ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 9.2
December 11, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 11, 2017

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.1 Introduction

1 ERTS User's Guide

1.1 Introduction

1.1.1 Scope
The Erlang Runtime System Application, ERTS, contains functionality necessary to run the Erlang system.

By default, ERTS is only guaranteed to be compatible with other Erlang/OTP components from the same release
as ERTS itself.

For information on how to communi cate with Erlang/OTP componentsfrom earlier rel eases, see the documentation
of systemflag +Riner!| (1).

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 Communication in Erlang

Communication in Erlang is conceptually performed using asynchronous signaling. All different executing entities,
such as processes and ports, communicate through asynchronous signals. The most commonly used signal isamessage.
Other common signals are exit, link, unlink, monitor, and demonitor signals.

1.2.1 Passing of Signals

The amount of time that passes between a signal is sent and the arrival of the signal at the destination is unspecified
but positive. If the receiver has terminated, the signal does not arrive, but it can trigger another signal. For example, a
link signal sent to a non-existing process triggers an exit signal, which is sent back to where the link signal originated
from. When communicating over the distribution, signals can be lost if the distribution channel goes down.

The only signal ordering guarantee given is the following: if an entity sends multiple signals to the same destination
entity, the order is preserved; that is, if A sends asignal S1 to B, and later sends signal S2 to B, S1 is guaranteed
not to arrive after S2.

1.2.2 Synchronous Communication

Some communication is synchronous. If broken down into pieces, a synchronous communication operation consists of
two asynchronous signals; one request signal and one reply signal. An example of such asynchronous communication
isacall to erl ang: process_i nf o/ 2 whenthefirst argumentisnot sel f () . The caller sends an asynchronous
signal requesting information, and then waits for the reply signal containing the requested information. When the
reguest signal reaches its destination, the destination process replies with the requested information.

1.2.3 Implementation

The implementation of different asynchronous signals in the virtual machine can vary over time, but the behavior
always respects this concept of asynchronous signals being passed between entities as described above.

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

By inspecting the implementation, you might notice that some specific signal gives astricter guarantee than described
above. It is of vital importance that such knowledge about the implementation is not used by Erlang code, as the
implementation can change at any time without prior notice.

Examples of major implementation changes:

e Asfrom ERTS5.5.2 exit signals to processes are truly asynchronously delivered.
e Asfrom ERTS5.10 all signals from processes to ports are truly asynchronously delivered.

1.3 Time and Time Correction in Erlang

1.3.1 New Extended Time Functionality

Asfrom Erlang/OTP 18 (ERTS 7.0) the time functionality has been extended. This includes a new API for time
and time warp modes that change the system behavior when system time changes.

The default time war p mode has the same behavior as before, and the old API still works. Thus, you are not required
to change anything unless you want to. However, you ar e strongly encour aged to usethe new API instead of the
old APl based oner | ang: now 0. er| ang: now O isdeprecated, asit isand will be a scalability bottleneck.

By using the new API, you automatically get scalability and performance improvements. This also enables you to
use the multi-time warp mode that improves accuracy and precision of time measurements.

1.3.2 Terminology

To make it easier to understand this section, some terms are defined. Thisis a mix of our own terminology (Erlang/
OS system time, Erlang/OS monotonic time, time warp) and globally accepted terminology.

Monotonically Increasing

In a monotonically increasing sequence of values, al values that have a predecessor are either larger than or equal
to its predecessor.

Strictly Monotonically Increasing

In a strictly monotonically increasing sequence of values, al values that have a predecessor are larger than its
predecessor.

UTl

Universal Time. UT1 is based on the rotation of the earth and conceptually means solar time at 0° longitude.

uTC

Coordinated Universal Time. UTC amost aligns with UT1. However, UTC uses the Sl definition of a second, which
has not exactly the same length as the second used by UT1. This means that UTC slowly drifts from UT1. To keep
UTC relatively in sync with UT1, leap seconds are inserted, and potentially also deleted. That is, an UTC day can be
86400, 86401, or 86399 seconds long.

POSIX Time

Timesince Epoch. Epoch isdefined to be 00:00:00 UTC, 1970-01-01. A day in POSIX timeisdefined to be exactly
86400 seconds long. Strangely enough, Epoch is defined to beatimein UTC, and UTC has another definition of how
long aday is. Quoting the Open Group " POSI X timeistherefore not necessarily UTC, despiteits appearance” .
The effect of thisis that when an UTC leap second is inserted, POSIX time either stops for a second, or repeats the

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

href
href
href

1.3 Time and Time Correction in Erlang

last second. If an UTC leap second would be deleted (which has not happened yet), POSIX time would make a one
second leap forward.

Time Resolution
The shortest time interval that can be distinguished when reading time values.

Time Precision

The shortest time interval that can be distinguished repeatedly and reliably when reading time values. Precision is
limited by the resolution, but resolution and precision can differ significantly.

Time Accuracy

The correctness of time values.

Time Warp

A timewarp is aleap forwards or backwardsin time. That is, the difference of time values taken before and after the
time warp does not correspond to the actual elapsed time.

OS System Time

The operating systems view of POSIX time. To retrieveit, call os: system ti me() . Thismay or may not be an
accurate view of POSIX time. This time may typically be adjusted both backwards and forwards without limitation.
That is, time warps may be observed.

To get information about the Erlang runtime system's source of OS system time, call
erl ang: system.info(os_systemtime_source).
OS Monotonic Time

A monotonically increasing time provided by the OS. This time does not leap and has a relatively steady frequency
although not completely correct. However, it isnot uncommon that OS monotonic time stopsif the systemis suspended.
This time typically increases since some unspecified point in time that is not connected to OS system time. This type
of time is not necessarily provided by all OSs.

To get information about the Erlang runtime system's source of OS monotonic time, call
erl ang: system.info(os_nonotonic_tinme_source).

Erlang System Time

The Erlang runtime systems view of POS X time. Toretrieveit, call er | ang: system ti me().

This time may or may not be an accurate view of POSIX time, and may or may not align with OS system time. The
runtime system works towards aligning the two system times. Depending on the time warp mode used, this can be
achieved by letting Erlang system time perform atime warp.

Erlang Monotonic Time

A monotonically increasing time provided by the Erlang runtime system. Erlang monotonic time increases since some
unspecified point in time. To retrieveit, call er| ang: nonotoni c_tinme().

The accuracy and precision of Erlang monotonic time heavily depends on the following:

e Accuracy and precision of OS monotonic time
e Accuracy and precision of OSsystemtime
e timewarp mode used

On a system without OS monotonic time, Erlang monotonic time guarantees monaotonicity, but cannot give other
guarantees. The frequency adjustments made to Erlang monotonic time depend on the time warp mode used.

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Internally in the runtime system, Erlang monotonic time is the "time engine" that is used for more or less everything
that has anything to do with time. All timers, regardlessof itisar ecei ve ... after timer, BIFtimer, or atimer
inthet i mer (3) module, are triggered relative Erlang monotonic time. Even Erlang systemtime is based on Erlang
monotonic time. By adding current Erlang monotonic timewith current time offset, you get current Erlang systemtime.

To retrieve the current time offset, call erl ang: ti ne_of f set/ 0.

1.3.3 Introduction

Timeis vital to an Erlang program and, more importantly, correct time isvita to an Erlang program. As Erlang isa
language with soft real -time properties and we can expresstimein our programs, the Virtual Machine and the language
must be careful about what is considered a correct time and in how time functions behave.

When Erlang was designed, it was assumed that the wall clock time in the system showed a monotonic time moving
forward at exactly the same pace as the definition of time. This more or less meant that an atomic clock (or better time
source) was expected to be attached to your hardware and that the hardware was then expected to be locked away from
any human tinkering forever. While this can be a compelling thought, it is ssmply never the case.

A "normal" modern computer cannot keep time, not on itself and not unless you have a chip-level atomic clock wired
to it. Time, as perceived by your computer, must normally be corrected. Hence the Network Time Protocol (NTP)
protocol, together with the nt pd process, does its best to keep your computer time in sync with the correct time.
Between NTP corrections, usually aless potent time-keeper than an atomic clock is used.

However, NTP is not fail-safe. The NTP server can be unavailable, nt p. conf can be wrongly configured, or
your computer can sometimes be disconnected from Internet. Furthermore, you can have a user (or even system
administrator) who thinks the correct way to handle Daylight Saving Timeisto adjust the clock one hour two times a
year (which isthe incorrect way to do it). To complicate things further, this user fetched your software from Internet
and has not considered what the correct time is as perceived by a computer. The user does not care about keeping the
wall clock in sync with the correct time. The user expects your program to have unlimited knowledge about the time.

Most programmers al so expect timeto bereliable, at least until they realizethat thewall clock time on their workstation
is off by aminute. Then they set it to the correct time, but most probably not in a smooth way.

The number of problems that arise when you always expect the wall clock time on the system to be correct can be
immense. Erlang therefore introduced the "corrected estimate of time", or the "time correction”, many years ago.
The time correction relies on the fact that most operating systems have some kind of monotonic clock, either areal-
time extension or some built-in "tick counter" that is independent of the wall clock settings. This counter can have
microsecond resolution or much less, but it has a drift that cannot be ignored.

1.3.4 Time Correction

If time correction is enabled, the Erlang runtime system makes use of both OS system time and OS monotonic time,
to adjust the frequency of the Erlang monotonic clock. Time correction ensures that Erlang monotonic time does not
warp and that the frequency isrelatively accurate. The type of frequency adjustments depends on the time warp mode
used. Section Time Warp Modes provides more details.

