The following pairs are returned for all logs opened in read_write mode:

• {head, Head}. Depending of the value of the open/1 options head and head_func or set by the
function change_header/2, the value of Head is none (default), {head, H} (head option) or {M,F,A}
(head_func option).

• {no_written_items, NoWrittenItems}, where NoWrittenItems is the number of items written to
the log since the disk log process was created.

The following pair is returned for halt logs opened in read_write mode:

• {full, Full}, where Full is true or false depending on whether the halt log is full or not.

The following pairs are returned for wrap logs opened in read_write mode:

• {no_current_bytes, integer() >= 0} is the number of bytes written to the current wrap log file.

• {no_current_items, integer() >= 0} is the number of items written to the current wrap log file,
header inclusive.

• {no_items, integer() >= 0} is the total number of items in all wrap log files.

• {current_file, integer()} is the ordinal for the current wrap log file in the range 1..MaxNoFiles,
where MaxNoFiles is given by the open/1 option size or set by change_size/2.

• {no_overflows, {SinceLogWasOpened, SinceLastInfo}}, where SinceLogWasOpened
(SinceLastInfo) is the number of times a wrap log file has been filled up and a new one opened or
inc_wrap_file/1 has been called since the disk log was last opened (info/1 was last called). The first time
info/2 is called after a log was (re)opened or truncated, the two values are equal.

Note that the chunk/2,3, bchunk/2,3, and chunk_step/3 functions do not affect any value returned by
info/1.

lclose(Log) -> ok | {error, lclose_error_rsn()}
lclose(Log, Node) -> ok | {error, lclose_error_rsn()}
Types:

Log = log()
Node = node()
lclose_error_rsn() =
 no_such_log | {file_error, file:filename(), file_error()}

The function lclose/1 closes a local log or an individual distributed log on the current node. The function
lclose/2 closes an individual distributed log on the specified node if the node is not the current one. lclose(Log)
is equivalent to lclose(Log, node()). See also close/1.

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 39

If there is no log with the given name on the specified node, no_such_log is returned.

log(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()}
Types:

Log = log()
Term = term()
Bytes = bytes()
log_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {format_external, log()} |
 {blocked_log, log()} |
 {full, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

The log/2 and blog/2 functions synchronously append a term to a disk log. They return ok or {error,
Reason} when the term has been written to disk. If the log is distributed, ok is always returned, unless all nodes
are down. Terms are written by means of the ordinary write() function of the operating system. Hence, there is no
guarantee that the term has actually been written to the disk, it might linger in the operating system kernel for a while.
To make sure the item is actually written to disk, the sync/1 function must be called.

The log/2 function is used for internally formatted logs, and blog/2 for externally formatted logs. blog/2 can be
used for internally formatted logs as well provided the binary was constructed with a call to term_to_binary/1.

The owners that subscribe to notifications will be notified of an error with an error_status message if the error
reason tag is invalid_header or file_error.

log_terms(Log, TermList) ->
 ok | {error, Resaon :: log_error_rsn()}
blog_terms(Log, BytesList) ->
 ok | {error, Reason :: log_error_rsn()}
Types:

Log = log()
TermList = [term()]
BytesList = [bytes()]
log_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {format_external, log()} |
 {blocked_log, log()} |
 {full, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

The log_terms/2 and blog_terms/2 functions synchronously append a list of items to the log. The benefit of
using these functions rather than the log/2 and blog/2 functions is that of efficiency: the given list is split into as

disk_log

40 | Ericsson AB. All Rights Reserved.: Kernel

large sublists as possible (limited by the size of wrap log files), and each sublist is logged as one single item, which
reduces the overhead.

The log_terms/2 function is used for internally formatted logs, and blog_terms/2 for externally formatted
logs. blog_terms/2 can be used for internally formatted logs as well provided the binaries were constructed with
calls to term_to_binary/1.

The owners that subscribe to notifications will be notified of an error with an error_status message if the error
reason tag is invalid_header or file_error.

open(ArgL) -> open_ret() | dist_open_ret()
Types:

ArgL = dlog_options()
dlog_options() = [dlog_option()]
dlog_option() =
 {name, Log :: log()} |
 {file, FileName :: file:filename()} |
 {linkto, LinkTo :: none | pid()} |
 {repair, Repair :: true | false | truncate} |
 {type, Type :: dlog_type} |
 {format, Format :: dlog_format()} |
 {size, Size :: dlog_size()} |
 {distributed, Nodes :: [node()]} |
 {notify, boolean()} |
 {head, Head :: dlog_head_opt()} |
 {head_func, MFA :: {atom(), atom(), list()}} |
 {mode, Mode :: dlog_mode()}
open_ret() = ret() | {error, open_error_rsn()}
ret() =
 {ok, Log :: log()} |
 {repaired,
 Log :: log(),
 {recovered, Rec :: integer() >= 0},
 {badbytes, Bad :: integer() >= 0}}
dist_open_ret() =
 {[{node(), ret()}], [{node(), {error, dist_error_rsn()}}]}
dist_error_rsn() = nodedown | open_error_rsn()
open_error_rsn() =
 no_such_log |
 {badarg, term()} |
 {size_mismatch,
 CurrentSize :: dlog_size(),
 NewSize :: dlog_size()} |
 {arg_mismatch,
 OptionName :: dlog_optattr(),
 CurrentValue :: term(),
 Value :: term()} |
 {name_already_open, Log :: log()} |
 {open_read_write, Log :: log()} |
 {open_read_only, Log :: log()} |
 {need_repair, Log :: log()} |

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 41

 {not_a_log_file, FileName :: file:filename()} |
 {invalid_index_file, FileName :: file:filename()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()} |
 {node_already_open, Log :: log()}
dlog_optattr() =
 name |
 file |
 linkto |
 repair |
 type |
 format |
 size |
 distributed |
 notify |
 head |
 head_func |
 mode
dlog_size() =
 infinity |
 integer() >= 1 |
 {MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}

The ArgL parameter is a list of options which have the following meanings:

• {name, Log} specifies the name of the log. This is the name which must be passed on as a parameter in all
subsequent logging operations. A name must always be supplied.

• {file, FileName} specifies the name of the file which will be used for logged terms. If this value is omitted
and the name of the log is either an atom or a string, the file name will default to lists:concat([Log,
".LOG"]) for halt logs. For wrap logs, this will be the base name of the files. Each file in a wrap log will be called
<base_name>.N, where N is an integer. Each wrap log will also have two files called <base_name>.idx
and <base_name>.siz.

• {linkto, LinkTo}. If LinkTo is a pid, that pid becomes an owner of the log. If LinkTo is none the log
records that it is used anonymously by some process by incrementing the users counter. By default, the process
which calls open/1 owns the log.

• {repair, Repair}. If Repair is true, the current log file will be repaired, if needed. As the restoration is
initiated, a message is output on the error log. If false is given, no automatic repair will be attempted. Instead,
the tuple {error, {need_repair, Log}} is returned if an attempt is made to open a corrupt log file. If
truncate is given, the log file will be truncated, creating an empty log. Default is true, which has no effect
on logs opened in read-only mode.

• {type, Type} is the type of the log. Default is halt.

• {format, Format} specifies the format of the disk log. Default is internal.

• {size, Size} specifies the size of the log. When a halt log has reached its maximum size, all attempts to log
more items are rejected. The default size is infinity, which for halt implies that there is no maximum size. For
wrap logs, the Size parameter may be either a pair {MaxNoBytes, MaxNoFiles} or infinity. In the
latter case, if the files of an already existing wrap log with the same name can be found, the size is read from the
existing wrap log, otherwise an error is returned. Wrap logs write at most MaxNoBytes bytes on each file and
use MaxNoFiles files before starting all over with the first wrap log file. Regardless of MaxNoBytes, at least
the header (if there is one) and one item is written on each wrap log file before wrapping to the next file. When
opening an existing wrap log, it is not necessary to supply a value for the option Size, but any supplied value

disk_log

42 | Ericsson AB. All Rights Reserved.: Kernel

must equal the current size of the log, otherwise the tuple {error, {size_mismatch, CurrentSize,
NewSize}} is returned.

• {distributed, Nodes}. This option can be used for adding members to a distributed disk log. The default
value is [], which means that the log is local on the current node.

• {notify, bool()}. If true, the owners of the log are notified when certain events occur in the log. Default
is false. The owners are sent one of the following messages when an event occurs:

• {disk_log, Node, Log, {wrap, NoLostItems}} is sent when a wrap log has filled up one of
its files and a new file is opened. NoLostItems is the number of previously logged items that have been
lost when truncating existing files.

• {disk_log, Node, Log, {truncated, NoLostItems}} is sent when a log has been truncated
or reopened. For halt logs NoLostItems is the number of items written on the log since the disk log process
was created. For wrap logs NoLostItems is the number of items on all wrap log files.

• {disk_log, Node, Log, {read_only, Items}} is sent when an asynchronous log attempt is
made to a log file opened in read-only mode. Items is the items from the log attempt.

• {disk_log, Node, Log, {blocked_log, Items}} is sent when an asynchronous log attempt
is made to a blocked log that does not queue log attempts. Items is the items from the log attempt.

• {disk_log, Node, Log, {format_external, Items}} is sent when alog/2 or
alog_terms/2 is used for internally formatted logs. Items is the items from the log attempt.

• {disk_log, Node, Log, full} is sent when an attempt to log items to a wrap log would write more
bytes than the limit set by the size option.

• {disk_log, Node, Log, {error_status, Status}} is sent when the error status changes.
The error status is defined by the outcome of the last attempt to log items to a the log or to truncate the log or
the last use of sync/1, inc_wrap_file/1 or change_size/2. Status is one of ok and {error,
Error}, the former being the initial value.

• {head, Head} specifies a header to be written first on the log file. If the log is a wrap log, the item Head is
written first in each new file. Head should be a term if the format is internal, and a deep list of bytes (or a
binary) otherwise. Default is none, which means that no header is written first on the file.

• {head_func, {M,F,A}} specifies a function to be called each time a new log file is opened. The call M:F(A)
is assumed to return {ok, Head}. The item Head is written first in each file. Head should be a term if the
format is internal, and a deep list of bytes (or a binary) otherwise.

• {mode, Mode} specifies if the log is to be opened in read-only or read-write mode. It defaults to read_write.

The open/1 function returns {ok, Log} if the log file was successfully opened. If the file was successfully repaired,
the tuple {repaired, Log, {recovered, Rec}, {badbytes, Bad}} is returned, where Rec is the
number of whole Erlang terms found in the file and Bad is the number of bytes in the file which were non-Erlang
terms. If the distributed parameter was given, open/1 returns a list of successful replies and a list of erroneous
replies. Each reply is tagged with the node name.

When a disk log is opened in read-write mode, any existing log file is checked for. If there is none a new empty log
is created, otherwise the existing file is opened at the position after the last logged item, and the logging of items will
commence from there. If the format is internal and the existing file is not recognized as an internally formatted
log, a tuple {error, {not_a_log_file, FileName}} is returned.

The open/1 function cannot be used for changing the values of options of an already open log; when there are
prior owners or users of a log, all option values except name, linkto and notify are just checked against the
values that have been supplied before as option values to open/1, change_header/2, change_notify/3 or
change_size/2. As a consequence, none of the options except name is mandatory. If some given value differs
from the current value, a tuple {error, {arg_mismatch, OptionName, CurrentValue, Value}} is
returned. Caution: an owner's attempt to open a log as owner once again is acknowledged with the return value {ok,
Log}, but the state of the disk log is not affected in any way.

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 43

If a log with a given name is local on some node, and one tries to open the log distributed on the same node, then the
tuple {error, {node_already_open, Log}} is returned. The same tuple is returned if the log is distributed
on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the
first time adds those logs to a (possibly empty) distributed disk log. The option values supplied are used on all nodes
mentioned by the distributed option. Individual distributed logs know nothing about each other's option values,
so each node can be given unique option values by creating a distributed log with several calls to open/1.

It is possible to open a log file more than once by giving different values to the option name or by using the same file
when distributing a log on different nodes. It is up to the user of the disk_log module to ensure that no more than
one disk log process has write access to any file, or the the file may be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed,Reason},[{disk_log,open,1}]}. The function returns {error, Reason} for all other
errors.

pid2name(Pid) -> {ok, Log} | undefined
Types:

Pid = pid()
Log = log()

The pid2name/1 function returns the name of the log given the pid of a disk log process on the current node, or
undefined if the given pid is not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

Log = log()
File = file:filename()
Head = term()
BHead = bytes()
reopen_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {same_file_name, log()} |
 {invalid_index_file, file:filename()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

The reopen functions first rename the log file to File and then re-create a new log file. In case of a wrap log, File
is used as the base name of the renamed files. By default the header given to open/1 is written first in the newly
opened log file, but if the Head or the BHead argument is given, this item is used instead. The header argument is
used once only; next time a wrap log file is opened, the header given to open/1 is used.

The reopen/2,3 functions are used for internally formatted logs, and breopen/3 for externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

disk_log

44 | Ericsson AB. All Rights Reserved.: Kernel

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{failed,Error},
[{disk_log,Fun,Arity}]}, and other processes that have requests queued receive the message {disk_log,
Node, {error, disk_log_stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}
Types:

Log = log()
sync_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {file_error, file:filename(), file_error()}

The sync/1 function ensures that the contents of the log are actually written to the disk. This is usually a rather
expensive operation.

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}
Types:

Log = log()
Head = term()
BHead = bytes()
trunc_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

The truncate functions remove all items from a disk log. If the Head or the BHead argument is given, this item is
written first in the newly truncated log, otherwise the header given to open/1 is used. The header argument is only
used once; next time a wrap log file is opened, the header given to open/1 is used.

The truncate/1,2 functions are used for internally formatted logs, and btruncate/2 for externally formatted
logs.

The owners that subscribe to notifications will receive a truncate message.

If the attempt to truncate the log fails, the disk log process terminates with the EXIT message {{failed,Reason},
[{disk_log,Fun,Arity}]}, and other processes that have requests queued receive the message {disk_log,
Node, {error, disk_log_stopped}}.

unblock(Log) -> ok | {error, unblock_error_rsn()}
Types:

Log = log()
unblock_error_rsn() =
 no_such_log |
 nonode |

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 45

 {not_blocked, log()} |
 {not_blocked_by_pid, log()}

The unblock/1 function unblocks a log. A log can only be unblocked by the blocking process.

See Also
file(3), pg2(3), wrap_log_reader(3)

erl_boot_server

46 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server
Erlang module

This server is used to assist diskless Erlang nodes which fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with the -loader
inet command line flag. All hosts specified with the -hosts Host command line flag must have one instance
of this server running.

This server can be started with the kernel configuration parameter start_boot_server.

The erl_boot_server can both read regular files as well as files in archives. See code(3) and erl_prim_loader(3).

Warning:
The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is
ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.

Exports

start(Slaves) -> {ok, Pid} | {error, What}
Types:

Slaves = [Host]
Host = atom()
Pid = pid()
What = any()

Starts the boot server. Slaves is a list of IP addresses for hosts which are allowed to use this server as a boot server.

start_link(Slaves) -> {ok, Pid} | {error, What}
Types:

Slaves = [Host]
Host = atom()
Pid = pid()
What = any()

Starts the boot server and links to the caller. This function is used to start the server if it is included in a supervision tree.

add_slave(Slave) -> ok | {error, What}
Types:

Slave = Host
Host = atom()
What = any()

Adds a Slave node to the list of allowed slave hosts.

erl_boot_server

Ericsson AB. All Rights Reserved.: Kernel | 47

delete_slave(Slave) -> ok | {error, What}
Types:

Slave = Host
Host = atom()
What = any()

Deletes a Slave node from the list of allowed slave hosts.

which_slaves() -> Slaves
Types:

Slaves = [Host]
Host = atom()

Returns the current list of allowed slave hosts.

SEE ALSO
init(3), erl_prim_loader(3)

erl_ddll

48 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll
Erlang module

The erl_ddll module provides an interface for loading and unloading erlang linked in drivers in runtime.

Note:
This is a large reference document. For casual use of the module, as well as for most real world applications, the
descriptions of the functions load/2 and unload/1 are enough to get going.

The driver should be provided as a dynamically linked library in a object code format specific for the platform in
use, i. e. .so files on most Unix systems and .ddl files on windows. An erlang linked in driver has to provide
specific interfaces to the emulator, so this module is not designed for loading arbitrary dynamic libraries. For further
information about erlang drivers, refer to the ERTS reference manual section erl_driver.

When describing a set of functions, (i.e. a module, a part of a module or an application) executing in a process and
wanting to use a ddll-driver, we use the term user. There can be several users in one process (different modules needing
the same driver) and several processes running the same code, making up several users of a driver. In the basic scenario,
each user loads the driver before starting to use it and unloads the driver when done. The reference counting keeps
track of processes as well as the number of loads by each process, so that the driver will only be unloaded when no one
wants it (it has no user). The driver also keeps track of ports that are opened towards it, so that one can delay unloading
until all ports are closed or kill all ports using the driver when it is unloaded.

The interface supports two basic scenarios of loading and unloading. Each scenario can also have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are:

Load and unload on a "when needed basis"

This (most common) scenario simply supports that each user of the driver loads it when it is needed and unloads
it when the user no longer have any use for it. The driver is always reference counted and as long as a process
keeping the driver loaded is still alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not really concerned with if the driver is already loaded from the filesystem or if the object code has to be loaded
from filesystem.

Two pairs of functions support this scenario:

load/2 and unload/1

When using the load/unload interfaces, the driver will not actually get unloaded until the last port using
the driver is closed. The function unload/1 can return immediately, as the users are not really concerned
with when the actual unloading occurs. The driver will actually get unloaded when no one needs it any longer.

If a process having the driver loaded dies, it will have the same effect as if unloading was done.

When loading, the function load/2 returns ok as soon as there is any instance of the driver present, so
that if a driver is waiting to get unloaded (due to open ports), it will simply change state to no longer need
unloading.

load_driver/2 and unload_driver/1

These interfaces is intended to be used when it is considered an error that ports are open towards a driver
that no user has loaded. The ports still open when the last user calls unload_driver/1 or when the last
process having the driver loaded dies, will get killed with reason driver_unloaded.

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 49

The function names load_driver and unload_driver are kept for backward compatibility.

Loading and reloading for code replacement

This scenario occurs when the driver code might need replacement during operation of the Erlang emulator.
Implementing driver code replacement is somewhat more tedious than beam code replacement, as one driver
cannot be loaded as both "old" and "new" code. All users of a driver must have it closed (no open ports) before
the old code can be unloaded and the new code can be loaded.

The actual unloading/loading is done as one atomic operation, blocking all processes in the system from using
the driver concerned while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process start, the driver is loaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when a reload is already in progress is always an error. Using the high level functions, it is
also an error to demand reloading when more than one user has the driver loaded. To simplify driver replacement,
avoid designing your system so that more than than one user has the driver loaded.

The two functions for reloading drivers should be used together with corresponding load functions, to support
the two different behaviors concerning open ports:

load/2 and reload/2

This pair of functions is used when reloading should be done after the last open port towards the driver is
closed.

As reload/2 actually waits for the reloading to occur, a misbehaving process keeping open ports towards
the driver (or keeping the driver loaded) might cause infinite waiting for reload. Timeouts has to be provided
outside of the process demanding the reload or by using the low-level interface try_load/3 in combination
with driver monitors (see below).

load_driver/2 and reload_driver/2

This pair of functions are used when open ports towards the driver should be killed with reason
driver_unloaded to allow for new driver code to get loaded.

If, however, another process has the driver loaded, calling reload_driver returns the error code
pending_process. As stated earlier, the recommended design is to not allow other users than the "driver
reloader" to actually demand loading of the concerned driver.

Data Types
driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types:

MonitorRef = reference()
Removes a driver monitor in much the same way as erlang:demonitor/1 does with process monitors. See monitor/2,
try_load/3 and try_unload/2 for details about how to create driver monitors.

The function throws a badarg exception if the parameter is not a reference().

erl_ddll

50 | Ericsson AB. All Rights Reserved.: Kernel

info() -> AllInfoList
Types:

AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfoList}
DriverName = string()
InfoList = [InfoItem]
InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples {DriverName, InfoList}, where InfoList is the result of calling info/1 for that
DriverName. Only dynamically linked in drivers are included in the list.

info(Name) -> InfoList
Types:

Name = driver()
InfoList = [InfoItem, ...]
InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples {Tag, Value}, where Tag is the information item and Value is the result of calling info/2
with this driver name and this tag. The result being a tuple list containing all information available about a driver.

The different tags that will appear in the list are:

• processes

• driver_options

• port_count

• linked_in_driver

• permanent

• awaiting_load

• awaiting_unload

For a detailed description of each value, please read the description of info/2 below.

The function throws a badarg exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:

Name = driver()
Tag =
 processes |
 driver_options |
 port_count |
 linked_in_driver |
 permanent |
 awaiting_load |
 awaiting_unload
Value = term()

This function returns specific information about one aspect of a driver. The Tag parameter specifies which aspect to
get information about. The Value return differs between different tags:

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 51

processes

Return all processes containing users of the specific drivers as a list of tuples {pid(),integer() >= 0},
where the integer() denotes the number of users in the process pid().

driver_options

Return a list of the driver options provided when loading, as well as any options set by the driver itself during
initialization. The currently only valid option being kill_ports.

port_count

Return the number of ports (an integer >= 0()) using the driver.

linked_in_driver

Return a boolean(), being true if the driver is a statically linked in one and false otherwise.

permanent

Return a boolean(), being true if the driver has made itself permanent (and is not a statically linked in
driver). false otherwise.

awaiting_load

Return a list of all processes having monitors for loading active, each process returned as
{pid(),integer() >= 0}, where the integer() is the number of monitors held by the process pid().

awaiting_unload

Return a list of all processes having monitors for unloading active, each process returned as
{pid(),integer() >= 0}, where the integer() is the number of monitors held by the process pid().

If the options linked_in_driver or permanent return true, all other options will return the value
linked_in_driver or permanent respectively.

The function throws a badarg exception if the driver is not present in the system or the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = term()

Loads and links the dynamic driver Name. Path is a file path to the directory containing the driver. Name must be a
sharable object/dynamic library. Two drivers with different Path parameters cannot be loaded under the same name.
The Name is a string or atom containing at least one character.

The Name given should correspond to the filename of the actual dynamically loadable object file residing in the
directory given as Path, but without the extension (i.e. .so). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as erlang module names correspond to the names
of the .beam files.

If the driver has been previously unloaded, but is still present due to open ports against it, a call to load/2 will stop
the unloading and keep the driver (as long as the Path is the same) and ok is returned. If one actually wants the object
code to be reloaded, one uses reload/2 or the low-level interface try_load/3 instead. Please refer to the description of
different scenarios for loading/unloading in the introduction.

If more than one process tries to load an already loaded driver withe the same Path, or if the same process tries to load
it several times, the function will return ok. The emulator will keep track of the load/2 calls, so that a corresponding
number of unload/2 calls will have to be done from the same process before the driver will actually get unloaded.

erl_ddll

52 | Ericsson AB. All Rights Reserved.: Kernel

It is therefore safe for an application to load a driver that is shared between processes or applications when needed. It
can safely be unloaded without causing trouble for other parts of the system.

It is not allowed to load several drivers with the same name but with different Path parameters.

Note:
Note especially that the Path is interpreted literally, so that all loaders of the same driver needs to give the same
literalPath string, even though different paths might point out the same directory in the filesystem (due to use
of relative paths and links).

On success, the function returns ok. On failure, the return value is {error,ErrorDesc}, where ErrorDesc is
an opaque term to be translated into human readable form by the format_error/1 function.

For more control over the error handling, again use the try_load/3 interface instead.

The function throws a badarg exception if the parameters are not given as described above.

load_driver(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = term()

Works essentially as load/2, but will load the driver with other options. All ports that are using the driver will get
killed with the reason driver_unloaded when the driver is to be unloaded.

The number of loads and unloads by different users influence the actual loading and unloading of a driver file. The
port killing will therefore only happen when the last user unloads the driver, or the last process having loaded the
driver exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Using try_load/3 with
{driver_options,[kill_ports]} in the option list will give the same effect regarding the port killing.

The function throws a badarg exception if the parameters are not given as described above.

monitor(Tag, Item) -> MonitorRef
Types:

Tag = driver
Item = {Name, When}
Name = driver()
When = loaded | unloaded | unloaded_only
MonitorRef = reference()

This function creates a driver monitor and works in many ways as the function erlang:monitor/2, does for processes.
When a driver changes state, the monitor results in a monitor-message being sent to the calling process. The
MonitorRef returned by this function is included in the message sent.

As with process monitors, each driver monitor set will only generate one single message. The monitor is "destroyed"
after the message is sent and there is then no need to call demonitor/1.

The MonitorRef can also be used in subsequent calls to demonitor/1 to remove a monitor.

The function accepts the following parameters:

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 53

Tag

The monitor tag is always driver as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be given for consistence.

Item

The Item parameter specifies which driver one wants to monitor (the name of the driver) as well as which state
change one wants to monitor. The parameter is a tuple of arity two whose first element is the driver name and
second element is either of:

loaded

Notify me when the driver is reloaded (or loaded if loading is underway). It only makes sense to monitor
drivers that are in the process of being loaded or reloaded. One cannot monitor a future-to-be driver name
for loading, that will only result in a 'DOWN' message being immediately sent. Monitoring for loading is
therefore most useful when triggered by the try_load/3 function, where the monitor is created because the
driver is in such a pending state.

Setting a driver monitor for loading will eventually lead to one of the following messages being sent:

{'UP', reference(), driver, Name, loaded}

This message is sent, either immediately if the driver is already loaded and no reloading is pending, or
when reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded prior to creating a monitor for loading.

{'UP', reference(), driver, Name, permanent}

This message will be sent if reloading was expected, but the (old) driver made itself permanent prior to
reloading. It will also be sent if the driver was permanent or statically linked in when trying to create
the monitor.

{'DOWN', reference(), driver, Name, load_cancelled}

This message will arrive if reloading was underway, but the user having requested reload cancelled
it by either dying or calling try_unload/2 (or unload/1/unload_driver/1) again before it was
reloaded.

{'DOWN', reference(), driver, Name, {load_failure, Failure}}

This message will arrive if reloading was underway but the loading for some reason failed. The
Failure term is one of the errors that can be returned from try_load/3. The error term can be passed
to format_error/1 for translation into human readable form. Note that the translation has to be done in
the same running erlang virtual machine as the error was detected in.

unloaded

Monitor when a driver gets unloaded. If one monitors a driver that is not present in the system, one will
immediately get notified that the driver got unloaded. There is no guarantee that the driver was actually
ever loaded.

A driver monitor for unload will eventually result in one of the following messages being sent:

{'DOWN', reference(), driver, Name, unloaded}

The driver instance monitored is now unloaded. As the unload might have been due to a reload/2
request, the driver might once again have been loaded when this message arrives.

{'UP', reference(), driver, Name, unload_cancelled}

This message will be sent if unloading was expected, but while the driver was waiting for all ports to
get closed, a new user of the driver appeared and the unloading was cancelled.

erl_ddll

54 | Ericsson AB. All Rights Reserved.: Kernel

This message appears when an {ok, pending_driver}) was returned from try_unload/2) for the
last user of the driver and then a {ok, already_loaded} is returned from a call to try_load/3.

If one wants to really monitor when the driver gets unloaded, this message will distort the picture, no
unloading was really done. The unloaded_only option creates a monitor similar to an unloaded
monitor, but does never result in this message.

{'UP', reference(), driver, Name, permanent}

This message will be sent if unloading was expected, but the driver made itself permanent prior to
unloading. It will also be sent if trying to monitor a permanent or statically linked in driver.

unloaded_only

A monitor created as unloaded_only behaves exactly as one created as unloaded with the exception
that the {'UP', reference(), driver, Name, unload_cancelled} message will never be
sent, but the monitor instead persists until the driver really gets unloaded.

The function throws a badarg exception if the parameters are not given as described above.

reload(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = pending_process | OpaqueError
OpaqueError = term()

Reloads the driver named Name from a possibly different Path than was previously used. This function is used in
the code change scenario described in the introduction.

If there are other users of this driver, the function will return {error, pending_process}, but if there are no
more users, the function call will hang until all open ports are closed.

Note:
Avoid mixing several users with driver reload requests.

If one wants to avoid hanging on open ports, one should use the try_load/3 function instead.

The Name and Path parameters have exactly the same meaning as when calling the plain load/2 function.

Note:
Avoid mixing several users with driver reload requests.

On success, the function returns ok. On failure, the function returns an opaque error, with the exception of the
pending_process error described above. The opaque errors are to be translated into human readable form by the
format_error/1 function.

For more control over the error handling, again use the try_load/3 interface instead.

The function throws a badarg exception if the parameters are not given as described above.

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 55

reload_driver(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = pending_process | OpaqueError
OpaqueError = term()

Works exactly as reload/2, but for drivers loaded with the load_driver/2 interface.

As this interface implies that ports are being killed when the last user disappears, the function wont hang waiting for
ports to get closed.

For further details, see the scenarios in the module description and refer to the reload/2 function description.

The function throws a badarg exception if the parameters are not given as described above.

try_load(Path, Name, OptionList) ->
 {ok, Status} |
 {ok, PendingStatus, Ref} |
 {error, ErrorDesc}
Types:

Path = path()
Name = driver()
OptionList = [Option]
Option =
 {driver_options, DriverOptionList} |
 {monitor, MonitorOption} |
 {reload, ReloadOption}
DriverOptionList = [DriverOption]
DriverOption = kill_ports
MonitorOption = ReloadOption = pending_driver | pending
Status = loaded | already_loaded | PendingStatus
PendingStatus = pending_driver | pending_process
Ref = reference()
ErrorDesc = ErrorAtom | OpaqueError
ErrorAtom =
 linked_in_driver |
 inconsistent |
 permanent |
 not_loaded_by_this_process |
 not_loaded |
 pending_reload |
 pending_process
OpaqueError = term()

This function provides more control than the load/2/reload/2 and load_driver/2/reload_driver/2
interfaces. It will never wait for completion of other operations related to the driver, but immediately return the status
of the driver as either:

{ok, loaded}

The driver was actually loaded and is immediately usable.

erl_ddll

56 | Ericsson AB. All Rights Reserved.: Kernel

{ok, already_loaded}

The driver was already loaded by another process and/or is in use by a living port. The load by you is registered
and a corresponding try_unload is expected sometime in the future.

{ok, pending_driver}or {ok, pending_driver, reference()}

The load request is registered, but the loading is delayed due to the fact that an earlier instance of the driver is still
waiting to get unloaded (there are open ports using it). Still, unload is expected when you are done with the driver.
This return value will mostly happen when the {reload,pending_driver} or {reload,pending}
options are used, but can happen when another user is unloading a driver in parallel and the kill_ports driver
option is set. In other words, this return value will always need to be handled!

{ok, pending_process}or {ok, pending_process, reference()}

The load request is registered, but the loading is delayed due to the fact that an earlier instance of the driver
is still waiting to get unloaded by another user (not only by a port, in which case {ok,pending_driver}
would have been returned). Still, unload is expected when you are done with the driver. This return value will
only happen when the {reload,pending} option is used.

When the function returns {ok, pending_driver} or {ok, pending_process}, one might want
to get information about when the driver is actually loaded. This can be achieved by using the {monitor,
MonitorOption} option.

When monitoring is requested, and a corresponding {ok, pending_driver} or {ok, pending_process}
would be returned, the function will instead return a tuple {ok, PendingStatus, reference()} and the
process will, at a later time when the driver actually gets loaded, get a monitor message. The monitor message one
can expect is described in the monitor/2 function description.

Note:
Note that in case of loading, monitoring can not only get triggered by using the {reload, ReloadOption}
option, but also in special cases where the load-error is transient, why {monitor, pending_driver}
should be used under basically all real world circumstances!

The function accepts the following parameters:

Path

The filesystem path to the directory where the driver object file is situated. The filename of the object file (minus
extension) must correspond to the driver name (used in the name parameter) and the driver must identify itself
with the very same name. The Path might be provided as an iolist(), meaning it can be a list of other iolist()s,
characters (eight bit integers) or binaries, all to be flattened into a sequence of characters.

The (possibly flattened) Path parameter must be consistent throughout the system, a driver should, by all users,
be loaded using the same literalPath. The exception is when reloading is requested, in which case the Path may
be specified differently. Note that all users trying to load the driver at a later time will need to use the newPath
if the Path is changed using a reload option. This is yet another reason to have only one loader of a driver
one wants to upgrade in a running system!

Name

The name parameter is the name of the driver to be used in subsequent calls to open_port. The name can be
specified either as an iolist() or as an atom(). The name given when loading is used to find the actual
object file (with the help of the Path and the system implied extension suffix, i.e. .so). The name by which
the driver identifies itself must also be consistent with this Name parameter, much as a beam-file's module name
much correspond to its filename.

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 57

OptionList

A number of options can be specified to control the loading operation. The options are given as a list of two-
tuples, the tuples having the following values and meanings:

{driver_options, DriverOptionList}

This option is to provide options that will change its general behavior and will "stick" to the driver throughout
its lifespan.

The driver options for a given driver name need always to be consistent, even when the driver is reloaded,
meaning that they are as much a part of the driver as the actual name.

Currently the only allowed driver option is kill_ports, which means that all ports opened towards the
driver are killed with the exit-reason driver_unloaded when no process any longer has the driver
loaded. This situation arises either when the last user calls try_unload/2, or the last process having loaded
the driver exits.

{monitor, MonitorOption}

A MonitorOption tells try_load/3 to trigger a driver monitor under certain conditions. When the
monitor is triggered, the function will return a three-tuple {ok, PendingStatus, reference()},
where the reference() is the monitor ref for the driver monitor.

Only one MonitorOption can be specified and it is either the atom pending, which means that a monitor
should be created whenever a load operation is delayed, and the atom pending_driver, in which a
monitor is created whenever the operation is delayed due to open ports towards an otherwise unused driver.
The pending_driver option is of little use, but is present for completeness, it is very well defined
which reload-options might give rise to which delays. It might, however, be a good idea to use the same
MonitorOption as the ReloadOption if present.

If reloading is not requested, it might still be useful to specify the monitor option, as forced unloads
(kill_ports driver option or the kill_ports option to try_unload/2) will trigger a transient state
where driver loading cannot be performed until all closing ports are actually closed. So, as try_unload
can, in almost all situations, return {ok, pending_driver}, one should always specify at least
{monitor, pending_driver} in production code (see the monitor discussion above).

{reload, ReloadOption}

This option is used when one wants to reload a driver from disk, most often in a code upgrade scenario.
Having a reload option also implies that the Path parameter need not be consistent with earlier loads
of the driver.

To reload a driver, the process needs to have previously loaded the driver, i.e there has to be an active user
of the driver in the process.

