Verifying Fault-Tolerant
Erlang Programs

Clara Benac Earle
Universidad Carlos ITI
Madrid, Spain

Lars-Ake Fredlund
Universidad Politécnica
Madrid, Spain

John Derrick
University of Sheffield
England, UK



Outline of the talk

- Previous work:

- T. Arts, C. Benac Earle, J. Derrick. Development of
a verified Erlang program for resource locking. Int.

J. on Software Tools for technology Transter. Vol.
5, pp 205-220, 2004.

- C. Benac Earle. Model checking the interaction of
Erlang components. PhD thesis, University of Kent,
Canterbury, 2005.

+ Extension for handling fault-tolerance
» Conclusions, future work



Verification: methodology

ERLANG

etomcrl

uCRL

LABELED

»TRANSITION

SYSTEM

CADP

VERIFIED
ERLANG




Translating an Erlang subset

* Functional part
- Data types: atoms, humbers and pids
- Variables and patterns

- Expressions: data types, variables, lists,
tuples and records

- Functions, including higher-order functions

- Modules



Translating an Erlang subset

Processes and concurrency

We handle Erlang Behaviours!

Not Erlang send and receive but:

- Generic server behaviour (gen_server):
client-server applications

- Supervisor behaviour



Translation target: uCRL

HCRL is a process algebra with data

+ Different types of data are described
using sorts

* Functions over sorts are given by
rewrite rules

* Processes use synchronous
communication



Translation scheme

» Separation of side-effect-free
functions and functions with side-
effects

- SEF functions are translated into a set
of rewrite rules and SE functions are
translated into HCRL processes.

* Message queues are translated into
HCRL processes



Etomcrl: the translation tool

» Input: Erlang code that uses the generic
server component for communication
between processes and the supervisor
component for starting child processes

» Qutput: A uCRL specification initialized
with the processes started by the
supervisor component



example

-module(client).

start_link(Server) ->
{ok,spawn_link(loop, [Server])}.

loop(Server) ->
gen_server:call(Server,request),
enter_critical(self()),
exit _critical(selt()),
gen_server:call(Server,release),
loop(Server).



example

start_link() ->
gen_server:start_link(server,[]1,[])-

init([]D ->
{ok, [1}-

handle_call(request,Client,Pending)->
case Pending of
1 ->
{reply, ok, [Client]};
->
{noreply, Pending ++ [Client]}
end;

handle _call(release, Client, [ |Pending]) ->
case Pending of
1>
{reply, done, []}:;
->
gen_server:reply(hd(Pending), ok),
{reply, done, Pending}

end.



Verification

client_sup.erl

server.erl client.erl

server_sup.erl

server. mCRL

server.aut

etomcrl

CWI tool

callipid 0 die e p

O dlee i L))

callipidd O Taquest pid 1))

r=tun(pid 1) ok pid O1)
retunn pid; ek pid( )



Model Checking Software

File Wiew Optiong

EUCALYPTUS Toolset -
Lcalyptus 2.4 / CADP 2001 "Otiawa web  Help |

1 Results Window Kill | Clear |

beg_open Atmpsxeuca_1206_1242_0,bcg evaluator  -diag evaluator,bcg -verboze | /mutesx
evaluator . beg locker, aut: mutex,ncl Lmcl

beg_opent uzing T dusrdlocalfsharespandcadp-2001/bin, sunb/evaluator,a”™”

bog_open: running " ewvaluator —diag ewaluator,bog —verbose ,/mutex.mcl”” for Atmpd
weuca_1206_1242_0,beg””

—-- evaluator 3,0 -- R, Mateescu and M, Sighireanu (IMRIA Rhone-Alpes) -—

' i M Welcome to the EUCALYPTUS Toolsst A |
| bog_io locker,aut Atmp/xeuca_1206_1242_0,.bcg |
| . / Corverted locker,aut to Atmpdxeuca_1206_1242_0,bcg

evaluator: preprocessing of *mutes””