By default time correction is enabled if support for it exists on the specific platform. Support for it
includes both OS monotonic time, provided by the OS, and an implementation in the Erlang runtime
system using OS monotonic time. To check if your system has support for OS monotonic time, call
erl ang: system i nf o(os_nonot oni c_ti ne_source). To check if time correction is enabled on your
system, cal erl ang: system.info(tine_correction).

To enable or disable time correction, pass command-lineargument +c [true| fal se] toerl (1).

If time correction is disabled, Erlang monotonic time can warp forwards or stop, or even freeze for extended periods
of time. There are then no guarantees that the frequency of the Erlang monotonic clock is accurate or stable.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.3 Time and Time Correction in Erlang

You typically never want to disable time correction. Previously a performance penalty was associated with time
correction, but nowadays it is usually the other way around. If time correction is disabled, you probably get bad
scalability, bad performance, and bad time measurements.

1.3.5 Time Warp Safe Code

Time warp safe code can handle atime warp of Erlang systemtime.

er | ang: now 0 behavesbad when Erlang system timewarps. When Erlang system time does atimewarp backwards,
the values returned from er | ang: now 0 freeze (if you disregard the microsecond increments made because of the
actual call) until OS system time reaches the point of the last value returned by er | ang: now 0. This freeze can
continue for along time. It can take years, decades, and even longer until the freeze stops.

All usesof er | ang: now’ 0 are not necessarily time warp unsafe. If you do not useit to get time, it istime warp safe.
However, all usesof er | ang: now 0 aresuboptimal from a performance and scalability perspective. So you really
want to replace the use of it with other functionality. For examples of how to replace the use of er | ang: now 0,
see section How to Work with the New API.

1.3.6 Time Warp Modes

Current Erlang system time is determined by adding the current Erlang monotonic time with current time offset. The
time offset is managed differently depending on which time warp mode you use.

To set the time warp mode, pass command-line argument +C [no_ti me_war p| si ngl e_ti ne_war p|
multi _time_warp] toerl (1).

No Time Warp Mode

The time offset is determined at runtime system start and does not change later. Thisis the default behavior, but not
because it is the best mode (which it is not). It is default only because this is how the runtime system behaved until
ERTS 7.0. Ensure that your Erlang code that can execute during atime warp is time warp safe before enabling other
modes.

Asthetime offset is not allowed to change, time correction must adjust the frequency of the Erlang monotonic clock
to align Erlang system time with OS system time smoothly. A significant downside of this approach is that we on
purpose will use a faulty frequency on the Erlang monotonic clock if adjustments are needed. This error can be as
large as 1%. This error will show up in all time measurements in the runtime system.

If time correction is not enabled, Erlang monotonic time freezes when OS system time leaps backwards. The freeze of
monatonic time continues until OS system time catches up. The freeze can continue for along time. When OS system
time leaps forwards, Erlang monotonic time also leaps forward.

Single Time Warp Mode

Thismode is more or less a backward compatibility mode as from its introduction.

On an embedded system it is not uncommon that the system has no power supply, not even a battery, when it is shut
off. The system clock on such a system is typically way off when the system boots. If no time warp mode is used,
and the Erlang runtime system is started before OS system time has been corrected, Erlang system time can be wrong
for along time, centuries or even longer.

If you need to use Erlang code that is not time warp safe, and you need to start the Erlang runtime system before OS
system time has been corrected, you may want to use the single time warp mode.

There are limitations to when you can execute time warp unsafe code using this mode. If it is possible to use time
warp safe code only, it is much better to use the multi-time warp mode instead.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Using the single time warp mode, the time offset is handled in two phases:

Preliminary Phase
This phase starts when the runtime system starts. A preliminary time offset based on current OS system time is
determined. This offset isfrom now on to be fixed during the whole preliminary phase.

If time correction is enabled, adjustmentsto the Erlang monotonic clock are made to keep its frequency as correct
as possible. However, no adjustments are made trying to align Erlang system time and OS system time. That
is, during the preliminary phase Erlang system time and OS system time can diverge from each other, and no
attempt is made to prevent this.

If time correction is disabled, changes in OS system time affects the monotonic clock the same way as when the
no time warp mode is used.

Fina Phase

This phase begins when the user finalizes the time offset by caling
erl ang: system flag(time_offset, finalize).Thefinaization canonly be performed once.

During finalization, the time offset is adjusted and fixed so that current Erlang system time alignswith the current
OS system time. Asthe time offset can change during the finalization, Erlang system time can do atime warp at
this point. The time offset is from now on fixed until the runtime system terminates. If time correction has been
enabled, the time correction from now on also makes adjustments to align Erlang system time with OS system
time. When the system isin the final phase, it behaves exactly asin no time warp mode.

In order for this to work properly, the user must ensure that the foll owing two requirements are satisfied:
Forward Time Warp

The time warp made when finalizing the time offset can only be done forwards without encountering problems.
Thisimplies that the user must ensure that OS system time is set to atime earlier or equal to actual POSIX time
before starting the Erlang runtime system.

If you are not surethat OS system timeis correct, set it to atimethat is guaranteed to be earlier than actual POSIX
time before starting the Erlang runtime system, just to be safe.

Finalize Correct OS System Time
OS system time must be correct when the user finalizes the time offset.
If these requirements are not fulfilled, the system may behave very bad.

Assuming that these requirements are fulfilled, time correction is enabled, and OS system time is adjusted using a
time adjustment protocol such as NTP, only small adjustments of Erlang monotonic time are needed to keep system
times aligned after finalization. Aslong asthe system is not suspended, the largest adjustments needed are for inserted
(or deleted) leap seconds.

To use thismode, ensure that all Erlang code that will execute in both phases is time warp safe.
Code executing only in the final phase does not have to be able to cope with the time warp.

Multi-Time Warp Mode

Multi-time warp mode in combination with time correction is the preferred configuration. This as the Erlang
runtime system have better performance, scale better, and behave better on ailmost all platforms. Also, the accuracy
and precision of time measurements are better. Only Erlang runtime systems executing on ancient platforms benefit
from another configuration.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.3 Time and Time Correction in Erlang

The time offset can change at any time without limitations. That is, Erlang system time can perform time warps both
forwards and backwards at any time. Aswe align Erlang system time with OS system time by changing the time offset,
we can enable a time correction that tries to adjust the frequency of the Erlang monotonic clock to be as correct as
possible. This makes time measurements using Erlang monotonic time more accurate and precise.

If time correction is disabled, Erlang monotonic time leaps forward if OS system time leaps forward. If OS system
time leaps backwards, Erlang monotonic time stops briefly, but it does not freeze for extended periods of time. This
asthe time offset is changed to align Erlang system time with OS system time.

To use this mode, ensure that all Erlang code that will execute on the runtime system is time warp safe. ‘

1.3.7 New Time API

Theoldtime APl isbasedoner | ang: now 0.er | ang: how 0 wasintended to be used for many unrelated things.
Thistied these unrelated operations together and caused issues with performance, scalability, accuracy, and precision
for operations that did not need to have such issues. To improve this, the new API spreads different functionality over
multiple functions.

To be backward compatible, er | ang: now 0 remains "as is’, but you are strongly discouraged from using it.
Many use cases of er | ang: now/ 0 prevents you from using the new multi-time warp mode, which is an important
part of this new time functionality improvement.

Some of the new BIFson some systems, perhaps surprisingly, return negative integer values on anewly started runtime
system. Thisis not a bug, but a memory use optimization.

The new API consists of the following new BIFs:

e erlang:convert _time _unit/3
e erlang: monotonic_tine/0

e erlang:nonotonic_tine/l

e erlang:systemtine/0

e erlang:systemtine/l

e erlang:tine_offset/0

e erlang:tine_offset/1

e erlang:tinestanp/0

e erlang:unique_integer/0

* erlang:unique_integer/1

e oO0s:systemtine/0

e os:systemtine/l

The new API also consists of extensions of the following existing BIFs:

e erlang:nmonitor(tinme_offset, clock_service)

« erlang:systemflag(time_offset, finalize)

e erlang: system.info(os_nonotonic_tinme_source)
e erlang:systeminfo(os_systemtinme_source)

e erlang:systeminfo(tine_offset)

e erlang:systeminfo(time_warp_node)

* erlang:system.info(time_correction)

e erlang:system.info(start_tine)

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

e erlang:systeminfo(end_tine)
New Erlang Monotonic Time

Erlang monotonic time assuchisnew asfrom ERTS 7.0. It isintroduced to detach time measurements, such as elapsed
time from calendar time. In many use cases there is a need to measure elapsed time or specify a time relative to
another point in time without the need to know the involved timesin UTC or any other globally defined time scale.
By introducing a time scale with a local definition of where it starts, time that do not concern calendar time can be
managed on that time scale. Erlang monotonic time uses such atime scale with alocally defined start.

Theintroduction of Erlang monotonic time allows usto adjust the two Erlang times (Erlang monotonic time and Erlang
system time) separately. By doing this, the accuracy of elapsed time does not have to suffer just because the system
time happened to be wrong at some point in time. Separate adjustments of thetwo timesare only performed in thetime
warp modes, and only fully separated in the multi-time warp mode. All other modes than the multi-time warp mode
are for backward compatibility reasons. When using these modes, the accuracy of Erlang monotonic time suffer, as
the adjustments of Erlang monotonic time in these modes are more or less tied to Erlang system time.