The reload option can be either the atom pending, in which reloading is requested for any driver and
will be effectuated when all ports opened against the driver are closed. The replacement of the driver will
in this case take place regardless of if there are still pending users having the driver loaded! The option
also triggers port-killing (if the kill_ports driver option is used) even though there are pending users,
making it usable for forced driver replacement, but laying a lot of responsibility on the driver users. The
pending option is seldom used as one does not want other users to have loaded the driver when code change
is underway.

The more useful option is pending_driver, which means that reloading will be queued if the driver is
not loaded by any other users, but the driver has opened ports, in which case {ok, pending_driver}
will be returned (a monitor option is of course recommended).

If the driver is unloaded (not present in the system), the error code not_loaded will be returned. The
reload option is intended for when the user has already loaded the driver in advance.

erl_ddll

58 | Ericsson AB. All Rights Reserved.: Kernel

The function might return numerous errors, of which some only can be returned given a certain combination of options.

A number of errors are opaque and can only be interpreted by passing them to the format_error/1 function, but some
can be interpreted directly:

{error,linked_in_driver}

The driver with the specified name is an erlang statically linked in driver, which cannot be manipulated with
this API.

{error,inconsistent}

The driver has already been loaded with either other DriverOptionList or a different literalPath argument.

This can happen even if a reload option is given, if the DriverOptionList differ from the current.

{error, permanent}

The driver has requested itself to be permanent, making it behave like an erlang linked in driver and it can no
longer be manipulated with this API.

{error, pending_process}

The driver is loaded by other users when the {reload, pending_driver} option was given.

{error, pending_reload}

Driver reload is already requested by another user when the {reload, ReloadOption} option was given.

{error, not_loaded_by_this_process}

Appears when the reload option is given. The driver Name is present in the system, but there is no user of
it in this process.

{error, not_loaded}

Appears when the reload option is given. The driver Name is not in the system. Only drivers loaded by this
process can be reloaded.

All other error codes are to be translated by the format_error/1 function. Note that calls to format_error should
be performed from the same running instance of the erlang virtual machine as the error was detected in, due to system
dependent behavior concerning error values.

If the arguments or options are malformed, the function will throw a badarg exception.

try_unload(Name, OptionList) ->
 {ok, Status} |
 {ok, PendingStatus, Ref} |
 {error, ErrorAtom}
Types:

Name = driver()
OptionList = [Option]
Option = {monitor, MonitorOption} | kill_ports
MonitorOption = pending_driver | pending
Status = unloaded | PendingStatus
PendingStatus = pending_driver | pending_process
Ref = reference()
ErrorAtom =
 linked_in_driver |
 not_loaded |

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 59

 not_loaded_by_this_process |
 permanent

This is the low level function to unload (or decrement reference counts of) a driver. It can be used to force port killing,
in much the same way as the driver option kill_ports implicitly does, and it can trigger a monitor either due to
other users still having the driver loaded or that there are open ports using the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (i.e. this user) no longer needs the driver. That can, if there are no other users, trigger actual unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed. If the driver has the kill_ports option set, or if kill_ports was specified as an
option to this function, all pending ports using this driver will get killed when unloading is done by the last user. If
no port-killing is involved and there are open ports, the actual unloading is delayed until there are no more open ports
using the driver. If, in this case, another user (or even this user) loads the driver again before the driver is actually
unloaded, the unloading will never take place.

To allow the user that requests unloading to wait for actual unloading to take place, monitor triggers can be
specified in much the same way as when loading. As users of this function however seldom are interested in more than
decrementing the reference counts, monitoring is more seldom needed. If the kill_ports option is used however,
monitor trigging is crucial, as the ports are not guaranteed to have been killed until the driver is unloaded, why a
monitor should be triggered for at least the pending_driver case.

The possible monitor messages that can be expected are the same as when using the unloaded option to the monitor/2
function.

The function will return one of the following statuses upon success:

{ok, unloaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and there are no more users requiring
it to be loaded.

{ok, pending_driver}or {ok, pending_driver, reference()}

This return value indicates that this call removed the last user from the driver, but there are still open ports using
it. When all ports are closed and no new users have arrived, the driver will actually be reloaded and the name
and memory reclaimed.

This return value is valid even when the option kill_ports was used, as killing ports may not be a process
that completes immediately. The condition is, in that case, however transient. Monitors are as always useful to
detect when the driver is really unloaded.

{ok, pending_process}or {ok, pending_process, reference()}

The unload request is registered, but there are still other users holding the driver. Note that the term
pending_process might refer to the running process, there might be more than one user in the same process.

This is a normal, healthy return value if the call was just placed to inform the emulator that you have no further
use of the driver. It is actually the most common return value in the most common scenario described in the
introduction.

The function accepts the following parameters:

Name

The name parameter is the name of the driver to be unloaded. The name can be specified either as an iolist()
or as an atom().

erl_ddll

60 | Ericsson AB. All Rights Reserved.: Kernel

OptionList

The OptionList argument can be used to specify certain behavior regarding ports as well as triggering monitors
under certain conditions:

kill_ports

Force killing of all ports opened using this driver, with the exit reason driver_unloaded, if you are
the lastuser of the driver.

If there are other users having the driver loaded, this option will have no effect.

If one wants the consistent behavior of killing ports when the last user unloads, one should use the driver
option kill_ports when loading the driver instead.

{monitor, MonitorOption}

This option creates a driver monitor if the condition given in MonitorOption is true. The valid options
are:

pending_driver

Create a driver monitor if the return value is to be {ok, pending_driver}.

pending

Create a monitor if the return value will be either {ok, pending_driver} or {ok,
pending_process}.

The pending_driver MonitorOption is by far the most useful and it has to be used to ensure that
the driver has really been unloaded and the ports closed whenever the kill_ports option is used or the
driver may have been loaded with the kill_ports driver option.

By using the monitor-triggers in the call to try_unload one can be sure that the monitor is actually added
before the unloading is executed, meaning that the monitor will always get properly triggered, which would
not be the case if one called erl_ddll:monitor/2 separately.

The function may return several error conditions, of which all are well specified (no opaque values):

{error, linked_in_driver}

You were trying to unload an erlang statically linked in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

{error, not_loaded}

The driver Name is not present in the system.

{error, not_loaded_by_this_process}

The driver Name is present in the system, but there is no user of it in this process.

As a special case, drivers can be unloaded from processes that has done no corresponding call to try_load/3
if, and only if, there are no users of the driver at all, which may happen if the process containing the last user dies.

{error, permanent}

The driver has made itself permanent, in which case it can no longer be manipulated by this interface (much like
a statically linked in driver).

The function throws a badarg exception if the parameters are not given as described above.

unload(Name) -> ok | {error, ErrorDesc}
Types:

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 61

Name = driver()
ErrorDesc = term()

Unloads, or at least dereferences the driver named Name. If the caller is the last user of the driver, and there are no
more open ports using the driver, the driver will actually get unloaded. In all other cases, actual unloading will be
delayed until all ports are closed and there are no remaining users.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For usage scenarios, see the description in the beginning of this document.

The ErrorDesc returned is an opaque value to be passed further on to the format_error/1 function. For more control
over the operation, use the try_unload/2 interface.

The function throws a badarg exception if the parameters are not given as described above.

unload_driver(Name) -> ok | {error, ErrorDesc}
Types:

Name = driver()
ErrorDesc = term()

Unloads, or at least dereferences the driver named Name. If the caller is the last user of the driver, all remaining open
ports using the driver will get killed with the reason driver_unloaded and the driver will eventually get unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For usage scenarios, see the description in the beginning of this document.

The ErrorDesc returned is an opaque value to be passed further on to the format_error/1 function. For more control
over the operation, use the try_unload/2 interface.

The function throws a badarg exception if the parameters are not given as described above.

loaded_drivers() -> {ok, Drivers}
Types:

Drivers = [Driver]
Driver = string()

Returns a list of all the available drivers, both (statically) linked-in and dynamically loaded ones.

The driver names are returned as a list of strings rather than a list of atoms for historical reasons.

More information about drivers can be obtained using one of the info functions.

format_error(ErrorDesc) -> string()
Types:

ErrorDesc = term()
Takes an ErrorDesc returned by load, unload or reload functions and returns a string which describes the error or
warning.

Note:
Due to peculiarities in the dynamic loading interfaces on different platform, the returned string is only guaranteed
to describe the correct error if format_error/1 is called in the same instance of the erlang virtual machine as the
error appeared in (meaning the same operating system process)!

erl_ddll

62 | Ericsson AB. All Rights Reserved.: Kernel

SEE ALSO
erl_driver(4), driver_entry(4)

erl_prim_loader

Ericsson AB. All Rights Reserved.: Kernel | 63

erl_prim_loader
Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim_loader(3) in the erts
reference manual instead.

erlang

64 | Ericsson AB. All Rights Reserved.: Kernel

erlang
Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the erts reference manual
instead.

error_handler

Ericsson AB. All Rights Reserved.: Kernel | 65

error_handler
Erlang module

The error handler module defines what happens when certain types of errors occur.

Exports

undefined_function(Module, Function, Args) -> any()
Types:

Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

This function is called by the run-time system if a call is made to Module:Function(Arg1,.., ArgN) and
Module:Function/N is undefined. Note that undefined_function/3 is evaluated inside the process making
the original call.

This function will first attempt to autoload Module. If that is not possible, an undef exception will be raised.

If it was possible to load Module and the function Function/N is exported, it will be called.

Otherwise, if the function '$handle_undefined_function'/2 is exported, it will be called as
'$handle_undefined_function'(Function, Args).

Warning:
Defining '$handle_undefined_function'/2 in ordinary application code is highly discouraged. It is
very easy to make subtle errors that can take a long time to debug. Furthermore, none of the tools for static code
analysis (such as Dialyzer and Xref) supports the use of '$handle_undefined_function'/2 and no such
support will be added. Only use this function after having carefully considered other, less dangerous, solutions.
One example of potential legitimate use is creating stubs for other sub-systems during testing and debugging.

Otherwise an undef exception will be raised.

raise_undef_exception(Module, Function, Args) -> no_return()
Types:

Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

Raise an undef exception with a stacktrace indicating that Module:Function/N is undefined.

undefined_lambda(Module, Fun, Args) -> term()
Types:

error_handler

66 | Ericsson AB. All Rights Reserved.: Kernel

Module = atom()
Fun = function()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

This function is evaluated if a call is made to Fun(Arg1,.., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.

If Module is interpreted, the interpreter is invoked and the return value of the interpreted Fun(Arg1,.., ArgN)
call is returned.

Otherwise, it returns, if possible, the value of apply(Fun, Args) after an attempt has been made to autoload
Module. If this is not possible, the call fails with exit reason undef.

Notes
The code in error_handler is complex and should not be changed without fully understanding the interaction
between the error handler, the init process of the code server, and the I/O mechanism of the code.

Changes in the code which may seem small can cause a deadlock as unforeseen consequences may occur. The use of
input is dangerous in this type of code.

error_logger

Ericsson AB. All Rights Reserved.: Kernel | 67

error_logger
Erlang module

The Erlang error logger is an event manager (see OTP Design Principles and gen_event(3)), registered as
error_logger. Error, warning and info events are sent to the error logger from the Erlang runtime system and the
different Erlang/OTP applications. The events are, by default, logged to tty. Note that an event from a process P is
logged at the node of the group leader of P. This means that log output is directed to the node from which a process
was created, which not necessarily is the same node as where it is executing.

Initially, error_logger only has a primitive event handler, which buffers and prints the raw event messages. During
system startup, the application Kernel replaces this with a standard event handler, by default one which writes nicely
formatted output to tty. Kernel can also be configured so that events are logged to file instead, or not logged at all,
see kernel(6).

Also the SASL application, if started, adds its own event handler, which by default writes supervisor, crash and progress
reports to tty. See sasl(6).

It is recommended that user defined applications should report errors through the error logger, in order
to get uniform reports. User defined event handlers can be added to handle application specific events.
(add_report_handler/1,2). Also, there is a useful event handler in STDLIB for multi-file logging of events,
see log_mf_h(3).

Warning events were introduced in Erlang/OTP R9C and are enabled by default as of 18.0. To retain backwards
compatibility with existing user defined event handlers, these may be tagged as errors or info using the command line
flag +W <e | i | w>, thus showing up as error or info reports in the logs.

Data Types
report() =
 [{Tag :: term(), Data :: term()} | term()] | string() | term()

Exports

error_msg(Format) -> ok
error_msg(Format, Data) -> ok
format(Format, Data) -> ok
Types:

Format = string()
Data = list()

Sends a standard error event to the error logger. The Format and Data arguments are the same as the arguments of
io:format/2. The event is handled by the standard event handler.

1> error_logger:error_msg("An error occurred in ~p~n", [a_module]).

=ERROR REPORT==== 11-Aug-2005::14:03:19 ===
An error occurred in a_module
ok

error_logger

68 | Ericsson AB. All Rights Reserved.: Kernel

Warning:
If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, use error_report/1 instead.

error_report(Report) -> ok
Types:

Report = report()
Sends a standard error report event to the error logger. The event is handled by the standard event handler.

2> error_logger:error_report([{tag1,data1},a_term,{tag2,data}]).

=ERROR REPORT==== 11-Aug-2005::13:45:41 ===
 tag1: data1
 a_term
 tag2: data
ok
3> error_logger:error_report("Serious error in my module").

=ERROR REPORT==== 11-Aug-2005::13:45:49 ===
Serious error in my module
ok

error_report(Type, Report) -> ok
Types:

Type = term()
Report = report()

Sends a user defined error report event to the error logger. An event handler to handle the event is supposed to have
been added. The event is ignored by the standard event handler.

It is recommended that Report follows the same structure as for error_report/1.

warning_map() -> Tag
Types:

Tag = error | warning | info
Returns the current mapping for warning events. Events sent using warning_msg/1,2 or
warning_report/1,2 are tagged as errors, warnings (default) or info, depending on the value of the command
line flag +W.

os$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
warning
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning

error_logger

Ericsson AB. All Rights Reserved.: Kernel | 69

ok
3>
User switch command
 --> q
os$ erl +W e
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
error
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok

warning_msg(Format) -> ok
warning_msg(Format, Data) -> ok
Types:

Format = string()
Data = list()

Sends a standard warning event to the error logger. The Format and Data arguments are the same as the arguments
of io:format/2. The event is handled by the standard event handler. It is tagged either as an error, warning or
info, see warning_map/0.

Warning:
If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, use warning_report/1 instead.

warning_report(Report) -> ok
Types:

Report = report()
Sends a standard warning report event to the error logger. The event is handled by the standard event handler. It is
tagged either as an error, warning or info, see warning_map/0.

warning_report(Type, Report) -> ok
Types:

Type = any()
Report = report()

Sends a user defined warning report event to the error logger. An event handler to handle the event is supposed to
have been added. The event is ignored by the standard event handler. It is tagged either as an error, warning or info,
depending on the value of warning_map/0.

info_msg(Format) -> ok
info_msg(Format, Data) -> ok
Types:

error_logger

70 | Ericsson AB. All Rights Reserved.: Kernel

Format = string()
Data = list()

Sends a standard information event to the error logger. The Format and Data arguments are the same as the
arguments of io:format/2. The event is handled by the standard event handler.

1> error_logger:info_msg("Something happened in ~p~n", [a_module]).

=INFO REPORT==== 11-Aug-2005::14:06:15 ===
Something happened in a_module
ok

Warning:
If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, use info_report/1 instead.

info_report(Report) -> ok
Types:

Report = report()
Sends a standard information report event to the error logger. The event is handled by the standard event handler.

2> error_logger:info_report([{tag1,data1},a_term,{tag2,data}]).

=INFO REPORT==== 11-Aug-2005::13:55:09 ===
 tag1: data1
 a_term
 tag2: data
ok
3> error_logger:info_report("Something strange happened").

=INFO REPORT==== 11-Aug-2005::13:55:36 ===
Something strange happened
ok

info_report(Type, Report) -> ok
Types:

Type = any()
Report = report()

Sends a user defined information report event to the error logger. An event handler to handle the event is supposed to
have been added. The event is ignored by the standard event handler.

It is recommended that Report follows the same structure as for info_report/1.

add_report_handler(Handler) -> any()
add_report_handler(Handler, Args) -> Result
Types:

error_logger

Ericsson AB. All Rights Reserved.: Kernel | 71

Handler = module()
Args = gen_event:handler_args()
Result = gen_event:add_handler_ret()

Adds a new event handler to the error logger. The event handler must be implemented as a gen_event callback
module, see gen_event(3).

Handler is typically the name of the callback module and Args is an optional term (defaults to []) passed to the
initialization callback function Handler:init/1. The function returns ok if successful.

The event handler must be able to handle the events described below.

delete_report_handler(Handler) -> Result
Types:

Handler = module()
Result = gen_event:del_handler_ret()

Deletes an event handler from the error logger by calling gen_event:delete_handler(error_logger,
Handler, []), see gen_event(3).

tty(Flag) -> ok
Types:

Flag = boolean()
Enables (Flag == true) or disables (Flag == false) printout of standard events to the tty.

This is done by adding or deleting the standard event handler for output to tty, thus calling this function overrides the
value of the Kernel error_logger configuration parameter.

logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
logfile(Request :: close) -> ok | {error, CloseReason}
logfile(Request :: filename) -> Filename | {error, FilenameReason}
Types:

Filename = file:name()
OpenReason = allready_have_logfile | open_error()
CloseReason = module_not_found
FilenameReason = no_log_file
open_error() = file:posix() | badarg | system_limit

Enables or disables printout of standard events to a file.

This is done by adding or deleting the standard event handler for output to file, thus calling this function overrides the
value of the Kernel error_logger configuration parameter.

Enabling file logging can be used in combination with calling tty(false), in order to have a silent system, where
all standard events are logged to a file only. There can only be one active log file at a time.

Request is one of:

{open, Filename}

Opens the log file Filename. Returns ok if successful, or {error, allready_have_logfile} if
logging to file is already enabled, or an error tuple if another error occurred. For example, if Filename could
not be opened.

error_logger

72 | Ericsson AB. All Rights Reserved.: Kernel

close

Closes the current log file. Returns ok, or {error, module_not_found}.

filename

Returns the name of the log file Filename, or {error, no_log_file} if logging to file is not enabled.

Events
All event handlers added to the error logger must handle the following events. Gleader is the group leader pid of
the process which sent the event, and Pid is the process which sent the event.

{error, Gleader, {Pid, Format, Data}}

Generated when error_msg/1,2 or format is called.

{error_report, Gleader, {Pid, std_error, Report}}

Generated when error_report/1 is called.

{error_report, Gleader, {Pid, Type, Report}}

Generated when error_report/2 is called.

{warning_msg, Gleader, {Pid, Format, Data}}

Generated when warning_msg/1,2 is called, provided that warnings are set to be tagged as warnings.

{warning_report, Gleader, {Pid, std_warning, Report}}

Generated when warning_report/1 is called, provided that warnings are set to be tagged as warnings.

{warning_report, Gleader, {Pid, Type, Report}}

Generated when warning_report/2 is called, provided that warnings are set to be tagged as warnings.

{info_msg, Gleader, {Pid, Format, Data}}

Generated when info_msg/1,2 is called.

{info_report, Gleader, {Pid, std_info, Report}}

Generated when info_report/1 is called.

{info_report, Gleader, {Pid, Type, Report}}

Generated when info_report/2 is called.

Note that also a number of system internal events may be received, a catch-all clause last in the definition
of the event handler callback function Module:handle_event/2 is necessary. This also holds true for
Module:handle_info/2, as there are a number of system internal messages the event handler must take care
of as well.

SEE ALSO
gen_event(3), log_mf_h(3), kernel(6), sasl(6)

file

Ericsson AB. All Rights Reserved.: Kernel | 73

file
Erlang module

The module file provides an interface to the file system.

On operating systems with thread support, it is possible to let file operations be performed in threads of their own,
allowing other Erlang processes to continue executing in parallel with the file operations. See the command line flag
+A in erl(1).

With regard to file name encoding, the Erlang VM can operate in two modes. The current mode can be queried using
the native_name_encoding/0 function. It returns either latin1 or utf8.

In the latin1 mode, the Erlang VM does not change the encoding of file names. In the utf8 mode, file names can
contain Unicode characters greater than 255 and the VM will convert file names back and forth to the native file name
encoding (usually UTF-8, but UTF-16 on Windows).

The default mode depends on the operating system. Windows and MacOS X enforce consistent file name encoding
and therefore the VM uses the utf8 mode.

On operating systems with transparent naming (i.e. all Unix systems except MacOS X), the default will be utf8 if
the terminal supports UTF-8, otherwise latin1. The default may be overridden using the +fnl (to force latin1
mode) or +fnu (to force utf8 mode) when starting erl.

On operating systems with transparent naming, files could be inconsistently named, i.e. some files are encoded in
UTF-8 while others are encoded in (for example) iso-latin1. To be able to handle file systems with inconsistent naming
when running in the utf8 mode, the concept of "raw file names" has been introduced.

A raw file name is a file name given as a binary. The Erlang VM will perform no translation of a file name given as
a binary on systems with transparent naming.

When running in the utf8 mode, the file:list_dir/1 and file:read_link/1 functions will never return
raw file names. Use the list_dir_all/1 and read_link_all/1 functions to return all file names including raw file names.

Also see Notes about raw file names.

Data Types
deep_list() = [char() | atom() | deep_list()]
fd()
A file descriptor representing a file opened in raw mode.

filename() = string()
filename_all() = string() | binary()
io_device() = pid() | fd()
As returned by file:open/2; pid() is a process handling I/O-protocols.

name() = string() | atom() | deep_list()
If VM is in Unicode filename mode, string() and char() are allowed to be > 255.

name_all() =
 string() | atom() | deep_list() | (RawFilename :: binary())
If VM is in Unicode filename mode, string() and char() are allowed to be > 255. RawFilename is a filename
not subject to Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding
expected from the filesystem (i.e. non-UTF-8 characters although the VM is started in Unicode filename mode).

posix() =

file

74 | Ericsson AB. All Rights Reserved.: Kernel

 eacces |
 eagain |
 ebadf |
 ebusy |
 edquot |
 eexist |
 efault |
 efbig |
 eintr |
 einval |
 eio |
 eisdir |
 eloop |
 emfile |
 emlink |
 enametoolong |
 enfile |
 enodev |
 enoent |
 enomem |
 enospc |
 enotblk |
 enotdir |
 enotsup |
 enxio |
 eperm |
 epipe |
 erofs |
 espipe |
 esrch |
 estale |
 exdev
An atom which is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.

date_time() = calendar:datetime()
Must denote a valid date and time.

file_info() =
 #file_info{size = undefined | integer() >= 0,
 type =
 undefined |
 device |
 directory |
 other |
 regular |
 symlink,
 access =
 undefined | read | write | read_write | none,
 atime =
 undefined |
 file:date_time() |
 integer() >= 0,

file

Ericsson AB. All Rights Reserved.: Kernel | 75

 mtime =
 undefined |
 file:date_time() |
 integer() >= 0,
 ctime =
 undefined |
 file:date_time() |
 integer() >= 0,
 mode = undefined | integer() >= 0,
 links = undefined | integer() >= 0,
 major_device = undefined | integer() >= 0,
 minor_device = undefined | integer() >= 0,
 inode = undefined | integer() >= 0,
 uid = undefined | integer() >= 0,
 gid = undefined | integer() >= 0}
location() =
 integer() |
 {bof, Offset :: integer()} |
 {cur, Offset :: integer()} |
 {eof, Offset :: integer()} |
 bof |
 cur |
 eof
mode() =
 read |
 write |
 append |
 exclusive |
 raw |
 binary |
 {delayed_write,
 Size :: integer() >= 0,
 Delay :: integer() >= 0} |
 delayed_write |
 {read_ahead, Size :: integer() >= 1} |
 read_ahead |
 compressed |
 {encoding, unicode:encoding()} |
 sync
file_info_option() =
 {time, local} | {time, universal} | {time, posix} | raw

Exports

advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}
Types:

file

76 | Ericsson AB. All Rights Reserved.: Kernel

IoDevice = io_device()
Offset = Length = integer()
Advise = posix_file_advise()
Reason = posix() | badarg
posix_file_advise() =
 normal |
 sequential |
 random |
 no_reuse |
 will_need |
 dont_need

advise/4 can be used to announce an intention to access file data in a specific pattern in the future, thus allowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

allocate(File, Offset, Length) -> ok | {error, posix()}
Types:

File = io_device()
Offset = Length = integer() >= 0

allocate/3 can be used to preallocate space for a file.

This function only succeeds in platforms that implement this feature. When it succeeds, space is preallocated for the
file but the file size might not be updated. This behaviour depends on the preallocation implementation. To guarantee
the file size is updated one must truncate the file to the new size.

change_group(Filename, Gid) -> ok | {error, Reason}
Types:

Filename = name_all()
Gid = integer()
Reason = posix() | badarg

Changes group of a file. See write_file_info/2.

change_mode(Filename, Mode) -> ok | {error, Reason}
Types:

Filename = name_all()
Mode = integer()
Reason = posix() | badarg

Changes permissions of a file. See write_file_info/2.

change_owner(Filename, Uid) -> ok | {error, Reason}
Types:

Filename = name_all()
Uid = integer()
Reason = posix() | badarg

Changes owner of a file. See write_file_info/2.

file

Ericsson AB. All Rights Reserved.: Kernel | 77

change_owner(Filename, Uid, Gid) -> ok | {error, Reason}
Types:

Filename = name_all()
Uid = Gid = integer()
Reason = posix() | badarg

Changes owner and group of a file. See write_file_info/2.

change_time(Filename, Mtime) -> ok | {error, Reason}
Types:

Filename = name_all()
Mtime = date_time()
Reason = posix() | badarg

Changes the modification and access times of a file. See write_file_info/2.

change_time(Filename, Atime, Mtime) -> ok | {error, Reason}
Types:

Filename = name_all()
Atime = Mtime = date_time()
Reason = posix() | badarg

Changes the modification and last access times of a file. See write_file_info/2.

close(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Closes the file referenced by IoDevice. It mostly returns ok, expect for some severe errors such as out of memory.

Note that if the option delayed_write was used when opening the file, close/1 might return an old write error
and not even try to close the file. See open/2.

consult(Filename) -> {ok, Terms} | {error, Reason}
Types:

Filename = name_all()
Terms = [term()]
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads Erlang terms, separated by '.', from Filename. Returns one of the following:

{ok, Terms}

The file was successfully read.

file

78 | Ericsson AB. All Rights Reserved.: Kernel

{error, atom()}

An error occurred when opening the file or reading it. See open/2 for a list of typical error codes.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang terms in the file. Use format_error/1 to convert the three-
element tuple to an English description of the error.

Example:

f.txt: {person, "kalle", 25}.
 {person, "pelle", 30}.

1> file:consult("f.txt").
{ok,[{person,"kalle",25},{person,"pelle",30}]}

The encoding of of Filename can be set by a comment as described in epp(3).

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}
copy(Source, Destination, ByteCount) ->
 {ok, BytesCopied} | {error, Reason}
Types:

Source = Destination = io_device() | Filename | {Filename, Modes}
Filename = name_all()
Modes = [mode()]
ByteCount = integer() >= 0 | infinity
BytesCopied = integer() >= 0
Reason = posix() | badarg | terminated

Copies ByteCount bytes from Source to Destination. Source and Destination refer to either filenames
or IO devices from e.g. open/2. ByteCount defaults to infinity, denoting an infinite number of bytes.

The argument Modes is a list of possible modes, see open/2, and defaults to [].

If both Source and Destination refer to filenames, the files are opened with [read, binary] and [write,
binary] prepended to their mode lists, respectively, to optimize the copy.

If Source refers to a filename, it is opened with read mode prepended to the mode list before the copy, and closed
when done.

If Destination refers to a filename, it is opened with write mode prepended to the mode list before the copy,
and closed when done.

Returns {ok, BytesCopied} where BytesCopied is the number of bytes that actually was copied, which may
be less than ByteCount if end of file was encountered on the source. If the operation fails, {error, Reason}
is returned.

Typical error reasons: As for open/2 if a file had to be opened, and as for read/2 and write/2.

del_dir(Dir) -> ok | {error, Reason}
Types:

file

Ericsson AB. All Rights Reserved.: Kernel | 79

Dir = name_all()
Reason = posix() | badarg

Tries to delete the directory Dir. The directory must be empty before it can be deleted. Returns ok if successful.

Typical error reasons are:

eacces

Missing search or write permissions for the parent directories of Dir.

eexist

The directory is not empty.

enoent

The directory does not exist.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned instead.

einval

Attempt to delete the current directory. On some platforms, eacces is returned instead.

delete(Filename) -> ok | {error, Reason}
Types:

Filename = name_all()
Reason = posix() | badarg

Tries to delete the file Filename. Returns ok if successful.

Typical error reasons are:

enoent

The file does not exist.

eacces

Missing permission for the file or one of its parents.

eperm

The file is a directory and the user is not super-user.

enotdir

A component of the file name is not a directory. On some platforms, enoent is returned instead.

einval

Filename had an improper type, such as tuple.

Warning:
In a future release, a bad type for the Filename argument will probably generate an exception.

eval(Filename) -> ok | {error, Reason}
Types:

file

80 | Ericsson AB. All Rights Reserved.: Kernel

Filename = name_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions is also an expression), from
Filename. The actual result of the evaluation is not returned; any expression sequence in the file must be there for
its side effect. Returns one of the following:

ok

The file was read and evaluated.

{error, atom()}

An error occurred when opening the file or reading it. See open/2 for a list of typical error codes.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of of Filename can be set by a comment as described in epp(3).

eval(Filename, Bindings) -> ok | {error, Reason}
Types:

Filename = name_all()
Bindings = erl_eval:binding_struct()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as eval/1 but the variable bindings Bindings are used in the evaluation. See erl_eval(3) about variable
bindings.

format_error(Reason) -> Chars
Types:

Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}
Chars = string()

Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get_cwd() -> {ok, Dir} | {error, Reason}
Types:

file

Ericsson AB. All Rights Reserved.: Kernel | 81

Dir = filename()
Reason = posix()

Returns {ok, Dir}, where Dir is the current working directory of the file server.

Note:
In rare circumstances, this function can fail on Unix. It may happen if read permission does not exist for the
parent directories of the current directory.

Typical error reasons are:

eacces

Missing read permission for one of the parents of the current directory.

get_cwd(Drive) -> {ok, Dir} | {error, Reason}
Types:

Drive = string()
Dir = filename()
Reason = posix() | badarg

Drive should be of the form "Letter:", for example "c:". Returns {ok, Dir} or {error, Reason}, where
Dir is the current working directory of the drive specified.

This function returns {error, enotsup} on platforms which have no concept of current drive (Unix, for example).

Typical error reasons are:

enotsup

The operating system has no concept of drives.

eacces

The drive does not exist.

einval

The format of Drive is invalid.

list_dir(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name_all()
Filenames = [filename()]
Reason =
 posix() |
 badarg |
 {no_translation, Filename :: unicode:latin1_binary()}

Lists all files in a directory, except files with "raw" names. Returns {ok, Filenames} if successful. Otherwise,
it returns {error, Reason}. Filenames is a list of the names of all the files in the directory. The names are
not sorted.

Typical error reasons are:

file

82 | Ericsson AB. All Rights Reserved.: Kernel

eacces

Missing search or write permissions for Dir or one of its parent directories.

enoent

The directory does not exist.

{no_translation, Filename}

Filename is a binary() with characters coded in ISO-latin-1 and the VM was started with the parameter
+fnue.

list_dir_all(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name_all()
Filenames = [filename_all()]
Reason = posix() | badarg

Lists all the files in a directory, including files with "raw" names. Returns {ok, Filenames} if successful.
Otherwise, it returns {error, Reason}. Filenames is a list of the names of all the files in the directory. The
names are not sorted.

Typical error reasons are:

eacces

Missing search or write permissions for Dir or one of its parent directories.

enoent

The directory does not exist.

make_dir(Dir) -> ok | {error, Reason}
Types:

Dir = name_all()
Reason = posix() | badarg

Tries to create the directory Dir. Missing parent directories are not created. Returns ok if successful.

Typical error reasons are:

eacces

Missing search or write permissions for the parent directories of Dir.

eexist

There is already a file or directory named Dir.

enoent

A component of Dir does not exist.

enospc

There is a no space left on the device.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned instead.

file

Ericsson AB. All Rights Reserved.: Kernel | 83

make_link(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = name_all()
Reason = posix() | badarg

Makes a hard link from Existing to New, on platforms that support links (Unix and Windows). This function
returns ok if the link was successfully created, or {error, Reason}. On platforms that do not support links,
{error,enotsup} is returned.

Typical error reasons:

eacces

Missing read or write permissions for the parent directories of Existing or New.

eexist

New already exists.

enotsup

Hard links are not supported on this platform.

make_symlink(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = name_all()
Reason = posix() | badarg

This function creates a symbolic link New to the file or directory Existing, on platforms that support symbolic links
(most Unix systems and Windows beginning with Vista). Existing need not exist. This function returns ok if the
link was successfully created, or {error, Reason}. On platforms that do not support symbolic links, {error,
enotsup} is returned.

Typical error reasons:

eacces

Missing read or write permissions for the parent directories of Existing or New.

eexist

New already exists.

enotsup

Symbolic links are not supported on this platform.

eperm

User does not have privileges to create symbolic links (SeCreateSymbolicLinkPrivilege on Windows).

native_name_encoding() -> latin1 | utf8
This function returns the file name encoding mode. If it is latin1, the system does no translation of file names. If
it is utf8, file names will be converted back and forth to the native file name encoding (usually UTF-8, but UTF-16
on Windows).

open(File, Modes) -> {ok, IoDevice} | {error, Reason}
Types:

file

84 | Ericsson AB. All Rights Reserved.: Kernel

File = Filename | iodata()
Filename = name_all()
Modes = [mode() | ram]
IoDevice = io_device()
Reason = posix() | badarg | system_limit

Opens the file File in the mode determined by Modes, which may contain one or more of the following items:

read

The file, which must exist, is opened for reading.

write

The file is opened for writing. It is created if it does not exist. If the file exists, and if write is not combined
with read, the file will be truncated.

append

The file will be opened for writing, and it will be created if it does not exist. Every write operation to a file opened
with append will take place at the end of the file.

exclusive

The file, when opened for writing, is created if it does not exist. If the file exists, open will return {error,
eexist}.

Warning:
This option does not guarantee exclusiveness on file systems that do not support O_EXCL properly, such
as NFS. Do not depend on this option unless you know that the file system supports it (in general, local file
systems should be safe).

raw

The raw option allows faster access to a file, because no Erlang process is needed to handle the file. However,
a file opened in this way has the following limitations:

• The functions in the io module cannot be used, because they can only talk to an Erlang process. Instead,
use the read/2, read_line/1 and write/2 functions.

• Especially if read_line/1 is to be used on a raw file, it is recommended to combine this option with
the {read_ahead, Size} option as line oriented I/O is inefficient without buffering.