MUTUAL EXCLUSION PROPERTY:

e normal form

ar modal equation systems
mination
equation systems

BETWEEN(‘enter_critical(.*)",'exit_critical(.*)")

. bog” TR

macro BETWEEN (Act1,Act2) =
[-*.(Act1).(not(Act2))*.(Act1)]false
end_macro




Fault-tolerance in Erlang

» Establish links between processes

* If a process A terminates abnormally, a
signal is sent to all linked processes,
which will terminate abnormally or will
receive the message in their mailbox

» Supervisor component



Example of fault-tolerant code

init([]) ->

process_fTlag(trap exit,true),

{ok, [13}-

handle_call(request,{ClientPid,Tag},Pending)->
1ink(ClientPid)

handle _info({“EXIT”,ClientPid,Reason},Pending) ->
NewPending = remove(ClientPid,Pending),
case available(ClientPi1d,Pending) of
true ->

gen_server:reply(hd(NewPending), ok),
{noreply,NewPending};
>
{noreply,NewPending}

end.



Fault-tolerance: translation

» Translate fault handling code
(handle_info)

» Extend the translation from Erlang to
HCRL to include the possibilites of

faults

- Add PCRL code corresponding to the crashing of a
client



Adding crashing points

» Between issuing a generic server call
and receiving the reply

» After receiving the reply from the
server

- After issuing a generic server cast if
there was at least one generic server
call to the same server before



Mutual Exclusion

BETWEEN(al,a2,a3) = [-*.al.(-a2)*.a3]false

MUTEX() =
BETWEEN( enter_critical(.*)", exit_critical(.
*) .enter_critical((*)")



Counter-example

“call(server,request,C1)"
"reply(Cl,ok,server)”
“enter_critical(C1)"
“info(server {EXIT,C1EXIT})"
“call(server,request,C2)"
"reply(C2,0k,server)"”
“enter_critical(C2)"



FT_MUTEX

FT_BETWEEN(al,a2,a3,04) -
[-*.al.(-a2 V a3)*.a4]false

FT_MUTEX()-=
FT_BETWEEN(enter_critical(.*)", exit_critical(
*Y info(.*) , enter_critical(.*)")



Another example

handle_info({" EXIT" ClientPid Reason} Pending) ->
NewPending = remove(ClientPid Pending),
case NewPending == [] of
false ->
gen_server:reply(hd(NewPending),ok),
{noreply NewPending};
->
{noreply []}
end.



Counter-example

“call(server,request,C1)"
“reply(C1,0k,server)”
“call(server,request,C3)"
“info(server {EXIT,C3 EXIT})"
“enter_critical(C1)"
“exit_critical(C1)"
“reply(C1,0k server)”
“call(server,request,C2)"
“call(server, release,C1)"
“reply(C2,0k, server)"
"enter_critical(C2)"
"reply(C1,done server)”
"enter_critical(C1)"



Conclusions

» Checking fault tolerance is hard
» In Erlang it is easier, because of
- Language support for fault tolerance (links)

- High-level components reduces the number

of program locations where failures have to
be handled

* As a consequence the state spaces we
generate automatically are relatively small,
and thus checkable

* The verification method is general, and
reusable for a class of fault-tolerant Erlang
client-server programs



Future Work

» Extending the tool

» Supporting other design patterns,
including user-defined behaviours

» Equivalence Checking

- Download etomcr| from
http://etomcrl.sourceforge.net



http://etomcrl.sourceforge.net/

	Verifying Fault-Tolerant Erlang Programs
	Outline of the talk
	Verification: methodology
	Translating an Erlang subset
	Translating an Erlang subset
	Translation target: μCRL
	Translation scheme
	Etomcrl: the translation tool
	example
	example
	Verification
	Model Checking Software
	Fault-tolerance in Erlang
	Example of fault-tolerant code
	Fault-tolerance: translation
	Adding crashing points
	Mutual Exclusion
	Counter-example
	FT_MUTEX
	Another example
	Counter-example
	Conclusions
	Future Work