The adjustment of system time could have been made smother than using a time warp approach, but we think that
would be abad choice. Aswe can express and measure time that is not connected to calendar time by the use of Erlang
monotonic time, it is better to expose the change in Erlang system time immediately. This as the Erlang applications
executing on the system can react on the change in system time as soon as possible. Thisis also more or less exactly
how most operating systems handl e this (OS monotonic time and OS system time). By adjusting system time smoothly,
we would just hide the fact that system time changed and make it harder for the Erlang applications to react to the
change in asensible way.

To be ableto react to achangein Erlang system time, you must be able to detect that it happened. The changein Erlang
system time occurs when the current time offset is changed. We have therefore introduced the possibility to monitor
thetime offset using er | ang: noni tor (ti me_of fset, cl ock_service).A process monitoring thetime
offset is sent a message on the following format when the time offset is changed:

{'CHANGE', MonitorReference, time offset, clock service, NewTimeOffset}

Unique Values

Besidesreportingtime, er | ang: now' 0 also produces unique and strictly monotonically increasing values. To detach
this functionality from time measurements, we have introduced er | ang: uni que_i nt eger ().

How to Work with the New API

Previoudly er | ang: now O was the only option for doing many things. This section deals with some things that
er |l ang: now 0 can be used for, and how you use the new API.

Retrieve Erlang System Time

Useer | ang: now O to retrieve the current Erlang system time.

Use erl ang: system ti ne/ 1 toretrieve the current Erlang system time on the time unit of your choice.

If you want the same format as returned by er | ang: now 0, use er | ang: ti mest anp/ 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.3 Time and Time Correction in Erlang

Measure Elapsed Time

Don't:

Taketime stampswith er | ang: now/ 0 and calculate the differencein timewith ti ner: now_di ff/ 2.

Take time stamps with er| ang: nonot oni c_ti ne/ 0 and calculate the time difference using ordinary
subtraction. Theresultisin nat i ve time unit. If you want to convert the result to another time unit, you can use
erl ang: convert _tine_unit/3.

An easier way todo thisistouse er | ang: nonot oni ¢_t i ne/ 1 with the desired time unit. However, you can
then lose accuracy and precision.

Determine Order of Events

Don't:

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

Determinethe order of eventsby saving theinteger returnedby er | ang: uni que_i nt eger ([nonot oni c])
when the event occurs. These integers are strictly monotonically ordered on current runtime system instance
corresponding to creation time.

Determine Order of Events with Time of the Event

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Determine the order of events by saving atuple containing monotonic time and a strictly monotonically increasing
integer asfollows:

Time = erlang:monotonic_time(),
UMI = erlang:unique integer([monotonic]),
EventTag = {Time, UMI}

These tuples are strictly monotonically ordered on the current runtime system instance according to creation time.
It isimportant that the monotonic time isin the first element (the most significant element when comparing two-
tuples). Using the monotonic time in the tuples, you can cal cul ate time between events.

If you are interested in Erlang system time at the time when the event occurred, you can also save the time offset
before or after saving theeventsusing er | ang: ti me_of f set / 0. Erlang monotonic time added with the time
offset corresponds to Erlang system time.

If you are executing in a mode where time offset can change, and you want to get the actual Erlang system time
when the event occurred, you can save the time offset as a third element in the tuple (the least significant element
when comparing three-tuples).

Create a Unique Name

Don't:

Use the values returned from er | ang: now/ 0 to create a name unique on the current runtime system instance.

Use the value returned from er | ang: uni que_i nt eger/ 0 to create a name unique on the current runtime
systeminstance. If you only want positiveintegers, you canuse er | ang: uni que_i nt eger ([posi tive]).

Seed Random Number Generation with a Unique Value

| Seed random number generation using er | ang: now() .

Don't:

Seed random number generation using a combination of er| ang: nonot oni c_ti nme(),
erlang:ti me_offset(), erl ang: uni que_i nt eger (), and other functionality.

To sum up this section: Do not useer | ang: now 0.

1.3.8 Support of Both New and Old OTP Releases

It can berequired that your code must run on avariety of OTP installations of different OTP releases. If so, you cannot
use the new API out of the box, asit will not be available on releases before OTP 18. The solution isnot to avoid using
the new API, asyour code would then not benefit from the scalability and accuracy improvements made. Instead, use
the new APl when available, and fall back on er | ang: now' 0 when the new API is unavailable.

Fortunately most of the new API can easily be implemented using existing primitives, except for:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

1.4 Match Specifications in Erlang

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

« erlang: system.info(os_nonotonic_time_source)

e erlang:systeminfo(os_systemtine_source))

By wrapping the APl with functions that fall back on er| ang: now 0 when the new API is unavailable, and

using these wrappers instead of using the API directly, the problem is solved. These wrappers can, for example, be
implemented asin $ERL_TOP/ertsexample/time _compat.erl.

1.4 Match Specifications in Erlang

A "match specification” (mat ch_spec) isan Erlang term describing asmall "program” that triesto match something.
It can be used to either control tracing with erlang:trace pattern/3 or to search for objectsin an ETS table with for
example ets: select/2. The match specification in many ways works like a small function in Erlang, but isinterpreted/
compiled by the Erlang runtime system to something much more efficient than calling an Erlang function. The match
specification is also very limited compared to the expressiveness of real Erlang functions.

The most notable difference between a match specification and an Erlang fun is the syntax. Match specifications are
Erlang terms, not Erlang code. Also, a match specification has a strange concept of exceptions:

* An exception (such as badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, generates
immediate failure.

e Anexception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.4.1 Grammar

A match specification used in tracing can be described in the following informal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' ' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable |' '

» MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

* MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }

e BoolFunction::=i s_atom|is_float |is_integer |is_list|is_nunmber |is_pid]|is_port |
is referencelis_tuple|is_map|is_binary|is_function]|is_record]|is_seq_trace|

"and' |'or' |'not' |'xor' |'andal so' |' orel se'
e ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

* TermConstruct = {{}} [{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] |#{} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

e NonCompositeTerm ::=term() (not list or tuple or map)

e Constant ::={const , term()}

e GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |node |round |si ze|t] |[trunc|' +
["-"|"*" |"div' |"rem |'band' |'bor' |'bxor' |"bnot' |"bsl"' |"bsr' |'>" |'">=" |'<" |
=< == == == T = | sel fo|get _tew

e MatchBody ::=[ActionTerm]

* ActionTerm ::= ConditionExpression | ActionCall

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href

1.4 Match Specifications in Erlang

ActionCall ::= { ActionFunction} | { ActionFunction, ActionTerm, ...}

ActionFunction ::=set _seq_t oken |get _seq_t oken |nessage |return_trace |
exception_trace|process_dunp|enabl e trace|di sable trace|trace |display |
caller |set _tcw]|silent

A match specification used in et s(3) can be described in the following infor mal grammar:

MatchExpression ::= [MatchFunction, ...]

MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

MatchHead ::= MatchVariable|' _' |{ MatchHeadPart, ... }

MatchHeadPart ::= term() | MatchVariable|' '

MatchVariable ::= '$<number>'

MatchConditions ::= [MatchCondition, ...] | []

MatchCondition ::= { GuardFunction} |{ GuardFunction, ConditionExpression, ... }
BoolFunction::=is_atom|is_float |is_integer |is_list |is_nunber |is_pid]is_port |
is referencelis_tuple|is_map|is_binary|is_function]|is_record]|is_seq_trace|
"and' |'or' |'not' |'xor' |'andal so' |' orel se'

ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ...}} |[] |[ConditionExpression, ...] | #{} | #{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::= term() (not list or tuple or map)

Constant ::= {const , term()}

GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |[node |round |si ze |t] [trunc|' +
["-"|"*" ["div' |'"rem |"band" |'bor' |["bxor' |'bnot' |'"bsl' |"bsr' |'>" |[">=" |'<" |
=< == == == T = | sel f |get _tew

MatchBody ::=[ConditionExpression, ...]

1.4.2 Function Descriptions

Functions Allowed in All Types of Match Specifications

The functionsalowed in mat ch_spec work asfollows:

is atomis float,is integer,is |list,is nunber,is pid,is_port,is_reference,
is tuple,is map,is_binary,is function

Same as the corresponding guard testsin Erlang, returnt r ue or f al se.

is record

not

Takes an additional parameter, which must betheresult of r ecor d_i nf o(si ze, <record_type>),like
in{is_record, '$1', rectype, record_info(size, rectype)}.

Negates its single argument (anything other than f al se givesf al se).

and'

Returnst r ue if all itsarguments (variable length argument list) evaluatetot r ue, otherwisef al se. Evaluation
order is undefined.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.4 Match Specifications in Erlang

or

Returns t r ue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is

undefined.
andal so'

Worksas' and' , but quits evaluating its arguments when one argument eval uates to something elsethant r ue.
Arguments are evaluated |eft to right.

orel se'

Worksas' or' , but quitsevaluating as soon asone of itsargumentsevaluatestot r ue. Arguments are evaluated
left to right.

Xor

Only two arguments, of which onemust bet r ue and theother f al se toreturnt r ue; otherwise' xor' returns
false.

abs, el enent, hd, | engt h, node, round, si ze,tl ,trunc," + ,"-","*" "div',"rem,' band',

"bor',"bxor',"bnot', bsl',"bsr','>" "'>=" "< =< == == == 0= sel f
Same asthe corresponding Erlang BIFs (or operators). |n case of bad arguments, the result depends on the context.
In the Mat chCondi t i ons part of the expression, the test fails immediately (like in an Erlang guard). In the
Vat chBody part, exceptions are implicitly caught and the call resultsintheatom ' EXI T' .