• Only the Erlang process which opened the file can use it.

• A remote Erlang file server cannot be used; the computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

binary

When this option has been given, read operations on the file will return binaries rather than lists.

{delayed_write, Size, Delay}

If this option is used, the data in subsequent write/2 calls is buffered until there are at least Size bytes buffered,
or until the oldest buffered data is Delay milliseconds old. Then all buffered data is written in one operating
system call. The buffered data is also flushed before some other file operation than write/2 is executed.

file

Ericsson AB. All Rights Reserved.: Kernel | 85

The purpose of this option is to increase performance by reducing the number of operating system calls, so the
write/2 calls should be for sizes significantly less than Size, and not interspersed by to many other file
operations, for this to happen.

When this option is used, the result of write/2 calls may prematurely be reported as successful, and if a write
error should actually occur the error is reported as the result of the next file operation, which is not executed.

For example, when delayed_write is used, after a number of write/2 calls, close/1 might return
{error, enospc} because there was not enough space on the disc for previously written data, and close/1
should probably be called again since the file is still open.

delayed_write

The same as {delayed_write, Size, Delay} with reasonable default values for Size and Delay.
(Roughly some 64 KBytes, 2 seconds)

{read_ahead, Size}

This option activates read data buffering. If read/2 calls are for significantly less than Size bytes, read
operations towards the operating system are still performed for blocks of Size bytes. The extra data is buffered
and returned in subsequent read/2 calls, giving a performance gain since the number of operating system calls
is reduced.

The read_ahead buffer is also highly utilized by the read_line/1 function in raw mode, why this option
is recommended (for performance reasons) when accessing raw files using that function.

If read/2 calls are for sizes not significantly less than, or even greater than Size bytes, no performance gain
can be expected.

read_ahead

The same as {read_ahead, Size} with a reasonable default value for Size. (Roughly some 64 KBytes)

compressed

Makes it possible to read or write gzip compressed files. The compressed option must be combined with either
read or write, but not both. Note that the file size obtained with read_file_info/1 will most probably
not match the number of bytes that can be read from a compressed file.

{encoding, Encoding}

Makes the file perform automatic translation of characters to and from a specific (Unicode) encoding. Note that
the data supplied to file:write or returned by file:read still is byte oriented, this option only denotes how data is
actually stored in the disk file.

Depending on the encoding, different methods of reading and writing data is preferred. The default encoding
of latin1 implies using this (the file) module for reading and writing data, as the interfaces provided here
work with byte-oriented data, while using other (Unicode) encodings makes the io(3) module's get_chars,
get_line and put_chars functions more suitable, as they can work with the full Unicode range.

If data is sent to an io_device() in a format that cannot be converted to the specified encoding, or if data
is read by a function that returns data in a format that cannot cope with the character range of the data, an error
occurs and the file will be closed.

The allowed values for Encoding are:

latin1

The default encoding. Bytes supplied to i.e. file:write are written as is on the file, likewise bytes read from
the file are returned to i.e. file:read as is. If the io(3) module is used for writing, the file can only cope with
Unicode characters up to codepoint 255 (the ISO-latin-1 range).

file

86 | Ericsson AB. All Rights Reserved.: Kernel

unicode or utf8

Characters are translated to and from the UTF-8 encoding before being written to or read from the file. A
file opened in this way might be readable using the file:read function, as long as no data stored on the file
lies beyond the ISO-latin-1 range (0..255), but failure will occur if the data contains Unicode codepoints
beyond that range. The file is best read with the functions in the Unicode aware io(3) module.

Bytes written to the file by any means are translated to UTF-8 encoding before actually being stored on
the disk file.

utf16 or {utf16,big}

Works like unicode, but translation is done to and from big endian UTF-16 instead of UTF-8.

{utf16,little}

Works like unicode, but translation is done to and from little endian UTF-16 instead of UTF-8.

utf32 or {utf32,big}

Works like unicode, but translation is done to and from big endian UTF-32 instead of UTF-8.

{utf32,little}

Works like unicode, but translation is done to and from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for a file "on the fly" by using the io:setopts/2 function, why a file can be analyzed
in latin1 encoding for i.e. a BOM, positioned beyond the BOM and then be set for the right encoding before
further reading.See the unicode(3) module for functions identifying BOM's.

This option is not allowed on raw files.

ram

File must be iodata(). Returns an fd() which lets the file module operate on the data in-memory as
if it is a file.

sync

On platforms that support it, enables the POSIX O_SYNC synchronous I/O flag or its platform-dependent
equivalent (e.g., FILE_FLAG_WRITE_THROUGH on Windows) so that writes to the file block until the data
has been physically written to disk. Be aware, though, that the exact semantics of this flag differ from platform
to platform; for example, neither Linux nor Windows guarantees that all file metadata are also written before
the call returns. For precise semantics, check the details of your platform's documentation. On platforms with no
support for POSIX O_SYNC or equivalent, use of the sync flag causes open to return {error, enotsup}.

Returns:

{ok, IoDevice}

The file has been opened in the requested mode. IoDevice is a reference to the file.

{error, Reason}

The file could not be opened.

IoDevice is really the pid of the process which handles the file. This process is linked to the process which originally
opened the file. If any process to which the IoDevice is linked terminates, the file will be closed and the process itself
will be terminated. An IoDevice returned from this call can be used as an argument to the IO functions (see io(3)).

file

Ericsson AB. All Rights Reserved.: Kernel | 87

Note:
In previous versions of file, modes were given as one of the atoms read, write, or read_write instead
of a list. This is still allowed for reasons of backwards compatibility, but should not be used for new code. Also
note that read_write is not allowed in a mode list.

Typical error reasons:

enoent

The file does not exist.

eacces

Missing permission for reading the file or searching one of the parent directories.

eisdir

The named file is not a regular file. It may be a directory, a fifo, or a device.

enotdir

A component of the file name is not a directory. On some platforms, enoent is returned instead.

enospc

There is a no space left on the device (if write access was specified).

path_consult(Path, Filename) ->
 {ok, Terms, FullName} | {error, Reason}
Types:

Path = [Dir]
Dir = Filename = name_all()
Terms = [term()]
FullName = filename_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then reads Erlang terms, separated by '.', from the file. Returns one of the following:

{ok, Terms, FullName}

The file was successfully read. FullName is the full name of the file.

{error, enoent}

The file could not be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. See open/2 for a list of typical error codes.

file

88 | Ericsson AB. All Rights Reserved.: Kernel

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang terms in the file. Use format_error/1 to convert the three-
element tuple to an English description of the error.

The encoding of of Filename can be set by a comment as described in epp(3).

path_eval(Path, Filename) -> {ok, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
FullName = filename_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute file
name, Path is ignored. Then reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions
is also an expression), from the file. The actual result of evaluation is not returned; any expression sequence in the file
must be there for its side effect. Returns one of the following:

{ok, FullName}

The file was read and evaluated. FullName is the full name of the file.

{error, enoent}

The file could not be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. See open/2 for a list of typical error codes.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of of Filename can be set by a comment as described in epp(3).

path_open(Path, Filename, Modes) ->
 {ok, IoDevice, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
Modes = [mode()]
IoDevice = io_device()
FullName = filename_all()
Reason = posix() | badarg | system_limit

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute file
name, Path is ignored. Then opens the file in the mode determined by Modes. Returns one of the following:

file

Ericsson AB. All Rights Reserved.: Kernel | 89

{ok, IoDevice, FullName}

The file has been opened in the requested mode. IoDevice is a reference to the file and FullName is the full
name of the file.

{error, enoent}

The file could not be found in any of the directories in Path.

{error, atom()}

The file could not be opened.

path_script(Path, Filename) ->
 {ok, Value, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
Value = term()
FullName = filename_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute file
name, Path is ignored. Then reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions
is also an expression), from the file. Returns one of the following:

{ok, Value, FullName}

The file was read and evaluated. FullName is the full name of the file and Value the value of the last expression.

{error, enoent}

The file could not be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. See open/2 for a list of typical error codes.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of of Filename can be set by a comment as described in epp(3).

path_script(Path, Filename, Bindings) ->
 {ok, Value, FullName} | {error, Reason}
Types:

file

90 | Ericsson AB. All Rights Reserved.: Kernel

Path = [Dir :: name_all()]
Filename = name_all()
Bindings = erl_eval:binding_struct()
Value = term()
FullName = filename_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as path_script/2 but the variable bindings Bindings are used in the evaluation. See erl_eval(3)
about variable bindings.

pid2name(Pid) -> {ok, Filename} | undefined
Types:

Filename = filename_all()
Pid = pid()

If Pid is an IO device, that is, a pid returned from open/2, this function returns the filename, or rather:

{ok, Filename}

If this node's file server is not a slave, the file was opened by this node's file server, (this implies that Pid must
be a local pid) and the file is not closed. Filename is the filename in flat string format.

undefined

In all other cases.

Warning:
This function is intended for debugging only.

position(IoDevice, Location) ->
 {ok, NewPosition} | {error, Reason}
Types:

IoDevice = io_device()
Location = location()
NewPosition = integer()
Reason = posix() | badarg | terminated

Sets the position of the file referenced by IoDevice to Location. Returns {ok, NewPosition} (as absolute
offset) if successful, otherwise {error, Reason}. Location is one of the following:

Offset

The same as {bof, Offset}.

{bof, Offset}

Absolute offset.

file

Ericsson AB. All Rights Reserved.: Kernel | 91

{cur, Offset}

Offset from the current position.

{eof, Offset}

Offset from the end of file.

bof | cur | eof

The same as above with Offset 0.

Note that offsets are counted in bytes, not in characters. If the file is opened using some other encoding than
latin1, one byte does not correspond to one character. Positioning in such a file can only be done to known character
boundaries, i.e. to a position earlier retrieved by getting a current position, to the beginning/end of the file or to some
other position known to be on a correct character boundary by some other means (typically beyond a byte order mark
in the file, which has a known byte-size).

Typical error reasons are:

einval

Either Location was illegal, or it evaluated to a negative offset in the file. Note that if the resulting position is
a negative value, the result is an error, and after the call the file position is undefined.

pread(IoDevice, LocNums) -> {ok, DataL} | eof | {error, Reason}
Types:

IoDevice = io_device()
LocNums =
 [{Location :: location(), Number :: integer() >= 0}]
DataL = [Data]
Data = string() | binary() | eof
Reason = posix() | badarg | terminated

Performs a sequence of pread/3 in one operation, which is more efficient than calling them one at a time. Returns
{ok, [Data, ...]} or {error, Reason}, where each Data, the result of the corresponding pread, is
either a list or a binary depending on the mode of the file, or eof if the requested position was beyond end of file.

As the position is given as a byte-offset, special caution has to be taken when working with files where encoding
is set to something else than latin1, as not every byte position will be a valid character boundary on such a file.

pread(IoDevice, Location, Number) ->
 {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device()
Location = location()
Number = integer() >= 0
Data = string() | binary()
Reason = posix() | badarg | terminated

Combines position/2 and read/2 in one operation, which is more efficient than calling them one at a time. If
IoDevice has been opened in raw mode, some restrictions apply: Location is only allowed to be an integer; and
the current position of the file is undefined after the operation.

As the position is given as a byte-offset, special caution has to be taken when working with files where encoding
is set to something else than latin1, as not every byte position will be a valid character boundary on such a file.

file

92 | Ericsson AB. All Rights Reserved.: Kernel

pwrite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}
Types:

IoDevice = io_device()
LocBytes = [{Location :: location(), Bytes :: iodata()}]
N = integer() >= 0
Reason = posix() | badarg | terminated

Performs a sequence of pwrite/3 in one operation, which is more efficient than calling them one at a time. Returns
ok or {error, {N, Reason}}, where N is the number of successful writes that was done before the failure.

When positioning in a file with other encoding than latin1, caution must be taken to set the position on a correct
character boundary, see position/2 for details.

pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Location = location()
Bytes = iodata()
Reason = posix() | badarg | terminated

Combines position/2 and write/2 in one operation, which is more efficient than calling them one at a time. If
IoDevice has been opened in raw mode, some restrictions apply: Location is only allowed to be an integer; and
the current position of the file is undefined after the operation.

When positioning in a file with other encoding than latin1, caution must be taken to set the position on a correct
character boundary, see position/2 for details.

read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device() | atom()
Number = integer() >= 0
Data = string() | binary()
Reason =
 posix() |
 badarg |
 terminated |
 {no_translation, unicode, latin1}

Reads Number bytes/characters from the file referenced by IoDevice. The functions read/2, pread/3 and
read_line/1 are the only ways to read from a file opened in raw mode (although they work for normally opened
files, too).

For files where encoding is set to something else than latin1, one character might be represented by more than
one byte on the file. The parameter Number always denotes the number of characters read from the file, while the
position in the file might be moved much more than this number when reading a Unicode file.

Also, if encoding is set to something else than latin1, the read/3 call will fail if the data contains characters
larger than 255, which is why the io(3) module is to be preferred when reading such a file.

The function returns:

file

Ericsson AB. All Rights Reserved.: Kernel | 93

{ok, Data}

If the file was opened in binary mode, the read bytes are returned in a binary, otherwise in a list. The list or binary
will be shorter than the number of bytes requested if end of file was reached.

eof

Returned if Number>0 and end of file was reached before anything at all could be read.

{error, Reason}

An error occurred.

Typical error reasons:

ebadf

The file is not opened for reading.

{no_translation, unicode, latin1}

The file was opened with another encoding than latin1 and the data in the file can not be translated to the
byte-oriented data that this function returns.

read_file(Filename) -> {ok, Binary} | {error, Reason}
Types:

Filename = name_all()
Binary = binary()
Reason = posix() | badarg | terminated | system_limit

Returns {ok, Binary}, where Binary is a binary data object that contains the contents of Filename, or
{error, Reason} if an error occurs.

Typical error reasons:

enoent

The file does not exist.

eacces

Missing permission for reading the file, or for searching one of the parent directories.

eisdir

The named file is a directory.

enotdir

A component of the file name is not a directory. On some platforms, enoent is returned instead.

enomem

There is not enough memory for the contents of the file.

read_file_info(Filename) -> {ok, FileInfo} | {error, Reason}
read_file_info(Filename, Opts) -> {ok, FileInfo} | {error, Reason}
Types:

file

94 | Ericsson AB. All Rights Reserved.: Kernel

Filename = name_all()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

Retrieves information about a file. Returns {ok, FileInfo} if successful, otherwise {error, Reason}.
FileInfo is a record file_info, defined in the Kernel include file file.hrl. Include the following directive
in the module from which the function is called:

-include_lib("kernel/include/file.hrl").

The time type returned in atime, mtime and ctime is dependent on the time type set in Opts :: {time,
Type}. Type local will return local time, universal will return universal time and posix will return seconds
since or before unix time epoch which is 1970-01-01 00:00 UTC. Default is {time, local}.

If the raw option is set, the file server will not be called and only informations about local files will be returned.

Note:
Since file times is stored in posix time on most OS it is faster to query file information with the posix option.

The record file_info contains the following fields.

size = integer() >= 0

Size of file in bytes.

type = device | directory | other | regular | symlink

The type of the file.

access = read | write | read_write | none

The current system access to the file.

atime = date_time() | integer() >= 0

The last time the file was read.

mtime = date_time() | integer() >= 0

The last time the file was written.

ctime = date_time() | integer() >=0

The interpretation of this time field depends on the operating system. On Unix, it is the last time the file or the
inode was changed. In Windows, it is the create time.

mode = integer() >= 0

The file permissions as the sum of the following bit values:

8#00400
read permission: owner

8#00200
write permission: owner

8#00100
execute permission: owner

file

Ericsson AB. All Rights Reserved.: Kernel | 95

8#00040
read permission: group

8#00020
write permission: group

8#00010
execute permission: group

8#00004
read permission: other

8#00002
write permission: other

8#00001
execute permission: other

16#800
set user id on execution

16#400
set group id on execution

On Unix platforms, other bits than those listed above may be set.

links = integer() >= 0

Number of links to the file (this will always be 1 for file systems which have no concept of links).

major_device = integer() >= 0

Identifies the file system where the file is located. In Windows, the number indicates a drive as follows: 0 means
A:, 1 means B:, and so on.

minor_device = integer() >= 0

Only valid for character devices on Unix. In all other cases, this field is zero.

inode = integer() >= 0

Gives the inode number. On non-Unix file systems, this field will be zero.

uid = integer() >= 0

Indicates the owner of the file. Will be zero for non-Unix file systems.

gid = integer() >= 0

Gives the group that the owner of the file belongs to. Will be zero for non-Unix file systems.

Typical error reasons:

eacces

Missing search permission for one of the parent directories of the file.

enoent

The file does not exist.

enotdir

A component of the file name is not a directory. On some platforms, enoent is returned instead.

read_line(IoDevice) -> {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device() | atom()
Data = string() | binary()
Reason =

file

96 | Ericsson AB. All Rights Reserved.: Kernel

 posix() |
 badarg |
 terminated |
 {no_translation, unicode, latin1}

Reads a line of bytes/characters from the file referenced by IoDevice. Lines are defined to be delimited by the
linefeed (LF, \n) character, but any carriage return (CR, \r) followed by a newline is also treated as a single
LF character (the carriage return is silently ignored). The line is returned including the LF, but excluding any CR
immediately followed by a LF. This behaviour is consistent with the behaviour of io:get_line/2. If end of file is reached
without any LF ending the last line, a line with no trailing LF is returned.

The function can be used on files opened in raw mode. It is however inefficient to use it on raw files if the file is not
opened with the option {read_ahead, Size} specified, why combining raw and {read_ahead, Size} is
highly recommended when opening a text file for raw line oriented reading.

If encoding is set to something else than latin1, the read_line/1 call will fail if the data contains characters
larger than 255, why the io(3) module is to be preferred when reading such a file.

The function returns:

{ok, Data}

One line from the file is returned, including the trailing LF, but with CRLF sequences replaced by a single LF
(see above).

If the file was opened in binary mode, the read bytes are returned in a binary, otherwise in a list.

eof

Returned if end of file was reached before anything at all could be read.

{error, Reason}

An error occurred.

Typical error reasons:

ebadf

The file is not opened for reading.

{no_translation, unicode, latin1}

The file is was opened with another encoding than latin1 and the data on the file can not be translated to
the byte-oriented data that this function returns.

read_link(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = name_all()
Filename = filename()
Reason = posix() | badarg

This function returns {ok, Filename} if Name refers to a symbolic link that is not a "raw" file name, or {error,
Reason} otherwise. On platforms that do not support symbolic links, the return value will be {error,enotsup}.

Typical error reasons:

einval

Name does not refer to a symbolic link or the name of the file that it refers to does not conform to the expected
encoding.

file

Ericsson AB. All Rights Reserved.: Kernel | 97

enoent

The file does not exist.

enotsup

Symbolic links are not supported on this platform.

read_link_all(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = name_all()
Filename = filename_all()
Reason = posix() | badarg

This function returns {ok, Filename} if Name refers to a symbolic link or {error, Reason} otherwise. On
platforms that do not support symbolic links, the return value will be {error,enotsup}.

Note that Filename can be either a list or a binary.

Typical error reasons:

einval

Name does not refer to a symbolic link.

enoent

The file does not exist.

enotsup

Symbolic links are not supported on this platform.

read_link_info(Name) -> {ok, FileInfo} | {error, Reason}
read_link_info(Name, Opts) -> {ok, FileInfo} | {error, Reason}
Types:

Name = name_all()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

This function works like read_file_info/1,2 except that if Name is a symbolic link, information about the link will be
returned in the file_info record and the type field of the record will be set to symlink.

If the raw option is set, the file server will not be called and only informations about local files will be returned.

If Name is not a symbolic link, this function returns exactly the same result as read_file_info/1. On platforms
that do not support symbolic links, this function is always equivalent to read_file_info/1.

rename(Source, Destination) -> ok | {error, Reason}
Types:

Source = Destination = name_all()
Reason = posix() | badarg

Tries to rename the file Source to Destination. It can be used to move files (and directories) between directories,
but it is not sufficient to specify the destination only. The destination file name must also be specified. For example,
if bar is a normal file and foo and baz are directories, rename("foo/bar", "baz") returns an error, but
rename("foo/bar", "baz/bar") succeeds. Returns ok if it is successful.

file

98 | Ericsson AB. All Rights Reserved.: Kernel

Note:
Renaming of open files is not allowed on most platforms (see eacces below).

Typical error reasons:

eacces

Missing read or write permissions for the parent directories of Source or Destination. On some platforms,
this error is given if either Source or Destination is open.

eexist

Destination is not an empty directory. On some platforms, also given when Source and Destination
are not of the same type.

einval

Source is a root directory, or Destination is a sub-directory of Source.

eisdir

Destination is a directory, but Source is not.

enoent

Source does not exist.

enotdir

Source is a directory, but Destination is not.

exdev

Source and Destination are on different file systems.

script(Filename) -> {ok, Value} | {error, Reason}
Types:

Filename = name_all()
Value = term()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions is also an expression), from
the file. Returns one of the following:

{ok, Value}

The file was read and evaluated. Value is the value of the last expression.

{error, atom()}

An error occurred when opening the file or reading it. See open/2 for a list of typical error codes.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

file

Ericsson AB. All Rights Reserved.: Kernel | 99

The encoding of of Filename can be set by a comment as described in epp(3).

script(Filename, Bindings) -> {ok, Value} | {error, Reason}
Types:

Filename = name_all()
Bindings = erl_eval:binding_struct()
Value = term()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as script/1 but the variable bindings Bindings are used in the evaluation. See erl_eval(3) about
variable bindings.

set_cwd(Dir) -> ok | {error, Reason}
Types:

Dir = name() | EncodedBinary
EncodedBinary = binary()
Reason = posix() | badarg | no_translation

Sets the current working directory of the file server to Dir. Returns ok if successful.

The functions in the file module usually treat binaries as raw filenames, i.e. they are passed as is even when the
encoding of the binary does not agree with file:native_name_encoding(). This function however expects
binaries to be encoded according to the value returned by file:native_name_encoding().

Typical error reasons are:

enoent

The directory does not exist.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned.

eacces

Missing permission for the directory or one of its parents.

badarg

Dir had an improper type, such as tuple.

no_translation

Dir is a binary() with characters coded in ISO-latin-1 and the VM is operating with unicode file name
encoding.

Warning:
In a future release, a bad type for the Dir argument will probably generate an exception.

file

100 | Ericsson AB. All Rights Reserved.: Kernel

sync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Makes sure that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. On
some platforms, this function might have no effect.

Typical error reasons are:

enospc

Not enough space left to write the file.

datasync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Makes sure that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. In
many ways it resembles fsync but it does not update some of the file's metadata such as the access time. On some
platforms this function has no effect.

Applications that access databases or log files often write a tiny data fragment (e.g., one line in a log file) and then
call fsync() immediately in order to ensure that the written data is physically stored on the harddisk. Unfortunately,
fsync() will always initiate two write operations: one for the newly written data and another one in order to update the
modification time stored in the inode. If the modification time is not a part of the transaction concept, fdatasync() can
be used to avoid unnecessary inode disk write operations.

Available only in some POSIX systems, this call results in a call to fsync(), or has no effect in systems not implementing
the fdatasync() syscall.

truncate(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Truncates the file referenced by IoDevice at the current position. Returns ok if successful, otherwise {error,
Reason}.

sendfile(Filename, Socket) ->
 {ok, integer() >= 0} |
 {error, inet:posix() | closed | badarg | not_owner}
Types:

Filename = name_all()
Socket = inet:socket()

Sends the file Filename to Socket. Returns {ok, BytesSent} if successful, otherwise {error, Reason}.

sendfile(RawFile, Socket, Offset, Bytes, Opts) ->
 {ok, integer() >= 0} |
 {error, inet:posix() | closed | badarg | not_owner}
Types:

file

Ericsson AB. All Rights Reserved.: Kernel | 101

RawFile = fd()
Socket = inet:socket()
Offset = Bytes = integer() >= 0
Opts = [sendfile_option()]
sendfile_option() =
 {chunk_size, integer() >= 0} | {use_threads, boolean()}

Sends Bytes from the file referenced by RawFile beginning at Offset to Socket. Returns {ok, BytesSent}
if successful, otherwise {error, Reason}. If Bytes is set to 0 all data after the given Offset is sent.

The file used must be opened using the raw flag, and the process calling sendfile must be the controlling process of
the socket. See gen_tcp:controlling_process/2

If the OS used does not support sendfile, an Erlang fallback using file:read and gen_tcp:send is used.

The option list can contain the following options:

chunk_size
The chunk size used by the erlang fallback to send data. If using the fallback, this should be set to a value
which comfortably fits in the systems memory. Default is 20 MB.

use_threads
Instruct the emulator to use the async thread pool for the sendfile system call. This could be usefull if the
OS you are running on does not properly support non-blocking sendfile calls. Do note that using async
threads potentially makes your system volnerable to slow client attacks. If set to true and no async threads are
available, the sendfile call will return {error,einval}. Introduced in Erlang/OTP 17.0. Default is false.

write(IoDevice, Bytes) -> ok | {error, Reason}
Types:

IoDevice = io_device() | atom()
Bytes = iodata()
Reason = posix() | badarg | terminated

Writes Bytes to the file referenced by IoDevice. This function is the only way to write to a file opened in raw mode
(although it works for normally opened files, too). Returns ok if successful, and {error, Reason} otherwise.

If the file is opened with encoding set to something else than latin1, each byte written might result in several
bytes actually being written to the file, as the byte range 0..255 might represent anything between one and four bytes
depending on value and UTF encoding type.

Typical error reasons are:

ebadf

The file is not opened for writing.

enospc

There is a no space left on the device.

write_file(Filename, Bytes) -> ok | {error, Reason}
Types:

Filename = name_all()
Bytes = iodata()
Reason = posix() | badarg | terminated | system_limit

Writes the contents of the iodata term Bytes to the file Filename. The file is created if it does not exist. If it exists,
the previous contents are overwritten. Returns ok, or {error, Reason}.

file

102 | Ericsson AB. All Rights Reserved.: Kernel

Typical error reasons are:

enoent

A component of the file name does not exist.

enotdir

A component of the file name is not a directory. On some platforms, enoent is returned instead.

enospc

There is a no space left on the device.

eacces

Missing permission for writing the file or searching one of the parent directories.

eisdir

The named file is a directory.

write_file(Filename, Bytes, Modes) -> ok | {error, Reason}
Types:

Filename = name_all()
Bytes = iodata()
Modes = [mode()]
Reason = posix() | badarg | terminated | system_limit

Same as write_file/2, but takes a third argument Modes, a list of possible modes, see open/2. The mode flags
binary and write are implicit, so they should not be used.

write_file_info(Filename, FileInfo) -> ok | {error, Reason}
write_file_info(Filename, FileInfo, Opts) -> ok | {error, Reason}
Types:

Filename = name_all()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

Change file information. Returns ok if successful, otherwise {error, Reason}. FileInfo is a record
file_info, defined in the Kernel include file file.hrl. Include the following directive in the module from which
the function is called:

-include_lib("kernel/include/file.hrl").

The time type set in atime, mtime and ctime is dependent on the time type set in Opts :: {time, Type}.
Type local will interpret the time set as local, universal will interpret it as universal time and posix must be
seconds since or before unix time epoch which is 1970-01-01 00:00 UTC. Default is {time, local}.

If the raw option is set, the file server will not be called and only informations about local files will be returned.

The following fields are used from the record, if they are given.

atime = date_time() | integer() >= 0

The last time the file was read.

file

Ericsson AB. All Rights Reserved.: Kernel | 103

mtime = date_time() | integer() >= 0

The last time the file was written.

ctime = date_time() | integer() >= 0

On Unix, any value give for this field will be ignored (the "ctime" for the file will be set to the current time). On
Windows, this field is the new creation time to set for the file.

mode = integer() >= 0

The file permissions as the sum of the following bit values:

8#00400
read permission: owner

8#00200
write permission: owner

8#00100
execute permission: owner

8#00040
read permission: group

8#00020
write permission: group

8#00010
execute permission: group

8#00004
read permission: other

8#00002
write permission: other

8#00001
execute permission: other

16#800
set user id on execution

16#400
set group id on execution

On Unix platforms, other bits than those listed above may be set.

uid = integer() >= 0

Indicates the owner of the file. Ignored for non-Unix file systems.

gid = integer() >= 0

Gives the group that the owner of the file belongs to. Ignored for non-Unix file systems.

Typical error reasons:

eacces

Missing search permission for one of the parent directories of the file.

enoent

The file does not exist.

enotdir

A component of the file name is not a directory. On some platforms, enoent is returned instead.

POSIX Error Codes
• eacces - permission denied

file

104 | Ericsson AB. All Rights Reserved.: Kernel

• eagain - resource temporarily unavailable

• ebadf - bad file number

• ebusy - file busy

• edquot - disk quota exceeded

• eexist - file already exists

• efault - bad address in system call argument

• efbig - file too large

• eintr - interrupted system call

• einval - invalid argument

• eio - IO error

• eisdir - illegal operation on a directory

• eloop - too many levels of symbolic links

• emfile - too many open files

• emlink - too many links

• enametoolong - file name too long

• enfile - file table overflow

• enodev - no such device

• enoent - no such file or directory

• enomem - not enough memory

• enospc - no space left on device

• enotblk - block device required

• enotdir - not a directory

• enotsup - operation not supported

• enxio - no such device or address

• eperm - not owner

• epipe - broken pipe

• erofs - read-only file system

• espipe - invalid seek

• esrch - no such process

• estale - stale remote file handle

• exdev - cross-domain link

Performance
Some operating system file operations, for example a sync/1 or close/1 on a huge file, may block their calling
thread for seconds. If this befalls the emulator main thread, the response time is no longer in the order of milliseconds,
depending on the definition of "soft" in soft real-time system.

If the device driver thread pool is active, file operations are done through those threads instead, so the emulator can go
on executing Erlang processes. Unfortunately, the time for serving a file operation increases due to the extra scheduling
required from the operating system.

If the device driver thread pool is disabled or of size 0, large file reads and writes are segmented into several smaller,
which enables the emulator so server other processes during the file operation. This gives the same effect as when
using the thread pool, but with larger overhead. Other file operations, for example sync/1 or close/1 on a huge
file, still are a problem.

file

Ericsson AB. All Rights Reserved.: Kernel | 105

For increased performance, raw files are recommended. Raw files uses the file system of the node's host machine.
For normal files (non-raw), the file server is used to find the files, and if the node is running its file server as slave
to another node's, and the other node runs on some other host machine, they may have different file systems. This is
seldom a problem, but you have now been warned.

A normal file is really a process so it can be used as an IO device (see io). Therefore when data is written to a normal
file, the sending of the data to the file process, copies all data that are not binaries. Opening the file in binary mode
and writing binaries is therefore recommended. If the file is opened on another node, or if the file server runs as slave
to another node's, also binaries are copied.

Caching data to reduce the number of file operations, or rather the number of calls to the file driver, will generally
increase performance. The following function writes 4 MBytes in 23 seconds when tested:

create_file_slow(Name, N) when integer(N), N >= 0 ->
 {ok, FD} = file:open(Name, [raw, write, delayed_write, binary]),
 ok = create_file_slow(FD, 0, N),
 ok = ?FILE_MODULE:close(FD),
 ok.

create_file_slow(FD, M, M) ->
 ok;
create_file_slow(FD, M, N) ->
 ok = file:write(FD, <<M:32/unsigned>>),
 create_file_slow(FD, M+1, N).

The following, functionally equivalent, function collects 1024 entries into a list of 128 32-byte binaries before each
call to file:write/2 and so does the same work in 0.52 seconds, which is 44 times faster.

create_file(Name, N) when integer(N), N >= 0 ->
 {ok, FD} = file:open(Name, [raw, write, delayed_write, binary]),
 ok = create_file(FD, 0, N),
 ok = ?FILE_MODULE:close(FD),
 ok.

create_file(FD, M, M) ->
 ok;
create_file(FD, M, N) when M + 1024 =< N ->
 create_file(FD, M, M + 1024, []),
 create_file(FD, M + 1024, N);
create_file(FD, M, N) ->
 create_file(FD, M, N, []).

create_file(FD, M, M, R) ->
 ok = file:write(FD, R);
create_file(FD, M, N0, R) when M + 8 =< N0 ->
 N1 = N0-1, N2 = N0-2, N3 = N0-3, N4 = N0-4,
 N5 = N0-5, N6 = N0-6, N7 = N0-7, N8 = N0-8,
 create_file(FD, M, N8,
 [<<N8:32/unsigned, N7:32/unsigned,
 N6:32/unsigned, N5:32/unsigned,
 N4:32/unsigned, N3:32/unsigned,
 N2:32/unsigned, N1:32/unsigned>> | R]);
create_file(FD, M, N0, R) ->
 N1 = N0-1,
 create_file(FD, M, N1, [<<N1:32/unsigned>> | R]).

file

106 | Ericsson AB. All Rights Reserved.: Kernel

Note:
Trust only your own benchmarks. If the list length in create_file/2 above is increased, it will run slightly
faster, but consume more memory and cause more memory fragmentation. How much this affects your application
is something that this simple benchmark can not predict.

If the size of each binary is increased to 64 bytes, it will also run slightly faster, but the code will be twice as
clumsy. In the current implementation are binaries larger than 64 bytes stored in memory common to all processes
and not copied when sent between processes, while these smaller binaries are stored on the process heap and
copied when sent like any other term.

So, with a binary size of 68 bytes create_file/2 runs 30 percent slower then with 64 bytes, and will cause
much more memory fragmentation. Note that if the binaries were to be sent between processes (for example a
non-raw file) the results would probably be completely different.

A raw file is really a port. When writing data to a port, it is efficient to write a list of binaries. There is no need to
flatten a deep list before writing. On Unix hosts, scatter output, which writes a set of buffers in one operation, is used
when possible. In this way file:write(FD, [Bin1, Bin2 | Bin3]) will write the contents of the binaries
without copying the data at all except for perhaps deep down in the operating system kernel.

For raw files, pwrite/2 and pread/2 are efficiently implemented. The file driver is called only once for the whole
operation, and the list iteration is done in the file driver.

The options delayed_write and read_ahead to file:open/2 makes the file driver cache data to reduce the
number of operating system calls. The function create_file/2 in the example above takes 60 seconds seconds
without the delayed_write option, which is 2.6 times slower.

And, as a really bad example, create_file_slow/2 above without the raw, binary and delayed_write
options, that is it calls file:open(Name, [write]), needs 1 min 20 seconds for the job, which is 3.5 times
slower than the first example, and 150 times slower than the optimized create_file/2.

Warnings
If an error occurs when accessing an open file with the io module, the process which handles the file will exit. The
dead file process might hang if a process tries to access it later. This will be fixed in a future release.

SEE ALSO
filename(3)

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 107

gen_tcp
Erlang module

The gen_tcp module provides functions for communicating with sockets using the TCP/IP protocol.

