
Chalmers University of Technology

A New Leader Election 
Implementation

Hans Svensson
Thomas Arts



Chalmers University of Technology

Leader Election

• Within a set of participating processes
– Algorithm ensures exactly one leader
– All (active) participants know this leader

• Erlang behavior gen_leader

• Original implementation is broken [ACS04]

• We re-implemented gen_leader

[ACS04] T. Arts, K. Claessen, and H. Svensson. Semi-formal development of a fault-tolerant 
leader election protocol in Erlang. In: Lecture Notes in Computer Science, vol. 3395, 
p. 140-154, Springer, Feb 2005.



Chalmers University of Technology

What was broken

• Two leaders elected at the same time
– Incorrect modification of Singh’s algorithm

• Dead-lock situation without leader
– Overlooked critical message sequence

Note: The original algorithm (Singh) is not broken, just 
the implementation



Chalmers University of Technology

Why not fix it?

• Already substantially modified
– Not a very good algorithm choice
– Semantic mismatch
– Risk of introducing new errors

• Choose a more suitable algorithm
– Non-trivial task
– Can we expect a good match?



Chalmers University of Technology

‘Leader Election in Distributed Systems 
with Crash failure’ - S. Stoller

When a process is started, it first checks whether a process with 
higher priority is active. If such a process exist, the process 
simply waits for one of those processes to become the leader. 
If, on the other hand, the present process is the process with 
highest priority, the process itself tries to become the leader. 
Becoming the leader is done by making sure that all processes 
with lower priority either are aware of its existence or are 
inactive. When all processes with lower priority are informed, 
the process announces itself as the leader. Periodically, the 
elected leader polls the inactive processes, if one of the 
inactive processes is activated, the election process is 
restarted. Processes supervise each other with failure 
detectors.



Chalmers University of Technology

‘Leader Election in Distributed Systems 
with Crash failure’ - S. Stoller

A B

C

A B

C

Wait for A or B

Wait for A

HALT

ACK

HALT
ACK

I am the 
Leader!

LDR

LDR

A B

C

Failure detectorA > B > C



Chalmers University of Technology

Changing the behavior

A B

C DD

I’ll just wait

NORM
NOTNORM

A
HALT

B
Sometime later

• Re-election every time a process is activated
– Inefficient
– Does not match our requirements

Failure detectors omitted



Chalmers University of Technology

Adapting the Algorithm
Assume that we have an elected leader

• A process with lower priority is activated
– The leader informs the new process

• A process with higher priority is activated
– Tries to start a new election
– The others should not accept a ‘HALT’
– Anyone can inform the new process
– The new process confirms the leadership

Failure detection is VERY important here



Chalmers University of Technology

Implementation

• Translates well into Erlang
• Failure detection is done by Monitors
• Same interface as original gen_leader



Chalmers University of Technology

Testing the implementation

• Tracing and Abstraction
– Randomly activates/deactivates processes
– Randomly delays messages
– Abstract traces can be model checked

• Erlang QuickCheck
– Random testing technique
– Influence the scheduler



Chalmers University of Technology

Features

• Fault tolerant leader election
• No unnecessary elections
• Implemented as Erlang behavior
• Correct?

http://www.cs.chalmers.se/~hanssv/leader_election

http://www.cs.chalmers.se/~hanssv/leader_election

	A New Leader Election Implementation
	Leader Election
	What was broken
	Why not fix it?
	‘Leader Election in Distributed Systems with Crash failure’ - S. Stoller
	‘Leader Election in Distributed Systems with Crash failure’ - S. Stoller
	Changing the behavior
	Adapting the Algorithm
	Implementation
	Testing the implementation
	Features