Functions Allowed Only for Tracing

The functions allowed only for tracing work as follows:

i s_seq_trace
Returnst r ue if asequential trace token is set for the current process, otherwisef al se.

set _seq_t oken

Worksasseq_trace: set _token/ 2, butreturnst r ue onsuccess, and' EXI T' on error or bad argument.
Only allowed in the Mat chBody part and only allowed when tracing.

get _seq_t oken
Sameasseq_trace: get _t oken/ 0 and only allowed in the Mat chBody part when tracing.
nessage

Sets an additional message appended to the trace message sent. One can only set one additional message in the
body. Later calls replace the appended message.

As a specia case, { message, fal se} disables sending of trace messages (‘call' and 'return_to'") for this
function call, just like if the match specification had not matched. This can be useful if only the side effects of
the Mat chBody part are desired.

Another special caseis{ nessage, true}, which setsthe default behavior, asif the function had no match
specification; trace message is sent with no extra information (if no other calls to message are placed before
{message, true},itisinfacta"noop").

Takes one argument: the message. Returnst r ue and can only beused inthe Mat chBody part and when tracing.
return_trace

Causesar et ur n_f r omtrace message to be sent upon return from the current function. Takes no arguments,
returnst r ue and can only be used in the Mat chBody part when tracing. If the process trace flag si | ent is
active, ther et ur n_f r omtrace messageis inhibited.

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

Warning: If the traced function istail-recursive, this match specification function destroys that property. Hence,
if a match specification executing this function is used on a perpetual server process, it can only be active for
alimited period of time, or the emulator will eventually use all memory in the host machine and crash. If this
match specification function isinhibited using process trace flag si | ent , tail-recursiveness still remains.

exception_trace

Worksasr et urn_t race plus; if the traced function exits because of an exception, an excepti on_from
trace message is generated, regardless of the exception is caught or not.

process_dunp

Returns some textual information about the current process as a binary. Takes no arguments and is only allowed
in the Mat chBody part when tracing.

enabl e_trace

With one parameter this function turns on tracing like the Erlang call er |l ang: trace(sel f (), true,
[P2]) , where P2 isthe parameter to enabl e_t r ace.

With two parameters, the first parameter is to be either a process identifier or the registered name of a
process. In this case tracing is turned on for the designated process in the same way as in the Erlang call
erlang:trace(Pl, true, [P2]),wherePl isthefirstand P2 isthe second argument. The process P1
gets its trace messages sent to the same tracer as the process executing the statement uses. P1 cannot be one
of theatomsal | , newor exi st i ng (unlessthey are registered names). P2 cannot becpu_t i mest anp or
tracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.
di sabl e_trace

With one parameter this function disables tracing like the Erlang call er | ang: trace(sel f (), fal se,
[P2]) , where P2 isthe parameter to di sabl e_t race.

With two parameters this function works as the Erlang call er| ang: trace(P1, false, [P2]),where
P1 can be either a process identifier or a registered name and is specified as the first argument to the match
specification function. P2 cannot becpu_ti nestanp ortracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.

trace

With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively al changes are
applied atomically. The trace flags are the sasme asfor er | ang: t r ace/ 3, not including cpu_t i mest anp,
but includingt r acer .

If atracer is specified in both lists, the tracer in the enable list takes precedence. If no tracer is specified, the same
tracer as the process executing the match specification is used.

When using a tracer module, the module must be loaded before the match specification is executed. If it is not
loaded, the match fails.

With three parameters to this function, the first is either a process identifier or the registered name of a process
to set trace flags on, the second is the disable list, and the third is the enable list.

Returnst r ue if any trace property was changed for the trace target process, otherwisef al se. Can only be used
in the Mat chBody part when tracing.

call er

Returns the calling function as a tuple { Modul e, Function, Arity} orthe atom undefi ned if the
calling function cannot be determined. Can only be used in the Mat chBody part when tracing.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.4 Match Specifications in Erlang

Notice that if a "technically built in function” (that is, a function not written in Erlang) is traced, the cal | er
function sometimesreturnsthe atom undef i ned. The calling Erlang function is not available during such calls.

di spl ay

For debugging purposes only. Displaysthe single argument as an Erlang term on st dout , which is seldom what
iswanted. Returnst r ue and can only be used in the Mat chBody part when tracing.

get _tcw

Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace control _word).

Thetrace control word is a 32-bit unsigned integer intended for generic trace control. The trace control word can
betested and set both from within trace match specificationsand with BIFs. Thiscall isonly allowed whentracing.

set_tcw

Takes one unsigned integer argument, setsthe value of the node's trace control word to the value of the argument,
and returns the previous value. The same is done by er | ang: system fl ag(trace_control _word,
Val ue) . Itisonly alowed to useset _t cwin the Mat chBody part when tracing.

sil ent

Takes one argument. If theargument ist r ue, the call trace message mode for the current processis set to silent
for this call and al later calls, that is, call trace messages are inhibited even if { message, true} iscaled
in the Mat chBody part for atraced function.

This mode can aso be activated with flag si | ent toer| ang: trace/ 3.

If the argument isf al se, the call trace message mode for the current process is set to normal (non-silent) for
thiscall and all later calls.

If theargumentisnott r ue or f al se, the call trace message mode is unaffected.

All "function calls* must be tuples, even if they take no arguments. The value of sel f isthe atom() sel f, but
thevalueof { sel f} isthe pid() of the current process.

1.4.3 Match target

Each execution of amatch specification is done against a match target term. The format and content of the target term
depends on the context in which the match is done. The match target for ETS is dways afull table tuple. The match
target for call trace is always alist of al function arguments. The match target for event trace depends on the event
type, see table below.

Context Type Match target Description
ETS {Key, Vauel, Vaue?, ...} | A tableobject
Trace call [Argl, Arg2, ...] Function arguments

Receiving process/port and

Trace send [Receiver, Message] m e term

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

Sending node, process/port

Trace 'receive
and message term

[Node, Sender, Message]

Table 4.1: Match target depending on context

1.4.4 Variables and Literals

Variables take the form ' $<nunber >' , where <numrber > is an integer between 0 and 100,000,000 (1e+8). The
behavior if the number isoutside theselimitsisundefined. Inthe Mat chHead part, the special variable' _' matches
anything, and never gets bound (like _ in Erlang).

e IntheMat chCondi t i on/ Mat chBody parts, no unbound variablesarealowed, so' ' isinterpreted asitself
(an atom). Variables can only be bound in the Mat chHead part.

e Inthe Mat chBody and Mat chCondi t i on parts, only variables bound previously can be used.

* Asagpecial case, the following apply in the Mat chCondi t i on/ Mat chBody parts:

+ Thevariable' $_' expands to the whole match target term.
* The variable ' $$' expands to a list of the vaues of al bound variables in order (that is,
["$1',"$2', ...]).
Inthe Mat chHead part, al literals (except the variables above) are interpreted "asis".
In the Mat chCondi t i on/ Mat chBody parts, the interpretation is in some ways different. Literals in these parts

can either be written "asis", which works for all literals except tuples, or by using the special form { const, T},
where T isany Erlang term.

For tuple literas in the match specification, double tuple parentheses can also be used, that is, construct them as a
tuple of arity one containing asingle tuple, which is the one to be constructed. The "double tuple parenthesis’ syntax
is useful to construct tuples from already bound variables, likein{{' $1', [a, b, ' $2']}}. Examples:

Expression Variable Bindings Result

{{'s1','$2}} '$1'=a,'$2=b {ab}

{const, {'$1', '$2'}} Irrelevant {'$1, '$2}

a Irrelevant a

3T S =] [l

[$1] S =] (1]

[{{a}}] Irrelevant [{a}]

42 Irrelevant 42

"hello" Irrelevant "hello"

$1 Irrelevant 49 (the ASCII value for character '1")

Table 4.2: Literals in MatchCondition/MatchBody Parts of a Match Specification

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.4 Match Specifications in Erlang

1.4.5 Execution of the Match

The execution of the match expression, when the runtime system decides whether a trace message is to be sent, is
asfollows:
For each tuplein the Mat chExpr essi on list and while no match has succeeded:

* Match the Mat chHead part against the match target term, binding the ' $<nunber >' variables (much likein
et s: mat ch/ 2). If the Mat chHead part cannot match the arguments, the match fails.

» Evauateeach Mat chCondi ti on (whereonly ' $<nunber >' variablespreviously bound inthe Mat chHead
part can occur) and expect it to return the atom t r ue. When a condition does not evaluate to t r ue, the match
fails. If any BIF call generates an exception, the match also fails.

+ Two cases can occur:
« |If the match specification is executing when tracing:

Evaluate each Act i onTer min the same way as the Mat chCondi t i ons, but ignore the return values.
Regardless of what happens in this part, the match has succeeded.

« |If the match specification is executed when selecting objects from an ETS table:
Evaluate the expressions in order and return the value of the last expression (typicaly there is only one

expression in this context).
1.4.6 Differences between Match Specifications in ETS and Tracing

ETS match specifications produce a return value. Usudly the W©MatchBody contains one single
Condi ti onExpr essi on that defines the return value without any side effects. Calls with side effects are not
allowed in the ETS context.