The following code fragment provides a simple example of a client connecting to a server at port 5678, transferring
a binary and closing the connection:

client() ->
 SomeHostInNet = "localhost", % to make it runnable on one machine
 {ok, Sock} = gen_tcp:connect(SomeHostInNet, 5678,
 [binary, {packet, 0}]),
 ok = gen_tcp:send(Sock, "Some Data"),
 ok = gen_tcp:close(Sock).

At the other end a server is listening on port 5678, accepts the connection and receives the binary:

server() ->
 {ok, LSock} = gen_tcp:listen(5678, [binary, {packet, 0},
 {active, false}]),
 {ok, Sock} = gen_tcp:accept(LSock),
 {ok, Bin} = do_recv(Sock, []),
 ok = gen_tcp:close(Sock),
 Bin.

do_recv(Sock, Bs) ->
 case gen_tcp:recv(Sock, 0) of
 {ok, B} ->
 do_recv(Sock, [Bs, B]);
 {error, closed} ->
 {ok, list_to_binary(Bs)}
 end.

For more examples, see the examples section.

Data Types
option() =
 {active, true | false | once | -32768..32767} |
 {buffer, integer() >= 0} |
 {delay_send, boolean()} |
 {deliver, port | term} |
 {dontroute, boolean()} |
 {exit_on_close, boolean()} |
 {header, integer() >= 0} |
 {high_msgq_watermark, integer() >= 1} |
 {high_watermark, integer() >= 0} |
 {keepalive, boolean()} |
 {linger, {boolean(), integer() >= 0}} |
 {low_msgq_watermark, integer() >= 1} |
 {low_watermark, integer() >= 0} |
 {mode, list | binary} |

gen_tcp

108 | Ericsson AB. All Rights Reserved.: Kernel

 list |
 binary |
 {nodelay, boolean()} |
 {packet,
 0 |
 1 |
 2 |
 4 |
 raw |
 sunrm |
 asn1 |
 cdr |
 fcgi |
 line |
 tpkt |
 http |
 httph |
 http_bin |
 httph_bin} |
 {packet_size, integer() >= 0} |
 {priority, integer() >= 0} |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueBin :: binary()} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {send_timeout, integer() >= 0 | infinity} |
 {send_timeout_close, boolean()} |
 {show_econnreset, boolean()} |
 {sndbuf, integer() >= 0} |
 {tos, integer() >= 0} |
 {ipv6_v6only, boolean()}
option_name() =
 active |
 buffer |
 delay_send |
 deliver |
 dontroute |
 exit_on_close |
 header |
 high_msgq_watermark |
 high_watermark |
 keepalive |
 linger |
 low_msgq_watermark |
 low_watermark |
 mode |
 nodelay |
 packet |
 packet_size |
 priority |

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 109

 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueSpec ::
 (ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
 recbuf |
 reuseaddr |
 send_timeout |
 send_timeout_close |
 show_econnreset |
 sndbuf |
 tos |
 ipv6_v6only
connect_option() =
 {ip, inet:ip_address()} |
 {fd, Fd :: integer() >= 0} |
 {ifaddr, inet:ip_address()} |
 inet:address_family() |
 {port, inet:port_number()} |
 {tcp_module, module()} |
 option()
listen_option() =
 {ip, inet:ip_address()} |
 {fd, Fd :: integer() >= 0} |
 {ifaddr, inet:ip_address()} |
 inet:address_family() |
 {port, inet:port_number()} |
 {backlog, B :: integer() >= 0} |
 {tcp_module, module()} |
 option()
socket()
As returned by accept/1,2 and connect/3,4.

Exports

connect(Address, Port, Options) -> {ok, Socket} | {error, Reason}
connect(Address, Port, Options, Timeout) ->
 {ok, Socket} | {error, Reason}
Types:

Address = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Options = [connect_option()]
Timeout = timeout()
Socket = socket()
Reason = inet:posix()

Connects to a server on TCP port Port on the host with IP address Address. The Address argument can be either
a hostname, or an IP address.

The available options are:

gen_tcp

110 | Ericsson AB. All Rights Reserved.: Kernel

{ip, ip_address()}

If the host has several network interfaces, this option specifies which one to use.

{ifaddr, ip_address()}

Same as {ip, ip_address()}. If the host has several network interfaces, this option specifies which one
to use.

{fd, integer() >= 0}

If a socket has somehow been connected without using gen_tcp, use this option to pass the file descriptor for
it. If {ip, ip_address()} and/or {port, port_number()} is combined with this option the fd will
be bound to the given interface and port before connecting. If these options are not given it is assumed that the
fd is already bound appropriately.

inet

Set up the socket for IPv4.

inet6

Set up the socket for IPv6.

{port, Port}

Specify which local port number to use.

{tcp_module, module()}

Override which callback module is used. Defaults to inet_tcp for IPv4 and inet6_tcp for IPv6.

Opt

See inet:setopts/2.

Packets can be sent to the returned socket Socket using send/2. Packets sent from the peer are delivered as
messages:

{tcp, Socket, Data}

If the socket is in {active, N} mode (see inet:setopts/2 for details) and its message counter drops to 0, the following
message is delivered to indicate that the socket has transitioned to passive ({active, false}) mode:

{tcp_passive, Socket}

If the socket is closed, the following message is delivered:

{tcp_closed, Socket}

If an error occurs on the socket, the following message is delivered:

{tcp_error, Socket, Reason}

unless {active, false} is specified in the option list for the socket, in which case packets are retrieved by calling
recv/2.

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 111

The optional Timeout parameter specifies a timeout in milliseconds. The default value is infinity.

Note:
The default values for options given to connect can be affected by the Kernel configuration parameter
inet_default_connect_options. See inet(3) for details.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:

Port = inet:port_number()
Options = [listen_option()]
ListenSocket = socket()
Reason = system_limit | inet:posix()

Sets up a socket to listen on the port Port on the local host.

If Port == 0, the underlying OS assigns an available port number, use inet:port/1 to retrieve it.

The available options are:

list

Received Packet is delivered as a list.

binary

Received Packet is delivered as a binary.

{backlog, B}

B is an integer >= 0. The backlog value defaults to 5. The backlog value defines the maximum length that the
queue of pending connections may grow to.

{ip, ip_address()}

If the host has several network interfaces, this option specifies which one to listen on.

{port, Port}

Specify which local port number to use.

{fd, Fd}

If a socket has somehow been connected without using gen_tcp, use this option to pass the file descriptor for it.

{ifaddr, ip_address()}

Same as {ip, ip_address()}. If the host has several network interfaces, this option specifies which one
to use.

inet6

Set up the socket for IPv6.

inet

Set up the socket for IPv4.

{tcp_module, module()}

Override which callback module is used. Defaults to inet_tcp for IPv4 and inet6_tcp for IPv6.

gen_tcp

112 | Ericsson AB. All Rights Reserved.: Kernel

Opt

See inet:setopts/2.

The returned socket ListenSocket can only be used in calls to accept/1,2.

Note:
The default values for options given to listen can be affected by the Kernel configuration parameter
inet_default_listen_options. See inet(3) for details.

accept(ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
Types:

ListenSocket = socket()
Returned by listen/2.

Timeout = timeout()
Socket = socket()
Reason = closed | timeout | system_limit | inet:posix()

Accepts an incoming connection request on a listen socket. Socket must be a socket returned from listen/2.
Timeout specifies a timeout value in ms, defaults to infinity.

Returns {ok, Socket} if a connection is established, or {error, closed} if ListenSocket is closed, or
{error, timeout} if no connection is established within the specified time, or {error, system_limit}
if all available ports in the Erlang emulator are in use. May also return a POSIX error value if something else goes
wrong, see inet(3) for possible error values.

Packets can be sent to the returned socket Socket using send/2. Packets sent from the peer are delivered as
messages:

{tcp, Socket, Data}

unless {active, false} was specified in the option list for the listen socket, in which case packets are retrieved
by calling recv/2.

Note:
It is worth noting that the accept call does not have to be issued from the socket owner process. Using version
5.5.3 and higher of the emulator, multiple simultaneous accept calls can be issued from different processes, which
allows for a pool of acceptor processes handling incoming connections.

send(Socket, Packet) -> ok | {error, Reason}
Types:

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 113

Socket = socket()
Packet = iodata()
Reason = closed | inet:posix()

Sends a packet on a socket.

There is no send call with timeout option, you use the send_timeout socket option if timeouts are desired. See
the examples section.

recv(Socket, Length) -> {ok, Packet} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}
Types:

Socket = socket()
Length = integer() >= 0
Timeout = timeout()
Packet = string() | binary() | HttpPacket
Reason = closed | inet:posix()
HttpPacket = term()
See the description of HttpPacket in erlang:decode_packet/3.

This function receives a packet from a socket in passive mode. A closed socket is indicated by a return value {error,
closed}.

The Length argument is only meaningful when the socket is in raw mode and denotes the number of bytes to read. If
Length = 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error; possibly
discarding less than Length bytes of data when the socket gets closed from the other side.

The optional Timeout parameter specifies a timeout in milliseconds. The default value is infinity.

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

Socket = socket()
Pid = pid()
Reason = closed | not_owner | inet:posix()

Assigns a new controlling process Pid to Socket. The controlling process is the process which receives messages
from the socket. If called by any other process than the current controlling process, {error, not_owner} is
returned.

close(Socket) -> ok
Types:

Socket = socket()
Closes a TCP socket.

shutdown(Socket, How) -> ok | {error, Reason}
Types:

gen_tcp

114 | Ericsson AB. All Rights Reserved.: Kernel

Socket = socket()
How = read | write | read_write
Reason = inet:posix()

Close a socket in one or two directions.

How == write means closing the socket for writing, reading from it is still possible.

If How == read, or there is no outgoing data buffered in the Socket port, then the socket is shutdown immediately
and any error encountered is returned in Reason.

If there is data buffered in the socket port, then the attempt to shutdown the socket is postponed until that data is
written to the kernel socket send buffer. Any errors encountered will result in the socket being closed and {error,
closed} being returned on the next recv/2 or send/2.

To be able to handle that the peer has done a shutdown on the write side, the {exit_on_close, false} option
is useful.

Examples
The following example illustrates usage of the {active,once} option and multiple accepts by implementing a server as
a number of worker processes doing accept on one single listen socket. The start/2 function takes the number of worker
processes as well as a port number to listen for incoming connections on. If LPort is specified as 0, an ephemeral
portnumber is used, why the start function returns the actual portnumber allocated:

start(Num,LPort) ->
 case gen_tcp:listen(LPort,[{active, false},{packet,2}]) of
 {ok, ListenSock} ->
 start_servers(Num,ListenSock),
 {ok, Port} = inet:port(ListenSock),
 Port;
 {error,Reason} ->
 {error,Reason}
 end.

start_servers(0,_) ->
 ok;
start_servers(Num,LS) ->
 spawn(?MODULE,server,[LS]),
 start_servers(Num-1,LS).

server(LS) ->
 case gen_tcp:accept(LS) of
 {ok,S} ->
 loop(S),
 server(LS);
 Other ->
 io:format("accept returned ~w - goodbye!~n",[Other]),
 ok
 end.

loop(S) ->
 inet:setopts(S,[{active,once}]),
 receive
 {tcp,S,Data} ->
 Answer = process(Data), % Not implemented in this example
 gen_tcp:send(S,Answer),
 loop(S);
 {tcp_closed,S} ->
 io:format("Socket ~w closed [~w]~n",[S,self()]),
 ok

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 115

 end.

A simple client could look like this:

client(PortNo,Message) ->
 {ok,Sock} = gen_tcp:connect("localhost",PortNo,[{active,false},
 {packet,2}]),
 gen_tcp:send(Sock,Message),
 A = gen_tcp:recv(Sock,0),
 gen_tcp:close(Sock),
 A.

The fact that the send call does not accept a timeout option, is because timeouts on send is handled through the socket
option send_timeout. The behavior of a send operation with no receiver is in a very high degree defined by the
underlying TCP stack, as well as the network infrastructure. If one wants to write code that handles a hanging receiver
that might eventually cause the sender to hang on a send call, one writes code like the following.

Consider a process that receives data from a client process that is to be forwarded to a server on the network. The
process has connected to the server via TCP/IP and does not get any acknowledge for each message it sends, but has
to rely on the send timeout option to detect that the other end is unresponsive. We could use the send_timeout
option when connecting:

 ...
 {ok,Sock} = gen_tcp:connect(HostAddress, Port,
 [{active,false},
 {send_timeout, 5000},
 {packet,2}]),
 loop(Sock), % See below
 ...

In the loop where requests are handled, we can now detect send timeouts:

loop(Sock) ->
 receive
 {Client, send_data, Binary} ->
 case gen_tcp:send(Sock,[Binary]) of
 {error, timeout} ->
 io:format("Send timeout, closing!~n",
 []),
 handle_send_timeout(), % Not implemented here
 Client ! {self(),{error_sending, timeout}},
 %% Usually, it's a good idea to give up in case of a
 %% send timeout, as you never know how much actually
 %% reached the server, maybe only a packet header?!
 gen_tcp:close(Sock);
 {error, OtherSendError} ->
 io:format("Some other error on socket (~p), closing",
 [OtherSendError]),
 Client ! {self(),{error_sending, OtherSendError}},
 gen_tcp:close(Sock);
 ok ->
 Client ! {self(), data_sent},
 loop(Sock)
 end
 end.

gen_tcp

116 | Ericsson AB. All Rights Reserved.: Kernel

Usually it would suffice to detect timeouts on receive, as most protocols include some sort of acknowledgment from
the server, but if the protocol is strictly one way, the send_timeout option comes in handy!

gen_udp

Ericsson AB. All Rights Reserved.: Kernel | 117

gen_udp
Erlang module

The gen_udp module provides functions for communicating with sockets using the UDP protocol.

Data Types
option() =
 {active, true | false | once | -32768..32767} |
 {add_membership, {inet:ip_address(), inet:ip_address()}} |
 {broadcast, boolean()} |
 {buffer, integer() >= 0} |
 {deliver, port | term} |
 {dontroute, boolean()} |
 {drop_membership, {inet:ip_address(), inet:ip_address()}} |
 {header, integer() >= 0} |
 {high_msgq_watermark, integer() >= 1} |
 {low_msgq_watermark, integer() >= 1} |
 {mode, list | binary} |
 list |
 binary |
 {multicast_if, inet:ip_address()} |
 {multicast_loop, boolean()} |
 {multicast_ttl, integer() >= 0} |
 {priority, integer() >= 0} |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueBin :: binary()} |
 {read_packets, integer() >= 0} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {sndbuf, integer() >= 0} |
 {tos, integer() >= 0} |
 {ipv6_v6only, boolean()}
option_name() =
 active |
 broadcast |
 buffer |
 deliver |
 dontroute |
 header |
 high_msgq_watermark |
 low_msgq_watermark |
 mode |
 multicast_if |
 multicast_loop |
 multicast_ttl |
 priority |
 {raw,

gen_udp

118 | Ericsson AB. All Rights Reserved.: Kernel

 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueSpec ::
 (ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
 read_packets |
 recbuf |
 reuseaddr |
 sndbuf |
 tos |
 ipv6_v6only
socket()
As returned by open/1,2.

Exports

open(Port) -> {ok, Socket} | {error, Reason}
open(Port, Opts) -> {ok, Socket} | {error, Reason}
Types:

Port = inet:port_number()
Opts = [Option]
Option =
 {ip, inet:ip_address()} |
 {fd, integer() >= 0} |
 {ifaddr, inet:ip_address()} |
 inet:address_family() |
 {port, inet:port_number()} |
 option()
Socket = socket()
Reason = inet:posix()

Associates a UDP port number (Port) with the calling process.

The available options are:

list

Received Packet is delivered as a list.

binary

Received Packet is delivered as a binary.

{ip, ip_address()}

If the host has several network interfaces, this option specifies which one to use.

{ifaddr, ip_address()}

Same as {ip, ip_address()}. If the host has several network interfaces, this option specifies which one
to use.

{fd, integer() >= 0}

If a socket has somehow been opened without using gen_udp, use this option to pass the file descriptor for it.
If Port is not set to 0 and/or {ip, ip_address()} is combined with this option the fd will be bound to

gen_udp

Ericsson AB. All Rights Reserved.: Kernel | 119

the given interface and port after being opened. If these options are not given it is assumed that the fd is already
bound appropriately.

inet6

Set up the socket for IPv6.

inet

Set up the socket for IPv4.

{udp_module, module()}

Override which callback module is used. Defaults to inet_udp for IPv4 and inet6_udp for IPv6.

{multicast_if, Address}

Set the local device for a multicast socket.

{multicast_loop, true | false}

When true sent multicast packets will be looped back to the local sockets.

{multicast_ttl, Integer}

The multicast_ttl option changes the time-to-live (TTL) for outgoing multicast datagrams in order to
control the scope of the multicasts.

Datagrams with a TTL of 1 are not forwarded beyond the local network.
Default: 1

{add_membership, {MultiAddress, InterfaceAddress}}

Join a multicast group.

{drop_membership, {MultiAddress, InterfaceAddress}}

Leave multicast group.

Opt

See inet:setopts/2.

The returned socket Socket is used to send packets from this port with send/4. When UDP packets arrive at the
opened port, if the socket is in an active mode the packets are delivered as messages to the controlling process:

{udp, Socket, IP, InPortNo, Packet}

If the socket is not in an active mode, data can be retrieved via the recv/2,3 calls. Note that arriving UDP packets that
are longer than the receive buffer option specifies, might be truncated without warning.

When a socket in {active, N} mode (see inet:setopts/2 for details) transitions to passive ({active, false})
mode, the controlling process is notified by a message of the following form:

{udp_passive, Socket}

IP and InPortNo define the address from which Packet came. Packet is a list of bytes if the option list was
specified. Packet is a binary if the option binary was specified.

Default value for the receive buffer option is {recbuf, 8192}.

If Port == 0, the underlying OS assigns a free UDP port, use inet:port/1 to retrieve it.

gen_udp

120 | Ericsson AB. All Rights Reserved.: Kernel

send(Socket, Address, Port, Packet) -> ok | {error, Reason}
Types:

Socket = socket()
Address = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Packet = iodata()
Reason = not_owner | inet:posix()

Sends a packet to the specified address and port. The Address argument can be either a hostname, or an IP address.

recv(Socket, Length) ->
 {ok, {Address, Port, Packet}} | {error, Reason}
recv(Socket, Length, Timeout) ->
 {ok, {Address, Port, Packet}} | {error, Reason}
Types:

Socket = socket()
Length = integer() >= 0
Timeout = timeout()
Address = inet:ip_address()
Port = inet:port_number()
Packet = string() | binary()
Reason = not_owner | inet:posix()

This function receives a packet from a socket in passive mode.

The optional Timeout parameter specifies a timeout in milliseconds. The default value is infinity.

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

Socket = socket()
Pid = pid()
Reason = closed | not_owner | inet:posix()

Assigns a new controlling process Pid to Socket. The controlling process is the process which receives messages
from the socket. If called by any other process than the current controlling process, {error, not_owner} is
returned.

close(Socket) -> ok
Types:

Socket = socket()
Closes a UDP socket.

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 121

gen_sctp
Erlang module

The gen_sctp module provides functions for communicating with sockets using the SCTP protocol. The
implementation assumes that the OS kernel supports SCTP (RFC2960) through the user-level Sockets API
Extensions. During development this implementation was tested on Linux Fedora Core 5.0 (kernel 2.6.15-2054 or
later is needed), and on Solaris 10, 11. During OTP adaptation it was tested on SUSE Linux Enterprise Server 10
(x86_64) kernel 2.6.16.27-0.6-smp, with lksctp-tools-1.0.6, briefly on Solaris 10, and later on SUSE Linux Enterprise
Server 10 Service Pack 1 (x86_64) kernel 2.6.16.54-0.2.3-smp with lksctp-tools-1.0.7, and later also on FreeBSD 8.2.

This module was written for one-to-many style sockets (type seqpacket). With the addition of peeloff/2, one-to-
one style sockets (type stream) were introduced.

Record definitions for the gen_sctp module can be found using:

 -include_lib("kernel/include/inet_sctp.hrl").

These record definitions use the "new" spelling 'adaptation', not the deprecated 'adaption', regardless of which spelling
the underlying C API uses.

CONTENTS
• DATA TYPES

• EXPORTS

• SCTP SOCKET OPTIONS

• SCTP EXAMPLES

• SEE ALSO

Data Types
assoc_id()
An opaque term returned in for example #sctp_paddr_change{} that identifies an association for an SCTP socket.
The term is opaque except for the special value 0 that has a meaning such as "the whole endpoint" or "all future
associations".

option() =
 {active, true | false | once | -32768..32767} |
 {buffer, integer() >= 0} |
 {dontroute, boolean()} |
 {high_msgq_watermark, integer() >= 1} |
 {linger, {boolean(), integer() >= 0}} |
 {low_msgq_watermark, integer() >= 1} |
 {mode, list | binary} |
 list |
 binary |
 {priority, integer() >= 0} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {ipv6_v6only, boolean()} |
 {sctp_adaptation_layer, #sctp_setadaptation{}} |
 {sctp_associnfo, #sctp_assocparams{}} |

href
href
href

gen_sctp

122 | Ericsson AB. All Rights Reserved.: Kernel

 {sctp_autoclose, integer() >= 0} |
 {sctp_default_send_param, #sctp_sndrcvinfo{}} |
 {sctp_delayed_ack_time, #sctp_assoc_value{}} |
 {sctp_disable_fragments, boolean()} |
 {sctp_events, #sctp_event_subscribe{}} |
 {sctp_get_peer_addr_info, #sctp_paddrinfo{}} |
 {sctp_i_want_mapped_v4_addr, boolean()} |
 {sctp_initmsg, #sctp_initmsg{}} |
 {sctp_maxseg, integer() >= 0} |
 {sctp_nodelay, boolean()} |
 {sctp_peer_addr_params, #sctp_paddrparams{}} |
 {sctp_primary_addr, #sctp_prim{}} |
 {sctp_rtoinfo, #sctp_rtoinfo{}} |
 {sctp_set_peer_primary_addr, #sctp_setpeerprim{}} |
 {sctp_status, #sctp_status{}} |
 {sndbuf, integer() >= 0} |
 {tos, integer() >= 0}
One of the SCTP Socket Options.

option_name() =
 active |
 buffer |
 dontroute |
 high_msgq_watermark |
 linger |
 low_msgq_watermark |
 mode |
 priority |
 recbuf |
 reuseaddr |
 ipv6_v6only |
 sctp_adaptation_layer |
 sctp_associnfo |
 sctp_autoclose |
 sctp_default_send_param |
 sctp_delayed_ack_time |
 sctp_disable_fragments |
 sctp_events |
 sctp_get_peer_addr_info |
 sctp_i_want_mapped_v4_addr |
 sctp_initmsg |
 sctp_maxseg |
 sctp_nodelay |
 sctp_peer_addr_params |
 sctp_primary_addr |
 sctp_rtoinfo |
 sctp_set_peer_primary_addr |
 sctp_status |
 sndbuf |

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 123

 tos
sctp_socket()
Socket identifier returned from open/*.

Exports

abort(Socket, Assoc) -> ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{}

Abnormally terminates the association given by Assoc, without flushing of unsent data. The socket itself remains
open. Other associations opened on this socket are still valid, and it can be used in new associations.

close(Socket) -> ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Completely closes the socket and all associations on it. The unsent data is flushed as in eof/2. The close/1 call is
blocking or otherwise depending of the value of the linger socket option. If close does not linger or linger timeout
expires, the call returns and the data is flushed in the background.

connect(Socket, Addr, Port, Opts) ->
 {ok, Assoc} | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [Opt :: option()]
Assoc = #sctp_assoc_change{}

Same as connect(Socket, Addr, Port, Opts, infinity).

connect(Socket, Addr, Port, Opts, Timeout) ->
 {ok, Assoc} | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [Opt :: option()]
Timeout = timeout()
Assoc = #sctp_assoc_change{}

Establishes a new association for the socket Socket, with the peer (SCTP server socket) given by Addr and Port.
The Timeout, is expressed in milliseconds. A socket can be associated with multiple peers.

WARNING:Using a value of Timeout less than the maximum time taken by the OS to establish an association (around
4.5 minutes if the default values from RFC 4960 are used) can result in inconsistent or incorrect return values. This

gen_sctp

124 | Ericsson AB. All Rights Reserved.: Kernel

is especially relevant for associations sharing the same Socket (i.e. source address and port) since the controlling
process blocks until connect/* returns. connect_init/* provides an alternative not subject to this limitation.

The result of connect/* is an #sctp_assoc_change{} event which contains, in particular, the new Association
ID.

 #sctp_assoc_change{
 state = atom(),
 error = atom(),
 outbound_streams = integer(),
 inbound_streams = integer(),
 assoc_id = assoc_id()
 }

The number of outbound and inbound streams can be set by giving an sctp_initmsg option to connect as in:

 connect(Socket, Ip, Port>,
 [{sctp_initmsg,#sctp_initmsg{num_ostreams=OutStreams,
 max_instreams=MaxInStreams}}])

All options Opt are set on the socket before the association is attempted. If an option record has got undefined field
values, the options record is first read from the socket for those values. In effect, Opt option records only define field
values to change before connecting.

The returned outbound_streams and inbound_streams are the actual stream numbers on the socket, which
may be different from the requested values (OutStreams and MaxInStreams respectively) if the peer requires
lower values.

The following values of state are possible:

• comm_up: association successfully established. This indicates a successful completion of connect.

• cant_assoc: association cannot be established (connect/* failure).

All other states do not normally occur in the output from connect/*. Rather, they may occur in
#sctp_assoc_change{} events received instead of data in recv/* calls. All of them indicate losing the association
due to various error conditions, and are listed here for the sake of completeness. The error field may provide more
detailed diagnostics.

• comm_lost;

• restart;

• shutdown_comp.

connect_init(Socket, Addr, Port, Opts) ->
 ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [option()]

Same as connect_init(Socket, Addr, Port, Opts, infinity).

connect_init(Socket, Addr, Port, Opts, Timeout) ->

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 125

 ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [option()]
Timeout = timeout()

Initiates a new association for the socket Socket, with the peer (SCTP server socket) given by Addr and Port.

The fundamental difference between this API and connect/* is that the return value is that of the underlying OS
connect(2) system call. If ok is returned then the result of the association establishement is received by the calling
process as an #sctp_assoc_change{} event. The calling process must be prepared to receive this, or poll for it using
recv/* depending on the value of the active option.

The parameters are as described in connect/*, with the exception of the Timeout value.

The timer associated with Timeout only supervises IP resolution of Addr

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Pid = pid()
Reason = closed | not_owner | inet:posix()

Assigns a new controlling process Pid to Socket. Same implementation as
gen_udp:controlling_process/2.

eof(Socket, Assoc) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{}
Reason = term()

Gracefully terminates the association given by Assoc, with flushing of all unsent data. The socket itself remains open.
Other associations opened on this socket are still valid, and it can be used in new associations.

listen(Socket, IsServer) -> ok | {error, Reason}
listen(Socket, Backlog) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Backlog = integer()
Reason = term()

Sets up a socket to listen on the IP address and port number it is bound to.

For type seqpacket sockets (the default) IsServer must be true or false. In contrast to TCP, in SCTP there
is no listening queue length. If IsServer is true the socket accepts new associations, i.e. it will become an SCTP
server socket.

For type stream sockets Backlog defines the backlog queue length just like in TCP.

gen_sctp

126 | Ericsson AB. All Rights Reserved.: Kernel

open() -> {ok, Socket} | {error, inet:posix()}
open(Port) -> {ok, Socket} | {error, inet:posix()}
open(Opts) -> {ok, Socket} | {error, inet:posix()}
open(Port, Opts) -> {ok, Socket} | {error, inet:posix()}
Types:

Opts = [Opt]
Opt =
 {ip, IP} |
 {ifaddr, IP} |
 inet:address_family() |
 {port, Port} |
 {type, SockType} |
 option()
IP = inet:ip_address() | any | loopback
Port = inet:port_number()
SockType = seqpacket | stream
Socket = sctp_socket()

Creates an SCTP socket and binds it to the local addresses specified by all {ip,IP} (or synonymously
{ifaddr,IP}) options (this feature is called SCTP multi-homing). The default IP and Port are any and 0,
meaning bind to all local addresses on any one free port.

Other options are:

inet6

Set up the socket for IPv6.

inet

Set up the socket for IPv4. This is the default.

A default set of socket options is used. In particular, the socket is opened in binary and passive mode, with SockType
seqpacket, and with reasonably large kernel and driver buffers.

peeloff(Socket, Assoc) -> {ok, NewSocket} | {error, Reason}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{} | assoc_id()
NewSocket = sctp_socket()
Reason = term()

Branch off an existing association Assoc in a socket Socket of type seqpacket (one-to-many style) into a new socket
NewSocket of type stream (one-to-one style).

The existing association argument Assoc can be either a #sctp_assoc_change{} record as returned from e.g recv/*,
connect/* or from a listening socket in active mode. Or it can be just the field assoc_id integer from such a record.

recv(Socket) ->
 {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}
recv(Socket, Timeout) ->
 {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}
Types:

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 127

Socket = sctp_socket()
Timeout = timeout()
FromIP = inet:ip_address()
FromPort = inet:port_number()
AncData = [#sctp_sndrcvinfo{}]
Data =
 binary() |
 string() |
 #sctp_sndrcvinfo{} |
 #sctp_assoc_change{} |
 #sctp_paddr_change{} |
 #sctp_adaptation_event{}
Reason =
 inet:posix() |
 #sctp_send_failed{} |
 #sctp_paddr_change{} |
 #sctp_pdapi_event{} |
 #sctp_remote_error{} |
 #sctp_shutdown_event{}

Receives the Data message from any association of the socket. If the receive times out {error,timeout is
returned. The default timeout is infinity. FromIP and FromPort indicate the sender's address.

AncData is a list of Ancillary Data items which may be received along with the main Data. This list can be empty,
or contain a single #sctp_sndrcvinfo{} record, if receiving of such ancillary data is enabled (see option sctp_events).
It is enabled by default, since such ancillary data provide an easy way of determining the association and stream over
which the message has been received. (An alternative way would be to get the Association ID from the FromIP and
FromPort using the sctp_get_peer_addr_info socket option, but this would still not produce the Stream number).

The actual Data received may be a binary(), or list() of bytes (integers in the range 0 through 255) depending
on the socket mode, or an SCTP Event. The following SCTP Events are possible:

• #sctp_sndrcvinfo{}

• #sctp_assoc_change{};

• #sctp_paddr_change{
 addr = {ip_address(),port()},
 state = atom(),
 error = integer(),
 assoc_id = assoc_id()
 }

Indicates change of the status of the peer's IP address given by addr within the association assoc_id. Possible
values of state (mostly self-explanatory) include:

• addr_unreachable;

• addr_available;

• addr_removed;

• addr_added;

• addr_made_prim.

• addr_confirmed.

In case of an error (e.g. addr_unreachable), the error field provides additional diagnostics. In such
cases, the #sctp_paddr_change{} Event is automatically converted into an error term returned by
gen_sctp:recv. The error field value can be converted into a string using error_string/1.

gen_sctp

128 | Ericsson AB. All Rights Reserved.: Kernel

• #sctp_send_failed{
 flags = true | false,
 error = integer(),
 info = #sctp_sndrcvinfo{},
 assoc_id = assoc_id()
 data = binary()
 }

The sender may receive this event if a send operation fails. The flags is a Boolean specifying whether the data
have actually been transmitted over the wire; error provides extended diagnostics, use error_string/1;
info is the original #sctp_sndrcvinfo{} record used in the failed send/*, and data is the whole original data
chunk attempted to be sent.

In the current implementation of the Erlang/SCTP binding, this Event is internally converted into an error term
returned by recv/*.

• #sctp_adaptation_event{
 adaptation_ind = integer(),
 assoc_id = assoc_id()
 }

Delivered when a peer sends an Adaptation Layer Indication parameter (configured through the option
sctp_adaptation_layer). Note that with the current implementation of the Erlang/SCTP binding, this event is
disabled by default.

• #sctp_pdapi_event{
 indication = sctp_partial_delivery_aborted,
 assoc_id = assoc_id()
 }

A partial delivery failure. In the current implementation of the Erlang/SCTP binding, this Event is internally
converted into an error term returned by recv/*.

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
SndRcvInfo = #sctp_sndrcvinfo{}
Data = binary() | iolist()
Reason = term()

Sends the Data message with all sending parameters from a #sctp_sndrcvinfo{} record. This way, the user can specify
the PPID (passed to the remote end) and Context (passed to the local SCTP layer) which can be used for example
for error identification. However, such a fine level of user control is rarely required. The send/4 function is sufficient
for most applications.

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{} | assoc_id()
Stream = integer()
Data = binary() | iolist()
Reason = term()

Sends Data message over an existing association and given stream.

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 129

error_string(ErrorNumber) -> ok | string() | unknown_error
Types:

ErrorNumber = integer()
Translates an SCTP error number from for example #sctp_remote_error{} or #sctp_send_failed{} into
an explanatory string, or one of the atoms ok for no error and undefined for an unrecognized error.

SCTP SOCKET OPTIONS
The set of admissible SCTP socket options is by construction orthogonal to the sets of TCP, UDP and generic INET
options: only those options which are explicitly listed below are allowed for SCTP sockets. Options can be set on
the socket using gen_sctp:open/1,2 or inet:setopts/2, retrieved using inet:getopts/2, and when
calling gen_sctp:connect/4,5 options can be changed.

{mode, list|binary} or just list or binary

Determines the type of data returned from gen_sctp:recv/1,2.

{active, true|false|once|N}

• If false (passive mode, the default), the caller needs to do an explicit gen_sctp:recv call in order to
retrieve the available data from the socket.

• If true (full active mode), the pending data or events are sent to the owning process.

NB: This can cause the message queue to overflow, as there is no way to throttle the sender in this case (no
flow control!).

• If once, only one message is automatically placed in the message queue, and after that the mode is
automatically reset to passive. This provides flow control as well as the possibility for the receiver to listen
for its incoming SCTP data interleaved with other inter-process messages.

• If active is specified as an integer N in the range -32768 to 32767 (inclusive), then that number is added
to the socket's count of the number of data messages to be delivered to the controlling process. If the result
of the addition would be negative, the count is set to 0. Once the count reaches 0, either through the delivery
of messages or by being explicitly set with inet:setopts/2, the socket's mode is automatically reset to passive
({active, false}) mode. When a socket in this active mode transitions to passive mode, the message
{sctp_passive, Socket} is sent to the controlling process to notify it that if it wants to receive more
data messages from the socket, it must call inet:setopts/2 to set the socket back into an active mode.

{tos, integer()}

Sets the Type-Of-Service field on the IP datagrams being sent, to the given value, which effectively determines
a prioritization policy for the outbound packets. The acceptable values are system-dependent. TODO: we do not
provide symbolic names for these values yet.

