TypEr: A Type Annotator
of Erlang Code

Tobias Lindahl and Kostis Sagonas
Dept of Information Technology
Uppsala University

Background to this work

Erlang is dynamically typed and type safe.
It possible to infer types for variables based on their
usage.

* Example: The arguments to addition must be numbers or
else the call will fail. If the call succeeds the result
must also be a number.

Dialyzer exploits this to reconstruct type information
and report obvious type clashes to the user.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

What is TypEr?

TypEr is a tool that automatically inserts type
annotations in Erlang code.

The aims of TypEr:
— Facilitate documentation of Erlang code.
— Provide help to understand legacy code.

— Encourage a type-aware development of Erlang
programs.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Design goals of TypEr

* TypEr should accept all Erlang code.
* TypEr should not act as a type checker.

* TypEr should be fully automatic.

* No user annotation of interfaces, etc.

* TypEr should perform reasonably even if all code is
not available.

* TypEr should never be wrong.

* The annotations should be as precise as possible, but
still be safe over-approximations.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

The type annotation language

The type system is based on subtyping and includes:
— Basic types, including one-point types.
 float(), pid(), binary(), atom(), 'ok’, 'true’, 42, ...
— Structured types
o tuple(), {T, ..., T}, ..
— Lists (as the only recursive type)
o list(T), [], nonempty list(T), ...
— Disjoint unions
« atom() | float(), -1 | 42, ...

— A largest and a smallest type
* any(), none()

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

The type lattice

-

VN T

atom() number() port() pid() ref() ()—> T binary() possibly improper list(T) tuple()

aHY()\
N AN N/

bool() float() integer() ()—>T (T)—»T ... \ ne_pi_list(T) list(T) {4 AT} -

a

nonempty list(T) []

%

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

The need for subtyping.

tag(N) when is float(N) -> {float, N};
tag(N) when is integer(N) -> {int, N}.

tag/1 :: (number ())— | 'float', float ()}
| {'int', integer ()|

tag(N) when is float(N) -> {float, N};
tag(N) when is integer(N) -> {int, N};
tag(_) -> not valid.

tag/1::(any ())— | float', float ()]
| {'int',integer ()]
| 'mot valid'

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Success types

The success type of a function expresses:
— For which domain a function can return, and
— The range for the function if it ever returns.

The type inference allows for type errors inside the
function. It simply removes the offending clause.

When determining the success type of a function, only
the function itself and the functions it calls are
considered.

— No unification with the call sites.

— Allows for a modular type inference.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

The analysis at a glance.

The type inference is based on subtype constraints.

The analysis works at the granularity of strongly
connected components (SCCs) of the static call
graph of the code.

— The static call graph is constructed.
— The SCCs are identified and sorted topologically.

— The SCCs are analyzed bottom-up, all the time
using the accumulated information.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Constraint generation

Calls to functions with known type signatures.

Example: The built-in function 1ength/1 has the
signature
length/1:: (list ()) — integer ()

so the call

N = length(L),

yields the constraints

Ty Sinteger () A1, Slist ()

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

More refined type signatures.

The general signature for addition is

+/2::(number () ,number () — number () ‘

But we would expect the function

int add(X, Y) when is integer(X), is_integer(Y) -> X + Y.

to have the signature

int_add/2 ::(integer (), integer ())— integer ()

This is implemented by having a limited form of
dependent types hard-coded in the analysis.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Case expressions

The general form of a case expression is

case E of
P when G1 -> B.:

1’

Expression
Pattern

P when G -> B_ Guard
Body

end

The generated constraints are

CeA VTE:TP,/\CG,/\CB,/\TWETB,.
I

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Solving the constraints.

Conjunctive constraints:

— A type is the greatest lower bound (infimum) of
all its subtype constraints.

Disjunctive constraints:
— Solve all partial constraints.

— A type is the lowest upper bound (supremum) of
all the partial solutions.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Example of constraint solving

is this the answer 1(X) ->
case X of
42 -> true;
_ => false
end.

We have the constraints

(T4 S42AT,, S "true’)V(T1,, S’ false')

Each conjunct is trivial. Taking the supremum of the solutions:

Tout < Sup(’true"'false'> — bOOl()
Ty S sup(42,any()) = any()

The inferred signature:

is this the answer 1/1 :: (any())— bool ()

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Recursive functions: Fibonacci numbers

fib(0) -> 1;
fib(1l) -> 1;
fib(X) -> fib(X-1) + fib(X-2).