When tracing there is no return value to produce, the match specification either matches or does not. The effect when
the expression matches is a trace message rather than a returned term. The Act i onTer s are executed as in an
imperative language, that is, for their side effects. Functions with side effects are also allowed when tracing.

1.4.7 Tracing Examples

Match an argument list of three, where the first and third arguments are equal:

({C'$1", '_", '$1'],
]I
131

Match an argument list of three, where the second argument is a number > 3:

—r——

({r_", 's1+, ' 'l,
[({ '=', '"$1', 3},
[1}]
Match an argument list of three, where the third argument is either a tuple containing argument one and two, or alist

beginning with argument one and two (that is,[a, b, [a, b, c]] or[a, b, {a, b}]):

[{['$1", "$2", '$3'],

[{'orelse',
{'=:=", "$3", {{'$1','$2"}}},
{'and'
{'=:=", '$1', {hd, '$3'}},
. {'=:=", '$2", {hd, {tl, "$3'}}}}}1,

The above problem can a so be solved as follows:

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

({r'$1', "$2', {'$1', '$2}1, [1, [1},
{0'$1*, "$2', ['$1', "$2' | '_'11, [1, [I}]

Match two arguments, where the first is a tuple beginning with a list that in turn begins with the second argument
timestwo (thatis, [{[4, x],y},2] or[{[8], V¥, z},4]):

({r's1+, "$2'1,[{'=:=", {"*', 2, '$2'}, {hd, {element, 1, '$1'}}}1,
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message,
otherwise let the trace message be "asis", but set the sequential trace token label to 4711:

[{['$1", "$1', '$1'],
[{is_number, '$1'}],
[{message, {process dump}}1},
{' ', [1, [{set seq token, label, 4711}1}]

Ascan be noted above, the parameter list can be matched against asingleMat chVari abl eoran' _' . Toreplacethe
whole parameter list with asingle variableis a special case. In all other cases the Mat chHead must be aproper list.

Generate a trace message only if the trace control word is set to 1:

[{I_I ’
[{'==",{get_tcw}, {const, 1}}],
[1}]

Generate atrace message only if thereisaseq_t r ace token:

{_"
[{'==',{is _seq trace},{const, 1}}1,
[1}1

Removethe' si | ent' traceflag when thefirst argumentis' ver bose' , and add it whenitis' sil ent' :

[{'$1",
[{'==",{hd, '$1'},verbose}],
[{trace, [silent],[1}1},
{'$1',
[{'==',{hd, '$1'},silent}],

[{trace, [],[silent]}]1}]

Addar et urn_trace messageif the function is of arity 3:

[{'s1",
[{'==",{length, "'$1'},3}],
[{return_trace}l},

{'_" 01, [1}]

Generate a trace message only if the function is of arity 3 and thefirst argumentis' t r ace' :
[{['trace','$2"','$3"'],
[1,
(1},
{'_" 11,11}

1.4.8 ETS Examples

Match al objectsin an ETS table, where the first elementistheatom ' st ri der' and the tuple arity is 3, and return
the whole object:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.5 How to Interpret the Erlang Crash Dumps

[{{strider,"' ',' '},
[1,
['$ '1}]
Match all objectsin an ETS table with arity > 1 and the first element is'gandalf’, and return element 2:

[{'$1',
[{'==", gandalf, {element, 1, '$1'}},{'>=",{size, '$1'},2}1,
[{element,2,'$1'}1}]

In this example, if the first element had been the key, it is much more efficient to match that key in the Mat chHead
partthanintheMat chCondi t i ons part. The search space of thetablesisrestricted with regardsto the Mat chHead
so that only objects with the matching key are searched.

Match tuples of three elements, where the second element is either ' nerry' or' pi ppi n', and return the whole
objects:

({{'_" merry,'_'},
[1,

['$ '13,
{E]'_' ,pippin,' '},
['$ '1}]

Functionet s: t est _ns/ 2> can be useful for testing complicated ETS matches.

1.5 How to Interpret the Erlang Crash Dumps

This section describestheer | _cr ash. dunp file generated upon abnormal exit of the Erlang runtime system.

The Erlang crash dump had a mgjor facelift in Erlang/OTP R9C. The information in this section is therefore not
directly applicable for older dumps. However, if you use cr ashdunp_vi ewer (3) on older dumps, the crash
dumps are tranglated into a format similar to this.

The system writes the crash dump in the current directory of the emulator or in the file pointed out by the environment
variable (whatever that means on the current operating system) ERL_ CRASH_DUMP. For a crash dump to be written,
awritable file system must be mounted.

Crash dumps are written mainly for one of two reasons. either the built-in function er | ang: hal t/ 1 is called
explicitly with a string argument from running Erlang code, or the runtime system has detected an error that cannot
be handled. The most usual reason that the system cannot handle the error is that the cause is external limitations,
such as running out of memory. A crash dump caused by an internal error can be caused by the system reaching limits
in the emulator itself (like the number of atoms in the system, or too many simultaneous ETS tables). Usually the
emulator or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump
correctly isimportant.

On systemsthat support OSsignals, it isalso possibleto stop the runtime system and generate a crash dump by sending
the SI GUSR1 signal.

The Erlang crash dump is areadable text file, but it can be difficult to read. Using the Crashdump Viewer tool in the
Ooser ver application simplifies the task. Thisis awx-widget-based tool for browsing Erlang crash dumps.

1.5.1 General Information
Thefirst part of the crash dump shows the following:

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

e The creation time for the dump

e A dogan indicating the reason for the dump

e The system version of the node from which the dump originates
e The compile time of the emulator running the originating node
e The number of atomsin the atom table

e Theruntime system thread that caused the crash dump

Reasons for Crash Dumps (Slogan)

The reason for the dump is shown in the beginning of the file as:

Slogan: <reason>

If the system ishalted by the BIF er | ang: hal t/ 1, the slogan is the string parameter passed to the BIF, otherwise
it isadescription generated by the emulator or the (Erlang) kernel. Normally the message is enough to understand the
problem, but some messages are described here. Notice that the suggested reasons for the crash are only suggestions.
The exact reasons for the errors can vary depending on the local applications and the underlying operating system.

<A>: Cannot allocate <N> bytes of memory (of type" <T>")

The system has run out of memory. <A> is the alocator that failed to allocate memory, <N> is the number of
bytes that <A> tried to allocate, and <T> is the memory block type that the memory was needed for. The most
common case is that a process stores huge amounts of data. In this case <T> is most often heap, ol d_heap,
heap_frag, or bi nary. For moreinformation on allocators, seeerts_al | oc(3).

<A>: Cannot reallocate <N> bytes of memory (of type" <T>")

Same as above except that memory was reallocated instead of allocated when the system ran out of memory.
Unexpected op code <N>

Error in compiled code, beamfile damaged, or error in the compiler.

Module <Name> undefined | Function <Name> undefined | No function <Name>:<Name>/1| No function
<Name>:start/2

The Kernel/STDLIB applications are damaged or the start script is damaged.
Driver_select called with too largefile descriptor N

The number of file descriptors for sockets exceeds 1024 (Unix only). The limit on file descriptors in some Unix
flavors can be set to over 1024, but only 1024 sockets/pipes can be used simultaneously by Erlang (because of
limitationsin the Unix sel ect call). The number of open regular filesis not affected by this.

Received SIGUSR1

Sending the SI GUSR1 signal to an Erlang machine (Unix only) forces a crash dump. This slogan reflects that
the Erlang machine crash-dumped because of receiving that signal.

Kernel pid terminated (<Who>) (<Exit reason>)

The kernel supervisor has detected a failure, usually that the appl i cati on_control | er has shut down
(Who=application_controller,Wy=shut down). Theapplication controller can have shut down for
many reasons, the most usual is that the node name of the distributed Erlang node is already in use. A complete
supervisor tree "crash” (that is, the top supervisors have exited) gives about the same result. This message comes
from the Erlang code and not from the virtual machineitself. It isaways because of somefailurein an application,
either within OTP or a"user-written" one. Looking at the error log for your application is probably the first step
to take.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.5 How to Interpret the Erlang Crash Dumps

I nit terminating in do_boot ()

The primitive Erlang boot sequence was terminated, most probably because the boot script has errors or cannot
be read. Thisis usualy a configuration error; the system can have been started with a faulty - boot parameter
or with aboot script from the wrong OTP version.

Could not start kernel pid (<Who>) ()

One of the kernel processes could not start. This is probably because of faulty arguments (like errorsin a -
conf i g argument) or faulty configuration files. Check that all files are in their correct location and that the
configuration files (if any) are not damaged. Usually messages are also written to the controlling terminal and/
or the error log explaining what iswrong.

Other errors than these can occur, as the er | ang: hal t/ 1 BIF can generate any message. If the message is not
generated by the BIF and does not occur in the list above, it can be because of an error in the emulator. There can
however be unusual messages, not mentioned here, which are still connected to an application failure. There is much
more information available, so athorough reading of the crash dump can reveal the crash reason. The size of processes,
the number of ETS tables, and the Erlang data on each process stack can be useful to find the problem.

Number of Atoms

The number of atoms in the system at the time of the crash is shown as Atoms: <number>. Some ten thousands
atomsis perfectly normal, but more canindicatethat theBlIF er | ang: | i st _t o_at om 1 isused to generate many
different atoms dynamically, which is never a good idea.

1.5.2 Scheduler Information

Under the tag =scheduler is shown information about the current state and statistics of the schedulersin the runtime
system. On operating systems that allow suspension of other threads, the data within this section reflects what the
runtime system looks like when a crash occurs.