{priority, integer()}

A protocol-independent equivalent of tos above. Setting priority implies setting tos as well.

{dontroute, true|false}

By default false. If true, the kernel does not send packets via any gateway, only sends them to directly
connected hosts.

{reuseaddr, true|false}

By default false. If true, the local binding address {IP,Port} of the socket can be re-used immediately: no
waiting in the CLOSE_WAIT state is performed (may be required for high-throughput servers).

{sndbuf, integer()}

The size, in bytes, of the *kernel* send buffer for this socket. Sending errors would occur for datagrams larger
than val(sndbuf). Setting this option also adjusts the size of the driver buffer (see buffer above).

gen_sctp

130 | Ericsson AB. All Rights Reserved.: Kernel

{recbuf, integer()}

The size, in bytes, of the *kernel* recv buffer for this socket. Sending errors would occur for datagrams larger
than val(sndbuf). Setting this option also adjusts the size of the driver buffer (see buffer above).

{sctp_module, module()}

Override which callback module is used. Defaults to inet_sctp for IPv4 and inet6_sctp for IPv6.

{sctp_rtoinfo, #sctp_rtoinfo{}}

 #sctp_rtoinfo{
 assoc_id = assoc_id(),
 initial = integer(),
 max = integer(),
 min = integer()
 }

Determines re-transmission time-out parameters, in milliseconds, for the association(s) given by assoc_id. If
assoc_id = 0 (default) indicates the whole endpoint. See RFC2960 and Sockets API Extensions for SCTP
for the exact semantics of the fields values.

{sctp_associnfo, #sctp_assocparams{}}

 #sctp_assocparams{
 assoc_id = assoc_id(),
 asocmaxrxt = integer(),
 number_peer_destinations = integer(),
 peer_rwnd = integer(),
 local_rwnd = integer(),
 cookie_life = integer()
 }

Determines association parameters for the association(s) given by assoc_id. assoc_id = 0 (default)
indicates the whole endpoint. See Sockets API Extensions for SCTP for the discussion of their semantics. Rarely
used.

{sctp_initmsg, #sctp_initmsg{}}

 #sctp_initmsg{
 num_ostreams = integer(),
 max_instreams = integer(),
 max_attempts = integer(),
 max_init_timeo = integer()
 }

Determines the default parameters which this socket attempts to negotiate with its peer while establishing an
association with it. Should be set after open/* but before the first connect/*. #sctp_initmsg{} can also
be used as ancillary data with the first call of send/* to a new peer (when a new association is created).

• num_ostreams: number of outbound streams;

• max_instreams: max number of in-bound streams;

• max_attempts: max re-transmissions while establishing an association;

• max_init_timeo: time-out in milliseconds for establishing an association.

{sctp_autoclose, integer() >= 0}

Determines the time (in seconds) after which an idle association is automatically closed. 0 means that the
association is never automatically closed.

href
href
href

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 131

{sctp_nodelay, true|false}

Turns on|off the Nagle algorithm for merging small packets into larger ones (which improves throughput at the
expense of latency).

{sctp_disable_fragments, true|false}

If true, induces an error on an attempt to send a message which is larger than the current PMTU size
(which would require fragmentation/re-assembling). Note that message fragmentation does not affect the logical
atomicity of its delivery; this option is provided for performance reasons only.

{sctp_i_want_mapped_v4_addr, true|false}

Turns on|off automatic mapping of IPv4 addresses into IPv6 ones (if the socket address family is AF_INET6).

{sctp_maxseg, integer()}

Determines the maximum chunk size if message fragmentation is used. If 0, the chunk size is limited by the
Path MTU only.

{sctp_primary_addr, #sctp_prim{}}

 #sctp_prim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
 }
 IP = ip_address()
 Port = port_number()

For the association given by assoc_id, {IP,Port} must be one of the peer's addresses. This option
determines that the given address is treated by the local SCTP stack as the peer's primary address.

{sctp_set_peer_primary_addr, #sctp_setpeerprim{}}

 #sctp_setpeerprim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
 }
 IP = ip_address()
 Port = port_number()

When set, informs the peer that it should use {IP, Port} as the primary address of the local endpoint for the
association given by assoc_id.

{sctp_adaptation_layer, #sctp_setadaptation{}}

 #sctp_setadaptation{
 adaptation_ind = integer()
 }

When set, requests that the local endpoint uses the value given by adaptation_ind as the Adaptation
Indication parameter for establishing new associations. See RFC2960 and Sockets API Extenstions for SCTP
for more details.

{sctp_peer_addr_params, #sctp_paddrparams{}}

 #sctp_paddrparams{
 assoc_id = assoc_id(),
 address = {IP, Port},
 hbinterval = integer(),

href
href

gen_sctp

132 | Ericsson AB. All Rights Reserved.: Kernel

 pathmaxrxt = integer(),
 pathmtu = integer(),
 sackdelay = integer(),
 flags = list()
 }
 IP = ip_address()
 Port = port_number()

This option determines various per-address parameters for the association given by assoc_id and the peer
address address (the SCTP protocol supports multi-homing, so more than 1 address can correspond to a given
association).

• hbinterval: heartbeat interval, in milliseconds;

• pathmaxrxt: max number of retransmissions before this address is considered unreachable (and an
alternative address is selected);

• pathmtu: fixed Path MTU, if automatic discovery is disabled (see flags below);

• sackdelay: delay in milliseconds for SAC messages (if the delay is enabled, see flags below);

• flags: the following flags are available:

• hb_enable: enable heartbeat;

• hb_disable: disable heartbeat;

• hb_demand: initiate heartbeat immediately;

• pmtud_enable: enable automatic Path MTU discovery;

• pmtud_disable: disable automatic Path MTU discovery;

• sackdelay_enable: enable SAC delay;

• sackdelay_disable: disable SAC delay.

{sctp_default_send_param, #sctp_sndrcvinfo{}}

 #sctp_sndrcvinfo{
 stream = integer(),
 ssn = integer(),
 flags = list(),
 ppid = integer(),
 context = integer(),
 timetolive = integer(),
 tsn = integer(),
 cumtsn = integer(),
 assoc_id = assoc_id()
 }

#sctp_sndrcvinfo{} is used both in this socket option, and as ancillary data while sending or receiving
SCTP messages. When set as an option, it provides a default values for subsequent gen_sctp:sendcalls on
the association given by assoc_id. assoc_id = 0 (default) indicates the whole endpoint. The following
fields typically need to be specified by the sender:

• sinfo_stream: stream number (0-base) within the association to send the messages through;

• sinfo_flags: the following flags are recognised:

• unordered: the message is to be sent unordered;

• addr_over: the address specified in gen_sctp:send overwrites the primary peer address;

• abort: abort the current association without flushing any unsent data;

• eof: gracefully shut down the current association, with flushing of unsent data.

Other fields are rarely used. See RFC2960 and Sockets API Extensions for SCTP for full information.

href
href

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 133

{sctp_events, #sctp_event_subscribe{}}

 #sctp_event_subscribe{
 data_io_event = true | false,
 association_event = true | false,
 address_event = true | false,
 send_failure_event = true | false,
 peer_error_event = true | false,
 shutdown_event = true | false,
 partial_delivery_event = true | false,
 adaptation_layer_event = true | false
 }

This option determines which SCTP Events are to be received (via recv/*) along with the data. The only exception
is data_io_event which enables or disables receiving of #sctp_sndrcvinfo{} ancillary data, not events. By
default, all flags except adaptation_layer_event are enabled, although sctp_data_io_event and
association_event are used by the driver itself and not exported to the user level.

{sctp_delayed_ack_time, #sctp_assoc_value{}}

 #sctp_assoc_value{
 assoc_id = assoc_id(),
 assoc_value = integer()
 }

Rarely used. Determines the ACK time (given by assoc_value in milliseconds) for the given association or
the whole endpoint if assoc_value = 0 (default).

{sctp_status, #sctp_status{}}

 #sctp_status{
 assoc_id = assoc_id(),
 state = atom(),
 rwnd = integer(),
 unackdata = integer(),
 penddata = integer(),
 instrms = integer(),
 outstrms = integer(),
 fragmentation_point = integer(),
 primary = #sctp_paddrinfo{}
 }

This option is read-only. It determines the status of the SCTP association given by assoc_id. Possible values of
state follows. The state designations are mostly self-explanatory. state_empty is the default which means
that no other state is active:

• sctp_state_empty

• sctp_state_closed

• sctp_state_cookie_wait

• sctp_state_cookie_echoed

• sctp_state_established

• sctp_state_shutdown_pending

• sctp_state_shutdown_sent

• sctp_state_shutdown_received

• sctp_state_shutdown_ack_sent

gen_sctp

134 | Ericsson AB. All Rights Reserved.: Kernel

The semantics of other fields is the following:

• sstat_rwnd: the association peer's current receiver window size;

• sstat_unackdata: number of unacked data chunks;

• sstat_penddata: number of data chunks pending receipt;

• sstat_instrms: number of inbound streams;

• sstat_outstrms: number of outbound streams;

• sstat_fragmentation_point: message size at which SCTP fragmentation will occur;

• sstat_primary: information on the current primary peer address (see below for the format of
#sctp_paddrinfo{}).

{sctp_get_peer_addr_info, #sctp_paddrinfo{}}

 #sctp_paddrinfo{
 assoc_id = assoc_id(),
 address = {IP, Port},
 state = inactive | active | unconfirmed,
 cwnd = integer(),
 srtt = integer(),
 rto = integer(),
 mtu = integer()
 }
 IP = ip_address()
 Port = port_number()

This option is read-only. It determines the parameters specific to the peer's address given by address within
the association given by assoc_id. The address field must be set by the caller; all other fields are filled in on
return. If assoc_id = 0 (default), the address is automatically translated into the corresponding association
ID. This option is rarely used; see RFC2960 and Sockets API Extensions for SCTP for the semantics of all
fields.

SCTP EXAMPLES
• Example of an Erlang SCTP Server which receives SCTP messages and prints them on the standard output:

 -module(sctp_server).

 -export([server/0,server/1,server/2]).
 -include_lib("kernel/include/inet.hrl").
 -include_lib("kernel/include/inet_sctp.hrl").

 server() ->
 server(any, 2006).

 server([Host,Port]) when is_list(Host), is_list(Port) ->
 {ok, #hostent{h_addr_list = [IP|_]}} = inet:gethostbyname(Host),
 io:format("~w -> ~w~n", [Host, IP]),
 server([IP, list_to_integer(Port)]).

 server(IP, Port) when is_tuple(IP) orelse IP == any orelse IP == loopback,
 is_integer(Port) ->
 {ok,S} = gen_sctp:open(Port, [{recbuf,65536}, {ip,IP}]),
 io:format("Listening on ~w:~w. ~w~n", [IP,Port,S]),
 ok = gen_sctp:listen(S, true),
 server_loop(S).

 server_loop(S) ->
 case gen_sctp:recv(S) of
 {error, Error} ->

href
href

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 135

 io:format("SCTP RECV ERROR: ~p~n", [Error]);
 Data ->
 io:format("Received: ~p~n", [Data])
 end,
 server_loop(S).

• Example of an Erlang SCTP Client which interacts with the above Server. Note that in this example, the Client
creates an association with the Server with 5 outbound streams. For this reason, sending of "Test 0" over Stream
0 succeeds, but sending of "Test 5" over Stream 5 fails. The client then aborts the association, which results in
the corresponding Event being received on the Server side.

 -module(sctp_client).

 -export([client/0, client/1, client/2]).
 -include_lib("kernel/include/inet.hrl").
 -include_lib("kernel/include/inet_sctp.hrl").

 client() ->
 client([localhost]).

 client([Host]) ->
 client(Host, 2006);

 client([Host, Port]) when is_list(Host), is_list(Port) ->
 client(Host,list_to_integer(Port)),
 init:stop().

 client(Host, Port) when is_integer(Port) ->
 {ok,S} = gen_sctp:open(),
 {ok,Assoc} = gen_sctp:connect
 (S, Host, Port, [{sctp_initmsg,#sctp_initmsg{num_ostreams=5}}]),
 io:format("Connection Successful, Assoc=~p~n", [Assoc]),

 io:write(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:send(S, Assoc, 5, <<"Test 5">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:abort(S, Assoc)),
 io:nl(),

 timer:sleep(1000),
 gen_sctp:close(S).

• A very simple Erlang SCTP Client which uses the connect_init API.

-module(ex3).

-export([client/4]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

client(Peer1, Port1, Peer2, Port2)
 when is_tuple(Peer1), is_integer(Port1), is_tuple(Peer2), is_integer(Port2) ->
 {ok,S} = gen_sctp:open(),
 SctpInitMsgOpt = {sctp_initmsg,#sctp_initmsg{num_ostreams=5}},
 ActiveOpt = {active, true},
 Opts = [SctpInitMsgOpt, ActiveOpt],
 ok = gen_sctp:connect(S, Peer1, Port1, Opts),
 ok = gen_sctp:connect(S, Peer2, Port2, Opts),
 io:format("Connections initiated~n", []),

gen_sctp

136 | Ericsson AB. All Rights Reserved.: Kernel

 client_loop(S, Peer1, Port1, undefined, Peer2, Port2, undefined).

client_loop(S, Peer1, Port1, AssocId1, Peer2, Port2, AssocId2) ->
 receive
 {sctp, S, Peer1, Port1, {_Anc, SAC}}
 when is_record(SAC, sctp_assoc_change), AssocId1 == undefined ->
 io:format("Association 1 connect result: ~p. AssocId: ~p~n",
 [SAC#sctp_assoc_change.state,
 SAC#sctp_assoc_change.assoc_id]),
 client_loop(S, Peer1, Port1, SAC#sctp_assoc_change.assoc_id,
 Peer2, Port2, AssocId2);

 {sctp, S, Peer2, Port2, {_Anc, SAC}}
 when is_record(SAC, sctp_assoc_change), AssocId2 == undefined ->
 io:format("Association 2 connect result: ~p. AssocId: ~p~n",
 [SAC#sctp_assoc_change.state, SAC#sctp_assoc_change.assoc_id]),
 client_loop(S, Peer1, Port1, AssocId1, Peer2, Port2,
 SAC#sctp_assoc_change.assoc_id);

 {sctp, S, Peer1, Port1, Data} ->
 io:format("Association 1: received ~p~n", [Data]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2);

 {sctp, S, Peer2, Port2, Data} ->
 io:format("Association 2: received ~p~n", [Data]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2);

 Other ->
 io:format("Other ~p~n", [Other]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2)

 after 5000 ->
 ok
 end.

SEE ALSO
inet(3), gen_tcp(3), gen_udp(3), RFC2960 (Stream Control Transmission Protocol), Sockets API Extensions for
SCTP.

href
href
href

global

Ericsson AB. All Rights Reserved.: Kernel | 137

global
Erlang module

This documentation describes the Global module which consists of the following functionalities:

• registration of global names;

• global locks;

• maintenance of the fully connected network.

These services are controlled via the process global_name_server which exists on every node. The global name
server is started automatically when a node is started. With the term global is meant over a system consisting of several
Erlang nodes.

The ability to globally register names is a central concept in the programming of distributed Erlang systems. In this
module, the equivalent of the register/2 and whereis/1 BIFs (for local name registration) are implemented,
but for a network of Erlang nodes. A registered name is an alias for a process identifier (pid). The global name server
monitors globally registered pids. If a process terminates, the name will also be globally unregistered.

The registered names are stored in replica global name tables on every node. There is no central storage point. Thus,
the translation of a name to a pid is fast, as it is always done locally. When any action in taken which results in a
change to the global name table, all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For instance, the specified resource could be a pid.
When a global lock is set, access to the locked resource is denied for all other resources other than the lock requester.

Both the registration and lock functionalities are atomic. All nodes involved in these actions will have the same view
of the information.

The global name server also performs the critical task of continuously monitoring changes in node configuration: if
a node which runs a globally registered process goes down, the name will be globally unregistered. To this end the
global name server subscribes to nodeup and nodedown messages sent from the net_kernel module. Relevant
Kernel application variables in this context are net_setuptime, net_ticktime, and dist_auto_connect.
See also kernel(6).

The name server will also maintain a fully connected network. For example, if node N1 connects to node N2 (which
is already connected to N3), the global name servers on the nodes N1 and N3 will make sure that also N1 and N3 are
connected. If this is not desired, the command line flag -connect_all false can be used (see also erl(1)). In
this case the name registration facility cannot be used, but the lock mechanism will still work.

If the global name server fails to connect nodes (N1 and N3 in the example above) a warning event is sent to the error
logger. The presence of such an event does not exclude the possibility that the nodes will later connect--one can for
example try the command rpc:call(N1, net_adm, ping, [N2]) in the Erlang shell--but it indicates some
kind of problem with the network.

Note:
If the fully connected network is not set up properly, the first thing to try is to increase the value of
net_setuptime.

global

138 | Ericsson AB. All Rights Reserved.: Kernel

Data Types
id() = {ResourceId :: term(), LockRequesterId :: term()}

Exports

del_lock(Id) -> true
del_lock(Id, Nodes) -> true
Types:

Id = id()
Nodes = [node()]

Deletes the lock Id synchronously.

notify_all_name(Name, Pid1, Pid2) -> none
Types:

Name = term()
Pid1 = Pid2 = pid()

This function can be used as a name resolving function for register_name/3 and re_register_name/3.
It unregisters both pids, and sends the message {global_name_conflict, Name, OtherPid} to both
processes.

random_exit_name(Name, Pid1, Pid2) -> pid()
Types:

Name = term()
Pid1 = Pid2 = pid()

This function can be used as a name resolving function for register_name/3 and re_register_name/3. It
randomly chooses one of the pids for registration and kills the other one.

random_notify_name(Name, Pid1, Pid2) -> pid()
Types:

Name = term()
Pid1 = Pid2 = pid()

This function can be used as a name resolving function for register_name/3 and re_register_name/3. It
randomly chooses one of the pids for registration, and sends the message {global_name_conflict, Name}
to the other pid.

register_name(Name, Pid) -> yes | no
register_name(Name, Pid, Resolve) -> yes | no
Types:

Name = term()
Pid = pid()
Resolve = method()
method() =
 fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->

global

Ericsson AB. All Rights Reserved.: Kernel | 139

 pid() | none)
{Module, Function} is currently also allowed for backward compatibility, but its use is deprecated

Globally associates the name Name with a pid, that is, Globally notifies all nodes of a new global name in a network
of Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered names that already exist. The
network is also informed of any global names in newly connected nodes. If any name clashes are discovered, the
Resolve function is called. Its purpose is to decide which pid is correct. If the function crashes, or returns anything
other than one of the pids, the name is unregistered. This function is called once for each name clash.

Warning:
If you plan to change code without restarting your system, you must use an external fun (fun
Module:Function/Arity) as the Resolve function; if you use a local fun you can never replace the code
for the module that the fun belongs to.

There are three pre-defined resolve functions: random_exit_name/3, random_notify_name/3, and
notify_all_name/3. If no Resolve function is defined, random_exit_name is used. This means that one
of the two registered processes will be selected as correct while the other is killed.

This function is completely synchronous. This means that when this function returns, the name is either registered
on all nodes or none.

The function returns yes if successful, no if it fails. For example, no is returned if an attempt is made to register an
already registered process or to register a process with a name that is already in use.

Note:
Releases up to and including OTP R10 did not check if the process was already registered. As a consequence
the global name table could become inconsistent. The old (buggy) behavior can be chosen by giving the Kernel
application variable global_multi_name_action the value allow.

If a process with a registered name dies, or the node goes down, the name is unregistered on all nodes.

registered_names() -> [Name]
Types:

Name = term()
Returns a lists of all globally registered names.

re_register_name(Name, Pid) -> yes
re_register_name(Name, Pid, Resolve) -> yes
Types:

Name = term()
Pid = pid()
Resolve = method()
method() =
 fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->

global

140 | Ericsson AB. All Rights Reserved.: Kernel

 pid() | none)
{Module, Function} is also allowed

Atomically changes the registered name Name on all nodes to refer to Pid.

The Resolve function has the same behavior as in register_name/2,3.

send(Name, Msg) -> Pid
Types:

Name = Msg = term()
Pid = pid()

Sends the message Msg to the pid globally registered as Name.

Failure: If Name is not a globally registered name, the calling function will exit with reason {badarg, {Name,
Msg}}.

set_lock(Id) -> boolean()
set_lock(Id, Nodes) -> boolean()
set_lock(Id, Nodes, Retries) -> boolean()
Types:

Id = id()
Nodes = [node()]
Retries = retries()
id() = {ResourceId :: term(), LockRequesterId :: term()}
retries() = integer() >= 0 | infinity

Sets a lock on the specified nodes (or on all nodes if none are specified) on ResourceId for LockRequesterId.
If a lock already exists on ResourceId for another requester than LockRequesterId, and Retries is not equal
to 0, the process sleeps for a while and will try to execute the action later. When Retries attempts have been made,
false is returned, otherwise true. If Retries is infinity, true is eventually returned (unless the lock is
never released).

If no value for Retries is given, infinity is used.

This function is completely synchronous.

If a process which holds a lock dies, or the node goes down, the locks held by the process are deleted.

The global name server keeps track of all processes sharing the same lock, that is, if two processes set the same lock,
both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur as long as processes only lock
one resource at a time. But if some processes try to lock two or more resources, a deadlock may occur. It is up to the
application to detect and rectify a deadlock.

Note:
Some values of ResourceId should be avoided or Erlang/OTP will not work properly. A list of resources to
avoid: global, dist_ac, mnesia_table_lock, mnesia_adjust_log_writes, pg2.

global

Ericsson AB. All Rights Reserved.: Kernel | 141

sync() -> ok | {error, Reason :: term()}
Synchronizes the global name server with all nodes known to this node. These are the nodes which are returned from
erlang:nodes(). When this function returns, the global name server will receive global information from all
nodes. This function can be called when new nodes are added to the network.

The only possible error reason Reason is {"global_groups definition error", Error}.

trans(Id, Fun) -> Res | aborted
trans(Id, Fun, Nodes) -> Res | aborted
trans(Id, Fun, Nodes, Retries) -> Res | aborted
Types:

Id = id()
Fun = trans_fun()
Nodes = [node()]
Retries = retries()
Res = term()
retries() = integer() >= 0 | infinity
trans_fun() = function() | {module(), atom()}

Sets a lock on Id (using set_lock/3). If this succeeds, Fun() is evaluated and the result Res is returned. Returns
aborted if the lock attempt failed. If Retries is set to infinity, the transaction will not abort.

infinity is the default setting and will be used if no value is given for Retries.

unregister_name(Name) -> term()
Types:

Name = term()
Removes the globally registered name Name from the network of Erlang nodes.

whereis_name(Name) -> pid() | undefined
Types:

Name = term()
Returns the pid with the globally registered name Name. Returns undefined if the name is not globally registered.

See Also
global_group(3), net_kernel(3)

global_group

142 | Ericsson AB. All Rights Reserved.: Kernel

global_group
Erlang module

The global group function makes it possible to group the nodes in a system into partitions, each partition having its
own global name space, refer to global(3). These partitions are called global groups.

The main advantage of dividing systems to global groups is that the background load decreases while the number of
nodes to be updated is reduced when manipulating globally registered names.

The Kernel configuration parameter global_groups defines the global groups (see also kernel(6), config(4):

{global_groups, [GroupTuple :: group_tuple()]}

For the processes and nodes to run smoothly using the global group functionality, the following criteria must be met:

• An instance of the global group server, global_group, must be running on each node. The processes are
automatically started and synchronized when a node is started.

• All involved nodes must agree on the global group definition, or the behavior of the system is undefined.

• All nodes in the system should belong to exactly one global group.

In the following description, a group node is a node belonging to the same global group as the local node.

Data Types
group_tuple() =
 {GroupName :: group_name(), [node()]} |
 {GroupName :: group_name(),
 PublishType :: publish_type(),
 [node()]}
A GroupTuple without PublishType is the same as a GroupTuple with PublishType == normal.

group_name() = atom()
publish_type() = hidden | normal
A node started with the command line flag -hidden, see erl(1), is said to be a hidden node. A hidden node will
establish hidden connections to nodes not part of the same global group, but normal (visible) connections to nodes
part of the same global group.

A global group defined with PublishType == hidden, is said to be a hidden global group. All nodes in a hidden
global group are hidden nodes, regardless if they are started with the -hidden command line flag or not.

name() = atom()
A registered name.

where() = {node, node()} | {group, group_name()}

Exports

global_groups() -> {GroupName, GroupNames} | undefined
Types:

global_group

Ericsson AB. All Rights Reserved.: Kernel | 143

GroupName = group_name()
GroupNames = [GroupName]

Returns a tuple containing the name of the global group the local node belongs to, and the list of all other known group
names. Returns undefined if no global groups are defined.

info() -> [info_item()]
Types:

info_item() =
 {state, State :: sync_state()} |
 {own_group_name, GroupName :: group_name()} |
 {own_group_nodes, Nodes :: [node()]} |
 {synched_nodes, Nodes :: [node()]} |
 {sync_error, Nodes :: [node()]} |
 {no_contact, Nodes :: [node()]} |
 {other_groups, Groups :: [group_tuple()]} |
 {monitoring, Pids :: [pid()]}
sync_state() = no_conf | synced

Returns a list containing information about the global groups. Each element of the list is a tuple. The order of the
tuples is not defined.

{state, State}

If the local node is part of a global group, State == synced. If no global groups are defined, State ==
no_conf.

{own_group_name, GroupName}

The name (atom) of the group that the local node belongs to.

{own_group_nodes, Nodes}

A list of node names (atoms), the group nodes.

{synced_nodes, Nodes}

A list of node names, the group nodes currently synchronized with the local node.

{sync_error, Nodes}

A list of node names, the group nodes with which the local node has failed to synchronize.

{no_contact, Nodes}

A list of node names, the group nodes to which there are currently no connections.

{other_groups, Groups}

Groups is a list of tuples {GroupName, Nodes}, specifying the name and nodes of the other global groups.

{monitoring, Pids}

A list of pids, specifying the processes which have subscribed to nodeup and nodedown messages.

monitor_nodes(Flag) -> ok
Types:

Flag = boolean()
Depending on Flag, the calling process starts subscribing (Flag == true) or stops subscribing (Flag ==
false) to node status change messages.

global_group

144 | Ericsson AB. All Rights Reserved.: Kernel

A process which has subscribed will receive the messages {nodeup, Node} and {nodedown, Node} when a
group node connects or disconnects, respectively.

own_nodes() -> Nodes
Types:

Nodes = [Node :: node()]
Returns the names of all group nodes, regardless of their current status.

registered_names(Where) -> Names
Types:

Where = where()
Names = [Name :: name()]

Returns a list of all names which are globally registered on the specified node or in the specified global group.

send(Name, Msg) -> pid() | {badarg, {Name, Msg}}
send(Where, Name, Msg) -> pid() | {badarg, {Name, Msg}}
Types:

Where = where()
Name = name()
Msg = term()

Searches for Name, globally registered on the specified node or in the specified global group, or -- if the Where
argument is not provided -- in any global group. The global groups are searched in the order in which they appear in
the value of the global_groups configuration parameter.

If Name is found, the message Msg is sent to the corresponding pid. The pid is also the return value of the function.
If the name is not found, the function returns {badarg, {Name, Msg}}.

sync() -> ok
Synchronizes the group nodes, that is, the global name servers on the group nodes. Also check the names globally
registered in the current global group and unregisters them on any known node not part of the group.

If synchronization is not possible, an error report is sent to the error logger (see also error_logger(3)).

Failure: {error, {'invalid global_groups definition', Bad}} if the global_groups
configuration parameter has an invalid value Bad.

whereis_name(Name) -> pid() | undefined
whereis_name(Where, Name) -> pid() | undefined
Types:

Where = where()
Name = name()

Searches for Name, globally registered on the specified node or in the specified global group, or -- if the Where
argument is not provided -- in any global group. The global groups are searched in the order in which they appear in
the value of the global_groups configuration parameter.

If Name is found, the corresponding pid is returned. If the name is not found, the function returns undefined.

global_group

Ericsson AB. All Rights Reserved.: Kernel | 145

NOTE
In the situation where a node has lost its connections to other nodes in its global group, but has connections to nodes in
other global groups, a request from another global group may produce an incorrect or misleading result. For example,
the isolated node may not have accurate information about registered names in its global group.

Note also that the send/2,3 function is not secure.

Distribution of applications is highly dependent of the global group definitions. It is not recommended that an
application is distributed over several global groups of the obvious reason that the registered names may be moved
to another global group at failover/takeover. There is nothing preventing doing this, but the application code must in
such case handle the situation.

SEE ALSO
erl(1), global(3)

heart

146 | Ericsson AB. All Rights Reserved.: Kernel

heart
Erlang module

This modules contains the interface to the heart process. heart sends periodic heartbeats to an external port
program, which is also named heart. The purpose of the heart port program is to check that the Erlang runtime system
it is supervising is still running. If the port program has not received any heartbeats within HEART_BEAT_TIMEOUT
seconds (default is 60 seconds), the system can be rebooted. Also, if the system is equipped with a hardware watchdog
timer and is running Solaris, the watchdog can be used to supervise the entire system.

An Erlang runtime system to be monitored by a heart program, should be started with the command line flag -heart
(see also erl(1)). The heart process is then started automatically:

% erl -heart ...

If the system should be rebooted because of missing heart-beats, or a terminated Erlang runtime system, the
environment variable HEART_COMMAND has to be set before the system is started. If this variable is not set, a warning
text will be printed but the system will not reboot. However, if the hardware watchdog is used, it will trigger a reboot
HEART_BEAT_BOOT_DELAY seconds later nevertheless (default is 60).

To reboot on the WINDOWS platform HEART_COMMAND can be set to heart -shutdown (included in the Erlang
delivery) or of course to any other suitable program which can activate a reboot.

The hardware watchdog will not be started under Solaris if the environment variable HW_WD_DISABLE is set.

The HEART_BEAT_TIMEOUT and HEART_BEAT_BOOT_DELAY environment variables can be used to configure
the heart timeouts, they can be set in the operating system shell before Erlang is started or be specified at the command
line:

% erl -heart -env HEART_BEAT_TIMEOUT 30 ...

The value (in seconds) must be in the range 10 < X <= 65535.

It should be noted that if the system clock is adjusted with more than HEART_BEAT_TIMEOUT seconds, heart will
timeout and try to reboot the system. This can happen, for example, if the system clock is adjusted automatically by
use of NTP (Network Time Protocol).

If a crash occurs, an erl_crash.dump will not be written unless the environment variable
ERL_CRASH_DUMP_SECONDS is set.

% erl -heart -env ERL_CRASH_DUMP_SECONDS 10 ...

If a regular core dump is wanted, let heart know by setting the kill signal to abort using the environment variable
HEART_KILL_SIGNAL=SIGABRT. If unset, or not set to SIGABRT, the default behaviour will be a kill signal using
SIGKILL.

% erl -heart -env HEART_KILL_SIGNAL SIGABRT ...

Furthermore, ERL_CRASH_DUMP_SECONDS has the following behaviour on heart:

heart

Ericsson AB. All Rights Reserved.: Kernel | 147

ERL_CRASH_DUMP_SECONDS=0

Suppresses the writing a crash dump file entirely, thus rebooting the runtime system immediately. This is the
same as not setting the environment variable.

ERL_CRASH_DUMP_SECONDS=-1

Setting the environment variable to a negative value will not reboot the runtime system until the crash dump file
has been completly written.

ERL_CRASH_DUMP_SECONDS=S

Heart will wait for S seconds to let the crash dump file be written. After S seconds heart will reboot the runtime
system regardless of the crash dump file has been written or not.

In the following descriptions, all function fails with reason badarg if heart is not started.

Exports

set_cmd(Cmd) -> ok | {error, {bad_cmd, Cmd}}
Types:

Cmd = string()
Sets a temporary reboot command. This command is used if a HEART_COMMAND other than the one specified with
the environment variable should be used in order to reboot the system. The new Erlang runtime system will (if it
misbehaves) use the environment variable HEART_COMMAND to reboot.

Limitations: The Cmd command string will be sent to the heart program as a ISO-latin-1 or UTF-8 encoded binary
depending on the file name encoding mode of the emulator (see file:native_name_encoding/0). The size
of the encoded binary must be less than 2047 bytes.

clear_cmd() -> ok
Clears the temporary boot command. If the system terminates, the normal HEART_COMMAND is used to reboot.

get_cmd() -> {ok, Cmd}
Types:

Cmd = string()
Get the temporary reboot command. If the command is cleared, the empty string will be returned.

inet

148 | Ericsson AB. All Rights Reserved.: Kernel

inet
Erlang module

Provides access to TCP/IP protocols.

See also ERTS User's Guide, Inet configuration for more information on how to configure an Erlang runtime system
for IP communication.

Two Kernel configuration parameters affect the behaviour of all sockets opened on an Erlang node:
inet_default_connect_options can contain a list of default options used for all sockets returned when doing
connect, and inet_default_listen_options can contain a list of default options used when issuing a
listen call. When accept is issued, the values of the listensocket options are inherited, why no such application
variable is needed for accept.

Using the Kernel configuration parameters mentioned above, one can set default options for all TCP sockets on a node.
This should be used with care, but options like {delay_send,true} might be specified in this way. An example
of starting an Erlang node with all sockets using delayed send could look like this:

$ erl -sname test -kernel \
inet_default_connect_options '[{delay_send,true}]' \
inet_default_listen_options '[{delay_send,true}]'

Note that the default option {active, true} currently cannot be changed, for internal reasons.

Addresses as inputs to functions can be either a string or a tuple. For instance, the IP address 150.236.20.73 can be
passed to gethostbyaddr/1 either as the string "150.236.20.73" or as the tuple {150, 236, 20, 73}.