From the first two clauses we have the closed form

‘ fib ::(integer ()| — integer ()

Now solve iteratively:

T, ,<(0]1] T, Sinteger ()
AT, ,S[0]1] AT, ,Sinteger (
AT, S[1]2]3] AT, CSinteger ()
At =l|integer ()| —(1]2] NTgy =|integer ()| — |

)

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Fibonacci numbers with a twist

fib(Zero) when Zero == 0 -> 1;
fib(One) when One == 1 -> 1;
fib(X) -> fib(trunc(X-1)) + fib(trunc(X-2)).

The constraint generation and solving are left as
exercises, but the signature is:

fib ::(number ()| — integer ()

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Consequences of inferring success types

is this the answer 2(X) when is atom(X) ->
case X of
42 -> true;
_ => false
end.

We have the constraints

TXEatOm()/\((TX§42/\T0m§ "true)V (T

C’false’))

out —

We have contradictory constraints from the first clause

Ty Satom()ATS42

The inferred signature: |is this the answer 2/1 :: (atom())—' false’

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Success types: Handling exceptions

foo(X) when is atom(X) ->
io:format (“Wrong input: ~w”, [X]),
exit (error);

foo(X) ->
X + 1.

The type signature does not reflect the explicit handling of atoms

is_this the answer 2/1 :: (number ())— number ()

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Success typings: Servers

loop(Parent) when is pid(Parent) ->
receive
{ Pid, Msg} ->
Parent ! Msgqg,
loop(Parent)
end.

Since this function does not return its type signature becomes

loop/1 :: (any())— none ()

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Success typings: Servers (cont'd)

loop(Parent) when is pid(Parent) ->
receive
{ Pid, Msg} ->
Parent ! Msgqg,
loop(Parent);
{Parent, stop} ->
ok
end.

Now we have a return value from the function and the signature
becomes

loop/1 :: (pid ())— 'ok’

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Benefiting from the module system

The module system in Erlang provides means to make
the result of the analysis more precise.

The functions in a module are either:
— Escaping - exposed to the outer world.

— Internal - protected against arbitrary calls
from the outside.

Type signatures for internal functions are specialized
by their uses.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Example 1: An internal function

-module(ml).
-export([main/1]).

main(N) when is integer(N) -> tag(N+42).

tag(N) -> {tag, N}.

A first attempt: | mainl 5 integer () — | tag ' any ()
tag/l :lany()|—1{'tag’, any ()]

Since we know all call-sites to the function tag/1, we can
specialize the signatures.

main/1 ::(integer ()| —{'tag ', integer ()|
tag/1 ::|integer ()|—|"tag ', integer ()|

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Example 2: An "internal” function escapes

-module(m2).
-export([main/1]).

main(N) when is integer(N) -> {tag(N+42), fun tag/1}.

tag(N) -> {tag, N}.

Since the function tag/1 now escapes the module, we do
nhot have control over all the call-sites, and we must
assume that the function can be called with anything.

main/1 ::(integer ()| = {{"tag ', any ()}, (any())—{"tag ", any()}]
tag/l ::lany()|—{'tag’, any ()}

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

The analysis revisited

1 The static callgraph is constructed.
2 The SCCs are identified and sorted topologically.

3 The SCCs are analyzed bottom-up, using the
constraint based analysis.

4 The SCCs are then traversed top-down to specialize
the signatures of internal functions.

5 If no specializations are made we have reached a
fix-point, otherwise repeat from 3.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Summary

* The type inference that TypEr employs:
— Requires no annotations or code alternations.

— Handles the complete Erlang language.

* The approach is novel and fast:

— The annotation process is modular and
incremental.

— In the proceedings there are run-times for
analyzing the whole Erlang/OTP.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

Current and future work

* Currently TypEr is at the prototype stage, but we
are working on a release.

* Add the possibility to take user-supplied type
signhatures into account.

* Investigate how the behavior of non-returning
functions can be captured in a better way.

* Integrate the analysis of TypEr in Dialyzer to allow
it To find more discrepancies.

Tobias Lindahl: TypEr: A Type Annotator of Erlang Code. Erlang Workshop 2005