The following fields can exist for a process:
=scheduler:id

Heading. States the scheduler identifier.
Scheduler Sleep Info Flags

If empty, the scheduler was doing some work. If not empty, the scheduler is either in some state of sleep, or
suspended. This entry isonly present in an SMP-enabled emulator.

Scheduler Sleep Info Aux Work

If not empty, ascheduler internal auxiliary work is scheduled to be done.
Current Port

The port identifier of the port that is currently executed by the scheduler.
Current Process

The process identifier of the process that is currently executed by the scheduler. If there is such a process, this
entry isfollowed by the State, I nternal State, Program Counter, and CP of that same process. The entries are
described in section Process | nformation.

Notice that this is a snapshot of what the entries are exactly when the crash dump is starting to be generated.
Therefore they are most likely different (and more telling) than the entries for the same processes found in the
=proc section. If thereis no currently running process, only the Current Process entry is shown.

Current Process Limited Stack Trace

Thisentry is shown only if thereis a current process. It is similar to =proc_stack, except that only the function
frames are shown (that is, the stack variables are omitted). Also, only the top and bottom part of the stack are

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

shown. If the stack is small (< 512 dlots), the entire stack is shown. Otherwise the entry skipping ## slotsis
shown, where ## is replaced by the number of dlots that has been skipped.

Run Queue
Shows statistics about how many processes and ports of different priorities are scheduled on this scheduler.
** crashed **

This entry is normally not shown. It signifies that getting the rest of the information about this scheduler failed
for some reason.

1.5.3 Memory Information

Under the tag =memory is shown information similar to what can be obtainted on a living node with
erl ang: menmory().

1.5.4 Internal Table Information

Under the tags =hash_table:<table nhame> and =index_table:<table name> is shown internal tables. These are
mostly of interest for runtime system developers.

1.5.5 Allocated Areas

Under the tag =allocated_areas is shown information similar to what can be obtained on a living node with
erl ang: system.info(allocated _areas).

1.5.6 Allocator

Under the tag =allocator :<A> is shown various information about allocator <A>. The information is similar to what
can be obtained on aliving node with er| ang: system i nfo({al | ocator, <A>}).For moreinformation,
seeasoerts_all oc(3).

1.5.7 Process Information

The Erlang crashdump contains a listing of each living Erlang process in the system. The following fields can exist
for aprocess:

=proc:<pid>
Heading. States the processidentifier.
State
The state of the process. This can be one of the following:

Scheduled
The process was scheduled to run but is currently not running ("in the run queue”).
Waiting
The process was waiting for something (inr ecei ve).
Running
The process was currently running. If the BIF er | ang: hal t / 1 was called, this was the process calling
it.
Exiting
The process was on its way to exit.
Garbing
Thisis bad luck, the process was garbage collecting when the crash dump was written. The rest of the
information for this processis limited.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.5 How to Interpret the Erlang Crash Dumps

Suspended
The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or becauseit triesto write
to abusy port.

Registered name
The registered name of the process, if any.
Spawned as

The entry point of the process, that is, what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call

The current function of the process. These fields do not always exist.
Spawned by

The parent of the process, that is, the process that executed spawn or spawn_| i nk.
Started

The date and time when the process was started.
M essage queue length

The number of messages in the process message queue.
Number of heap fragments

The number of allocated heap fragments.
Heap fragment data

Size of fragmented heap data. Thisis data either created by messages sent to the process or by the Erlang BIFs.
This amount depends on so many things that this field is utterly uninteresting.

Link list
Process | Ds of processes linked to this one. Can also contain ports. If process monitoring is used, thisfield also
tellsinwhich direction the monitoring isin effect. That is, alink "to" aprocesstellsyou that the "current” process

was monitoring the other, and alink "from" a process tells you that the other process was monitoring the current
one.

Reductions

The number of reductions consumed by the process.
Stack+heap

The size of the stack and heap (they share memory segment).
OldHeap

Thesize of the"old heap". The Erlang virtual machine uses generational garbage collection with two generations.
There is one heap for new data items and one for the data that has survived two garbage collections. The
assumption (which is amost always correct) is that data surviving two garbage collections can be "tenured" to
a heap more seldom garbage collected, as they will live for along period. This is a usual technique in virtual
machines. The sum of the heaps and stack together constitute most of the allocated memory of the process.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Memory

The total memory used by this process. This includes call stack, heap, and interna structures. Same as
erl ang: process_i nfo(Pi d, menory).

Program counter

The current instruction pointer. Thisis only of interest for runtime system developers. The function into which
the program counter points is the current function of the process.

CP

The continuation pointer, that is, the return address for the current call. Usually useless for other than runtime
system developers. This can be followed by the function into which the CP points, which is the function calling
the current function.

Arity

The number of live argument registers. The argument registers if any are live will follow. These can contain the
arguments of the function if they are not yet moved to the stack.

Internal State
A more detailed internal representation of the state of this process.
See also section Process Data.

1.5.8 Port Information

This section lists the open ports, their owners, any linked processes, and the name of their driver or external process.

1.5.9 ETS Tables

This section contains information about all the ETS tablesin the system. The following fields are of interest for each
table:

=ets.<owner>
Heading. States the table owner (a process identifier).
Table
Theidentifier for the table. If thetableisananmed_t abl e, thisisthe name.
Name
The table name, regardless of if itisanamed_t abl e or not.
Hash table, Buckets
If thetableisahashtable, that is, if itisnot an or der ed_set .
Hash table, Chain Length

If thetableisahash table. Contains statistics about the table, such as the maximum, minimum, and average chain
length. Having amaximum much larger than the average, and a standard deviation much larger than the expected
standard deviation is a sign that the hashing of the terms behaves badly for some reason.

Ordered set (AVL tree), Elements
If thetableisan or der ed_set . (The number of elementsis the same as the number of objects in the table.)
Fixed

If thetableisfixed using et s: saf e_fi xt abl e/ 2 or some internal mechanism.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.5 How to Interpret the Erlang Crash Dumps

Objects
The number of objectsin thetable.
Words
The number of words (usually 4 bytes/word) allocated to datain the table.
Type
Thetabletype, that is, set , bag, dubl i cat e_bag, or or der ed_set .
Compr essed
If the table was compressed.
Protection
The protection of the table.
Write Concurrency
Ifwrite_concurrency wasenabled for the table.
Read Concurrency

If read_concurrency was enabled for the table.

1.5.10 Timers

This section contains information about al the timers started with the BIFs erl ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exist for each timer:

=timer:<owner >

Heading. States the timer owner (a processidentifier), that is, the process to receive the message when the timer
expires.

M essage
The message to be sent.
Time left

Number of milliseconds left until the message would have been sent.

1.5.11 Distribution Information

If the Erlang node was alive, that is, set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>

The node name.
no_distribution

If the node was not distributed.
=visible node:<channel>

Heading for avisible node, that is, an alive node with a connection to the node that crashed. States the channel
number for the node.

=hidden_node:<channel>

Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the " -
hi dden" flag. States the channel nhumber for the node.

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

=not_connected:<channel>

Heading for anode that was connected to the crashed node earlier. References (that is, process or port identifiers)
to the not connected node existed at the time of the crash. States the channel number for the node.

Name

The name of the remote node.
Controller

The port controlling communication with the remote node.
Creation

An integer (1-3) that together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote_proc>

Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote proc>

The remote process was monitoring the local process at the time of the crash.
Remotelink: <local_proc> <remote_proc>

A link existed between the local process and the remote process at the time of the crash.

1.5.12 Loaded Module Information

This section contains information about all |oaded modules.
First, the memory use by the loaded code is summarized:
Current code
Code that is the current latest version of the modules.
Old code
Code where there exists a newer version in the system, but the old version is not yet purged.
The memory useisin bytes.
Then, all loaded modules are listed. The following fields exist:
=mod:<module_name>
Heading. States the module name.
Current size
Memory use for the loaded code, in bytes.
Old size
Memory use for the old code, if any.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info

Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.5 How to Interpret the Erlang Crash Dumps

Old compilation info

Compilation information (options) for the old code, if any. Thisfield isdecoded when looked at by the Crashdump
Viewer tool.

1.5.13 Fun Information

This section lists all funs. The following fields exist for each fun:

=fun

Heading.

Module

The name of the module where the fun was defined.

Uniq, Index

Identifiers.

Address
The address of the fun's code.

Native address
The address of the fun's code when HiPE is enabled.

Refc

The number of referencesto the fun.

1.5.14 Process Data

For each processthereisat least one=proc_stack and one =proc_heap tag, followed by the raw memory information
for the stack and heap of the process.

For each process there is aso a =proc_messages tag if the process message queue is non-empty, and a
=proc_dictionary tag if the process dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou can then see the stack dump, the
message queue (if any), and the dictionary (if any).

The stack dump is a dump of the Erlang process stack. Most of the live data (that is, variables currently in use) are
placed on the stack; thus this can be interesting. One has to "guess' what is what, but as the information is symbolic,
thorough reading of thisinformation can be useful. Asan example, we can find the state variabl e of the Erlang primitive
loader online (5) and (6) in the following example:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

3cac44
y(0)

Return addr 0x13BF58 (<terminate process normally>)

["/view/siri r10 dev/clearcase/otp/erts/lib/kernel/ebin",

"/view/siri rl0 dev/clearcase/otp/erts/lib/stdlib/ebin"]
<0.1.0>
{state, [],none,#Fun<erl prim loader.6.7085890>,undefined,#Fun<erl prim_ loader.7.9000327>,
#Fun<erl prim loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl prim loader.9.10708760>}
infinity

When interpreting the data for a process, it is helpful to know that anonymous function objects (funs) are given the
following:

* A name constructed from the name of the function in which they are created
* A number (starting with 0) indicating the number of that fun within that function

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1.5.15 Atoms

This section presents al the atoms in the system. Thisis only of interest if one suspects that dynamic generation of
atoms can be a problem, otherwise this section can be ignored.