IPv4 address examples:

Address ip_address()
------- ------------
127.0.0.1 {127,0,0,1}
192.168.42.2 {192,168,42,2}

IPv6 address examples:

Address ip_address()
------- ------------
::1 {0,0,0,0,0,0,0,1}
::192.168.42.2 {0,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
FFFF::192.168.42.2
 {16#FFFF,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
3ffe:b80:1f8d:2:204:acff:fe17:bf38
 {16#3ffe,16#b80,16#1f8d,16#2,16#204,16#acff,16#fe17,16#bf38}
fe80::204:acff:fe17:bf38
 {16#fe80,0,0,0,0,16#204,16#acff,16#fe17,16#bf38}

A function that may be useful is parse_address/1:

1> inet:parse_address("192.168.42.2").
{ok,{192,168,42,2}}

inet

Ericsson AB. All Rights Reserved.: Kernel | 149

2> inet:parse_address("FFFF::192.168.42.2").
{ok,{65535,0,0,0,0,0,49320,10754}}

Data Types
hostent() =
 #hostent{h_name = undefined | inet:hostname(),
 h_aliases = [inet:hostname()],
 h_addrtype = undefined | inet | inet6,
 h_length = undefined | integer() >= 0,
 h_addr_list = [inet:ip_address()]}
The record is defined in the Kernel include file "inet.hrl". Add the following directive to the module:

-include_lib("kernel/include/inet.hrl").

hostname() = atom() | string()
ip_address() = ip4_address() | ip6_address()
ip4_address() = {0..255, 0..255, 0..255, 0..255}
ip6_address() =
 {0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535}
port_number() = 0..65535
posix() = exbadport | exbadseq | file:posix()
An atom which is named from the Posix error codes used in Unix, and in the runtime libraries of most C compilers.
See POSIX Error Codes.

socket()
See gen_tcp(3) and gen_udp(3).

address_family() = inet | inet6

Exports

close(Socket) -> ok
Types:

Socket = socket()
Closes a socket of any type.

get_rc() -> [{Par :: any(), Val :: any()}]
Returns the state of the Inet configuration database in form of a list of recorded configuration parameters. (See the
ERTS User's Guide, Inet configuration, for more information). Only parameters with other than default values are
returned.

inet

150 | Ericsson AB. All Rights Reserved.: Kernel

format_error(Reason) -> string()
Types:

Reason = posix() | system_limit
Returns a diagnostic error string. See the section below for possible Posix values and the corresponding strings.

getaddr(Host, Family) -> {ok, Address} | {error, posix()}
Types:

Host = ip_address() | hostname()
Family = address_family()
Address = ip_address()

Returns the IP-address for Host as a tuple of integers. Host can be an IP-address, a single hostname or a fully
qualified hostname.

getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}
Types:

Host = ip_address() | hostname()
Family = address_family()
Addresses = [ip_address()]

Returns a list of all IP-addresses for Host. Host can be an IP-address, a single hostname or a fully qualified hostname.

gethostbyaddr(Address) -> {ok, Hostent} | {error, posix()}
Types:

Address = string() | ip_address()
Hostent = hostent()

Returns a hostent record given an address.

gethostbyname(Hostname) -> {ok, Hostent} | {error, posix()}
Types:

Hostname = hostname()
Hostent = hostent()

Returns a hostent record given a hostname.

gethostbyname(Hostname, Family) ->
 {ok, Hostent} | {error, posix()}
Types:

Hostname = hostname()
Family = address_family()
Hostent = hostent()

Returns a hostent record given a hostname, restricted to the given address family.

gethostname() -> {ok, Hostname}
Types:

inet

Ericsson AB. All Rights Reserved.: Kernel | 151

Hostname = string()
Returns the local hostname. Will never fail.

getifaddrs() -> {ok, Iflist} | {error, posix()}
Types:

Iflist = [{Ifname, [Ifopt]}]
Ifname = string()
Ifopt =
 {flag, [Flag]} |
 {addr, Addr} |
 {netmask, Netmask} |
 {broadaddr, Broadaddr} |
 {dstaddr, Dstaddr} |
 {hwaddr, Hwaddr}
Flag =
 up | broadcast | loopback | pointtopoint | running | multicast
Addr = Netmask = Broadaddr = Dstaddr = ip_address()
Hwaddr = [byte()]

Returns a list of 2-tuples containing interface names and the interface's addresses. Ifname is a Unicode string.
Hwaddr is hardware dependent, e.g on Ethernet interfaces it is the 6-byte Ethernet address (MAC address (EUI-48
address)).

The {addr,Addr}, {netmask,_} and {broadaddr,_} tuples are repeated in the result list iff the interface has
multiple addresses. If you come across an interface that has multiple {flag,_} or {hwaddr,_} tuples you have a
really strange interface or possibly a bug in this function. The {flag,_} tuple is mandatory, all other optional.

Do not rely too much on the order of Flag atoms or Ifopt tuples. There are some rules, though:

• Immediately after {addr,_} follows {netmask,_}

• Immediately thereafter follows {broadaddr,_} if the broadcast flag is not set and the pointtopoint
flag is set.

• Any {netmask,_}, {broadaddr,_} or {dstaddr,_} tuples that follow an {addr,_} tuple concerns
that address.

The {hwaddr,_} tuple is not returned on Solaris since the hardware address historically belongs to the link layer
and only the superuser can read such addresses.

On Windows, the data is fetched from quite different OS API functions, so the Netmask and Broadaddr values
may be calculated, just as some Flag values. You have been warned. Report flagrant bugs.

getopts(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:

Socket = socket()
Options = [socket_getopt()]
OptionValues = [socket_setopt()]
socket_getopt() =
 gen_sctp:option_name() |
 gen_tcp:option_name() |
 gen_udp:option_name()
socket_setopt() =

inet

152 | Ericsson AB. All Rights Reserved.: Kernel

 gen_sctp:option() | gen_tcp:option() | gen_udp:option()
Gets one or more options for a socket. See setopts/2 for a list of available options.

The number of elements in the returned OptionValues list does not necessarily correspond to the number of options
asked for. If the operating system fails to support an option, it is simply left out in the returned list. An error tuple is
only returned when getting options for the socket is impossible (i.e. the socket is closed or the buffer size in a raw
request is too large). This behavior is kept for backward compatibility reasons.

A raw option request RawOptReq = {raw, Protocol, OptionNum, ValueSpec} can be used to get
information about socket options not (explicitly) supported by the emulator. The use of raw socket options makes the
code non portable, but allows the Erlang programmer to take advantage of unusual features present on the current
platform.

The RawOptReq consists of the tag raw followed by the protocol level, the option number and either a binary or the
size, in bytes, of the buffer in which the option value is to be stored. A binary should be used when the underlying
getsockopt requires input in the argument field, in which case the size of the binary should correspond to the
required buffer size of the return value. The supplied values in a RawOptReq correspond to the second, third and
fourth/fifth parameters to the getsockopt call in the C socket API. The value stored in the buffer is returned as a
binary ValueBin where all values are coded in the native endianess.

Asking for and inspecting raw socket options require low level information about the current operating system and
TCP stack.

As an example, consider a Linux machine where the TCP_INFO option could be used to collect TCP statistics for
a socket. Lets say we're interested in the tcpi_sacked field of the struct tcp_info filled in when asking
for TCP_INFO. To be able to access this information, we need to know both the numeric value of the protocol level
IPPROTO_TCP, the numeric value of the option TCP_INFO, the size of the struct tcp_info and the size and
offset of the specific field. By inspecting the headers or writing a small C program, we found IPPROTO_TCP to be
6, TCP_INFO to be 11, the structure size to be 92 (bytes), the offset of tcpi_sacked to be 28 bytes and the actual
value to be a 32 bit integer. We could use the following code to retrieve the value:

 get_tcpi_sacked(Sock) ->
 {ok,[{raw,_,_,Info}]} = inet:getopts(Sock,[{raw,6,11,92}]),
 <<_:28/binary,TcpiSacked:32/native,_/binary>> = Info,
 TcpiSacked.

Preferably, you would check the machine type, the OS and the kernel version prior to executing anything similar to
the code above.

getstat(Socket) -> {ok, OptionValues} | {error, posix()}
getstat(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:

Socket = socket()
Options = [stat_option()]
OptionValues = [{stat_option(), integer()}]
stat_option() =
 recv_cnt |
 recv_max |
 recv_avg |
 recv_oct |
 recv_dvi |
 send_cnt |

inet

Ericsson AB. All Rights Reserved.: Kernel | 153

 send_max |
 send_avg |
 send_oct |
 send_pend

Gets one or more statistic options for a socket.

getstat(Socket) is equivalent to getstat(Socket, [recv_avg, recv_cnt, recv_dvi,
recv_max, recv_oct, send_avg, send_cnt, send_dvi, send_max, send_oct]).

The following options are available:

recv_avg

Average size of packets in bytes received by the socket.

recv_cnt

Number of packets received by the socket.

recv_dvi

Average packet size deviation in bytes received by the socket.

recv_max

The size of the largest packet in bytes received by the socket.

recv_oct

Number of bytes received by the socket.

send_avg

Average size of packets in bytes sent from the socket.

send_cnt

Number of packets sent from the socket.

send_dvi

Average packet size deviation in bytes sent from the socket.

send_max

The size of the largest packet in bytes sent from the socket.

send_oct

Number of bytes sent from the socket.

ntoa(IpAddress) -> Address | {error, einval}
Types:

Address = string()
IpAddress = ip_address()

Parses an ip_address() and returns an IPv4 or IPv6 address string.

parse_ipv4_address(Address) -> {ok, IPv4Address} | {error, einval}
Types:

Address = string()
IPv4Address = ip_address()

Parses an IPv4 address string and returns an ip4_address(). Accepts a shortened IPv4 shortened address string.

inet

154 | Ericsson AB. All Rights Reserved.: Kernel

parse_ipv4strict_address(Address) ->
 {ok, IPv4Address} | {error, einval}
Types:

Address = string()
IPv4Address = ip_address()

Parses an IPv4 address string containing four fields, i.e not shortened, and returns an ip4_address().

parse_ipv6_address(Address) -> {ok, IPv6Address} | {error, einval}
Types:

Address = string()
IPv6Address = ip_address()

Parses an IPv6 address string and returns an ip6_address(). If an IPv4 address string is passed, an IPv4-mapped IPv6
address is returned.

parse_ipv6strict_address(Address) ->
 {ok, IPv6Address} | {error, einval}
Types:

Address = string()
IPv6Address = ip_address()

Parses an IPv6 address string and returns an ip6_address(). Does not accept IPv4 adresses.

parse_address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()
IPAddress = ip_address()

Parses an IPv4 or IPv6 address string and returns an ip4_address() or ip6_address(). Accepts a shortened IPv4 address
string.

parse_strict_address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()
IPAddress = ip_address()

Parses an IPv4 or IPv6 address string and returns an ip4_address() or ip6_address(). Does not accept a shortened IPv4
address string.

peername(Socket) -> {ok, {Address, Port}} | {error, posix()}
Types:

Socket = socket()
Address = ip_address()
Port = integer() >= 0

Returns the address and port for the other end of a connection.

Note that for SCTP sockets this function only returns one of the socket's peer addresses. The function peernames/1,2
returns all.

inet

Ericsson AB. All Rights Reserved.: Kernel | 155

peernames(Socket) -> {ok, [{Address, Port}]} | {error, posix()}
Types:

Socket = socket()
Address = ip_address()
Port = integer() >= 0

Equivalent to peernames(Socket, 0). Note that this function's behaviour for an SCTP one-to-many style socket
is not defined by the SCTP Sockets API Extensions.

peernames(Socket, Assoc) ->
 {ok, [{Address, Port}]} | {error, posix()}
Types:

Socket = socket()
Assoc = #sctp_assoc_change{} | gen_sctp:assoc_id()
Address = ip_address()
Port = integer() >= 0

Returns a list of all address/port number pairs for the other end of a socket's association Assoc.

This function can return multiple addresses for multihomed sockets such as SCTP sockets. For other sockets it returns
a one element list.

Note that the Assoc parameter is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. What the special value 0 means hence its behaviour for one-to-many style sockets is unfortunately not defined.

port(Socket) -> {ok, Port} | {error, any()}
Types:

Socket = socket()
Port = port_number()

Returns the local port number for a socket.

sockname(Socket) -> {ok, {Address, Port}} | {error, posix()}
Types:

Socket = socket()
Address = ip_address()
Port = integer() >= 0

Returns the local address and port number for a socket.

Note that for SCTP sockets this function only returns one of the socket addresses. The function socknames/1,2 returns
all.

socknames(Socket) -> {ok, [{Address, Port}]} | {error, posix()}
Types:

Socket = socket()
Address = ip_address()
Port = integer() >= 0

Equivalent to socknames(Socket, 0).

href
href

inet

156 | Ericsson AB. All Rights Reserved.: Kernel

socknames(Socket, Assoc) ->
 {ok, [{Address, Port}]} | {error, posix()}
Types:

Socket = socket()
Assoc = #sctp_assoc_change{} | gen_sctp:assoc_id()
Address = ip_address()
Port = integer() >= 0

Returns a list of all local address/port number pairs for a socket for the given association Assoc.

This function can return multiple addresses for multihomed sockets such as SCTP sockets. For other sockets it returns
a one element list.

Note that the Assoc parameter is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. For one-to-many style sockets the special value 0 is defined to mean that the returned addresses shall be
without regard to any particular association. How different SCTP implementations interprets this varies somewhat.

setopts(Socket, Options) -> ok | {error, posix()}
Types:

Socket = socket()
Options = [socket_setopt()]
socket_setopt() =
 gen_sctp:option() | gen_tcp:option() | gen_udp:option()

Sets one or more options for a socket. The following options are available:

{active, true | false | once | N}

If the value is true, which is the default, everything received from the socket will be sent as messages to the
receiving process. If the value is false (passive mode), the process must explicitly receive incoming data by
calling gen_tcp:recv/2,3, gen_udp:recv/2,3 or gen_sctp:recv/1,2 (depending on the type of
socket).

If the value is once ({active, once}), one data message from the socket will be sent to the process. To
receive one more message, setopts/2 must be called again with the {active, once} option.

If the value is an integer N in the range -32768 to 32767 (inclusive), the value is added to the socket's count of data
messages sent to the controlling process. A socket's default message count is 0. If a negative value is specified
and its magnitude is equal to or greater than the socket's current message count, the socket's message count is set
to 0. Once the socket's message count reaches 0, either due to sending received data messages to the process or
by being explicitly set, the process is then notified by a special message, specific to the type of socket, that the
socket has entered passive mode. Once the socket enters passive mode, to receive more messages setopts/2
must be called again to set the socket back into an active mode.

When using {active, once} or {active, N}, the socket changes behaviour automatically when data
is received. This can sometimes be confusing in combination with connection-oriented sockets (i.e. gen_tcp)
as a socket with {active, false} behaviour reports closing differently than a socket with {active,
true} behaviour. To make programming easier, a socket where the peer closed and this was detected while in
{active, false} mode, will still generate the message {tcp_closed,Socket} when set to {active,
once}, {active, true} or {active, N} mode. It is therefore safe to assume that the message
{tcp_closed,Socket}, possibly followed by socket port termination (depending on the exit_on_close
option) will eventually appear when a socket changes back and forth between {active, true} and
{active, false} mode. However, when peer closing is detected is all up to the underlying TCP/IP stack
and protocol.

href

inet

Ericsson AB. All Rights Reserved.: Kernel | 157

Note that {active, true} mode provides no flow control; a fast sender could easily overflow the receiver
with incoming messages. The same is true of {active, N} mode while the message count is greater than zero.
Use active mode only if your high-level protocol provides its own flow control (for instance, acknowledging
received messages) or the amount of data exchanged is small. {active, false} mode, use of the {active,
once} mode or {active, N} mode with values of N appropriate for the application provides flow control;
the other side will not be able send faster than the receiver can read.

{broadcast, Boolean}(UDP sockets)

Enable/disable permission to send broadcasts.

{buffer, Size}

The size of the user-level software buffer used by the driver. Not to be confused with sndbuf and recbuf
options which correspond to the kernel socket buffers. It is recommended to have val(buffer) >=
max(val(sndbuf),val(recbuf)) to avoid performance issues due to unnecessary copying. In fact,
the val(buffer) is automatically set to the above maximum when sndbuf or recbuf values are set.
However, since the actual sizes set for sndbuf and recbuf usually becomes larger, you are encouraged to use
inet:getopts/2 to analyze the behavior of your operating system.

{delay_send, Boolean}

Normally, when an Erlang process sends to a socket, the driver will try to immediately send the data. If that fails,
the driver will use any means available to queue up the message to be sent whenever the operating system says
it can handle it. Setting {delay_send, true} will make all messages queue up. This makes the messages
actually sent onto the network be larger but fewer. The option actually affects the scheduling of send requests
versus Erlang processes instead of changing any real property of the socket. Needless to say it is an implementation
specific option. Default is false.

{deliver, port | term}

When {active, true} delivers data on the forms port : {S, {data, [H1,..Hsz | Data]}} or
term : {tcp, S, [H1..Hsz | Data]}.

{dontroute, Boolean}

Enable/disable routing bypass for outgoing messages.

{exit_on_close, Boolean}

By default this option is set to true.

The only reason to set it to false is if you want to continue sending data to the socket after a close has been
detected, for instance if the peer has used gen_tcp:shutdown/2 to shutdown the write side.

{header, Size}

This option is only meaningful if the binary option was specified when the socket was created. If the header
option is specified, the first Size number bytes of data received from the socket will be elements of a list, and
the rest of the data will be a binary given as the tail of the same list. If for example Size == 2, the data received
will match [Byte1,Byte2|Binary].

{high_msgq_watermark, Size}

The socket message queue will be set into a busy state when the amount of data queued on the message queue
reaches this limit. Note that this limit only concerns data that have not yet reached the ERTS internal socket
implementation. Default value used is 8 kB.

Senders of data to the socket will be suspended if either the socket message queue is busy, or the socket itself
is busy.

For more information see the low_msgq_watermark, high_watermark, and low_watermark options.

inet

158 | Ericsson AB. All Rights Reserved.: Kernel

Note that distribution sockets will disable the use of high_msgq_watermark and low_msgq_watermark,
and will instead use the distribution buffer busy limit which is a similar feature.

{high_watermark, Size} (TCP/IP sockets)

The socket will be set into a busy state when the amount of data queued internally by the ERTS socket
implementation reaches this limit. Default value used is 8 kB.

Senders of data to the socket will be suspended if either the socket message queue is busy, or the socket itself
is busy.

For more information see the low_watermark, high_msgq_watermark, and low_msqg_watermark
options.

{ipv6_v6only, Boolean}

Restricts the socket to only use IPv6, prohibiting any IPv4 connections. This is only applicable for IPv6 sockets
(option inet6).

On most platforms this option has to be set on the socket before associating it to an address. Therefore it is only
reasonable to give it when creating the socket and not to use it when calling the function (setopts/2) containing
this description.

The behaviour of a socket with this socket option set to true is becoming the only portable one. The original
idea when IPv6 was new of using IPv6 for all traffic is now not recommended by FreeBSD (you can use
{ipv6_v6only,false} to override the recommended system default value), forbidden by OpenBSD (the
supported GENERIC kernel) and impossible on Windows (that has separate IPv4 and IPv6 protocol stacks). Most
Linux distros still have a system default value of false. This policy shift among operating systems towards
separating IPv6 from IPv4 traffic has evolved since it gradually proved hard and complicated to get a dual stack
implementation correct and secure.

On some platforms the only allowed value for this option is true, e.g. OpenBSD and Windows. Trying to set
this option to false when creating the socket will in this case fail.

Setting this option on platforms where it does not exist is ignored and getting this option with getopts/2 returns no
value i.e the returned list will not contain an {ipv6_v6only,_} tuple. On Windows the option acually does
not exist, but it is emulated as being a read-only option with the value true.

So it boils down to that setting this option to true when creating a socket will never fail except possibly (at the
time of this writing) on a platform where you have customized the kernel to only allow false, which might be
doable (but weird) on e.g. OpenBSD.

If you read back the option value using getopts/2 and get no value the option does not exist in the host OS and
all bets are off regarding the behaviour of both an IPv6 and an IPv4 socket listening on the same port as well as
for an IPv6 socket getting IPv4 traffic.

{keepalive, Boolean}(TCP/IP sockets)

Enables/disables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and an error message will be sent to the controlling
process. Default disabled.

{linger, {true|false, Seconds}}

Determines the timeout in seconds for flushing unsent data in the close/1 socket call. If the 1st component of
the value tuple is false, the 2nd one is ignored, which means that close/1 returns immediately not waiting
for data to be flushed. Otherwise, the 2nd component is the flushing time-out in seconds.

inet

Ericsson AB. All Rights Reserved.: Kernel | 159

{low_msgq_watermark, Size}

If the socket message queue is in a busy state, the socket message queue will be set in a not busy state when the
amount of data queued in the message queue falls below this limit. Note that this limit only concerns data that
have not yet reached the ERTS internal socket implementation. Default value used is 4 kB.

Senders that have been suspended due to either a busy message queue or a busy socket, will be resumed when
neither the socket message queue, nor the socket are busy.

For more information see the high_msgq_watermark, high_watermark, and low_watermark
options.

Note that distribution sockets will disable the use of high_msgq_watermark and low_msgq_watermark,
and will instead use the distribution buffer busy limit which is a similar feature.

{low_watermark, Size} (TCP/IP sockets)

If the socket is in a busy state, the socket will be set in a not busy state when the amount of data queued internally
by the ERTS socket implementation falls below this limit. Default value used is 4 kB.

Senders that have been suspended due to either a busy message queue or a busy socket, will be resumed when
neither the socket message queue, nor the socket are busy.

For more information see the high_watermark, high_msgq_watermark, and low_msgq_watermark
options.

{mode, Mode :: binary | list}

Received Packet is delivered as defined by Mode.

{netns, Namespace :: file:filename_all()}

Set a network namespace for the socket. The Namespace parameter is a filename defining the namespace for
example "/var/run/netns/example" typically created by the command ip netns add example.
This option must be used in a function call that creates a socket i.e gen_tcp:connect/3,4, gen_tcp:listen/2,
gen_udp:open/1,2 or gen_sctp:open/0-2.

This option uses the Linux specific syscall setns() such as in Linux kernel 3.0 or later and therefore only exists
when the runtime system has been compiled for such an operating system.

The virtual machine also needs elevated privileges either running as superuser or (for Linux) having the
capability CAP_SYS_ADMIN according to the documentation for setns(2). However, during testing also
CAP_SYS_PTRACE and CAP_DAC_READ_SEARCH has proven to be necessary. Example:

setcap cap_sys_admin,cap_sys_ptrace,cap_dac_read_search+epi beam.smp

Note also that the filesystem containing the virtual machine executable (beam.smp in the example above) has
to be local, mounted without the nosetuid flag, support extended attributes and that the kernel has to support
file capabilities. All this runs out of the box on at least Ubuntu 12.04 LTS, except that SCTP sockets appears to
not support network namespaces.

The Namespace is a file name and is encoded and decoded as discussed in file except that the emulator flag
+fnu is ignored and getopts/2 for this option will return a binary for the filename if the stored filename can
not be decoded, which should only happen if you set the option using a binary that can not be decoded with the
emulator's filename encoding: file:native_name_encoding/0.

list

Received Packet is delivered as a list.

inet

160 | Ericsson AB. All Rights Reserved.: Kernel

binary

Received Packet is delivered as a binary.

{nodelay, Boolean}(TCP/IP sockets)

If Boolean == true, the TCP_NODELAY option is turned on for the socket, which means that even small
amounts of data will be sent immediately.

{packet, PacketType}(TCP/IP sockets)

Defines the type of packets to use for a socket. The following values are valid:

raw | 0

No packaging is done.

1 | 2 | 4

Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes.
The length of header can be one, two, or four bytes; containing an unsigned integer in big-endian byte order.
Each send operation will generate the header, and the header will be stripped off on each receive operation.

In current implementation the 4-byte header is limited to 2Gb.

asn1 | cdr | sunrm | fcgi | tpkt | line

These packet types only have effect on receiving. When sending a packet, it is the responsibility of the
application to supply a correct header. On receiving, however, there will be one message sent to the
controlling process for each complete packet received, and, similarly, each call to gen_tcp:recv/2,3
returns one complete packet. The header is not stripped off.

The meanings of the packet types are as follows:
asn1 - ASN.1 BER,
sunrm - Sun's RPC encoding,
cdr - CORBA (GIOP 1.1),
fcgi - Fast CGI,
tpkt - TPKT format [RFC1006],
line - Line mode, a packet is a line terminated with newline, lines longer than the receive buffer are
truncated.

http | http_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to HttpPacket
described in erlang:decode_packet/3. A socket in passive mode will return {ok, HttpPacket} from
gen_tcp:recv while an active socket will send messages like {http, Socket, HttpPacket}.

httph | httph_bin

These two types are often not needed as the socket will automatically switch from http/http_bin to
httph/httph_bin internally after the first line has been read. There might be occasions however when
they are useful, such as parsing trailers from chunked encoding.

{packet_size, Integer}(TCP/IP sockets)

Sets the max allowed length of the packet body. If the packet header indicates that the length of the packet is
longer than the max allowed length, the packet is considered invalid. The same happens if the packet header is
too big for the socket receive buffer.

For line oriented protocols (line,http*), option packet_size also guarantees that lines up to the indicated
length are accepted and not considered invalid due to internal buffer limitations.

{line_delimiter, Char}(TCP/IP sockets)

Sets the line delimiting character for line oriented protocols (line). Default value is $\n.

inet

Ericsson AB. All Rights Reserved.: Kernel | 161

{priority, Priority}

Set the protocol-defined priority for all packets to be sent on this socket.

{raw, Protocol, OptionNum, ValueBin}

See below.

{read_packets, Integer}(UDP sockets)

Sets the max number of UDP packets to read without intervention from the socket when data is available. When
this many packets have been read and delivered to the destination process, new packets are not read until a new
notification of available data has arrived. The default is 5, and if this parameter is set too high the system can
become unresponsive due to UDP packet flooding.

{recbuf, Size}

The minimum size of the receive buffer to use for the socket. You are encouraged to use inet:getopts/2,
to retrieve the actual size set by your operating system.

{reuseaddr, Boolean}

Allows or disallows local reuse of port numbers. By default, reuse is disallowed.

{send_timeout, Integer}

Only allowed for connection oriented sockets.

Specifies a longest time to wait for a send operation to be accepted by the underlying TCP stack. When the limit
is exceeded, the send operation will return {error,timeout}. How much of a packet that actually got sent
is unknown, why the socket should be closed whenever a timeout has occurred (see send_timeout_close).
Default is infinity.

{send_timeout_close, Boolean}

Only allowed for connection oriented sockets.

Used together with send_timeout to specify whether the socket will be automatically closed when the send
operation returns {error,timeout}. The recommended setting is true which will automatically close the
socket. Default is false due to backward compatibility.

{show_econnreset, Boolean}(TCP/IP sockets)

When this option is set to false, as it is by default, an RST that is received from the TCP peer is treated as a
normal close (as though a FIN was sent). A caller to gen_tcp:recv/2 will get {error, closed}. In active
mode the controlling process will receive a {tcp_close, Socket} message, indicating that the peer has
closed the connection.

Setting this option to true will allow you to distinguish between a connection that was closed normally, and
one which was aborted (intentionally or unintentionally) by the TCP peer. A call to gen_tcp:recv/2 will return
{error, econnreset}. In active mode, the controlling process will receive a {tcp_error, Socket,
econnreset} message before the usual {tcp_closed, Socket}, as is the case for any other socket error.
Calls to gen_tcp:send/2 will also return {error, econnreset} when it is detected that a TCP peer has
sent an RST.

A connected socket returned from gen_tcp:accept/1 will inherit the show_econnreset setting from the
listening socket.

{sndbuf, Size}

The minimum size of the send buffer to use for the socket. You are encouraged to use inet:getopts/2, to
retrieve the actual size set by your operating system.

inet

162 | Ericsson AB. All Rights Reserved.: Kernel

{priority, Integer}

Sets the SO_PRIORITY socket level option on platforms where this is implemented. The behaviour and allowed
range varies on different systems. The option is ignored on platforms where the option is not implemented. Use
with caution.

{tos, Integer}

Sets IP_TOS IP level options on platforms where this is implemented. The behaviour and allowed range varies
on different systems. The option is ignored on platforms where the option is not implemented. Use with caution.

In addition to the options mentioned above, raw option specifications can be used. The raw options are specified as a
tuple of arity four, beginning with the tag raw, followed by the protocol level, the option number and the actual option
value specified as a binary. This corresponds to the second, third and fourth argument to the setsockopt call in the
C socket API. The option value needs to be coded in the native endianess of the platform and, if a structure is required,
needs to follow the struct alignment conventions on the specific platform.

Using raw socket options require detailed knowledge about the current operating system and TCP stack.

As an example of the usage of raw options, consider a Linux system where you want to set the TCP_LINGER2 option
on the IPPROTO_TCP protocol level in the stack. You know that on this particular system it defaults to 60 (seconds),
but you would like to lower it to 30 for a particular socket. The TCP_LINGER2 option is not explicitly supported by
inet, but you know that the protocol level translates to the number 6, the option number to the number 8 and the value
is to be given as a 32 bit integer. You can use this line of code to set the option for the socket named Sock:

 inet:setopts(Sock,[{raw,6,8,<<30:32/native>>}]),

As many options are silently discarded by the stack if they are given out of range, it could be a good idea to check that
a raw option really got accepted. This code places the value in the variable TcpLinger2:

 {ok,[{raw,6,8,<<TcpLinger2:32/native>>}]}=inet:getopts(Sock,[{raw,6,8,4}]),

Code such as the examples above is inherently non portable, even different versions of the same OS on the same
platform may respond differently to this kind of option manipulation. Use with care.

Note that the default options for TCP/IP sockets can be changed with the Kernel configuration parameters mentioned
in the beginning of this document.

POSIX Error Codes
• e2big - argument list too long

• eacces - permission denied

• eaddrinuse - address already in use

• eaddrnotavail - cannot assign requested address

• eadv - advertise error

• eafnosupport - address family not supported by protocol family

• eagain - resource temporarily unavailable

• ealign - EALIGN

• ealready - operation already in progress

• ebade - bad exchange descriptor

• ebadf - bad file number

• ebadfd - file descriptor in bad state

inet

Ericsson AB. All Rights Reserved.: Kernel | 163

• ebadmsg - not a data message

• ebadr - bad request descriptor

• ebadrpc - RPC structure is bad

• ebadrqc - bad request code

• ebadslt - invalid slot

• ebfont - bad font file format

• ebusy - file busy

• echild - no children

• echrng - channel number out of range

• ecomm - communication error on send

• econnaborted - software caused connection abort

• econnrefused - connection refused

• econnreset - connection reset by peer

• edeadlk - resource deadlock avoided

• edeadlock - resource deadlock avoided

• edestaddrreq - destination address required

• edirty - mounting a dirty fs w/o force

• edom - math argument out of range

• edotdot - cross mount point

• edquot - disk quota exceeded

• eduppkg - duplicate package name

• eexist - file already exists

• efault - bad address in system call argument

• efbig - file too large

• ehostdown - host is down

• ehostunreach - host is unreachable

• eidrm - identifier removed

• einit - initialization error

• einprogress - operation now in progress

• eintr - interrupted system call

• einval - invalid argument

• eio - I/O error

• eisconn - socket is already connected

• eisdir - illegal operation on a directory

• eisnam - is a named file

• el2hlt - level 2 halted

• el2nsync - level 2 not synchronized

• el3hlt - level 3 halted

• el3rst - level 3 reset

• elbin - ELBIN

• elibacc - cannot access a needed shared library

• elibbad - accessing a corrupted shared library

• elibexec - cannot exec a shared library directly

inet

164 | Ericsson AB. All Rights Reserved.: Kernel

• elibmax - attempting to link in more shared libraries than system limit

• elibscn - .lib section in a.out corrupted

• elnrng - link number out of range

• eloop - too many levels of symbolic links

• emfile - too many open files

• emlink - too many links

• emsgsize - message too long

• emultihop - multihop attempted

• enametoolong - file name too long

• enavail - not available

• enet - ENET

• enetdown - network is down

• enetreset - network dropped connection on reset

• enetunreach - network is unreachable

• enfile - file table overflow

• enoano - anode table overflow

• enobufs - no buffer space available

• enocsi - no CSI structure available

• enodata - no data available

• enodev - no such device

• enoent - no such file or directory

• enoexec - exec format error

• enolck - no locks available

• enolink - link has be severed

• enomem - not enough memory

• enomsg - no message of desired type

• enonet - machine is not on the network

• enopkg - package not installed

• enoprotoopt - bad protocol option

• enospc - no space left on device

• enosr - out of stream resources or not a stream device

• enosym - unresolved symbol name

• enosys - function not implemented

• enotblk - block device required

• enotconn - socket is not connected

• enotdir - not a directory

• enotempty - directory not empty

• enotnam - not a named file

• enotsock - socket operation on non-socket

• enotsup - operation not supported

• enotty - inappropriate device for ioctl

• enotuniq - name not unique on network

• enxio - no such device or address

inet

Ericsson AB. All Rights Reserved.: Kernel | 165

• eopnotsupp - operation not supported on socket

• eperm - not owner

• epfnosupport - protocol family not supported

• epipe - broken pipe

• eproclim - too many processes

• eprocunavail - bad procedure for program

• eprogmismatch - program version wrong

• eprogunavail - RPC program not available

• eproto - protocol error

• eprotonosupport - protocol not supported

• eprototype - protocol wrong type for socket

• erange - math result unrepresentable

• erefused - EREFUSED

• eremchg - remote address changed

• eremdev - remote device

• eremote - pathname hit remote file system

• eremoteio - remote i/o error

• eremoterelease - EREMOTERELEASE

• erofs - read-only file system

• erpcmismatch - RPC version is wrong

• erremote - object is remote

• eshutdown - cannot send after socket shutdown

• esocktnosupport - socket type not supported

• espipe - invalid seek

• esrch - no such process

• esrmnt - srmount error

• estale - stale remote file handle

• esuccess - Error 0

• etime - timer expired

• etimedout - connection timed out

• etoomanyrefs - too many references

• etxtbsy - text file or pseudo-device busy

• euclean - structure needs cleaning

• eunatch - protocol driver not attached

• eusers - too many users

• eversion - version mismatch

• ewouldblock - operation would block

• exdev - cross-domain link

• exfull - message tables full

• nxdomain - the hostname or domain name could not be found

inet_res

166 | Ericsson AB. All Rights Reserved.: Kernel

inet_res
Erlang module

Performs DNS name resolving towards recursive name servers

See also ERTS User's Guide: Inet configuration for more information on how to configure an Erlang runtime system
for IP communication and how to enable this DNS client by defining 'dns' as a lookup method. It then acts as a
backend for the resolving functions in inet.

This DNS client can resolve DNS records even if it is not used for normal name resolving in the node.

This is not a full-fledged resolver. It is just a DNS client that relies on asking trusted recursive nameservers.

Name Resolving
UDP queries are used unless resolver option usevc is true, which forces TCP queries. If the query is to large for
UDP, TCP is used instead. For regular DNS queries 512 bytes is the size limit. When EDNS is enabled (resolver
option edns is set to the EDNS version i.e 0 instead of false), resolver option udp_payload_size sets the
limit. If a nameserver replies with the TC bit set (truncation), indicating the answer is incomplete, the query is retried
to that nameserver using TCP. The resolver option udp_payload_size also sets the advertised size for the max
allowed reply size, if EDNS is enabled, otherwise the nameserver uses the limit 512 byte. If the reply is larger it gets
truncated, forcing a TCP re-query.

For UDP queries, the resolver options timeout and retry control retransmission. Each nameserver in the
nameservers list is tried with a timeout of timeout / retry. Then all nameservers are tried again doubling the
timeout, for a total of retry times.

