
Verifying Fault-Tolerant
Erlang Programs

Clara Benac Earle
Universidad Carlos III

Madrid, Spain

Lars-Åke Fredlund
Universidad Politécnica

Madrid, Spain

John Derrick
University of Sheffield

England, UK

Outline of the talk

• Previous work:
– T. Arts, C. Benac Earle, J. Derrick. Development of

a verified Erlang program for resource locking. Int.
J. on Software Tools for technology Transfer. Vol.
5, pp 205-220, 2004.

– C. Benac Earle. Model checking the interaction of
Erlang components. PhD thesis, University of Kent,
Canterbury, 2005.

• Extension for handling fault-tolerance
• Conclusions, future work

Verification: methodology

ERLANG VERIFIED
ERLANG

µCRL CADPLABELED
TRANSITION

SYSTEM

etomcrl

Translating an Erlang subset

• Functional part
– Data types: atoms, numbers and pids
– Variables and patterns
– Expressions: data types, variables, lists,

tuples and records
– Functions, including higher-order functions

• Modules

Translating an Erlang subset

Processes and concurrency
We handle Erlang Behaviours!

Not Erlang send and receive but:
– Generic server behaviour (gen_server):

client-server applications
– Supervisor behaviour

Translation target: µCRL

µCRL is a process algebra with data

• Different types of data are described
using sorts

• Functions over sorts are given by
rewrite rules

• Processes use synchronous
communication

Translation scheme

• Separation of side-effect-free
functions and functions with side-
effects

• SEF functions are translated into a set
of rewrite rules and SE functions are
translated into µCRL processes.

• Message queues are translated into
µCRL processes

Etomcrl: the translation tool

• Input: Erlang code that uses the generic
server component for communication
between processes and the supervisor
component for starting child processes

• Output: A µCRL specification initialized
with the processes started by the
supervisor component

example
-module(client).

start_link(Server) ->
{ok,spawn_link(loop,[Server])}.

loop(Server) ->
gen_server:call(Server,request),
enter_critical(self()),
exit_critical(self()),
gen_server:call(Server,release),
loop(Server).

example
start_link() ->

gen_server:start_link(server,[],[]).

init([]) ->
{ok,[]}.

handle_call(request,Client,Pending)->
case Pending of

[] ->
{reply, ok, [Client]};

_ ->
{noreply, Pending ++ [Client]}

end;

handle_call(release, Client, [_|Pending]) ->
case Pending of

[] ->
{reply, done, []};

_ ->
gen_server:reply(hd(Pending), ok),
{reply, done, Pending}

end.

Verification

etomcrl

server.mCRL

server.erl client.erl

server_sup.erl

client_sup.erl

server.aut

CWI tool CADP

Model Checking Software

MUTUAL EXCLUSION PROPERTY:

BETWEEN(‘enter_critical(.*)',‘exit_critical(.*)')

macro BETWEEN (Act1,Act2) =
[-*.(Act1).(not(Act2))*.(Act1)]false

end_macro

Fault-tolerance in Erlang
• Establish links between processes
• If a process A terminates abnormally, a

signal is sent to all linked processes,
which will terminate abnormally or will
receive the message in their mailbox

• Supervisor component

Example of fault-tolerant code
init([]) ->

process_flag(trap_exit,true),
{ok,[]}.

handle_call(request,{ClientPid,Tag},Pending)->
link(ClientPid)
…

handle_info({‘EXIT’,ClientPid,Reason},Pending) ->
NewPending = remove(ClientPid,Pending),
case available(ClientPid,Pending) of

true ->
gen_server:reply(hd(NewPending), ok),
{noreply,NewPending};

_ ->
{noreply,NewPending}

end.

Fault-tolerance: translation

• Translate fault handling code
(handle_info)

• Extend the translation from Erlang to
µCRL to include the possibilites of
faults
– Add µCRL code corresponding to the crashing of a

client

Adding crashing points

• Between issuing a generic server call
and receiving the reply

• After receiving the reply from the
server

• After issuing a generic server cast if
there was at least one generic server
call to the same server before

Mutual Exclusion
BETWEEN(a1,a2,a3) = [-*.a1.(¬a2)*.a3]false

MUTEX() =
BETWEEN(´enter_critical(.*)´,´exit_critical(.
)´.enter_critical(.)´)

Counter-example

“call(server,request,C1)”
“reply(C1,ok,server)”
“enter_critical(C1)”
“info(server,{EXIT,C1,EXIT})”
“call(server,request,C2)”
“reply(C2,ok,server)”
“enter_critical(C2)”

FT_MUTEX
FT_BETWEEN(a1,a2,a3,a4) =

[-*.a1.(¬a2 V a3)*.a4]false

FT_MUTEX()=
FT_BETWEEN(´enter_critical(.*)´,´exit_critical(
.*)´,´info(.*)´,´enter_critical(.*)´)

Another example

handle_info({´EXIT´,ClientPid,Reason},Pending) ->
NewPending = remove(ClientPid,Pending),
case NewPending == [] of

false ->
gen_server:reply(hd(NewPending),ok),
{noreply,NewPending};

_->
{noreply,[]}

end.

Counter-example
“call(server,request,C1)”
“reply(C1,ok,server)”
“call(server,request,C3)”
“info(server,{EXIT,C3,EXIT})”
“enter_critical(C1)”
“exit_critical(C1)”
“reply(C1,ok,server)”
“call(server,request,C2)”
“call(server,release,C1)”
“reply(C2,ok,server)”
“enter_critical(C2)”
“reply(C1,done,server)”
“enter_critical(C1)”

Conclusions
• Checking fault tolerance is hard
• In Erlang it is easier, because of

– Language support for fault tolerance (links)
– High-level components reduces the number

of program locations where failures have to
be handled

• As a consequence the state spaces we
generate automatically are relatively small,
and thus checkable

• The verification method is general, and
reusable for a class of fault-tolerant Erlang
client-server programs

Future Work

• Extending the tool
• Supporting other design patterns,

including user-defined behaviours
• Equivalence Checking

• Download etomcrl from
http://etomcrl.sourceforge.net

http://etomcrl.sourceforge.net/

	Verifying Fault-Tolerant Erlang Programs
	Outline of the talk
	Verification: methodology
	Translating an Erlang subset
	Translating an Erlang subset
	Translation target: μCRL
	Translation scheme
	Etomcrl: the translation tool
	example
	example
	Verification
	Model Checking Software
	Fault-tolerance in Erlang
	Example of fault-tolerant code
	Fault-tolerance: translation
	Adding crashing points
	Mutual Exclusion
	Counter-example
	FT_MUTEX
	Another example
	Counter-example
	Conclusions
	Future Work