Notice that the last created atom is shown first.

1.5.16 Disclaimer

The format of the crash dump evolves between OTP rel eases. Some information described here may not apply to your
version. A description like thiswill never be complete; it is meant as an explanation of the crash dump in general and
as ahelp when trying to find application errors, not as a complete specification.

1.6 How to Implement an Alternative Carrier for the Erlang
Distribution

This section describes how to implement an alternative carrier protocol for the Erlang distribution. The distribution is
normally carried by TCP/IP. Here is explained a method for replacing TCP/IP with another protocol.

The sectionisastep-by-step explanation of theuds_di st exampleapplication (inthe Kernel applicationexanpl es
directory). Theuds_di st application implements distribution over Unix domain sockets and is written for the Sun
Solaris 2 operating environment. The mechanisms are however general and apply to any operating system Erlang runs
on. The reason the C code is not made portable, is simply readability.

This section was written along time ago. Most of it is till valid, but some things have changed since then. Most
notably is the driver interface. Some updates have been made to the documentation of the driver presented here,
but more can be done and is planned for the future. The reader is encouraged to read the er | _dri ver and
dri ver_entry documentation also.

1.6.1 Introduction

To implement anew carrier for the Erlang distribution, the main steps are as follows.

Writing an Erlang Driver

First, the protocol must be available to the Erlang machine, which involves writing an Erlang driver. A port program
cannot be used, an Erlang driver is required. Erlang drivers can be:

o Statically linked to the emulator, which can be an alternative when using the open source distribution of Erlang, or

* Dynamically loaded into the Erlang machines address space, which isthe only alternativeif aprecompiled version
of Erlang is to be used

Writing an Erlang driver is not easy. The driver is written as some callback functions called by the Erlang emulator
when datais sent to the driver, or the driver has any data available on afile descriptor. Asthe driver callback routines
execute in the main thread of the Erlang machine, the callback functions can perform no blocking activity whatsoever.
The callbacks are only to set up file descriptors for waiting and/or read/write available data. All 1/0 must be non-
blocking. Driver callbacks are however executed in sequence, why a global state can safely be updated within the
routines.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

Writing an Erlang Interface for the Driver

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. This interface can then be used by the distribution module, which will cover the
details of the protocol from thenet _ker nel .

The easiest pathisto mimicthei net andi net _t cp interfaces, but not much functionality in those modules needs
to beimplemented. In the example application, only afew of the usual interfaces areimplemented, and they are much
simplified.

Writing a Distribution Module

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well-defined callbacks, much likeagen_ser ver (thereisno
compiler support for checking the callbacks, though). This module implements:

e Thedetails of finding other nodes (that is, talking to eprnd or something similar)

» Creating alisten port (or similar)

e Connecting to other nodes

» Performing the handshakes/cookie verification

Thereis however autility module, di st _ut i | , which does most of the hard work of handling handshakes, cookies,

timers, and ticking. Using di st _uti | makes implementing a distribution module much easier and that is done in
the exampl e application.

Creating Boot Scripts

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when all the system is running, but in areal system the distribution isto
start very early, why a boot script and some command-line parameters are necessary.

This step also impliesthat the Erlang codein the interface and distribution modulesiswritten in such away that it can
be run in the startup phase. In particular, there can be no callsto the appl i cat i on module or to any modules not
loaded at boot time. That is, only Ker nel , STDLI B, and the application itself can be used.

1.6.2 The Driver

Although Erlang driversin general can be beyond the scope of this section, a brief introduction seemsto be in place.

Drivers in General

An Erlang driver is a native code module written in C (or assembler), which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/
O. An Erlang driver can be dynamically linked (or loaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the driversin OTP are however statically linked to the runtime system, but that is more an
optimization than a necessity.

Thedriver datatypesand the functions availableto the driver writer are defined in header fileer | _dri ver . h seated
in Erlang'sinclude directory. Seethe erl_driver documentation for details of which functions are available.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation must be non-blocking and all possible situations are to be
accounted for in the driver. A non-stable driver will affect and/or crash the whole Erlang runtime system.

The emulator calls the driver in the following situations:

* Whenthedriver isloaded. This callback must have a special name and inform the emulator of what callbacks are
to be used by returning a pointer to aEr | Dr VEnt r y struct, which isto be properly filled in (see below).

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

* When aport to the driver is opened (by aopen_por t cal from Erlang). This routine is to set up internal data
structures and return an opagque data entity of thetype Er | Dr vDat a, which is a datatype large enough to hold a
pointer. The pointer returned by thisfunction isthe first argument to all other callbacks concerning this particular
port. Itisusually called the port handle. The emulator only storesthe handle and does never try to interpret it, why
it can be virtually anything (anything not larger than a pointer that is) and can point to anything if it is a pointer.
Usually this pointer refers to a structure holding information about the particular port, as it does in the example.

« When an Erlang process sends data to the port. The data arrives as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This callback returns nothing to the caller, answers are sent to the caller
as messages (using aroutine called dr i ver _out put availableto all drivers). Thereisaso away totak ina
synchronous way to drivers, described below. There can be an additional callback function for handling data that
isfragmented (sent in adeep io-list). That interface gets the datain aform suitable for Unix wr i t ev rather than
in asingle buffer. There is no need for adistribution driver to implement such a callback, so we will not.

e When afile descriptor is signaled for input. This callback is called when the emulator detects input on a file
descriptor that the driver has marked for monitoring by using the interface dr i ver _sel ect . The mechanism
of driver select makesit possible to read non-blocking from file descriptors by calling dri ver _sel ect when
reading is needed, and then do the reading in this callback (when reading is possible). The typical scenario is
that dri ver _sel ect iscalled when an Erlang process orders aread operation, and that this routine sends the
answer when datais available on the file descriptor.

* When afile descriptor is signaled for output. This callback is called in a similar way as the previous, but when
writing to a file descriptor is possible. The usual scenario is that Erlang orders writing on a file descriptor and
that the driver callsdri ver _sel ect . When the descriptor is ready for output, this callback is called and the
driver can try to send the output. Queuing can be involved in such operations, and there are convenient queue
routines available to the driver writer to use.

* When aport is closed, either by an Erlang process or by the driver calling one of thedr i ver _fai | ure_XXX
routines. This routine is to clean up everything connected to one particular port. When other callbacks call a
driver_fail ure_XXXroutine, thisroutineisimmediately called. The callback routine issuing the error can
make no more use of the data structures for the port, as this routine surely has freed all associated data and closed
all file descriptors. If the queue utility available to driver writer is used, this routine is however not called until
the queue is empty.

* When an Erlang process calls er | ang: port _control / 3, which is asynchronous interface to drivers. The
control interface is used to set driver options, change states of ports, and so on. This interface is used alot in
the example.

e When atimer expires. The driver can set timers with the function dri ver _set _ti ner. When such timers
expire, a specific callback function is called. No timers are used in the example.

* When the whole driver is unloaded. Every resource allocated by the driver isto be freed.

The Data Structures of the Distribution Driver

The driver used for Erlang distribution is to implement areliable, order maintaining, variable length packet-oriented
protocol. All error correction, resending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream-oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big-endian 32-bit integer. As Unix domain sockets only can be used
between processes on the same machine, we do not need to code the integer in some specia endianess, but we will
do it anyway because in most situation you need to do it. Unix domain sockets are reliable and order maintaining, so
we do not need to implement resends and such in the driver.

We start writing the example Unix domain socketsdriver by declaring prototypesandfillinginastaticEr | Dr vEnt ry
structure:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1) #include
2) #include
3) #include
4) #include
5) #include
#include
7) #include
8) #include

(
(
(
(
(
(6)
(
(
(
(

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<errno.h>
<sys/types.h>
<sys/stat.h>
<sys/socket.h>

9) #include <sys/un.h>
10) #include <fcntl.h>
(11) #define HAVE UIO H
(12) #include "erl driver.h"
(13) /*
(14) ** Interface routines
(15) */
(16) static ErlDrvData uds start(ErlDrvPort port, char *buff);
(17) static void uds_stop(ErlDrvData handle);
(18) static void uds command(ErlDrvData handle, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handle, ErlDrvEvent event);
(20) static void uds output(ErlDrvData handle, ErlDrvEvent event);
(21) static void uds finish(void);
(22) static int uds control(ErlDrvData handle, unsigned int command,
(23) char* buf, int count, char** res, int res size);
(24) /* The driver entry */
(25) static ErlDrvEntry uds driver entry = {
(26) NULL, /* init, N/A */
(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready input, called when input
(31) descriptor ready */
(32) uds_output, /* ready output, called when output
(33) descriptor ready */
(34) "uds drv", /* char *driver name, the argument
(35) to open port */
(36) uds_finish, /* finish, called when unloaded */
(37) NULL, /* void * that is not used (BC) */
(38) uds_control, /* control, port control callback */
(39) NULL, /* timeout, called on timeouts */
(40) NULL, /* outputv, vector output interface */
(41) NULL, /* ready async callback */
(42) NULL, /* flush callback */
(43) NULL, /* call callback */
(44) NULL, /* event callback */
(45) ERL DRV _EXTENDED MARKER, /* Extended driver interface marker */
(46) ERL_DRV_EXTENDED MAJOR VERSION, /* Major version number */
(47) ERL DRV_EXTENDED MINOR VERSION, /* Minor version number */
(48) ERL DRV _FLAG SOFT BUSY, /* Driver flags. Soft busy flag is
(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */
(51) NULL, /* process exit callback */
(52) NULL /* stop_select callback */
(53) };

On line 1-10 the OS headers needed for the driver areincluded. Asthisdriver iswritten for Solaris, we know that the
header ui 0. h exists. Sothe preprocessor variable HAVE_UlI O _Hcan bedefined beforeer | _dri ver . hisincluded
on line 12. The definition of HAVE_UlI O_H will make the 1/0 vectors used in Erlang's driver queues to correspond
to the operating systems ditto, which is very convenient.