For queries that not use the search list, if the query to all nameservers results in {error,nxdomain}or an
empty answer, the same query is tried for the alt_nameservers.

Resolver Types
The following data types concern the resolver:

Data Types
res_option() =
 {alt_nameservers, [nameserver()]} |
 {edns, 0 | false} |
 {inet6, boolean()} |
 {nameservers, [nameserver()]} |
 {recurse, boolean()} |
 {retry, integer()} |
 {timeout, integer()} |
 {udp_payload_size, integer()} |
 {usevc, boolean()}
nameserver() = {inet:ip_address(), Port :: 1..65535}
res_error() =
 formerr |
 qfmterror |
 servfail |
 nxdomain |
 notimp |
 refused |

inet_res

Ericsson AB. All Rights Reserved.: Kernel | 167

 badvers |
 timeout

DNS Types
The following data types concern the DNS client:

Data Types
dns_name() = string()
A string with no adjacent dots.

rr_type() =
 a |
 aaaa |
 cname |
 gid |
 hinfo |
 ns |
 mb |
 md |
 mg |
 mf |
 minfo |
 mx |
 naptr |
 null |
 ptr |
 soa |
 spf |
 srv |
 txt |
 uid |
 uinfo |
 unspec |
 wks
dns_class() = in | chaos | hs | any
dns_msg() = term()
This is the start of a hiearchy of opaque data structures that can be examined with access functions in inet_dns that
return lists of {Field,Value} tuples. The arity 2 functions just return the value for a given field.

dns_msg() = DnsMsg
 inet_dns:msg(DnsMsg) ->
 [{header, dns_header()}
 | {qdlist, dns_query()}
 | {anlist, dns_rr()}
 | {nslist, dns_rr()}
 | {arlist, dns_rr()}]
 inet_dns:msg(DnsMsg, header) -> dns_header() % for example
 inet_dns:msg(DnsMsg, Field) -> Value

dns_header() = DnsHeader
 inet_dns:header(DnsHeader) ->
 [{id, integer()}

inet_res

168 | Ericsson AB. All Rights Reserved.: Kernel

 | {qr, boolean()}
 | {opcode, 'query' | iquery | status | integer()}
 | {aa, boolean()}
 | {tc, boolean()}
 | {rd, boolean()}
 | {ra, boolean()}
 | {pr, boolean()}
 | {rcode, integer(0..16)}]
 inet_dns:header(DnsHeader, Field) -> Value

query_type() = axfr | mailb | maila | any | rr_type()

dns_query() = DnsQuery
 inet_dns:dns_query(DnsQuery) ->
 [{domain, dns_name()}
 | {type, query_type()}
 | {class, dns_class()}]
 inet_dns:dns_query(DnsQuery, Field) -> Value

dns_rr() = DnsRr
 inet_dns:rr(DnsRr) -> DnsRrFields | DnsRrOptFields
 DnsRrFields = [{domain, dns_name()}
 | {type, rr_type()}
 | {class, dns_class()}
 | {ttl, integer()}
 | {data, dns_data()}]
 DnsRrOptFields = [{domain, dns_name()}
 | {type, opt}
 | {udp_payload_size, integer()}
 | {ext_rcode, integer()}
 | {version, integer()}
 | {z, integer()}
 | {data, dns_data()}]
 inet_dns:rr(DnsRr, Field) -> Value

There is an info function for the types above:

inet_dns:record_type(dns_msg()) -> msg;
inet_dns:record_type(dns_header()) -> header;
inet_dns:record_type(dns_query()) -> dns_query;
inet_dns:record_type(dns_rr()) -> rr;
inet_dns:record_type(_) -> undefined.

So; inet_dns:(inet_dns:record_type(X))(X) will convert any of these data structures into a {Field,Value} list.

dns_data() =
 dns_name() |
 inet:ip4_address() |
 inet:ip6_address() |
 {MName :: dns_name(),
 RName :: dns_name(),
 Serial :: integer(),
 Refresh :: integer(),
 Retry :: integer(),
 Expiry :: integer(),
 Minimum :: integer()} |
 {inet:ip4_address(), Proto :: integer(), BitMap :: binary()} |
 {CpuString :: string(), OsString :: string()} |
 {RM :: dns_name(), EM :: dns_name()} |

inet_res

Ericsson AB. All Rights Reserved.: Kernel | 169

 {Prio :: integer(), dns_name()} |
 {Prio :: integer(),
 Weight :: integer(),
 Port :: integer(),
 dns_name()} |
 {Order :: integer(),
 Preference :: integer(),
 Flags :: string(),
 Services :: string(),
 Regexp :: string(),
 dns_name()} |
 [string()] |
 binary()
Regexp is a string with characters encoded in the UTF-8 coding standard.

Exports

getbyname(Name, Type) -> {ok, Hostent} | {error, Reason}
getbyname(Name, Type, Timeout) -> {ok, Hostent} | {error, Reason}
Types:

Name = dns_name()
Type = rr_type()
Timeout = timeout()
Hostent = inet:hostent()
Reason = inet:posix() | res_error()

Resolve a DNS record of the given type for the given host, of class in. On success returns a hostent() record with
dns_data() elements in the address list field.

This function uses the resolver option search that is a list of domain names. If the name to resolve contains no dots,
it is prepended to each domain name in the search list, and they are tried in order. If the name contains dots, it is first
tried as an absolute name and if that fails the search list is used. If the name has a trailing dot it is simply supposed
to be an absolute name and the search list is not used.

gethostbyaddr(Address) -> {ok, Hostent} | {error, Reason}
gethostbyaddr(Address, Timeout) -> {ok, Hostent} | {error, Reason}
Types:

Address = inet:ip_address()
Timeout = timeout()
Hostent = inet:hostent()
Reason = inet:posix() | res_error()

Backend functions used by inet:gethostbyaddr/1 .

gethostbyname(Name) -> {ok, Hostent} | {error, Reason}
gethostbyname(Name, Family) -> {ok, Hostent} | {error, Reason}
gethostbyname(Name, Family, Timeout) ->
 {ok, Hostent} | {error, Reason}
Types:

inet_res

170 | Ericsson AB. All Rights Reserved.: Kernel

Name = dns_name()
Hostent = inet:hostent()
Timeout = timeout()
Family = inet:address_family()
Reason = inet:posix() | res_error()

Backend functions used by inet:gethostbyname/1,2 .

This function uses the resolver option search just like getbyname/2,3.

If the resolver option inet6 is true, an IPv6 address is looked up, and if that fails the IPv4 address is looked up
and returned on IPv6 mapped IPv4 format.

lookup(Name, Class, Type) -> [dns_data()]
lookup(Name, Class, Type, Opts) -> [dns_data()]
lookup(Name, Class, Type, Opts, Timeout) -> [dns_data()]
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = rr_type()
Opts = [res_option() | verbose]
Timeout = timeout()

Resolve the DNS data for the record of the given type and class for the given name. On success filters out the answer
records with the correct Class and Type and returns a list of their data fields. So a lookup for type any will give
an empty answer since the answer records have specific types that are not any. An empty answer as well as a failed
lookup returns an empty list.

Calls resolve/2..4 with the same arguments and filters the result, so Opts is explained there.

resolve(Name, Class, Type) -> {ok, dns_msg()} | Error
resolve(Name, Class, Type, Opts) -> {ok, dns_msg()} | Error
resolve(Name, Class, Type, Opts, Timeout) ->
 {ok, dns_msg()} | Error
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = rr_type()
Opts = [Opt]
Opt = res_option() | verbose | atom()
Timeout = timeout()
Error = {error, Reason} | {error, {Reason, dns_msg()}}
Reason = inet:posix() | res_error()

Resolve a DNS record of the given type and class for the given name. The returned dns_msg() can be examined
using access functions in inet_db as described in DNS Types.

If Name is an ip_address(), the domain name to query for is generated as the standard reverse ".IN-
ADDR.ARPA." name for an IPv4 address, or the ".IP6.ARPA." name for an IPv6 address. In this case you most
probably want to use Class = in and Type = ptr but it is not done automatically.

inet_res

Ericsson AB. All Rights Reserved.: Kernel | 171

Opts override the corresponding resolver options. If the option nameservers is given, it is also assumed that it
is the complete list of nameserves, so the resolver option alt_nameserves is ignored. Of course, if that option is
also given to this function, it is used.

The verbose option (or rather {verbose,true}), causes diagnostics printout through io:format/2 of queries,
replies retransmissions, etc, similar to from utilities like dig, nslookup et.al.

If Opt is an arbitrary atom it is interpreted as {Opt,true} unless the atom string starts with "no" making the
interpretation {Opt,false}. For example: usevc is an alias for {usevc,true}, and nousevc an alias for
{usevc,false}.

The inet6 option currently has no effect on this function. You probably want to use Type = a | aaaa instead.

Examples
Access functions example: how lookup/3 could have been implemented using resolve/3 from outside the module.

 example_lookup(Name, Class, Type) ->
 case inet_res:resolve(Name, Class, Type) of
 {ok,Msg} ->
 [inet_dns:rr(RR, data)
 || RR <- inet_dns:msg(Msg, anlist),
 inet_dns:rr(RR, type) =:= Type,
 inet_dns:rr(RR, class) =:= Class];
 {error,_} ->
 []
 end.

Legacy Functions
These have been deprecated due to the annoying double meaning of the nameservers/timeout argument, and because
they had no decent place for a resolver options list.

Exports

nslookup(Name, Class, Type) -> {ok, dns_msg()} | {error, Reason}
nslookup(Name, Class, Type, Timeout) ->
 {ok, dns_msg()} | {error, Reason}
nslookup(Name, Class, Type, Nameservers) ->
 {ok, dns_msg()} | {error, Reason}
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = rr_type()
Timeout = timeout()
Nameservers = [nameserver()]
Reason = inet:posix() | res_error()

Resolve a DNS record of the given type and class for the given name.

nnslookup(Name, Class, Type, Nameservers) ->

inet_res

172 | Ericsson AB. All Rights Reserved.: Kernel

 {ok, dns_msg()} | {error, Reason}
nnslookup(Name, Class, Type, Nameservers, Timeout) ->
 {ok, dns_msg()} | {error, Reason}
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = rr_type()
Timeout = timeout()
Nameservers = [nameserver()]
Reason = inet:posix()

Resolve a DNS record of the given type and class for the given name.

init

Ericsson AB. All Rights Reserved.: Kernel | 173

init
Erlang module

The module init is moved to the runtime system application. Please see init(3) in the erts reference manual instead.

net_adm

174 | Ericsson AB. All Rights Reserved.: Kernel

net_adm
Erlang module

This module contains various network utility functions.

Exports

dns_hostname(Host) -> {ok, Name} | {error, Host}
Types:

Host = atom() | string()
Name = string()

Returns the official name of Host, or {error, Host} if no such name is found. See also inet(3).

host_file() -> Hosts | {error, Reason}
Types:

Hosts = [Host :: atom()]
Reason =
 file:posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads the .hosts.erlang file, see the section Files below. Returns the hosts in this file as a list, or returns
{error, Reason} if the file could not be read or the Erlang terms on the file could not be interpreted.

localhost() -> Name
Types:

Name = string()
Returns the name of the local host. If Erlang was started with the -name command line flag, Name is the fully qualified
name.

names() -> {ok, [{Name, Port}]} | {error, Reason}
names(Host) -> {ok, [{Name, Port}]} | {error, Reason}
Types:

Host = atom() | string() | inet:ip_address()
Name = string()
Port = integer() >= 0
Reason = address | file:posix()

Similar to epmd -names, see epmd(1). Host defaults to the local host. Returns the names and associated port
numbers of the Erlang nodes that epmd at the specified host has registered.

Returns {error, address} if epmd is not running.

(arne@dunn)1> net_adm:names().

net_adm

Ericsson AB. All Rights Reserved.: Kernel | 175

{ok,[{"arne",40262}]}

ping(Node) -> pong | pang
Types:

Node = atom()
Tries to set up a connection to Node. Returns pang if it fails, or pong if it is successful.

world() -> [node()]
world(Arg) -> [node()]
Types:

Arg = verbosity()
verbosity() = silent | verbose

This function calls names(Host) for all hosts which are specified in the Erlang host file .hosts.erlang, collects
the replies and then evaluates ping(Node) on all those nodes. Returns the list of all nodes that were, successfully
pinged.

Arg defaults to silent. If Arg == verbose, the function writes information about which nodes it is pinging
to stdout.

This function can be useful when a node is started, and the names of the other nodes in the network are not initially
known.

Failure: {error, Reason} if host_file() returns {error, Reason}.

world_list(Hosts) -> [node()]
world_list(Hosts, Arg) -> [node()]
Types:

Hosts = [atom()]
Arg = verbosity()
verbosity() = silent | verbose

As world/0,1, but the hosts are given as argument instead of being read from .hosts.erlang.

Files
The .hosts.erlang file consists of a number of host names written as Erlang terms. It is looked for in the current
work directory, the user's home directory, and $OTP_ROOT (the root directory of Erlang/OTP), in that order.

The format of the .hosts.erlang file must be one host name per line. The host names must be within quotes as
shown in the following example:

'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffin1.eua.ericsson.se'.
^ (new line)

net_kernel

176 | Ericsson AB. All Rights Reserved.: Kernel

net_kernel
Erlang module

The net kernel is a system process, registered as net_kernel, which must be running for distributed Erlang to
work. The purpose of this process is to implement parts of the BIFs spawn/4 and spawn_link/4, and to provide
monitoring of the network.

An Erlang node is started using the command line flag -name or -sname:

$ erl -sname foobar

It is also possible to call net_kernel:start([foobar]) directly from the normal Erlang shell prompt:

1> net_kernel:start([foobar, shortnames]).
{ok,<0.64.0>}
(foobar@gringotts)2>

If the node is started with the command line flag -sname, the node name will be foobar@Host, where Host is
the short name of the host (not the fully qualified domain name). If started with the -name flag, Host is the fully
qualified domain name. See erl(1).

Normally, connections are established automatically when another node is referenced. This functionality can be
disabled by setting the Kernel configuration parameter dist_auto_connect to false, see kernel(6). In this case,
connections must be established explicitly by calling net_kernel:connect_node/1.

Which nodes are allowed to communicate with each other is handled by the magic cookie system, see Distributed
Erlang in the Erlang Reference Manual.

Exports

allow(Nodes) -> ok | error
Types:

Nodes = [node()]
Limits access to the specified set of nodes. Any access attempts made from (or to) nodes not in Nodes will be rejected.

Returns error if any element in Nodes is not an atom.

connect_node(Node) -> boolean() | ignored
Types:

Node = node()
Establishes a connection to Node. Returns true if successful, false if not, and ignored if the local node is not
alive.

monitor_nodes(Flag) -> ok | Error
monitor_nodes(Flag, Options) -> ok | Error
Types:

net_kernel

Ericsson AB. All Rights Reserved.: Kernel | 177

Flag = boolean()
Options = [Option]
Option = {node_type, NodeType} | nodedown_reason
NodeType = visible | hidden | all
Error = error | {error, term()}

The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered
to all subscribing process when a new node is connected, and a nodedown message is delivered when a node is
disconnected.

If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions -- started with the same
Options -- are stopped. Two option lists are considered the same if they contain the same set of options.

As of kernel version 2.11.4, and erts version 5.5.4, the following is guaranteed:

• nodeup messages will be delivered before delivery of any message from the remote node passed through the
newly established connection.

• nodedown messages will not be delivered until all messages from the remote node that have been passed
through the connection have been delivered.

Note, that this is not guaranteed for kernel versions before 2.11.4.

As of kernel version 2.11.4 subscriptions can also be made before the net_kernel server has been started, i.e.,
net_kernel:monitor_nodes/[1,2] does not return ignored.

As of kernel version 2.13, and erts version 5.7, the following is guaranteed:

• nodeup messages will be delivered after the corresponding node appears in results from erlang:nodes/X.

• nodedown messages will be delivered after the corresponding node has disappeared in results from
erlang:nodes/X.

Note, that this is not guaranteed for kernel versions before 2.13.

The format of the node status change messages depends on Options. If Options is [], which is the default, the
format is:

{nodeup, Node} | {nodedown, Node}
 Node = node()

If Options /= [], the format is:

{nodeup, Node, InfoList} | {nodedown, Node, InfoList}
 Node = node()
 InfoList = [{Tag, Val}]

InfoList is a list of tuples. Its contents depends on Options, see below.

Also, when OptionList == [] only visible nodes, that is, nodes that appear in the result of nodes/0, are monitored.

Option can be any of the following:

{node_type, NodeType}

Currently valid values for NodeType are:

visible
Subscribe to node status change messages for visible nodes only. The tuple {node_type, visible}
is included in InfoList.

net_kernel

178 | Ericsson AB. All Rights Reserved.: Kernel

hidden
Subscribe to node status change messages for hidden nodes only. The tuple {node_type, hidden} is
included in InfoList.

all
Subscribe to node status change messages for both visible and hidden nodes. The tuple {node_type,
visible | hidden} is included in InfoList.

nodedown_reason

The tuple {nodedown_reason, Reason} is included in InfoList in nodedown messages. Reason
can be:

connection_setup_failed
The connection setup failed (after nodeup messages had been sent).

no_network
No network available.

net_kernel_terminated
The net_kernel process terminated.

shutdown
Unspecified connection shutdown.

connection_closed
The connection was closed.

disconnect
The connection was disconnected (forced from the current node).

net_tick_timeout
Net tick timeout.

send_net_tick_failed
Failed to send net tick over the connection.

get_status_failed
Status information retrieval from the Port holding the connection failed.

get_net_ticktime() -> Res
Types:

Res = NetTicktime | {ongoing_change_to, NetTicktime} | ignored
NetTicktime = integer() >= 1

Gets net_ticktime (see kernel(6)).

Currently defined return values (Res):

NetTicktime

net_ticktime is NetTicktime seconds.

{ongoing_change_to, NetTicktime}

net_kernel is currently changing net_ticktime to NetTicktime seconds.

ignored

The local node is not alive.

set_net_ticktime(NetTicktime) -> Res
set_net_ticktime(NetTicktime, TransitionPeriod) -> Res
Types:

net_kernel

Ericsson AB. All Rights Reserved.: Kernel | 179

NetTicktime = integer() >= 1
TransitionPeriod = integer() >= 0
Res =
 unchanged |
 change_initiated |
 {ongoing_change_to, NewNetTicktime}
NewNetTicktime = integer() >= 1

Sets net_ticktime (see kernel(6)) to NetTicktime seconds. TransitionPeriod defaults to 60.

Some definitions:

The minimum transition traffic interval (MTTI)

minimum(NetTicktime, PreviousNetTicktime)*1000 div 4 milliseconds.

The transition period

The time of the least number of consecutive MTTIs to cover TransitionPeriod seconds following the
call to set_net_ticktime/2 (i.e. ((TransitionPeriod*1000 - 1) div MTTI + 1)*MTTI
milliseconds).

If <anno>NetTicktime</anno> < PreviousNetTicktime, the actual net_ticktime change will be
done at the end of the transition period; otherwise, at the beginning. During the transition period, net_kernel will
ensure that there will be outgoing traffic on all connections at least every MTTI millisecond.

Note:
The net_ticktime changes have to be initiated on all nodes in the network (with the same NetTicktime)
before the end of any transition period on any node; otherwise, connections may erroneously be disconnected.

Returns one of the following:

unchanged

net_ticktime already had the value of NetTicktime and was left unchanged.

change_initiated

net_kernel has initiated the change of net_ticktime to NetTicktime seconds.

{ongoing_change_to, NewNetTicktime}

The request was ignored; because, net_kernel was busy changing net_ticktime to NewNetTicktime
seconds.

start([Name]) -> {ok, pid()} | {error, Reason}
start([Name, NameType]) -> {ok, pid()} | {error, Reason}
start([Name, NameType, Ticktime]) -> {ok, pid()} | {error, Reason}
Types:

Name = atom()

NameType = shortnames | longnames

Reason = {already_started, pid()} | term()

Note that the argument is a list with exactly one, two or three arguments. NameType defaults to longnames and
Ticktime to 15000.

net_kernel

180 | Ericsson AB. All Rights Reserved.: Kernel

Turns a non-distributed node into a distributed node by starting net_kernel and other necessary processes.

stop() -> ok | {error, Reason}
Types:

Reason = not_allowed | not_found
Turns a distributed node into a non-distributed node. For other nodes in the network, this is the same as the node going
down. Only possible when the net kernel was started using start/1, otherwise returns {error, not_allowed}.
Returns {error, not_found} if the local node is not alive.

os

Ericsson AB. All Rights Reserved.: Kernel | 181

os
Erlang module

The functions in this module are operating system specific. Careless use of these functions will result in programs that
will only run on a specific platform. On the other hand, with careful use these functions can be of help in enabling
a program to run on most platforms.

Exports

cmd(Command) -> string()
Types:

Command = atom() | io_lib:chars()
Executes Command in a command shell of the target OS, captures the standard output of the command and returns this
result as a string. This function is a replacement of the previous unix:cmd/1; on a Unix platform they are equivalent.

Examples:

LsOut = os:cmd("ls"), % on unix platform
DirOut = os:cmd("dir"), % on Win32 platform

Note that in some cases, standard output of a command when called from another program (for example, os:cmd/1)
may differ, compared to the standard output of the command when called directly from an OS command shell.

find_executable(Name) -> Filename | false
find_executable(Name, Path) -> Filename | false
Types:

Name = Path = Filename = string()

These two functions look up an executable program given its name and a search path, in the same way as the underlying
operating system. find_executable/1 uses the current execution path (that is, the environment variable PATH
on Unix and Windows).

Path, if given, should conform to the syntax of execution paths on the operating system. The absolute filename of
the executable program Name is returned, or false if the program was not found.

getenv() -> [string()]
Returns a list of all environment variables. Each environment variable is given as a single string on the format
"VarName=Value", where VarName is the name of the variable and Value its value.

If Unicode file name encoding is in effect (see the erl manual page), the strings may contain characters with codepoints
> 255.

getenv(VarName) -> Value | false
Types:

VarName = Value = string()

Returns the Value of the environment variable VarName, or false if the environment variable is undefined.

os

182 | Ericsson AB. All Rights Reserved.: Kernel

If Unicode file name encoding is in effect (see the erl manual page), the strings (both VarName and Value) may
contain characters with codepoints > 255.

getenv(VarName, DefaultValue) -> Value
Types:

VarName = DefaultValue = Value = string()

Returns the Value of the environment variable VarName, or DefaultValue if the environment variable is
undefined.

If Unicode file name encoding is in effect (see the erl manual page), the strings (both VarName and Value) may
contain characters with codepoints > 255.

getpid() -> Value
Types:

Value = string()
Returns the process identifier of the current Erlang emulator in the format most commonly used by the operating
system environment. Value is returned as a string containing the (usually) numerical identifier for a process. On
Unix, this is typically the return value of the getpid() system call. On Windows, the process id as returned by the
GetCurrentProcessId() system call is used.

putenv(VarName, Value) -> true
Types:

VarName = Value = string()

Sets a new Value for the environment variable VarName.

If Unicode filename encoding is in effect (see the erl manual page), the strings (both VarName and Value) may
contain characters with codepoints > 255.

On Unix platforms, the environment will be set using UTF-8 encoding if Unicode file name translation is in effect.
On Windows the environment is set using wide character interfaces.

system_time() -> integer()
Returns current OS system time in native time unit.

Note:
This time is not a monotonically increasing time.

system_time(Unit) -> integer()
Types:

Unit = erlang:time_unit()
Returns current OS system time converted into the Unit passed as argument.

Calling os:system_time(Unit) is equivalent to:
erlang:convert_time_unit(os:system_time(), native, Unit).

os

Ericsson AB. All Rights Reserved.: Kernel | 183

Note:
This time is not a monotonically increasing time.

timestamp() -> Timestamp
Types:

Timestamp = erlang:timestamp()
Timestamp = {MegaSecs, Secs, MicroSecs}

Returns current OS system time in the same format as erlang:timestamp/0. The tuple can be used together with the
function calendar:now_to_universal_time/1 or calendar:now_to_local_time/1 to get calendar time. Using the calendar
time together with the MicroSecs part of the return tuple from this function allows you to log timestamps in high
resolution and consistent with the time in the rest of the operating system.

Example of code formatting a string in the format "DD Mon YYYY HH:MM:SS.mmmmmm", where DD is the day of
month, Mon is the textual month name, YYYY is the year, HH:MM:SS is the time and mmmmmm is the microseconds
in six positions:

-module(print_time).
-export([format_utc_timestamp/0]).
format_utc_timestamp() ->
 TS = {_,_,Micro} = os:timestamp(),
 {{Year,Month,Day},{Hour,Minute,Second}} =
 calendar:now_to_universal_time(TS),
 Mstr = element(Month,{"Jan","Feb","Mar","Apr","May","Jun","Jul",
 "Aug","Sep","Oct","Nov","Dec"}),
 io_lib:format("~2w ~s ~4w ~2w:~2..0w:~2..0w.~6..0w",
 [Day,Mstr,Year,Hour,Minute,Second,Micro]).

The module above could be used in the following way:

1> io:format("~s~n",[print_time:format_utc_timestamp()]).
29 Apr 2009 9:55:30.051711

OS system time can also be retreived by os:system_time/0, and os:system_time/1.

type() -> {Osfamily, Osname}
Types:

Osfamily = unix | win32 | ose
Osname = atom()

Returns the Osfamily and, in some cases, Osname of the current operating system.

On Unix, Osname will have same value as uname -s returns, but in lower case. For example, on Solaris 1 and
2, it will be sunos.

In Windows, Osname will be either nt (on Windows NT), or windows (on Windows 95).

os

184 | Ericsson AB. All Rights Reserved.: Kernel

Note:
Think twice before using this function. Use the filename module if you want to inspect or build file names in
a portable way. Avoid matching on the Osname atom.

unsetenv(VarName) -> true
Types:

VarName = string()
Deletes the environment variable VarName.

If Unicode filename encoding is in effect (see the erl manual page), the string (VarName) may contain characters
with codepoints > 255.

version() -> VersionString | {Major, Minor, Release}
Types:

VersionString = string()
Major = Minor = Release = integer() >= 0

Returns the operating system version. On most systems, this function returns a tuple, but a string will be returned
instead if the system has versions which cannot be expressed as three numbers.

Note:
Think twice before using this function. If you still need to use it, always call os:type() first.

pg2

Ericsson AB. All Rights Reserved.: Kernel | 185

pg2
Erlang module

This module implements process groups. Each message may be sent to one, some, or all members of the group.

A group of processes can be accessed by a common name. For example, if there is a group named foobar, there can
be a set of processes (which can be located on different nodes) which are all members of the group foobar. There are
no special functions for sending a message to the group. Instead, client functions should be written with the functions
get_members/1 and get_local_members/1 to find out which processes are members of the group. Then the
message can be sent to one or more members of the group.

If a member terminates, it is automatically removed from the group.

Warning:
This module is used by the disk_log module for managing distributed disk logs. The disk log names are used
as group names, which means that some action may need to be taken to avoid name clashes.

Data Types
name() = any()
The name of a process group.

Exports

create(Name :: name()) -> ok
Creates a new, empty process group. The group is globally visible on all nodes. If the group exists, nothing happens.

delete(Name :: name()) -> ok
Deletes a process group.

get_closest_pid(Name) -> pid() | {error, Reason}
Types:

Name = name()
Reason = {no_process, Name} | {no_such_group, Name}

This is a useful dispatch function which can be used from client functions. It returns a process on the local node, if
such a process exist. Otherwise, it chooses one randomly.

get_members(Name) -> [pid()] | {error, {no_such_group, Name}}
Types:

Name = name()
Returns all processes in the group Name. This function should be used from within a client function that accesses the
group. It is therefore optimized for speed.

get_local_members(Name) ->

pg2

186 | Ericsson AB. All Rights Reserved.: Kernel

 [pid()] | {error, {no_such_group, Name}}
Types:

Name = name()
Returns all processes running on the local node in the group Name. This function should to be used from within a
client function that accesses the group. It is therefore optimized for speed.

join(Name, Pid :: pid()) -> ok | {error, {no_such_group, Name}}
Types:

Name = name()
Joins the process Pid to the group Name. A process can join a group several times; it must then leave the group the
same number of times.

leave(Name, Pid :: pid()) -> ok | {error, {no_such_group, Name}}
Types:

Name = name()
Makes the process Pid leave the group Name. If the process is not a member of the group, ok is returned.

which_groups() -> [Name :: name()]
Returns a list of all known groups.

start() -> {ok, pid()} | {error, any()}
start_link() -> {ok, pid()} | {error, any()}
Starts the pg2 server. Normally, the server does not need to be started explicitly, as it is started dynamically if it
is needed. This is useful during development, but in a target system the server should be started explicitly. Use
configuration parameters for kernel for this.

See Also
kernel(6)

rpc

Ericsson AB. All Rights Reserved.: Kernel | 187

rpc
Erlang module

This module contains services which are similar to remote procedure calls. It also contains broadcast facilities and
parallel evaluators. A remote procedure call is a method to call a function on a remote node and collect the answer.
It is used for collecting information on a remote node, or for running a function with some specific side effects on
the remote node.

Data Types
key()
As returned by async_call/4.

Exports

call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()

Evaluates apply(Module, Function, Args) on the node Node and returns the corresponding value Res,
or {badrpc, Reason} if the call fails.

call(Node, Module, Function, Args, Timeout) ->
 Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Timeout = timeout()

Evaluates apply(Module, Function, Args) on the node Node and returns the corresponding value Res, or
{badrpc, Reason} if the call fails. Timeout is a timeout value in milliseconds. If the call times out, Reason
is timeout.

If the reply arrives after the call times out, no message will contaminate the caller's message queue, since this function
spawns off a middleman process to act as (a void) destination for such an orphan reply. This feature also makes this
function more expensive than call/4 at the caller's end.

block_call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types:

rpc

188 | Ericsson AB. All Rights Reserved.: Kernel

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()

Like call/4, but the RPC server at Node does not create a separate process to handle the call. Thus, this function
can be used if the intention of the call is to block the RPC server from any other incoming requests until the request
has been handled. The function can also be used for efficiency reasons when very small fast functions are evaluated,
for example BIFs that are guaranteed not to suspend.

block_call(Node, Module, Function, Args, Timeout) ->
 Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Timeout = timeout()

Like block_call/4, but with a timeout value in the same manner as call/5.

async_call(Node, Module, Function, Args) -> Key
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Key = key()

Implements call streams with promises, a type of RPC which does not suspend the caller until the result is finished.
Instead, a key is returned which can be used at a later stage to collect the value. The key can be viewed as a promise
to deliver the answer.

In this case, the key Key is returned, which can be used in a subsequent call to yield/1 or nb_yield/1,2 to
retrieve the value of evaluating apply(Module, Function, Args) on the node Node.

yield(Key) -> Res | {badrpc, Reason}
Types:

Key = key()
Res = Reason = term()

Returns the promised answer from a previous async_call/4. If the answer is available, it is returned immediately.
Otherwise, the calling process is suspended until the answer arrives from Node.

nb_yield(Key) -> {value, Val} | timeout
Types:

rpc

Ericsson AB. All Rights Reserved.: Kernel | 189

Key = key()
Val = (Res :: term()) | {badrpc, Reason :: term()}

Equivalent to nb_yield(Key, 0).

nb_yield(Key, Timeout) -> {value, Val} | timeout
Types:

Key = key()
Timeout = timeout()
Val = (Res :: term()) | {badrpc, Reason :: term()}

This is a non-blocking version of yield/1. It returns the tuple {value, Val} when the computation has finished,
or timeout when Timeout milliseconds has elapsed.

multicall(Module, Function, Args) -> {ResL, BadNodes}
Types:

Module = module()
Function = atom()
Args = ResL = [term()]
BadNodes = [node()]

Equivalent to multicall([node()|nodes()], Module, Function, Args, infinity).

multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}
Types:

Nodes = [node()]
Module = module()
Function = atom()
Args = ResL = [term()]
BadNodes = [node()]

Equivalent to multicall(Nodes, Module, Function, Args, infinity).

multicall(Module, Function, Args, Timeout) -> {ResL, BadNodes}
Types:

Module = module()
Function = atom()
Args = [term()]
Timeout = timeout()
ResL = [term()]
BadNodes = [node()]

Equivalent to multicall([node()|nodes()], Module, Function, Args, Timeout).

multicall(Nodes, Module, Function, Args, Timeout) ->
 {ResL, BadNodes}
Types:

rpc

190 | Ericsson AB. All Rights Reserved.: Kernel

Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]
Timeout = timeout()
ResL = [term()]
BadNodes = [node()]

In contrast to an RPC, a multicall is an RPC which is sent concurrently from one client to multiple servers. This is
useful for collecting some information from a set of nodes, or for calling a function on a set of nodes to achieve some
side effects. It is semantically the same as iteratively making a series of RPCs on all the nodes, but the multicall is
faster as all the requests are sent at the same time and are collected one by one as they come back.

The function evaluates apply(Module, Function, Args) on the specified nodes and collects the answers.
It returns {ResL, BadNodes}, where BadNodes is a list of the nodes that terminated or timed out during
computation, and ResL is a list of the return values. Timeout is a time (integer) in milliseconds, or infinity.

The following example is useful when new object code is to be loaded on all nodes in the network, and also indicates
some side effects RPCs may produce:

%% Find object code for module Mod
{Mod, Bin, File} = code:get_object_code(Mod),

%% and load it on all nodes including this one
{ResL, _} = rpc:multicall(code, load_binary, [Mod, File, Bin]),

%% and then maybe check the ResL list.

cast(Node, Module, Function, Args) -> true
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]

Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the calling
process is not suspended until the evaluation is complete, as is the case with call/4,5.

eval_everywhere(Module, Function, Args) -> abcast
Types:

Module = module()
Function = atom()
Args = [term()]

Equivalent to eval_everywhere([node()|nodes()], Module, Function, Args).

eval_everywhere(Nodes, Module, Function, Args) -> abcast
Types:

rpc

Ericsson AB. All Rights Reserved.: Kernel | 191

Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]

Evaluates apply(Module, Function, Args) on the specified nodes. No answers are collected.

abcast(Name, Msg) -> abcast
Types:

Name = atom()
Msg = term()

Equivalent to abcast([node()|nodes()], Name, Msg).

abcast(Nodes, Name, Msg) -> abcast
Types:

Nodes = [node()]
Name = atom()
Msg = term()

Broadcasts the message Msg asynchronously to the registered process Name on the specified nodes.

sbcast(Name, Msg) -> {GoodNodes, BadNodes}
Types:

Name = atom()
Msg = term()
GoodNodes = BadNodes = [node()]

Equivalent to sbcast([node()|nodes()], Name, Msg).

sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}
Types:

Name = atom()
Msg = term()
Nodes = GoodNodes = BadNodes = [node()]

Broadcasts the message Msg synchronously to the registered process Name on the specified nodes.

