
Atom Garbage Collection

Thomas Lindgren
thomasl_erlang@yahoo.com

Why?

● Atoms are simple, useful, ubiquitous, dangerous
● Not collecting them introduces a space leak

– Problem for long-running systems
– Reclaim atom storage only by stopping node

● Programmer gets responsibility
– But has few tools for managing atoms

● Unintuitive performance model
– Space used ~ sum of all atom names ever in system

Characteristics of atom collector

● Each module has O(100) atoms
● A mid-sized system has O(20,000) atoms
● Atom table is normally not huge

– Ets tables and process data may be much larger
● An atom collector probably runs seldom

– Far less often than ordinary memory management
– Should have low overhead for common case

● But: atoms may be used more aggressively than
today if there is an atom collector

Garbage collecting atoms

● Atoms are a centralized resource
– Appear everywhere: process data, ets tables, code, ...

● Stop-the-world can be used
– Mark all atoms reachable from ets, process, code
– Deallocate unmarked atoms

● Problem: long pause (needs to traverse
everything)

● Our solution: incremental steps, usually short
– But not guaranteed to be short

Incremental atom collector

● Migrate atoms from old to new epoch/atom table
– When loading/unloading code, refcount atoms
– At start of AGC, move all atoms refcount > 0
– Before running a process, convert its atoms (~ gc)
– When accessing ets, convert atoms in term

● Eventually all data in the system uses new atom
table; then deallocate old table

● If incrementalism takes too long, hurry up the
collector by doing more work (longer pauses)

Conclusion

● Implementation still to come
– What policy should be used? When to run vs increase

atom table size?
– First step: retain atom info for each loaded module

● Proposed algorithm is hybrid copy/refcount
– Common case: some space overhead, small runtime

overhead when accessing ets, else pay as you go
– Collector reasonably simple, incremental