On line 16-23 the different callback functions are declared ("forward declarations).

32 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The driver structure is similar for statically linked-in drivers and dynamically loaded. However, some of the fields
are to be left empty (that is, initialized to NULL) in the different types of drivers. The first field (thei ni t function
pointer) is always left blank in a dynamically loaded driver, see line 26. NULL on line 37 is always to be there, the
field isno longer used and is retained for backward compatibility. No timers are used in this driver, why no callback
for timersis needed. The out put v field (line 40) can be used to implement an interface similar to Unix wri t ev
for output. The Erlang runtime system could previously not use out put v for the distribution, but it can as from
ERTS5.7.2. Asthisdriver waswritten before ERTS 5.7.2 it does not usethe out put v callback. Using theout put v
callback is preferred, asit reduces copying of data. (We will however use scatter/gather 1/O internally in the driver.)

As from ERTS 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present on line 48. As from ERTS 5.7.4 flag ERL_DRV_FLAG _SOFT_BUSY is
required for drivers that are to be used by the distribution. The soft busy flag implies that the driver can handle calls
to the out put and out put v calbacks athough it has marked itself as busy. This has always been a requirement
on drivers used by the distribution, but no capability information has been available about this previously. For more
information. see er| _dri ver: set _busy_port()).

Thisdriver waswritten before the runtime system had SMP support. Thedriver will still functionin the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. Thiscan be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein parallel.
When instances safely can executein parallél, it is safe to enable instance-specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG _USE_PORT_LOCKI NGas adriver flag. Thisisleft as an exercise for the reader.

Thus, the defined callbacks are as follows:
uds_start
Must initiate data for a port. We do not create any sockets here, only initialize data structures.
uds_stop
Called when aport is closed.
uds_comand

Handles messages from Erlang. The messages can either be plain data to be sent or more subtle instructions to
the driver. Thisfunction is here mostly for data pumping.

uds_i nput

Called when there is something to read from a socket.
uds_out put

Called when it is possible to write to a socket.
uds_finish

Caled when the driver is unloaded. A distribution driver will never be unloaded, but we include this for
completeness. To be able to clean up after oneself is always a good thing.

uds_control
The er |l ang: port _contr ol / 3 callback, which isused alot in thisimplementation.

The portsimplemented by this driver operate in two major modes, named command and dat a. In comrand mode,
only passive reading and writing (like gen_t cp: r ecv/gen_t cp: send) can be done. The port is in this mode
during the distribution handshake. When the connection is up, the port is switched to dat a mode and al data is
immediately read and passed further to the Erlang emulator. In dat a mode, no data arriving to uds_conmand is
interpreted, only packaged and sent out on the socket. Theuds_cont r ol callback doesthe switching between those
two modes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

While net _ker nel informs different subsystems that the connection is coming up, the port is to accept data to
send. However, the port should not receive any data, to avoid that data arrives from another node before every kernel
subsystem is prepared to handleit. A third mode, named i nt er medi at e, isused for thisintermediate stage.

An enum is defined for the different types of ports:

1) typedef enum {

(

(2) portTypeUnknown, /* An uninitialized port */

(3) portTypelListener, /* A listening port/socket */

(4) portTypeAcceptor, /* An intermediate stage when accepting
(5) on a listen port */

(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypeIntermediate, /* A connected open port in special

(9) half active mode */

(10) portTypeData /* A connected open port in data mode */

(11) } PortType;

The different types are as follows:
por t TypeUnknown

The type a port has when it is opened, but not bound to any file descriptor.
port Typeli st ener

A port that is connected to a listen socket. This port does not do much, no data pumping is done on this socket,
but read datais available when one is trying to do an accept on the port.

port TypeAccept or

This port is to represent the result of an accept operation. It is created when one wants to accept from a listen
socket, and it is converted to apor t Ty peComrand when the accept succeeds.

port TypeConnect or

Very similar to port TypeAccept or, an intermediate stage between the request for a connect operation and
that the socket is connected to an accepting ditto in the other end. When the sockets are connected, the port
switches typeto por t TypeCommand.

port TypeConmand

A connected socket (or accepted socket) in command mode mentioned earlier.
port Typel nt er medi at e

The intermediate stage for a connected socket. There isto be no processing of input for this socket.
port TypeDat a

The mode where data is pumped through the port and the uds_conmmand routine regards every call as a call
where sending iswanted. In thismode, all input availableisread and sent to Erlang when it arrives on the socket,
much like in the active mode of agen_t cp socket.

We study the state that is needed for the ports. Notice that not all fields are used for all types of ports. Some space
could be saved by using unions, but that would clutter the code with multiple indirections, so here is used one struct
for all types of ports, for readability:

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds data {

(4) int fd; /* File descriptor */

(5) ErlDrvPort port; /* The port identifier */

(6) int lockfd; /* The file descriptor for a lock file in
(7) case of listen sockets */

(8) Byte creation; /* The creation serial derived from the
(9) lock file */

(10) PortType type; /* Type of port */

(11) char *name; /* Short name of socket for unlink */

(12) Word sent; /* Bytes sent */

(13) Word received; /* Bytes received */

(14) struct uds data *partner; /* The partner in an accept/listen pair */
(15) struct uds data *next; /* Next structure in list */

(16) /* The input buffer and its data */

(17) int buffer size; /* The allocated size of the input buffer */
(18) int buffer pos; /* Current position in input buffer */
(19) int header pos; /* Where the current header is in the

(20) input buffer */

(21) Byte *buffer; /* The actual input buffer */

(22) } UdsData;

This structure is used for all types of ports although some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as a union of structures. However, the multiple indirections in
the code to access afield in such a structure would clutter the code too much for an example.

Thefieldsin the structure are as follows:
fd

The file descriptor of the socket associated with the port.
port

The port identifier for the port that this structure correspondsto. It is needed for most dr i ver _ XXX calls from
the driver back to the emulator.

| ockfd
If the socket is alisten socket, we use a separate (regular) file for two purposes:
* Wewant alocking mechanism that gives no race conditions, to be sure if another Erlang node uses the listen
socket name we require or if the fileis only left there from a previous (crashed) session.

e Westorethecr eat i on seria number in the file. The cr eat i on isanumber that is to change between
different instances of different Erlang emulators with the same name, so that process identifiers from one
emulator do not become valid when sent to a new emulator with the same distribution name. The creation
can be from 0 through 3 (two bits) and is stored in every process identifier sent to another node.

In a system with TCP-based distribution, this data is kept in the Erlang port mapper daemon (epnd),
which is contacted when a distributed node starts. The lock file and a convention for the UDS listen socket's
name remove the need for epnd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.
creation
The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1) rem 4. This

creation value is also written back into the lock file, so that the next invocation of the emulator finds our value
inthefile.

type
The current type/state of the port, which can be one of the values declared above.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

name

The name of the socket file (the path prefix removed), which alows for deletion (unl i nk) when the socket is
closed.

sent

How many bytesthat have been sent over the socket. This can wrap, but that is no problem for the distribution, as
the Erlang distribution is only interested in if this value has changed. (The Erlang net _ker nel ti cker uses
thisvalue by calling the driver to fetch it, which is done through the er | ang: port contr ol / 3 routine.)

recei ved
How many bytes that are read (received) from the socket, used in similar waysassent .
part ner

A pointer to another port structure, which is either the listen port from which this port is accepting a connection
or conversely. The "partner relation” is always bidirectional.

next

Pointer to next structure in a linked list of all port structures. This list is used when accepting connections and
when the driver is unloaded.

buf f er _si ze, buf f er _pos, header _pos, buffer

Data for input buffering. For details about the input buffering, see the source code in directory ker nel /
exanpl es. That certainly goes beyond the scope of this section.

Selected Parts of the Distribution Driver Implementation

The implemenation of the distribution driver is not completely covered here, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver callback routines can be found intheer | _dri ver. h header file.

The driver initidization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavors of systems). This is the only routine that must have a well-defined name. All other
callbacks are reached through the driver structure. The macro to use is named DRI VER | NI T and takes the driver
name as parameter:

(1) /* Beginning of linked list of ports */
(2) static UdsData *first data;

(3) DRIVER INIT(uds drv)

(4) {

(5) first data = NULL;

(6) return &uds driver entry;
(7) }

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine is called
whener| _ddl | : 1 oad_dri ver iscalled from Erlang.

Theuds_st art routineis called when a port is opened from Erlang. In this case, we only allocate a structure and
initialize it. Creating the actual socket isleft to theuds_comrand routine.

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>