Returns {GoodNodes, BadNodes}, where GoodNodes is the list of nodes which have Name as a registered
process.

The function is synchronous in the sense that it is known that all servers have received the message when the call
returns. It is not possible to know that the servers have actually processed the message.

Any further messages sent to the servers, after this function has returned, will be received by all servers after this
message.

server_call(Node, Name, ReplyWrapper, Msg) ->
 Reply | {error, Reason}
Types:

rpc

192 | Ericsson AB. All Rights Reserved.: Kernel

Node = node()
Name = atom()
ReplyWrapper = Msg = Reply = term()
Reason = nodedown

This function can be used when interacting with a server called Name at node Node. It is assumed that the server
receives messages in the format {From, Msg} and replies using From ! {ReplyWrapper, Node, Reply}.
This function makes such a server call and ensures that the entire call is packed into an atomic transaction which either
succeeds or fails. It never hangs, unless the server itself hangs.

The function returns the answer Reply as produced by the server Name, or {error, Reason}.

multi_server_call(Name, Msg) -> {Replies, BadNodes}
Types:

Name = atom()
Msg = term()
Replies = [Reply :: term()]
BadNodes = [node()]

Equivalent to multi_server_call([node()|nodes()], Name, Msg).

multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
Types:

Nodes = [node()]
Name = atom()
Msg = term()
Replies = [Reply :: term()]
BadNodes = [node()]

This function can be used when interacting with servers called Name on the specified nodes. It is assumed that the
servers receive messages in the format {From, Msg} and reply using From ! {Name, Node, Reply}, where
Node is the name of the node where the server is located. The function returns {Replies, BadNodes}, where
Replies is a list of all Reply values and BadNodes is a list of the nodes which did not exist, or where the server
did not exist, or where the server terminated before sending any reply.

safe_multi_server_call(Name, Msg) -> {Replies, BadNodes}
safe_multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
Types:

Nodes = [node()]
Name = atom()
Msg = term()
Replies = [Reply :: term()]
BadNodes = [node()]

Warning:
This function is deprecated. Use multi_server_call/2,3 instead.

rpc

Ericsson AB. All Rights Reserved.: Kernel | 193

In Erlang/OTP R6B and earlier releases, multi_server_call/2,3 could not handle the case where the remote
node exists, but there is no server called Name. Instead this function had to be used. In Erlang/OTP R7B and later
releases, however, the functions are equivalent, except for this function being slightly slower.

parallel_eval(FuncCalls) -> ResL
Types:

FuncCalls = [{Module, Function, Args}]
Module = module()
Function = atom()
Args = ResL = [term()]

For every tuple in FuncCalls, evaluates apply(Module, Function, Args) on some node in the network.
Returns the list of return values, in the same order as in FuncCalls.

pmap(FuncSpec, ExtraArgs, List1) -> List2
Types:

FuncSpec = {Module, Function}
Module = module()
Function = atom()
ExtraArgs = [term()]
List1 = [Elem :: term()]
List2 = [term()]

Evaluates apply(Module, Function, [Elem|ExtraArgs]), for every element Elem in List1, in
parallel. Returns the list of return values, in the same order as in List1.

pinfo(Pid) -> [{Item, Info}] | undefined
Types:

Pid = pid()
Item = atom()
Info = term()

Location transparent version of the BIF process_info/1.

pinfo(Pid, Item) -> {Item, Info} | undefined | []
Types:

Pid = pid()
Item = atom()
Info = term()

Location transparent version of the BIF process_info/2.

seq_trace

194 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace
Erlang module

Sequential tracing makes it possible to trace all messages resulting from one initial message. Sequential tracing is
completely independent of the ordinary tracing in Erlang, which is controlled by the erlang:trace/3 BIF. See the
chapter What is Sequential Tracing below for more information about what sequential tracing is and how it can be used.

seq_trace provides functions which control all aspects of sequential tracing. There are functions for activation,
deactivation, inspection and for collection of the trace output.

Note:
The implementation of sequential tracing is in beta status. This means that the programming interface still might
undergo minor adjustments (possibly incompatible) based on feedback from users.

Data Types
token() = {integer(), boolean(), term(), term(), term()}
An opaque term (a tuple) representing a trace token.

Exports

set_token(Token) -> PreviousToken | ok
Types:

Token = PreviousToken = [] | token()

Sets the trace token for the calling process to Token. If Token == [] then tracing is disabled, otherwise
Token should be an Erlang term returned from get_token/0 or set_token/1. set_token/1 can be used to
temporarily exclude message passing from the trace by setting the trace token to empty like this:

OldToken = seq_trace:set_token([]), % set to empty and save
 % old value
% do something that should not be part of the trace
io:format("Exclude the signalling caused by this~n"),
seq_trace:set_token(OldToken), % activate the trace token again
...

Returns the previous value of the trace token.

set_token(Component, Val) -> {Component, OldVal}
Types:

Component = component()
Val = OldVal = value()
component() = label | serial | flag()
flag() = send | 'receive' | print | timestamp
value() =

seq_trace

Ericsson AB. All Rights Reserved.: Kernel | 195

 (Integer :: integer() >= 0) |
 {Previous :: integer() >= 0, Current :: integer() >= 0} |
 (Bool :: boolean())

Sets the individual Component of the trace token to Val. Returns the previous value of the component.

set_token(label, Integer)

The label component is an integer which identifies all events belonging to the same sequential trace. If several
sequential traces can be active simultaneously, label is used to identify the separate traces. Default is 0.

set_token(serial, SerialValue)

SerialValue = {Previous, Current}. The serial component contains counters which enables the
traced messages to be sorted, should never be set explicitly by the user as these counters are updated automatically.
Default is {0, 0}.

set_token(send, Bool)

A trace token flag (true | false) which enables/disables tracing on message sending. Default is false.

set_token('receive', Bool)

A trace token flag (true | false) which enables/disables tracing on message reception. Default is false.

set_token(print, Bool)

A trace token flag (true | false) which enables/disables tracing on explicit calls to seq_trace:print/1.
Default is false.

set_token(timestamp, Bool)

A trace token flag (true | false) which enables/disables a timestamp to be generated for each traced event.
Default is false.

get_token() -> [] | token()
Returns the value of the trace token for the calling process. If [] is returned, it means that tracing is not active. Any
other value returned is the value of an active trace token. The value returned can be used as input to the set_token/1
function.

get_token(Component) -> {Component, Val}
Types:

Component = component()
Val = value()
component() = label | serial | flag()
flag() = send | 'receive' | print | timestamp
value() =
 (Integer :: integer() >= 0) |
 {Previous :: integer() >= 0, Current :: integer() >= 0} |
 (Bool :: boolean())

Returns the value of the trace token component Component. See set_token/2 for possible values of Component
and Val.

print(TraceInfo) -> ok
Types:

seq_trace

196 | Ericsson AB. All Rights Reserved.: Kernel

TraceInfo = term()
Puts the Erlang term TraceInfo into the sequential trace output if the calling process currently is executing within
a sequential trace and the print flag of the trace token is set.

print(Label, TraceInfo) -> ok
Types:

Label = integer()
TraceInfo = term()

Same as print/1 with the additional condition that TraceInfo is output only if Label is equal to the label
component of the trace token.

reset_trace() -> true
Sets the trace token to empty for all processes on the local node. The process internal counters used to create the serial
of the trace token is set to 0. The trace token is set to empty for all messages in message queues. Together this will
effectively stop all ongoing sequential tracing in the local node.

set_system_tracer(Tracer) -> OldTracer
Types:

Tracer = OldTracer = tracer()
tracer() = (Pid :: pid()) | port() | false

Sets the system tracer. The system tracer can be either a process or port denoted by Tracer. Returns the previous
value (which can be false if no system tracer is active).

Failure: {badarg, Info}} if Pid is not an existing local pid.

get_system_tracer() -> Tracer
Types:

Tracer = tracer()
tracer() = (Pid :: pid()) | port() | false

Returns the pid or port identifier of the current system tracer or false if no system tracer is activated.

Trace Messages Sent To the System Tracer
The format of the messages are:

{seq_trace, Label, SeqTraceInfo, TimeStamp}

or

{seq_trace, Label, SeqTraceInfo}

depending on whether the timestamp flag of the trace token is set to true or false. Where:

Label = int()
TimeStamp = {Seconds, Milliseconds, Microseconds}

seq_trace

Ericsson AB. All Rights Reserved.: Kernel | 197

 Seconds = Milliseconds = Microseconds = int()

The SeqTraceInfo can have the following formats:

{send, Serial, From, To, Message}

Used when a process From with its trace token flag print set to true has sent a message.

{'receive', Serial, From, To, Message}

Used when a process To receives a message with a trace token that has the 'receive' flag set to true.

{print, Serial, From, _, Info}

Used when a process From has called seq_trace:print(Label, TraceInfo) and has a trace token
with the print flag set to true and label set to Label.

Serial is a tuple {PreviousSerial, ThisSerial}, where the first integer PreviousSerial denotes
the serial counter passed in the last received message which carried a trace token. If the process is the first one in a
new sequential trace, PreviousSerial is set to the value of the process internal "trace clock". The second integer
ThisSerial is the serial counter that a process sets on outgoing messages and it is based on the process internal
"trace clock" which is incremented by one before it is attached to the trace token in the message.

What is Sequential Tracing
Sequential tracing is a way to trace a sequence of messages sent between different local or remote processes, where
the sequence is initiated by one single message. In short it works like this:

Each process has a trace token, which can be empty or not empty. When not empty the trace token can be seen as the
tuple {Label, Flags, Serial, From}. The trace token is passed invisibly with each message.

In order to start a sequential trace the user must explicitly set the trace token in the process that will send the first
message in a sequence.

The trace token of a process is set each time the process matches a message in a receive statement, according to the
trace token carried by the received message, empty or not.

On each Erlang node a process can be set as the system tracer. This process will receive trace messages each time a
message with a trace token is sent or received (if the trace token flag send or 'receive' is set). The system tracer
can then print each trace event, write it to a file or whatever suitable.

Note:
The system tracer will only receive those trace events that occur locally within the Erlang node. To get the whole
picture of a sequential trace that involves processes on several Erlang nodes, the output from the system tracer
on each involved node must be merged (off line).

In the following sections Sequential Tracing and its most fundamental concepts are described.

Trace Token
Each process has a current trace token. Initially the token is empty. When the process sends a message to another
process, a copy of the current token will be sent "invisibly" along with the message.

The current token of a process is set in two ways, either

• explicitly by the process itself, through a call to seq_trace:set_token, or

• when a message is received.

seq_trace

198 | Ericsson AB. All Rights Reserved.: Kernel

In both cases the current token will be set. In particular, if the token of a message received is empty, the current token
of the process is set to empty.

A trace token contains a label, and a set of flags. Both the label and the flags are set in 1 and 2 above.

Serial
The trace token contains a component which is called serial. It consists of two integers Previous and Current.
The purpose is to uniquely identify each traced event within a trace sequence and to order the messages chronologically
and in the different branches if any.

The algorithm for updating Serial can be described as follows:

Let each process have two counters prev_cnt and curr_cnt which both are set to 0 when a process is created.
The counters are updated at the following occasions:

• When the process is about to send a message and the trace token is not empty.

Let the serial of the trace token be tprev and tcurr.
curr_cnt := curr_cnt + 1
tprev := prev_cnt
tcurr := curr_cnt

The trace token with tprev and tcurr is then passed along with the message.

• When the process callsseq_trace:print(Label, Info), Label matches the label part of the trace token
and the trace token print flag is true.

The same algorithm as for send above.

• When a message is received and contains a nonempty trace token.

The process trace token is set to the trace token from the message.

Let the serial of the trace token be tprev and tcurr.
if (curr_cnt < tcurr)
 curr_cnt := tcurr
prev_cnt := tcurr

The curr_cnt of a process is incremented each time the process is involved in a sequential trace. The counter
can reach its limit (27 bits) if a process is very long-lived and is involved in much sequential tracing. If the counter
overflows it will not be possible to use the serial for ordering of the trace events. To prevent the counter from
overflowing in the middle of a sequential trace the function seq_trace:reset_trace/0 can be called to reset
the prev_cnt and curr_cnt of all processes in the Erlang node. This function will also set all trace tokens in
processes and their message queues to empty and will thus stop all ongoing sequential tracing.

Performance considerations
The performance degradation for a system which is enabled for Sequential Tracing is negligible as long as no tracing is
activated. When tracing is activated there will of course be an extra cost for each traced message but all other messages
will be unaffected.

Ports
Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port this has to be done manually in the code of the port
controlling process. The port controlling processes have to check the appropriate sequential trace settings (as obtained
from seq_trace:get_token/1 and include trace information in the message data sent to their respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace specific information, and set
appropriate sequential trace flags through calls to seq_trace:set_token/2.

seq_trace

Ericsson AB. All Rights Reserved.: Kernel | 199

Distribution
Sequential tracing between nodes is performed transparently. This applies to C-nodes built with Erl_Interface too.
A C-node built with Erl_Interface only maintains one trace token, which means that the C-node will appear as one
process from the sequential tracing point of view.

In order to be able to perform sequential tracing between distributed Erlang nodes, the distribution protocol has been
extended (in a backward compatible way). An Erlang node which supports sequential tracing can communicate with
an older (OTP R3B) node but messages passed within that node can of course not be traced.

Example of Usage
The example shown here will give rough idea of how the new primitives can be used and what kind of output it will
produce.

Assume that we have an initiating process with Pid == <0.30.0> like this:

-module(seqex).
-compile(export_all).

loop(Port) ->
 receive
 {Port,Message} ->
 seq_trace:set_token(label,17),
 seq_trace:set_token('receive',true),
 seq_trace:set_token(print,true),
 seq_trace:print(17,"**** Trace Started ****"),
 call_server ! {self(),the_message};
 {ack,Ack} ->
 ok
 end,
 loop(Port).

And a registered process call_server with Pid == <0.31.0> like this:

loop() ->
 receive
 {PortController,Message} ->
 Ack = {received, Message},
 seq_trace:print(17,"We are here now"),
 PortController ! {ack,Ack}
 end,
 loop().

A possible output from the system's sequential_tracer (inspired by AXE-10 and MD-110) could look like:

17:<0.30.0> Info {0,1} WITH
"**** Trace Started ****"
17:<0.31.0> Received {0,2} FROM <0.30.0> WITH
{<0.30.0>,the_message}
17:<0.31.0> Info {2,3} WITH
"We are here now"
17:<0.30.0> Received {2,4} FROM <0.31.0> WITH
{ack,{received,the_message}}

The implementation of a system tracer process that produces the printout above could look like this:

seq_trace

200 | Ericsson AB. All Rights Reserved.: Kernel

tracer() ->
 receive
 {seq_trace,Label,TraceInfo} ->
 print_trace(Label,TraceInfo,false);
 {seq_trace,Label,TraceInfo,Ts} ->
 print_trace(Label,TraceInfo,Ts);
 Other -> ignore
 end,
 tracer().

print_trace(Label,TraceInfo,false) ->
 io:format("~p:",[Label]),
 print_trace(TraceInfo);
print_trace(Label,TraceInfo,Ts) ->
 io:format("~p ~p:",[Label,Ts]),
 print_trace(TraceInfo).

print_trace({print,Serial,From,_,Info}) ->
 io:format("~p Info ~p WITH~n~p~n", [From,Serial,Info]);
print_trace({'receive',Serial,From,To,Message}) ->
 io:format("~p Received ~p FROM ~p WITH~n~p~n",
 [To,Serial,From,Message]);
print_trace({send,Serial,From,To,Message}) ->
 io:format("~p Sent ~p TO ~p WITH~n~p~n",
 [From,Serial,To,Message]).

The code that creates a process that runs the tracer function above and sets that process as the system tracer could
look like this:

start() ->
 Pid = spawn(?MODULE,tracer,[]),
 seq_trace:set_system_tracer(Pid), % set Pid as the system tracer
 ok.

With a function like test/0 below the whole example can be started.

test() ->
 P = spawn(?MODULE, loop, [port]),
 register(call_server, spawn(?MODULE, loop, [])),
 start(),
 P ! {port,message}.

user

Ericsson AB. All Rights Reserved.: Kernel | 201

user
Erlang module

user is a server which responds to all the messages defined in the I/O interface. The code in user.erl can be used
as a model for building alternative I/O servers.

wrap_log_reader

202 | Ericsson AB. All Rights Reserved.: Kernel

wrap_log_reader
Erlang module

wrap_log_reader is a function to read internally formatted wrap disk logs, refer to disk_log(3).
wrap_log_reader does not interfere with disk_log activities; there is however a known bug in this version of the
wrap_log_reader, see chapter bugs below.

A wrap disk log file consists of several files, called index files. A log file can be opened and closed. It is also possible
to open just one index file separately. If an non-existent or a non-internally formatted file is opened, an error message
is returned. If the file is corrupt, no attempt to repair it will be done but an error message is returned.

If a log is configured to be distributed, there is a possibility that all items are not loggen on all nodes.
wrap_log_reader does only read the log on the called node, it is entirely up to the user to be sure that all items
are read.

Data Types
continuation()
Continuation returned by open/1,2 or chunk/1,2.

Exports

chunk(Continuation) -> chunk_ret()
chunk(Continuation, N) -> chunk_ret()
Types:

Continuation = continuation()
N = infinity | integer() >= 1
chunk_ret() =
 {Continuation2, Terms :: [term()]} |
 {Continuation2,
 Terms :: [term()],
 Badbytes :: integer() >= 0} |
 {Continuation2, eof} |
 {error, Reason :: term()}

This function makes it possible to efficiently read the terms which have been appended to a log. It minimises disk I/
O by reading large 8K chunks from the file.

The first time chunk is called an initial continuation returned from the open/1, open/2 must be provided.

When chunk/3 is called, N controls the maximum number of terms that are read from the log in each chunk. Default
is infinity, which means that all the terms contained in the 8K chunk are read. If less than N terms are returned,
this does not necessarily mean that end of file is reached.

The chunk function returns a tuple {Continuation2, Terms}, where Terms is a list of terms found in the log.
Continuation2 is yet another continuation which must be passed on into any subsequent calls to chunk. With a
series of calls to chunk it is then possible to extract all terms from a log.

The chunk function returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read only
mode and the read chunk is corrupt. Badbytes indicates the number of non-Erlang terms found in the chunk. Note
also that the log is not repaired.

wrap_log_reader

Ericsson AB. All Rights Reserved.: Kernel | 203

chunk returns {Continuation2, eof} when the end of the log is reached, and {error, Reason} if an
error occurs.

The returned continuation may or may not be valid in the next call to chunk. This is because the log may wrap and
delete the file into which the continuation points. To make sure this does not happen, the log can be blocked during
the search.

close(Continuation) -> ok | {error, Reason}
Types:

Continuation = continuation()
Reason = file:posix()

This function closes a log file properly.

open(Filename) -> open_ret()
open(Filename, N) -> open_ret()
Types:

Filename = string() | atom()
N = integer()
open_ret() =
 {ok, Continuation :: continuation()} |
 {error, Reason :: tuple()}

Filename specifies the name of the file which is to be read.

N specifies the index of the file which is to be read. If N is omitted the whole wrap log file will be read; if it is specified
only the specified index file will be read.

The open function returns {ok, Continuation} if the log/index file was successfully opened. The
Continuation is to be used when chunking or closing the file.

The function returns {error, Reason} for all errors.

Bugs
This version of the wrap_log_reader does not detect if the disk_log wraps to a new index file between a
wrap_log_reader:open and the first wrap_log_reader:chunk. In this case the chuck will actually read
the last logged items in the log file, because the opened index file was truncated by the disk_log.

See Also
disk_log(3)

zlib

204 | Ericsson AB. All Rights Reserved.: Kernel

zlib
Erlang module

The module zlib is moved to the runtime system application. Please see zlib(3) in the erts reference manual instead.

app

Ericsson AB. All Rights Reserved.: Kernel | 205

app
Name

The application resource file specifies the resources an application uses, and how the application is started. There
must always be one application resource file called Application.app for each application Application in
the system.

The file is read by the application controller when an application is loaded/started. It is also used by the functions in
systools, for example when generating start scripts.

FILE SYNTAX
The application resource file should be called Application.app where Application is the name of the
application. The file should be located in the ebin directory for the application.

It must contain one single Erlang term, which is called an application specification:

{application, Application,
 [{description, Description},
 {id, Id},
 {vsn, Vsn},
 {modules, Modules},
 {maxP, MaxP},
 {maxT, MaxT},
 {registered, Names},
 {included_applications, Apps},
 {applications, Apps},
 {env, Env},
 {mod, Start},
 {start_phases, Phases},
 {runtime_dependencies, RTDeps}]}.

 Value Default
 ----- -------
Application atom() -
Description string() ""
Id string() ""
Vsn string() ""
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] []
Apps [App] []
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []
 Module = Name = App = Par = Phase = atom()
 Val = StartArgs = PhaseArgs = term()
 ApplicationVersion = string()

Application is the name of the application.

For the application controller, all keys are optional. The respective default values are used for any omitted keys.

The functions in systools require more information. If they are used, the following keys are mandatory:
description, vsn, modules, registered and applications. The other keys are ignored by systools.

app

206 | Ericsson AB. All Rights Reserved.: Kernel

Warning:
The RTDeps type was introduced in OTP 17.0 and might be subject to changes during the OTP 17 release.

description

A one-line description of the application.

id

Product identification, or similar.

vsn

The version of the application.

modules

All modules introduced by this application. systools uses this list when generating start scripts and tar files.
A module can only be defined in one application.

maxP

Deprecated - will be ignored
The maximum number of processes allowed in the application.

maxT

The maximum time in milliseconds that the application is allowed to run. After the specified time the application
will automatically terminate.

registered

All names of registered processes started in this application. systools uses this list to detect name clashes
between different applications.

included_applications

All applications which are included by this application. When this application is started, all included application
will automatically be loaded, but not started, by the application controller. It is assumed that the topmost
supervisor of the included application is started by a supervisor of this application.

applications

All applications which must be started before this application is allowed to be started. systools uses this list
to generate correct start scripts. Defaults to the empty list, but note that all applications have dependencies to (at
least) kernel and stdlib.

env

Configuration parameters used by the application. The value of a configuration parameter is retrieved by calling
application:get_env/1,2. The values in the application resource file can be overridden by values in a
configuration file (see config(4)) or by command line flags (see erl(1)).

mod

Specifies the application callback module and a start argument, see application(3).

The mod key is necessary for an application implemented as a supervision tree, or the application controller will
not know how to start it. The mod key can be omitted for applications without processes, typically code libraries
such as the application STDLIB.

app

Ericsson AB. All Rights Reserved.: Kernel | 207

start_phases

A list of start phases and corresponding start arguments for the application. If this key is present,
the application master will - in addition to the usual call to Module:start/2 - also call
Module:start_phase(Phase,Type,PhaseArgs) for each start phase defined by the start_phases
key, and only after this extended start procedure will application:start(Application) return.

Start phases may be used to synchronize startup of an application and its included applications. In this case, the
mod key must be specified as:

{mod, {application_starter,[Module,StartArgs]}}

The application master will then call Module:start/2 for the primary application, followed by calls to
Module:start_phase/3 for each start phase (as defined for the primary application) both for the primary
application and for each of its included application, for which the start phase is defined.

This implies that for an included application, the set of start phases must be a subset of the set of phases defined
for the primary application. Refer to OTP Design Principles for more information.

runtime_dependencies

A list of application versions that the application depends on. An example of such an application version is
"kernel-3.0". Application versions specified as runtime dependencies are minimum requirements. That is, a
larger application version than the one specified in the dependency satisfies the requirement. For information on
how to compare application versions see the documentation of versions in the system principles guide. Note that
that the application version specifies a source code version. An additional indirect requirement is that installed
binary application of the specified version has been built so that it is compatible with the rest of the system.

Some dependencies might only be required in specific runtime scenarios. In the case such optional dependencies
exist, these are specified and documented in the corresponding "App" documentation of the specific application.

Warning:
The runtime_dependencies key was introduced in OTP 17.0. The type of its value might be subject
to changes during the OTP 17 release.

Warning:
All runtime dependencies specified in OTP applications during the OTP 17 release may not be completely
correct. This is actively being worked on. Declared runtime dependencies in OTP applications are expected
to be correct in OTP 18.

SEE ALSO
application(3), systools(3)

config

208 | Ericsson AB. All Rights Reserved.: Kernel

config
Name

A configuration file contains values for configuration parameters for the applications in the system. The erl command
line argument -config Name tells the system to use data in the system configuration file Name.config.

Configuration parameter values in the configuration file will override the values in the application resource files (see
app(4)). The values in the configuration file can be overridden by command line flags (see erl(1)).

The value of a configuration parameter is retrieved by calling application:get_env/1,2.

FILE SYNTAX
The configuration file should be called Name.config where Name is an arbitrary name.

The .config file contains one single Erlang term. The file has the following syntax:

[{Application1, [{Par11, Val11}, ..]},
 ..
 {ApplicationN, [{ParN1, ValN1}, ..]}].

• Application = atom() is the name of the application.

• Par = atom() is the name of a configuration parameter.

• Val = term() is the value of a configuration parameter.

sys.config
When starting Erlang in embedded mode, it is assumed that exactly one system configuration file is used, named
sys.config. This file should be located in $ROOT/releases/Vsn, where $ROOT is the Erlang/OTP root
installation directory and Vsn is the release version.

Release handling relies on this assumption. When installing a new release version, the new sys.config is read and
used to update the application configurations.

This means that specifying another, or additional, .config files would lead to inconsistent update of application
configurations. Therefore, in Erlang 5.4/OTP R10B, the syntax of sys.config was extended to allow pointing out
other .config files:

[{Application, [{Par, Val}]} | File].

• File = string() is the name of another .config file. The extension .config may be omitted. It is
recommended to use absolute paths. A relative path is relative the current working directory of the emulator.

When traversing the contents of sys.config and a filename is encountered, its contents are read and merged with
the result so far. When an application configuration tuple {Application, Env} is found, it is merged with the
result so far. Merging means that new parameters are added and existing parameter values overwritten. Example:

sys.config:

[{myapp,[{par1,val1},{par2,val2}]},
 "/home/user/myconfig"].

config

Ericsson AB. All Rights Reserved.: Kernel | 209

myconfig.config:

[{myapp,[{par2,val3},{par3,val4}]}].

This will yield the following environment for myapp:

[{par1,val1},{par2,val3},{par3,val4}]

The behaviour if a file specified in sys.config does not exist or is erroneous in some other way, is backwards
compatible. Starting the runtime system will fail. Installing a new release version will not fail, but an error message
is given and the erroneous file is ignored.

SEE ALSO
app(4), erl(1), OTP Design Principles

	Kernel
	Reference Manual
	kernel
	application
	get_all_env/0
	get_all_env/1
	get_all_key/0
	get_all_key/1
	get_application/0
	get_application/1
	get_env/1
	get_env/2
	get_env/3
	get_key/1
	get_key/2
	load/1
	load/2
	loaded_applications/0
	permit/2
	set_env/3
	set_env/4
	ensure_started/1
	ensure_started/2
	ensure_all_started/1
	ensure_all_started/2
	start/1
	start/2
	start_type/0
	stop/1
	takeover/2
	unload/1
	unset_env/2
	unset_env/3
	which_applications/0
	which_applications/1
	Module:start/2
	Module:start_phase/3
	Module:prep_stop/1
	Module:stop/1
	Module:config_change/3

	auth
	is_auth/1
	cookie/0
	cookie/1
	node_cookie/1
	node_cookie/2

	code
	set_path/1
	get_path/0
	add_path/1
	add_pathz/1
	add_patha/1
	add_paths/1
	add_pathsz/1
	add_pathsa/1
	del_path/1
	replace_path/2
	load_file/1
	load_abs/1
	ensure_loaded/1
	load_binary/3
	delete/1
	purge/1
	soft_purge/1
	is_loaded/1
	all_loaded/0
	which/1
	get_object_code/1
	root_dir/0
	lib_dir/0
	lib_dir/1
	lib_dir/2
	compiler_dir/0
	priv_dir/1
	objfile_extension/0
	stick_dir/1
	unstick_dir/1
	is_sticky/1
	rehash/0
	where_is_file/1
	clash/0
	is_module_native/1
	get_mode/0

	disk_log
	accessible_logs/0
	alog/2
	balog/2
	alog_terms/2
	balog_terms/2
	block/1
	block/2
	change_header/2
	change_notify/3
	change_size/2
	chunk/2
	chunk/3
	bchunk/2
	bchunk/3
	chunk_info/1
	chunk_step/3
	close/1
	format_error/1
	inc_wrap_file/1
	info/1
	lclose/1
	lclose/2
	log/2
	blog/2
	log_terms/2
	blog_terms/2
	open/1
	pid2name/1
	reopen/2
	reopen/3
	breopen/3
	sync/1
	truncate/1
	truncate/2
	btruncate/2
	unblock/1

	erl_boot_server
	start/1
	start_link/1
	add_slave/1
	delete_slave/1
	which_slaves/0

	erl_ddll
	demonitor/1
	info/0
	info/1
	info/2
	load/2
	load_driver/2
	monitor/2
	reload/2
	reload_driver/2
	try_load/3
	try_unload/2
	unload/1
	unload_driver/1
	loaded_drivers/0
	format_error/1

	erl_prim_loader
	erlang
	error_handler
	undefined_function/3
	raise_undef_exception/3
	undefined_lambda/3

	error_logger
	error_msg/1
	error_msg/2
	format/2
	error_report/1
	error_report/2
	warning_map/0
	warning_msg/1
	warning_msg/2
	warning_report/1
	warning_report/2
	info_msg/1
	info_msg/2
	info_report/1
	info_report/2
	add_report_handler/1
	add_report_handler/2
	delete_report_handler/1
	tty/1
	logfile/1
	logfile/1
	logfile/1

	file
	advise/4
	allocate/3
	change_group/2
	change_mode/2
	change_owner/2
	change_owner/3
	change_time/2
	change_time/3
	close/1
	consult/1
	copy/2
	copy/3
	del_dir/1
	delete/1
	eval/1
	eval/2
	format_error/1
	get_cwd/0
	get_cwd/1
	list_dir/1
	list_dir_all/1
	make_dir/1
	make_link/2
	make_symlink/2
	native_name_encoding/0
	open/2
	path_consult/2
	path_eval/2
	path_open/3
	path_script/2
	path_script/3
	pid2name/1
	position/2
	pread/2
	pread/3
	pwrite/2
	pwrite/3
	read/2
	read_file/1
	read_file_info/1
	read_file_info/2
	read_line/1
	read_link/1
	read_link_all/1
	read_link_info/1
	read_link_info/2
	rename/2
	script/1
	script/2
	set_cwd/1
	sync/1
	datasync/1
	truncate/1
	sendfile/2
	sendfile/5
	write/2
	write_file/2
	write_file/3
	write_file_info/2
	write_file_info/3

	gen_tcp
	connect/3
	connect/4
	listen/2
	accept/1
	accept/2
	send/2
	recv/2
	recv/3
	controlling_process/2
	close/1
	shutdown/2

	gen_udp
	open/1
	open/2
	send/4
	recv/2
	recv/3
	controlling_process/2
	close/1

	gen_sctp
	abort/2
	close/1
	connect/4
	connect/5
	connect_init/4
	connect_init/5
	controlling_process/2
	eof/2
	listen/2
	listen/2
	open/0
	open/1
	open/1
	open/2
	peeloff/2
	recv/1
	recv/2
	send/3
	send/4
	error_string/1

	global
	del_lock/1
	del_lock/2
	notify_all_name/3
	random_exit_name/3
	random_notify_name/3
	register_name/2
	register_name/3
	registered_names/0
	re_register_name/2
	re_register_name/3
	send/2
	set_lock/1
	set_lock/2
	set_lock/3
	sync/0
	trans/2
	trans/3
	trans/4
	unregister_name/1
	whereis_name/1

	global_group
	global_groups/0
	info/0
	monitor_nodes/1
	own_nodes/0
	registered_names/1
	send/2
	send/3
	sync/0
	whereis_name/1
	whereis_name/2

	heart
	set_cmd/1
	clear_cmd/0
	get_cmd/0

	inet
	close/1
	get_rc/0
	format_error/1
	getaddr/2
	getaddrs/2
	gethostbyaddr/1
	gethostbyname/1
	gethostbyname/2
	gethostname/0
	getifaddrs/0
	getopts/2
	getstat/1
	getstat/2
	ntoa/1
	parse_ipv4_address/1
	parse_ipv4strict_address/1
	parse_ipv6_address/1
	parse_ipv6strict_address/1
	parse_address/1
	parse_strict_address/1
	peername/1
	peernames/1
	peernames/2
	port/1
	sockname/1
	socknames/1
	socknames/2
	setopts/2

	inet_res
	getbyname/2
	getbyname/3
	gethostbyaddr/1
	gethostbyaddr/2
	gethostbyname/1
	gethostbyname/2
	gethostbyname/3
	lookup/3
	lookup/4
	lookup/5
	resolve/3
	resolve/4
	resolve/5
	nslookup/3
	nslookup/4
	nslookup/4
	nnslookup/4
	nnslookup/5

	init
	net_adm
	dns_hostname/1
	host_file/0
	localhost/0
	names/0
	names/1
	ping/1
	world/0
	world/1
	world_list/1
	world_list/2

	net_kernel
	allow/1
	connect_node/1
	monitor_nodes/1
	monitor_nodes/2
	get_net_ticktime/0
	set_net_ticktime/1
	set_net_ticktime/2
	start/1
	start/1
	start/1
	stop/0

	os
	cmd/1
	find_executable/1
	find_executable/2
	getenv/0
	getenv/1
	getenv/2
	getpid/0
	putenv/2
	system_time/0
	system_time/1
	timestamp/0
	type/0
	unsetenv/1
	version/0

	pg2
	create/1
	delete/1
	get_closest_pid/1
	get_members/1
	get_local_members/1
	join/2
	leave/2
	which_groups/0
	start/0
	start_link/0

	rpc
	call/4
	call/5
	block_call/4
	block_call/5
	async_call/4
	yield/1
	nb_yield/1
	nb_yield/2
	multicall/3
	multicall/4
	multicall/4
	multicall/5
	cast/4
	eval_everywhere/3
	eval_everywhere/4
	abcast/2
	abcast/3
	sbcast/2
	sbcast/3
	server_call/4
	multi_server_call/2
	multi_server_call/3
	safe_multi_server_call/2
	safe_multi_server_call/3
	parallel_eval/1
	pmap/3
	pinfo/1
	pinfo/2

	seq_trace
	set_token/1
	set_token/2
	get_token/0
	get_token/1
	print/1
	print/2
	reset_trace/0
	set_system_tracer/1
	get_system_tracer/0

	user
	wrap_log_reader
	chunk/1
	chunk/2
	close/1
	open/1
	open/2

	zlib
	app
	config

